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Abstract
The wide use of mobile devices has led to a proliferated creation of

extensive trajectory data, rendering trajectory classification increas-

ingly vital and challenging for downstream applications. Existing

deep learning methods offer powerful feature extraction capabilities

to detect nuanced variances in trajectory classification tasks. How-

ever, their effectiveness remains compromised by the following two

unsolved challenges. First, identifying the distribution of nearby

trajectories based on noisy and sparse GPS coordinates poses a

significant challenge, providing critical contextual features to the

classification. Second, though efforts have been made to incorpo-

rate a shape feature by rendering trajectories into images, they fail

to model the local correspondence between GPS points and image

pixels. To address these issues, we propose a novel model termed

Traj2Former to spotlight the spatial distribution of the adjacent tra-

jectory points (i.e., contextual snapshot) and enhance the snapshot

fusion between the trajectory data and the corresponding spatial

contexts. We propose a new GPS rendering method to generate con-

textual snapshots, but it can be applied from a trajectory database

to a digital map. Moreover, to capture diverse temporal patterns,

we conduct a multi-scale sequential fusion by compressing the tra-

jectory data with differing rates. Extensive experiments have been

conducted to verify the superiority of the Traj2Former model.

CCS Concepts
• Information systems → Geographic information systems; •
Computing methodologies → Supervised learning by classi-
fication.
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1 Introduction
The widespread use of mobile devices has led to the production

of vast amounts of trajectory data, typically in the form of two-

dimensional GPS point sequences. Classification is a crucial and

fundamental challenge within the domain of spatio-temporal an-

alytics. Applications of trajectory classification extend to various

downstream tasks, such as providing trip recommendations [22]

and enhancing smart transportation systems [2, 24, 37].

Existing research on trajectory classification can be roughly di-

vided into trajectory-based methods, image-based methods, and

their fusion. For trajectory-based methods, early work manually ex-

tracts speed, acceleration, and bearing as features [6] and employs

traditional machine learning models such as SVM, Bayes, KNN, and

Random Forest as the classifier [36]. Recent efforts mostly adopt

deep learning models such as CNN and RNN [6, 27] to learn more

robust trajectory representations from large-scale training datasets.

For example, Liang et al. proposed TrajODE [20] to capture the

representation of the continuous-time dynamic in trajectory data

inherently. Further, they proposed TrajFormer [19] to encode the

spatio-temporal intervals of the continuous trajectory sequences

to deal with GPS noise and sparsity issues. Meanwhile, a parallel

research direction for trajectory classification is to render trajecto-

ries into images [8, 13]. This strategy captures the trajectory shape

information, constrained by the underlying road network and thus

complementary to the traditional trajectory representation. For

instance, the Estimator model [13] was proposed to transmute the

target trajectory into an image, and then fuse it with the origi-

nal trajectory data to achieve performance gains. Yuki et al. [8]
extracted features from the formulated image by the trajectory

for the transportation mode estimation. Moreover, Kontopoulos et
al. [14] proposed TraClets to fine-tune the VGG16 model on the

trajectory image features for the trajectory classification. However,

these methods primarily focus on rendering a single target trajec-

tory without fully exploring other trajectories in a large historical

https://doi.org/10.1145/3664647.3681340
https://doi.org/10.1145/3664647.3681340
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Figure 1: The distribution of trajectories with different trans-
portation modes in the neighborhood of a target trajectory.
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Figure 2: Illustration of fetching local contexts from the
global map and their correspondence with the GPS points.

database. Furthermore, the fusion of trajectory- and image-based

features is mostly performed before the output layer without ex-

changing information locally.

As illustrated in Fig. 1, the historical trajectory distribution is an

important feature in revealing the transportation mode of the target

trajectory. For example, if the nearby samples of a target trajectory

are majorly labeled as “Walk” rather than “Car” or “Train”, then the

target trajectory is more likely to follow a sidewalk that is highly

correlated with the label “Walk” rather than a highway which is

high related to “Car”. However, such semantic information [25] has

not been fully investigated in previous work.

Motivated by the above observations, we propose a novel frame-

work termed Traj2Former, which first transforms trajectories into

global maps and then performs local context-aware snapshots and

multi-scale sequential dual fusion. Specifically, our framework ex-

tracts a comprehensive global map enhanced by semantics through

the rendering of a large-scale historical trajectory database. This

conversion leads to the creation of two distinct maps: 1) a physical

feature map, which captures the concrete environmental charac-

teristics, and 2) a class distribution map, which depicts the proba-

bilistic spread of different categorical elements across the global

map. Thereafter, we propose to extract local contextual snapshots

(see Fig. 2) from the global map to reduce irrelevant information,

which is next enhanced by a novel transformer-based map encoder

to further reduce the data noise. The contextual representation

generated by the map encoder and the corresponding trajectory

representation generated by the trajectory encoder are next fused

hierarchically by progressively condensing the input trajectory,

aiming to capture both neighborhood and sequential patterns in

multiscale. Finally, we would like to emphasize that our proposed

Traj2Former is a unified fusion framework, which is capable of

accommodating maps generated from different data sources, e.g.,
trajectory database, crowdsourced map, or satellite imagery. Exten-

sive experiments have been performed on two public benchmark

datasets, namely Geolife and MTL, to evaluate our model design

and effectiveness. Here we summarize our contributions as follows.

• To our knowledge, we are the first to present a unified fu-

sion framework that performs local context-aware snapshot

fusion by simultaneously modeling multiscale correlations

between trajectory and neighborhood representations.

• Wepropose to generate an enhanced globalmap by rendering

from a large-scale trajectory database to support contextual

snapshot extraction, which provides vital and complemen-

tary information to the traditional trajectory representations.

• We introduce a new and general Transformer-based Map En-

coder, which is capable of coping with diverse map sources,

to further reduce the impact of noise in crowdsourced data.

• We compare our model to the state-of-the-art trajectory clas-

sification methods, where significant performance gain has

been obtained on both Geolife and MTL benchmark datasets.

2 Related Work
We review related works which can be roughly categorized into

point-aware and image-aware trajectory classification methods.

Point-aware Trajectory Classification. A trajectory can be rep-

resented via multiple data formats [28–30, 34]. The usual formats

of trajectories are comprised of a sequence of 2-dimensional GPS

points, e.g., spatial locations, and temporal timestamps. Point-aware

methods [1, 7, 17] are proposed to capture the spatio-temporal fea-

tures [16] among the trajectory that is comprised of the separated

GPS points. Zheng et al. [36] proposed four different methods in-

cluding KNN [11], Bayes [21], SVM [4] and Random Forest [10], to

classify a user’s transportation mode. Furthermore, Zheng et al. [35]

proposed a supervised learning approach to identify the sophisti-

cated features and designed a graph-based postprocessing algorithm

to further improve the inference performance. Additionally, Liang

et al. [19] adapted transformers to model trajectories to embed the

spatio-temporal intervals of the continuous trajectory points and

squeeze the points to speed up the representation learning. Lee et

al. [18] explored the region- and the trajectory-based features to

overcome the discriminative parts of the trajectory identification.

However, these methods cannot easily capture the coarse-grained

spatial features and the nearing distribution of the trajectories.

Image-aware Trajectory Classification. To boost classification

performance, some existing studies focus on mapping trajectories

to images to capture the shape of the objective trajectory. Hu et

al. [13] developed CNN-TCN to utilize the shape of a trajectory

and the time embedding for the trajectory classification. Yuki et

al. [8] converted a trajectory to a grayscale image and integrated it

with hand-extracted features to classify trajectories. Kontopoulos et

al. [15] identified a vessel’s mobility patterns by fusing the vessel’s

trajectory and the image of the corresponding trajectory. Further-

more, Kontopoulos et al. [14] proposed TraClets that fine-tune the

VGG16 for image-based trajectory classification. These existing

approaches directly introduce deep learning methods to fuse the

trajectory embedding [9] with the mapped trajectory images to

solve the trajectory classification problem. However, the semantic

distribution information of nearby trajectories has not been fully

investigated in previous works.
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3 Problem Formulation
Problem Statement: With a set of trajectories 𝑇={𝑇1,𝑇2, · · · ,𝑇𝑛}
compiled from moving objects, the task of trajectory classification

involves categorizing these sequences into distinct groups, such as

walk, car, and other modes of transport. A unified fusion network

(Section 4) is proposed to effectively aggregate the information from

both the trajectory input and the map input. Different from previ-

ous work, we propose to leverage a historical trajectory database

to generate a comprehensive global map enriched by semantics

(Section 5). The trajectory input is extracted from the original GPS

format. The map input is a multi-channel image containing con-

textual information, which can be generated from either historical

trajectories or crowdsourced online maps (e.g., OpenStreetMap).

Definition 1. (Trajectory.) A trajectory 𝑇 contains a time-order
sequence GPS points, i.e.,𝑇=⟨𝑝1, 𝑝2, · · ·, 𝑝𝑛⟩. Each GPS point𝑝𝑖 (1≤𝑖≤𝑛)
is represented by {⟨𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ⟩, 𝑡𝑖 }, where 𝑙𝑎𝑡𝑖 is the latitude location,
𝑙𝑜𝑛𝑖 is the longitude location, and 𝑡𝑖 is the timestamp.

Definition 2. (Historical Trajectory Database.) The database
contains all historical trajectories in the training set with trajectory
labels. The item in the database is presented as 𝑇𝑗={⟨𝑝1, 𝑝2, · · ·, 𝑝𝑛⟩,
𝑚𝑜𝑑𝑒 𝑗 }, where𝑚𝑜𝑑𝑒 𝑗 signifies the transport label.

Definition 3. (Self Image.) The self-image of the target trajec-
tory is a multi-channel image. Each channel consists of𝑊×𝐻 grid
cells and represents a feature map such as velocity and acceleration.

Definition 4. (Global Map.) The global map with𝑊×𝐻 resolu-
tion is generated by rendering adjacent trajectories from the historical
trajectory database to a multi-channel image. It yields substantial ad-
vantages by providing background information on the transportation
in the neighborhood.

4 Traj2Former Architecture
The overview framework of our proposed Traj2Former model is

illustrated in Fig. 3, which consists of 1) a Trajectory Encoder that

encodes the input trajectorywith robust point-level representations;

2) a Local Context-aware Fusion Network that effectively fuses

trajectory andmap representations with varying spatial granularity;

and 3) a Transformer-based Map Encoder that enhances the local

contexts and updates the global map with self-attentions.

4.1 Trajectory Encoder
By using the Trajectory Encoder as an initial step, the Traj2Former

model gains a refined initial representation of the trajectory data.

This improves its performance during the subsequent integration

with image-based trajectory data.

4.1.1 Sequential Trajectory Feature Extraction. Following previous

work [6], we extract velocity, acceleration, jerk, heading, and its

changing rate from GPS trajectories, which are the key features

for training an effective trajectory classifier. To avoid obtaining

unstable features for each track point, we implement a moving av-

erage window to approximate the features at each point by moving

through the whole trajectory. The time span of the sliding window

is set to △𝑡 . For a sample point 𝑖 , we set it to be the starting point

of the window and calculate the distance 𝑑 from the first sample

point to the last sample point. Then, the velocity, acceleration, and

jerk of sample point 𝑖 are computed as 𝑣𝑖=𝑑/△𝑡 , 𝑟𝑖=|𝑣 𝑗−𝑣𝑖 |/△𝑡 , and
𝑎𝑖=|𝑟 𝑗 −𝑟𝑖 |/△𝑡 , respectively. Similarly, we also compute the heading

and its changing rate at each track point.

4.1.2 Sequential Trajectory Encoding. The extracted features de-

scribed above are then encoded into a high-dimensional vector

space using a sophisticated CNN-based neural network [6]. This

learned trajectory embeddings comprise point-level robust repre-

sentations, which will be fed into the Trajectory Compressor to

generate informative segment-level representations. Formally, the

embedding of a trajectory 𝑇𝑗 is expressed as:

𝐸𝑝 = 𝑓𝑒𝑚𝑏 (𝑇𝑗 ) ∈ R𝜉 , (1)

where 𝑓𝑒𝑚𝑏 refers to the trajectory encoder, and 𝜉 denotes the

dimensionality of the feature space. By embracing the Trajectory

Encoder as a preliminary step, the Traj2Former model benefits from

a nuanced initial representation of the trajectory data, leading to

improved performance and accuracy in the subsequent fusion with

spatial trajectory features.

4.2 Local Context-aware Multi-scale Fusion
Though efforts have been made on fusing the sequential and spatial

trajectory features [13], the modeling of the local correspondences

is largely overlooked. Therefore, we propose a novel fusion method

to highlight both global and local fusion at a multi-scale level.

4.2.1 Global Segment-to-Image Fusion. A naive fusion approach

involves directlymerging the self-image feature representationwith

the trajectory embedding [13] to potentially improve classification

outcomes. The mathematical formulation of this coarse-grained

naive fusion technique can be described as follows:

𝐹𝑠2𝑖 = 𝐸𝑝 ⊗ 𝐸𝑚, (2)

where 𝐸𝑝 represents the trajectory embedding defined in Eq. 1, 𝐸𝑚
signifies the spatial trajectory embedding which will be introduced

in Section 5.1.2, and ⊗ is the concatenation operation. By merging

different forms of data representations, the global segment-to-image

fusion approach generates a richer andmore comprehensive feature

set. Moreover, merging at the coarse-grained level allows for better

flexibility in the development process, such as optimizing or modi-

fying each component independently. However, naive fusion over-

looks the local correlations between different data modalities and

limits the model’s ability to capture the interactions on fine-grained

level features, which could lead to a decrease in performance.

4.2.2 Local Point-to-Pixel Fusion. To explore the fine-grained in-

formation, we propose a fusion method that primarily aggregates

the point-level representations with the corresponding local image

representation, shown as follows,

𝐹𝑝2𝑝 = 𝐿_𝐹𝑢𝑠𝑖𝑜𝑛(⟨𝑒𝑝
1
⊗ 𝑒𝑚

1
⟩, · · · , ⟨𝑒𝑝𝑛 ⊗ 𝑒𝑚𝑛 ⟩), (3)

where 𝑒
𝑝

1
, · · · , 𝑒𝑝𝑛 are the point-wise embedding from the raw tra-

jectory, 𝑒𝑚
1
, · · · , 𝑒𝑚𝑛 are the local spatial trajectory representation,

and 𝑛 is the length of the target trajectory. 𝐿_𝐹𝑢𝑠𝑖𝑜𝑛 is a general

fusion method with mean-pooling, max-pooling, or other fusion

methods to aggregate the features. Here, we adopt concatenation

as the fusion method to generate the segment-level embedding.

Point-to-pixel fusion exploits the correlation among fine-grained
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Figure 3: System overview of our proposed Traj2Former framework.

features that are overlooked in segment-to-image fusion. It also

extracts consistent features across multiple data sources to gain

a deeper understanding of the contextual information. However,

multiple points in a trajectory may correspond to the same pixel

in the map, resulting in duplicate local contexts retrieved in the

point-wise fusion. These redundant local contexts offer minimal

new or valuable information and should therefore be excluded from

further processing to improve the system’s efficiency.

4.2.3 Efficient Hierarchical Global-Local Fusion. To simultaneously

harness the benefits of both global and local fusion, we propose a

new Hierarchical Global-Local (HGL) Fusion approach, as depicted

in Fig. 3. To avoid extracting redundant local information, we in-

novatively develop a Trajectory Compressor (TC) module and a

Local-Context Fetcher (LCF) module to support efficient point-pixel

level fusion. Thereafter, the global map and trajectory embedding

are fused in the segment-image level fusion module. Coarse-grained

features can enhance the final representation by offering informa-

tion from a global perspective. Finally, the outputs of point-to-pixel

fusion at different scales and the outputs of segment-to-image fu-

sion are concatenated to obtain a final representation 𝐹𝑑𝑢𝑎𝑙 , which

is formally given as

𝐹𝑑𝑢𝑎𝑙 = 𝐹𝑝2𝑝 ⊗ 𝐹𝑠2𝑖 , 𝐹𝑝2𝑝 = 𝐹 1𝑝2𝑝 ⊗ · · · ⊗ 𝐹𝐿𝑝2𝑝 (4)

where 𝐹𝑝2𝑝 denotes the multi-scale point-to-pixel fusion across 𝐿

layers and 𝐹𝑠2𝑖 is the segment-to-image fusion as shown in Eq. 2.

Trajectory Compressor. To prevent generating redundant infor-

mation and incurring higher time costs when extracting local maps

from the global map, the initial trajectory is compressed to obtain

a segment-level feature concentrated with essential information.

Particularly, we divide the trajectory into 𝑆 (referred to as the com-

pression ratio) segments recursively, and extract the segment-level

representations based on the average pooling of the features from

the previous level. Thereafter, we project the location of the center

point in each segment to the image coordinates on the map. These

pixel coordinates will be passed to the LCF to extract local context

from the map. We also propose a novel Transformer-based Map

Encoder (see Section 4.3) to extract complementary spatial trajec-

tory features from the local context, which are next fused with the

segment-level trajectory representations.

Local Context Fetcher. As discussed in the introduction, the goal

of this module is to reduce the noise and irrelevant information

presented in the global map. To achieve a high concentration of

local information, we adopt a Local Context Fetcher (LCF) module

guided by the compressed trajectory. Precisely, for each pixel that

correlates a trajectory segment, we crop a sub-image on the global

map with a size of 𝑐𝑝×𝑐𝑝 centered at respective pixel coordinates,

which can be expressed as

𝐺𝑙 = 𝐿𝐶𝐹 (𝐺𝑔, {𝑖, 𝑗}, 𝑐𝑝 ), (5)

where 𝐺𝑙 and 𝐺𝑔 represent the local and global contexts, 𝐿𝐶𝐹 de-

notes the Local Context Fetcher module, 𝑐𝑝 designates the crop

size, and {𝑖, 𝑗} signifies the pixel coordinates. The local contexts are
tailored to offer the distinct advantage of mitigating noise while

maintaining a sharp focus on the relevant spatial context.

4.3 Transformer-based Map Encoder
To cope with maps generated from different sources, we would like

to design a generalized map encoder with the capability of extract-

ing robust features regardless of the map type. Different types of

maps may have their own limitations. For example, the global map

generated from historical GPS trajectories may suffer from GPS

intrinsic noise and sparsity. OpenStreetMap is crowdsourced and

thus may contain duplicate or inaccurate information. Motivated

by the above observations, we propose a Transformer-based Map

Encoder to aggregate information from other regions to enhance

the point-level fusion and segment-level fusion.
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4.3.1 Local Context Refinement for Point-to-Pixel Fusion. To refine

the local context for enhancing the point-level fusion, we adopt the

multi-head attention model [26] to train the local context map em-

bedding. Especially, we process the two-dimensional global map im-

age and reshape it fromR𝐶×𝐻×𝑊
into a sequence of two-dimension

patches 𝑝𝑖∈𝑃, 𝑃∈R𝑁×(𝐶 ·𝑟 2 )
, where 𝐻×𝑊 is the resolution of the

global map, 𝑟2 is the resolution of every single patch, 𝐶 is the

number of feature channels, and 𝑁 is the number of patches (e.g.,

𝑁=𝐻𝑊 /𝑟2). Next, the patches are flattened to 𝑑-dimensional vec-

tors with a trainable linear projection 𝑝𝑖∈R𝑁×𝑑
. The traditional

attention mechanism is represented as

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 )=𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, · · ·, ℎ𝑒𝑎𝑑ℎ)𝑊 𝑜 ,

ℎ𝑒𝑎𝑑𝑖=𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ),

where the local maps are the query, and the flattened global maps

are the key and value in our applied multi-head attention module.

More specifically, the query is given as 𝑄∈R𝑣×(𝐶 ·𝑟 2 )
and the key

and value are defined as 𝐾=𝑉 ∈R𝑁×(𝐶 ·𝑟 2 )
, where 𝑣 is the number

of local contexts returned by the Local Context Fetcher.

4.3.2 Global Map Enhancement for Segment-to-Image Fusion. To
refine the global maps and extract highly representative features,

we employ a multi-head self-attention model to iteratively update

the global map at each layer within the Traj2Former framework.

The global map enhancement is proposed to enhance the segment-

level fusion. For the self-attention model, the query, the key, and the

value share the same sequence of patches from the global map. The

relationship is defined as𝑄=𝐾=𝑉 ∈R𝑁×(𝐶 ·𝑟 2 )
. For optimization effi-

ciency and feature consistency, the multi-head self-attention model

shares the same parameters of the local context refinement module

introduced in Section 4.3.1. The same transformative weights are

applied when updating the global map and extracting the local

contexts. Thus, the global map and local contexts are mutually

enhanced, benefiting from the consistent set of learned features.

4.4 Objectives and Optimization
Our Traj2Former model consists of 𝐿 layers where MLPs are applied

as decoders to convert trajectory representations to class distribu-

tions. The 𝐿𝑡ℎ layer produces the final predictions. Building on the

observation that sub-trajectories share the same class label, we train

our Traj2Former model by jointly minimizing the cross-entropy

loss on all layers as given below

L = 𝛼 ·
𝐿−1∑︁
𝑖=1

L𝑖 (𝑦,𝑦) + 𝛽 ·L𝐿 (𝑦,𝑦), (6)

where 𝑦 and 𝑦 are the predicted class and true label, respectively.

L𝑖 is the cross-entropy on output of the 𝑖-th layer and L𝐿 is the

cross-entropy on the final output of the last layer.

5 map acquisition
Features such as speed, acceleration rate, and bearing play a deci-

sive role in trajectory classification [6]. To obtain complementary

information from the historical trajectories, we extract not only

the aforementioned physical statistics but also the transportation

mode class distributions to generate a global map in our work.

5.1 Spatial Trajectory Feature Extraction
Efforts have been made to convert GPS trajectories [13, 32] and

crowdsourced map data [31] into images, enriching trajectory data

with visual information (see Section 4.1.1).While sequential features

analyze movement patterns over time, trajectory images highlight

the distribution of nearby trajectories, offering insights into the

road environment. The model name, Traj2Former, reflects this dual

approach, encompassing both sequential and spatial features.

5.1.1 Self-image generation from a single trajectory. To enable vi-

sual representation of the trajectory in a more intuitive and acces-

sible format, the initial trajectory is converted to a self-image by

transforming GPS data points into pixel coordinates in an image.

We compute the latitude and longitude span of the whole trajectory

and obtain the pixel index of each GPS point by setting the image

size to𝑊×𝐻 . In particular, for each sample point {⟨𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ⟩, 𝑡𝑖 },
we compute the pixel index as follows,

𝑙𝑎𝑡
𝑝

𝑖
=
𝑙𝑎𝑡𝑖 −𝑚𝑖𝑛𝑎

𝑊
, 𝑙𝑜𝑛

𝑝

𝑖
=
𝑙𝑜𝑛𝑖 −𝑚𝑖𝑛𝑜

𝐻
, (7)

where 𝑚𝑖𝑛𝑎 and 𝑚𝑖𝑛𝑜 are the minimal latitude and longitude of

the trajectory, 𝑙𝑎𝑡
𝑝

𝑖
and 𝑙𝑜𝑛

𝑝

𝑖
are the obtained pixel index. Based on

the given trajectory, we extract five important features, including

speed, acceleration, angle, acceleration rate, and angle rate. Since

multiple GPS points can be projected to the sample pixel on the

map, we compute their average as the final feature.

5.1.2 Global map generation from a historical database. To create

a global map with nearby trajectories, we aggregate trajectories

from the historical database and apply the self-image formulation

method, replacing the individual trajectory with a set of neighbor-

ing trajectories. Two types of maps are converted from the historical

trajectory database: physical statistic maps and class distribution

maps, collectively called global maps. The region covered by the

global map is defined to be the same as the self-image introduced

above. Subsequently, we retrieve all trajectories within that region

from the historical database to generate the global map. Besides, we

have enriched the original features by incorporating the detailed

statistical descriptors of speed, acceleration, and angle, specifically

the maximal, minimal, and average values of each attribute, and

the number of GPS points. The physical statistic features 𝐶𝑝 are

formulated based on channel-wise concatenation as,

𝐶𝑝 = 𝐶1

𝑓
⊙ · · · ⊙ 𝐶𝑚

𝑓
, (8)

where𝐶𝑖
𝑓
, 1≤𝑖≤𝑚, is the extracted features from the adjacent trajec-

tories, and𝑚 is the number of physical feature channels. However,

the physical statistic features neglect the class distribution of the

neighboring trajectories, which intuitively captures the road envi-

ronment. To enrich the global map features, we further generate

the class distribution features as one component of the global map.

Assume that there are 𝑘 classes in the dataset, then 𝑘 channels will

be created, each of which records the normalized count of the GPS

points belonging to a specific class. Formally, we have

𝐶𝑑 = 𝐶1

𝑠 ⊙ · · · ⊙ 𝐶𝑘𝑠 , (9)

where 𝐶𝑖𝑠 is the distribution channel for the 𝑖-th class, 1≤𝑖≤𝑘 . The
final global map representation 𝐸𝑚 is comprised of the physical

feature map and the class distribution map as 𝐸𝑚=𝐶𝑝 ⊙ 𝐶𝑑 .
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5.2 Public Map Sources
Public map sources can also be utilized in our Traj2Former model,

where APIs are usually provided for downloading map visualiza-

tions such as digital map [33] and satellite map [32].

5.2.1 Digital Map. In real-world scenarios, we would like to lever-

age additional map resources that are publicly available. This is

important since our model has the ability to fuse different map

features from multiple map sources to boost classification perfor-

mance. Digital maps, such as HEREmap and OpenStreetMap, can be

rendered in different styles (i.e., Cycling Map, Transportation Map,

Topography Map, and Humanitarian Relief Map), which capture

different road attributes to further enhance the model performance.

5.2.2 Satellite Imagery. Our Traj2Former model exhibits remark-

able flexibility, proving effective not only with self-generated global

maps but also with satellite imagery. To assess the performance and

reliability of Traj2Former when applied to satellite maps, the HERE

map API is utilized. This tool enables us to precisely extract satellite

images corresponding to target trajectories. Table 6 presents the

results of the ablation study on using different map sources.

6 Experiments
6.1 Experimental Settings
Existing works divide trajectory data into segments by counting

a specific number of valid GPS points [5]. However, the time du-

ration of each segment is critical in practical applications, as the

transportation mode typically remains constant over a continuous

time span. To achieve this, we inserted a new point at one-second

intervals between two consecutive points, resulting in segments

composed of 600 points (i.e., 10 minutes) in Geolife and inserted a

new point at five-second intervals of 650 points in MTL.

Geolife andMTL datasets. The Geolife dataset contains 27,795 tra-
jectory segments and six transportation modes. The MTL includes

four selected modes of transportation and contains 23,406 segments.

These two datasets, with a division of training and testing data,

were maintained at an 8:2 ratio across each transportation mode

category. Details of the dataset are illustrated in the Appendix.

Implementation Details.We apply the Adam optimizer during

training and adopt a learning rate of 0.001 with a weight decay of

0.001. The batch size is set to 64 and all generated images are 50×50
in size. The kernel size for the sequential and spatial trajectory em-

bedding is set to 3 and 6, respectively. The Traj2Former model has 3

layers, and we set 𝛼=0.3, 𝛽=0.4 in the loss function. All experiments

are conducted on a single NVIDIA RTX A6000 with 48GB memory.

Metrics. For the trajectory classification problem, we follow [3] to

report the sub-class classification accuracy and the overall accuracy

to evaluate our model’s effectiveness. Here, the accuracy is the

ratio of the number of correct samples to the number of the whole

samples. Besides, we also list the per-class accuracy to show the

detailed effectiveness of each class. In the presented tables, we also

use the notation Δ to indicate the relative improvement of accuracy

compared with the state-of-the-art method.

6.2 Comparison to the State-of-the-art Methods
We compared our proposed method to the following state-of-art

methods and report the results in Table 1.

• SVM, KNN, RF [36] applies the machine learning methods

to solve the trajectory prediction problem.

• RNN, GRU, STGRU [3, 27] focuses on solving the variable

length sequence to address the constraints of topological

structure on trajectory modeling.

• LSTM, Bi-LSTM [12, 23] proposes a classifier that automat-

ically processes the features from trajectories.

• TrajFormer, TrajODE [19, 20] considers spatio-temporal

intervals to generate trajectory embeddings.

• SECA [6] automatically extracts relevant features from tra-

jectories and exploits useful information in unlabeled data.

• DNN, TraClets [8, 14] extracts the self-images feature and

fuses it with the trajectory embedding.

• Estimator, Estimator* [13] integrates the self-images with

time-interval embedding and frozen partial parameters by [6].

As can be seen, an obvious trend is that Traj2Former outshines

all baseline contenders. Particularly, Traj2Former shows a 10.54%

enhancement over trajectory-only methods, i.e., SVM, KNN, RF,

RNN, GRU, LSTM, Bi-LSTM, TrajFormer, TrajODE, and SECA, for

the Geolife dataset, and an 8.57% increase on the MTL dataset. This

improvement suggests that the Traj2Former model adeptly cap-

tures the distribution of nearby trajectories, thereby enhancing

its performance relative to models considering only pure trajecto-

ries. Specifically, in comparison to image-related methods such as

DNN, TraClets, Estimator, and Estimator*, Traj2Former exhibits

advancements of at least 8.15% and 2.99% on the Geolife and MTL

datasets, respectively. These figures underscore the effectiveness of

the generated global map, revealing the fact that considering near-

ing trajectories improves the classification performance. In specific

sub-classes like cars, buses, and subways within the Geolife dataset,

Traj2Former achieves notable improvements. For the MTL dataset,

Traj2Former significantly outperforms all baselines in all public

transportation classes. Such findings demonstrate that Traj2Former

has the capability to identify similar modes of transportation, by

leveraging the consistent relationship between the compressed

trajectory embedding and the corresponding local contexts.

6.3 Ablation Studies
We conduct ablation studies to evaluate the effectiveness of each de-

sign strategy. Experiments are implemented on the Geolife dataset.

6.3.1 Impact of Different Components in Proposed Model. Table 2
presents the effectiveness of each designed components. Firstly, the

transformer-based map encoder is replaced with the CNN, resulting

in the most decreased accuracy by 3.11%. This fact reveals the

designed attention module can reduce the noise from global maps

and focus on the local context information. Besides, we remove

the trajectory compressor module but directly concatenate the

trajectory embedding to the global map, leading to a 1.96% decrease.

This shows the merits of the compressor module since it effectively

reduces the duplicated local context features from the global map.

In the experiment, i.e., w/o Auxiliary Losses, we only compute the

loss of the final layer and exclude the loss of the middle layers. The

performance is decreased by 0.97%, demonstrating the dependency

of the model’s performance on its internal layer-wise interactions.

This cumulative evidence underscores the effectiveness of each

component in the Traj2Former model.
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Table 1: Performance comparison of Traj2Former with the state-of-the-art methods on the Geolife and MTL datasets.

Method
Geolife

Walk Bike Car Bus Subway Train Acc Δ
KNN 69.19% 56.01% 53.60% 56.88% 59.02% 78.04% 62.70% -30.79%

SVM 63.68% 74.47% 56.03% 57.28% 0.00% 87.41% 63.44% -30.05%

RF 73.57% 65.57% 57.93% 60.08% 64.44% 82.00% 67.16% -26.33%

LSTM 96.50% 64.93% 63.69% 60.92% 31.04% 82.50% 73.72% -19.77%

GRU 98.72% 64.21% 58.88% 66.64% 12.90% 82.00% 74.16% -19.33%

RNN 96.44% 66.81% 59.58% 68.36% 20.56% 84.00% 74.40% -19.09%

Bi-LSTM 96.05% 60.89% 65.26% 71.41% 45.56% 84.25% 76.59% -16.90%

STGRU 98.38% 62.48% 69.20% 66.56% 58.87% 82.50% 77.70% -15.79%

TrajFormer 98.22% 81.09% 72.79% 71.02% 67.33% 92.50% 82.80% -10.69%

SECA 96.16% 82.25% 75.32% 70.63% 74.59% 91.00% 82.95% -10.54%

TrajODE 99.16% 83.11% 72.44% 72.82% 68.95% 87.75% 83.46% -10.03%

DNN 90.05% 67.53% 55.29% 62.33% 19.75% 78.50% 69.77% -23.72%

TraClets 96.22% 75.76% 59.58% 62.73% 58.47% 76.75% 75.36% -18.13%

Estimator 98.44% 80.51% 75.24% 73.06% 68.95% 90.75% 83.74% -9.75%

Estimator* 96.83% 87.01% 74.71% 77.52% 74.19% 93.00% 85.34% -8.15%

Traj2Former w/o Attention 99.27% 90.33% 93.17% 81.75% 51.20% 94.27% 90.38% -3.11%

Traj2Former 99.16% 97.11% 87.22% 91.15% 94.35% 86.50% 93.49% -

Method
MTL

Walk Bike Car Public Acc Δ
KNN 57.55% 56.73% 66.14% 43.26% 57.09% -36.59%

SVM 47.00% 60.86% 74.12% 43.41% 57.46% -36.22%

RF 67.74% 65.63% 69.97% 51.12% 64.06% -29.62%

LSTM 90.32% 87.30% 80.67% 53.42% 76.99% -16.69%

GRU 89.13% 90.28% 77.55% 66.36% 80.95% -12.74%

RNN 93.15% 90.73% 77.30% 53.95% 77.50% -16.18%

Bi-LSTM 89.58% 85.33% 82.89% 35.99% 72.51% -21.71%

STGRU 90.92% 95.04% 83.78% 54.64% 80.71% -12.97%

TrajFormer 94.34% 95.23% 89.44% 63.08% 85.11% -8.57%

SECA 95.53% 94.98% 83.97% 63.47% 83.61% -10.07%

TrajODE 95.08% 94.79% 84.17% 64.76% 83.89% -9.79%

DNN 94.69% 90.03% 95.86% 21.49% 76.12% -17.56%

TraClets 94.94% 93.90% 88.17% 59.59% 83.50% -10.18%

Estimator 95.57% 93.06% 81.98% 70.76% 84.51% -9.17%

Estimator* 95.72% 97.98% 86.24% 84.44% 90.69% -2.99%

Traj2Former w/o Attention 96.72% 91.11% 95.99% 86.30% 92.11% -1.57%

Traj2Former 93.30% 93.58% 94.53% 92.99% 93.68% -

6.3.2 Comparison with Different Map Generation Strategies. To
demonstrate the effectiveness of the generated global maps, we

feed different feature maps to the Traj2Former model. As shown

in Table 3, using the global map consisting of physical features

(i.e., 𝐶𝑓 in Eq. 8) and class distribution features (i.e., 𝐶𝑑 in Eq. 9)

performs better than applying only the self-images by 8.10%. This

fact shows the effectiveness of the generated global maps. For the

components of the global maps, only using the physical maps 𝐶𝑝
performs worse by 1.73%. It demonstrates that considering the class

distribution improves the performance of our model. Besides, we

show the versatility of the Traj2Former model by concatenating

global maps to the self-image to achieve 94.21% accuracy.

6.3.3 Ablation Study of Compress Rate. To evaluate the different

compress rates of the Traj2Former model, we adjust the compress

Table 2: Impact of different components in proposed model.

Methods Acc Δ
w/o Attention 90.38% -3.11%

w/o Compressor 91.53% -1.96%

w/o Auxiliary Losses 92.52% -0.97%

Traj2Former Full Model 93.49% -

Table 3: Comparison of different map generation strategies.

Self Image

Global Maps

Acc Δ
𝐶𝑝 𝐶𝑑√
- - 85.39% -8.10%

-

√
- 91.76% -1.73%

-

√ √
93.49% -√ √ √
94.21% +0.72%

rate 𝑆1 of the first layer and give fixed compress rates 𝑆𝑖=2 for

further layers 𝑖=2, · · ·, 𝐿, shown in Table 4. When we decrease the

compress rate from 30 to 5, the overall trend is that the perfor-

mance increases first and then decreases. In particular, reducing

the compress rate first results in more local context images from

the global map, and the accuracy increases. When the compress

rate is increased further, the accuracy decreases. That is, a small

compress rate results in duplicated local contexts, especially when

we have a dense GPS distribution under a small interpolation size.

Fig. 4 demonstrates the accuracy trends for different subclasses

at assorted compression rates. We observe that when the compress

Table 4: Ablation study of compress rate

Compress Rate Acc Δ
𝑆1 = 30 93.49% -

𝑆1 = 15 95.39% +1.9%

𝑆1 = 10 95.07% +1.58%

𝑆1 = 6 92.68% -0.81%

𝑆1 = 5 91.27% -2.22%

Figure 4: Per-class comparison with varying compress rate.
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Table 5: Impact of local context size 𝑐𝑝 .

Local Context Size Acc Δ
𝑐𝑝 =3 93.49% -

𝑐𝑝 =5 96.09% +2.60%

𝑐𝑝 =7 93.27% -0.22%

𝑐𝑝 =9 92.26% -1.23%

Table 6: Evaluation of satellite map.

Map Source CNN Traj2Former

Global Map Satellite Map√
- 90.69% 93.49%

-

√
86.39% 92.19%√ √
91.79% 95.00%

Table 7: Impact of the filtering methods.

Global Map Acc Δ
CNN w/o Filter 89.75% -3.74%

CNN with Filter 90.69% -2.80%

Traj2Former w/o Filter 92.30% -1.19%

Traj2Former with Filter 93.49% -

rate decreases, the accuracy of the sub-classes such as Walk, Bike,

and Subway decreases. For the Car, Bus, and Train, an initial in-

crease in accuracy is observed, followed by a subsequent decline.

Accuracy diminishes for the Walk, Bike, and Subway subclasses as

compression rates decrease, likely due to duplicated local contexts

caused by lower speeds and Subway has a relatively constant speed.

In contrast, Car, Bus, and Train initially show improved accuracy,

probably of their stop-and-go moving pattern, but this benefit is

lost as accuracy drops when compression rates decline excessively.

6.3.4 Impact of Local Context Size 𝑐𝑝 . To detect the impact of the

local context size 𝑐𝑝 , we adjust 𝑐𝑝 from 3 to 9. The experiment results

are shown in Table 5. With increasing the local context size, the

accuracy increases first and then decreases. That is when expanding

𝑐𝑝 , more information on the distribution of nearby trajectories is

provided to distinguish different mode categories. However, this

benefit is lost since further expending 𝑐𝑝 results in the distribution

of all local contexts being similar and difficult to distinguish.

6.3.5 Evaluation of Satellite Map. To evaluate the effectiveness of

our proposed Traj2Former model on the actual map dataset, we

extract the actual map from the HERE map. Global maps are the

original self-built maps, including physical features and class distri-

bution features. Satellite maps are the 3-channel images from the

real map. To better compare the baseline models with our proposed

Traj2Former model, we implement the CNN model as the baseline

model. Table 6 presents Traj2Former performing better than CNN

on the global map, demonstrating the model’s effectiveness. Similar

results can be obtained on the satellite map dataset. When fusing

the global map and satellite map, Traj2Former performs better than

using the global map and satellite map individually.

6.3.6 Impact of the Filtering Methods. To further reduce the noise

and irrelevant information in the generated global map, it is feasi-

ble to retrieve only nearby candidates around the target trajectory

instead of gathering all trajectories within the self-image region.

In this way, the global map is purged of noise data, thereby sharp-

ening the relevance of the information to the target trajectory and

Table 8: Impact of different fusion methods.

Methods Acc Δ
Local Fusion 89.41% -4.08%

Global Fusion 91.53% -1.96%

Multi-scale Fusion (Traj2Former) 93.49% -

Table 9: Model complexity and resource requirement.

Methods Acc Para. (M) Δ𝑇 (s) Local Crop (s) Global Crop (s)

Traj2Former 92.30% 29.08 5e-2 0.0016 0.0003

TraClets 75.36% 138.57 6.2e-5 - -

SECA 82.95% 0.33 3.8e-4 - -

Estimator 83.74% 0.57 7.8e-5 - -

improving the quality of the global map. Table 7 presents the com-

parison. With the filter stage, the improvements in Traj2Former

perform better than that of the CNN model, revealing that filter

effectiveness can be enhanced by the Traj2Former model.

6.3.7 Impact of Different Fusion Methods. To demonstrate the ef-

fectiveness of our Hierarchical Global-Local Fusion module, we

implement global-only and local-only fusion experiments. For the

global-only fusion, we directly compress the trajectory to a segment-

level embedding and fuse it with the global map embedding. The

local-only fusion applies the first compress layer and fuses the out-

puts with the local context snapshot in our point-to-pixel fusion

method. Table 8 presents that considering global or local fusion sep-

arately cannot perform better than our Global-Local Fusion method

since our fusion methods address the advantages of coarse-grained

feature increase and consistency in fine-grained level.

6.3.8 Efficiency. Table 9 reports the accuracy (Acc), model com-

plexity (Para.), time cost per sample (Δ𝑇 ), and Local/Global Crop

time. Noted that our method generates a complete offline map only

once. Thus, the major overhead of our method is the multi-local-

map cropping process, which is currently computed in a serialized

manner but can be accelerated with parallel computing. The pro-

cessing time per sample is 0.05 s for Traj2Former without applying

filtering in the global map generation. The balance between ac-

curacy and efficiency should be determined based on the specific

application needs, e.g., to enhance efficiency by increasing the com-

pression ratio or to boost accuracy by generating a filtered global

map, with a compromise on the other factor.

7 Conclusion
In this paper, the Traj2Former framework is designed to solve the

trajectory classification problem. This framework generates global

maps from the historical trajectory database to serve as image-based

feature embedding and subsequently concatenated with trajectory

embedding. To address the advantages of segment-to-image fusion

and point-to-pixel fusion, we design a multi-scale fusion framework

to generate an enhanced representation. Additionally, to improve

the quality of global maps, the transformer-based map encoder

is developed to focus on the alignment between the compressed

trajectory and the corresponding local context snapshot. Extensive

experiments are conducted on two real-world datasets to demon-

strate the effectiveness of our developed framework.



A Local Context-aware Snapshot and Sequential Dual Fusion Transformer for Trajectory Classification MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia.

Acknowledgments
This research is partially supported by Singapore Ministry of Edu-

cation Academic Research Fund Tier 2 under MOE’s official grant

number T2EP20221-0023. This work is partially supported by the

Program of NSFC (Grant No. 62172157) and the Programs of Hunan

Province (Grant Nos. 2024JJ2026, 2023GK2002).

References
[1] Jiang Bian, Dayong Tian, Yuanyan Tang, and Dacheng Tao. 2019. Trajectory

Data Classification: A Review. ACM Trans. Intell. Syst. Technol. 10, 4, Article 33
(2019), 34 pages.

[2] Meng-Jiun Chiou, Zhenguang Liu, Yifang Yin, An-An Liu, and Roger Zimmer-

mann. 2020. Zero-Shot Multi-View Indoor Localization via Graph Location Net-

works. In ACM Multimedia. 3431–3440. https://doi.org/10.1145/3394171.3413856

[3] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase

Representations using RNN Encoder–Decoder for Statistical Machine Translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724–1734.

[4] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20 (1995), 273–297.

[5] Sina Dabiri and Kevin Heaslip. 2018. Inferring transportation modes from GPS

trajectories using a convolutional neural network. Transportation research part
C: emerging technologies 86 (2018), 360–371.

[6] Sina Dabiri, Chang-Tien Lu, Kevin Heaslip, and Chandan K. Reddy. 2020. Semi-

Supervised Deep Learning Approach for Transportation Mode Identification

Using GPS Trajectory Data. IEEE Transactions on Knowledge and Data Engineering
32, 5 (2020), 1010–1023. https://doi.org/10.1109/TKDE.2019.2896985

[7] Hongda Duan, Fei Ma, Lixin Miao, and Canrong Zhang. 2022. A semi-supervised

deep learning approach for vessel trajectory classification based on AIS data.

Ocean & Coastal Management 218 (2022), 106015.
[8] Yuki Endo, Hiroyuki Toda, Kyosuke Nishida, and Akihisa Kawanobe. 2016. Deep

feature extraction from trajectories for transportation mode estimation. In Ad-
vances in Knowledge Discovery and Data Mining: 20th Pacific-Asia Conference,
PAKDD 2016. Springer, 54–66.

[9] Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli

Zhang. 2017. Identifying Human Mobility via Trajectory Embeddings.. In IJCAI,
Vol. 17. 1689–1695.

[10] Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R Sveinsson. 2006.

Random forests for land cover classification. Pattern recognition letters 27, 4
(2006), 294–300.

[11] Ralf Hartmut Güting, Thomas Behr, and Jianqiu Xu. 2010. Efficient k-nearest

neighbor search on moving object trajectories. The VLDB Journal 19 (2010),

687–714.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Danlei Hu, Ziquan Fang, Hanxi Fang, Tianyi Li, Chunhui Shen, Lu Chen, and

Yunjun Gao. 2022. Estimator: An Effective and Scalable Framework for Trans-

portation Mode Classification over Trajectories. CoRR abs/2212.05502 (2022).

[14] Ioannis Kontopoulos, Antonios Makris, Konstantinos Tserpes, and Vania Bo-

gorny. 2022. TraClets: Harnessing the power of computer vision for trajectory

classification. arXiv preprint arXiv:2205.13880 (2022).
[15] Ioannis Kontopoulos, Antonios Makris, Dimitris Zissis, and Konstantinos Tserpes.

2021. A computer vision approach for trajectory classification. In 22nd IEEE
International Conference on Mobile Data Management, MDM 2021, Toronto, ON,
Canada, June 15-18, 2021. IEEE, 163–168.

[16] Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and

Pyang Li. 2022. Dstagnn: Dynamic spatial-temporal aware graph neural network

for traffic flow forecasting. In International conference on machine learning. PMLR,

11906–11917.

[17] Cristiano Landi, Riccardo Guidotti, Mirco Nanni, and Anna Monreale. 2023. The

Trajectory Interval Forest Classifier for Trajectory Classification. In Proceedings
of the 31st ACM International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’23). Article 67, 4 pages.

[18] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. 2008. TraClass: Tra-

jectory Classification Using Hierarchical Region-Based and Trajectory-Based

Clustering. Proc. VLDB Endow. 1, 1 (2008), 1081–1094.
[19] Yuxuan Liang, Kun Ouyang, Yiwei Wang, Xu Liu, Hongyang Chen, Junbo Zhang,

Yu Zheng, and Roger Zimmermann. 2022. TrajFormer: Efficient Trajectory

Classification with Transformers. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 1229–1237.

[20] Yuxuan Liang, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger

Zimmermann. 2021. Modeling Trajectories with Neural Ordinary Differential

Equations.. In IJCAI. 1498–1504.

[21] Christos Markos, JQ James, and Richard Yi Da Xu. 2021. Capturing uncertainty

in unsupervised GPS trajectory segmentation using Bayesian deep learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 390–398.
[22] Sijie Ruan, Cheng Long, Jie Bao, Chunyang Li, Zisheng Yu, Ruiyuan Li, Yuxuan

Liang, Tianfu He, and Yu Zheng. 2020. Learning to generate maps from tra-

jectories. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
890–897.

[23] M. Schuster and K.K. Paliwal. 1997. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[24] Pengxiang Su, Zhenguang Liu, Shuang Wu, Lei Zhu, Yifang Yin, and Xuanjing

Shen. 2021. Motion Prediction via Joint Dependency Modeling in Phase Space.

In ACM Multimedia. 713–721. https://doi.org/10.1145/3474085.3475237

[25] Heli Sun, Xianglan Guo, Zhou Yang, Xuguang Chu, Xinwang Liu, and Liang He.

2022. Predicting Future Locations with Semantic Trajectories. ACM Trans. Intell.
Syst. Technol. 13, 1 (2022), 20 pages.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[27] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. 2017. Mod-

eling trajectories with recurrent neural networks. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, Melbourne, Australia, Au-
gust 19, Vol. 25. 3083–3090.

[28] Yuan Xie, Yongheng Wang, Kenli Li, Xu Zhou, Zhao Liu, and Keqin Li. 2023.

Satisfaction-aware task assignment in spatial crowdsourcing. Information Sciences
622 (2023), 512–535.

[29] Yuan Xie, Fan Wu, Xu Zhou, Wensheng Luo, Yifang Yin, Roger Zimmermann,

Keqin Li, and Kenli Li. 2023. Trajectory-aware Task Coalition Assignment in

Spatial Crowdsourcing. IEEE Transactions on Knowledge and Data Engineering
(2023). https://doi.org/10.1109/TKDE.2023.3336642

[30] Yuan Xie, Fan Wu, Xu Zhou, Wensheng Luo, Yifang Yin, Roger Zimmermann,

Keqin Li, and Kenli Li. 2024. Trajectory-aware Task Coalition Assignment in

Spatial Crowdsourcing (Extended Abstract). IEEE International Conference on
Data Engineering (ICDE) (2024).

[31] Yifang Yin, Wenmiao Hu, An Tran, Ying Zhang, GuanfengWang, Hannes Kruppa,

Roger Zimmermann, and See-Kiong Ng. 2023. Multimodal deep learning for

robust road attribute detection. ACM Transactions on Spatial Algorithms and
Systems 9, 4 (2023), 1–25.

[32] Yifang Yin, An Tran, Ying Zhang, Wenmiao Hu, Guanfeng Wang, Jagannadan

Varadarajan, Roger Zimmermann, and See-Kiong Ng. 2021. Multimodal Fusion

of Satellite Images and Crowdsourced GPS Traces for Robust Road Attribute

Detection. In Proceedings of the 29th International Conference on Advances in
Geographic Information Systems. 107–116.

[33] Yifang Yin, Jagannadan Varadarajan, Guanfeng Wang, Xueou Wang, Dhruva

Sahrawat, Roger Zimmermann, and See-Kiong Ng. 2020. A multi-task learning

framework for road attribute updating via joint analysis of map data and GPS

traces. In Proceedings of The Web Conference 2020. 2662–2668.
[34] Yu Zheng. 2015. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst.

Technol. 6, 3 (2015).
[35] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-

standing Mobility Based on GPS Data (UbiComp ’08). 312–321.
[36] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning Transportation

Mode from Raw Gps Data for Geographic Applications on theWeb. In Proceedings
of the 17th International Conference on World Wide Web (WWW ’08). New York,

NY, USA, 247–256. https://doi.org/10.1145/1367497.1367532

[37] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng

Cai. 2017. What to Do Next: Modeling User Behaviors by Time-LSTM.. In IJCAI,
Vol. 17. 3602–3608.

https://doi.org/10.1145/3394171.3413856
https://doi.org/10.1109/TKDE.2019.2896985
https://doi.org/10.1145/3474085.3475237
https://doi.org/10.1109/TKDE.2023.3336642
https://doi.org/10.1145/1367497.1367532

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Traj2Former Architecture
	4.1 Trajectory Encoder
	4.2 Local Context-aware Multi-scale Fusion
	4.3 Transformer-based Map Encoder
	4.4 Objectives and Optimization

	5 map acquisition
	5.1 Spatial Trajectory Feature Extraction
	5.2 Public Map Sources

	6 Experiments
	6.1 Experimental Settings
	6.2 Comparison to the State-of-the-art Methods
	6.3 Ablation Studies

	7 Conclusion
	References

