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ABSTRACT

Sampling from trained predictors is fundamental for interpretability and as a
compute-light alternative to diffusion models, but local samplers struggle on the
rugged, high-frequency functions such models learn. We observe that standard
neural-network training implicitly produces a coarse-to-fine sequence of models.
Early checkpoints suppress high-degree/ high-frequency components (Boolean
monomials; spherical harmonics under NTK), while later checkpoints restore de-
tail. We exploit this by running a simple annealed sampler across the training
trajectory, using early checkpoints for high-mobility proposals and later ones for
refinement. In the Boolean domain, this can turn the exponential bottleneck aris-
ing from rugged landscapes or needle gadgets into a near-linear one. In the con-
tinuous domain, under the NTK regime, this corresponds to smoothing under the
NTK kernel. Requiring no additional compute, our method shows strong empiri-
cal gains across a variety of synthetic and real-world tasks, including constrained
sampling tasks that diffusion models are unable to handle.

1 INTRODUCTION

In contrast to the trend toward billion-parameter Transformer LLMs, model deployments for
medicine, recommendation systems, and decision support based on structured data continue to
be dominated by small CNNs/MLPs. These dominate AI in medical devices (Singh et al., 2025;
Mienye et al., 2025), production models for personalized recommendations (MLCommons Asso-
ciation, 2025; Feng et al., 2024), and decision support models for credit scoring, recidivism risk,
insurance underwriting, and hospital operations triage (eba, 2023; Grinsztajn et al., 2022; McEl-
fresh et al., 2023; Holzmüller et al., 2024).

Despite their relative simplicity, they can be opaque and encode brittle shortcuts. For example, a
dermatology CNN approved for EU clinical use was shown post-hoc to over-weight surgical skin
markings/rulers rather than lesion content; adding a simple violet marker to the same benign lesion
skyrocketed its melanoma probability (Winkler et al., 2019; Bevan & Atapour-Abarghouei, 2022).
Sampling minimal counterfactual edits could have revealed this shortcut. Such cases underscore the
importance of sampling from the trained predictor.

Apart from interpretability, we often want to sample from a trained predictor to pick high-value
candidates for active learning. For instance, many works sample fit DNA sequences from models
predicting DNA-transcription factor (TF) affinity (de Almeida et al., 2022; Reddy et al., 2024). This
works well as DNA-TF affinity assays test millions of sequences per experiment, often from largely
random libraries—enabling near-unbiased exploration of sequence space (Gallego Romero & Lea,
2023). Similarly, for protein engineering, many methods sample sequences from a learned fitness
model for bayesian optimization (Hu et al., 2022; Ren et al., 2022).

However, these sampling tasks can become difficult for certain common landscapes. When the
landscape is rugged, high-frequency, high-magnitude fluctuations create many sharp local optima.
Another key culprit is synergy — outcomes depend on rare combinations of variables—so the indi-
vidual effects look innocuous while the rare, joint effect is large. Such concealed interactions evade
single-step proposals and short-horizon heuristics, which only “see” myopic gains. As a result, dis-
covering the right multi-variable change becomes essentially a needle-in-a-haystack problem, with
success of random exploration drops exponentially as the number and order of synergistic interac-
tions grow, along with the number of spurious variables.
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To deal with this difficulty, one option is to train a reward-conditioned diffusion or discrete-walk
jump sampler. These are powerful generative approaches, but in the settings we focus on they have
three drawbacks: (1) They require training a separate generative model in addition to the predictor,
which can demand substantial extra compute compared to reusing an already-trained predictor with
test-time trajectory-annealed MCMC. In many domains, strong predictors have already been trained
on large, unbiased data, and practitioners operate in a compute-constrained regime where training an
additional generative model is not feasible. (2) Implementing hard constraints such as a Hamming-
radius ball or minimal counterfactual edits typically requires additional machinery (e.g., auxiliary
guidance networks Shen et al. (2024) or SMC-style schemes Wu et al. (2023)), rather than a simple
modification of the sampling rule. (3) They do not directly support sampling from a deployed model
for interpretability, whereas our method operates on the existing predictor without any additional
training.

We study the plug-and-play test-time sampling problem for a trained scalar predictor f∗ : X →R,
and we aim to draw from the Gibbs density it induces, π∗(x) ∝ exp{f∗(x)}, optionally under hard
constraints. Our solution is trajectory annealing: rather than sample only from π∗, we traverse
training checkpoints {ft}Tt=0 and run brief MCMC updates targeting πt(x) ∝ exp{ft(x)} before
arriving at π∗.

This exploits the coarse-to-fine learning dynamics of predictors: early checkpoints suppress high-
degree components, smoothing the landscape for rapid mixing. This yields two wins. For π∗(x)
with high-magnitude, high-frequency variation, early checkpoints bypass the rugged barriers that
cause exponential mixing. For synergistic interactions where only higher order, rare combinations
of variables are predictive, we show that early checkpoints correspond to low degree projections
that reveal modes of π∗(x), converting random-walk behavior with exponential mixing times to
near-linear. Our method works as-is, requiring no additional compute or training changes. We
demonstrate strong empirical gains on synthetic tasks, sampling from discrete energy-based models,
and challenging real-world DNA and materials design tasks. To the best of our knowledge, this is
the first work to leverage a neural network’s training trajectory to improve sampling.

2 RELATED WORK

Smoothing for sampling There is a long line of work that smooths the target to accelerate sampling.
Prominent examples include reward-conditioned diffusion and discrete walk–jump schemes that
walk on a smoothed manifold and jump back to the discrete space (Yuan et al., 2023; Frey et al.,
2024). Kirjner et al. (2024) train graph-smoothed protein fitness models ( 250K-node sequence
graphs), and Zhu et al. (2025) show this smoothing induces a spectral bias that disproportionately
damps high-degree Boolean monomials. Our approach instead leverages the natural smoothing
in a network’s training trajectory; we focus on the no-extra-compute regime and therefore do not
benchmark against explicit smoothing methods.

Interpretability Many approaches probe a trained predictor via sampling/optimization. Minimal
counterfactual edits are typically posed as constrained optimization on the fixed model,with spar-
sity or proximity regularization (Verma et al., 2024). A complementary line samples the predictor
to quantify rare events—e.g., using MCMC to estimate the mass of inputs that violate a property
or elicit outlier predictions (Webb et al., 2019). However, these approaches inherit the exponen-
tial barriers from rugged, high-frequency landscapes and random-walk exploration for synergistic
interactions - issues our method mitigates when substituted for the sampling/optimization.

Test-Time MCMC Sampling Existing test-time, plug-and-play MCMC methods use gradient-
guided methods for search and temperature annealing to overcome barriers. However, such tempera-
ture annealing methods (e.g. parallel tempering, annealed importance sampling, etc.) cannot bypass
the random walk exploration that occurs from rare synergies (Hénin et al., 2022). Furthermore, for
functions with high barriers, tempering relaxes barriers but offers little directional guidance - leading
back to the random walk exploration. Thus, mixing time in the above settings remains exponential.
Recent methods such as Diffusive Gibbs Sampling introduce an auxiliary noisy variable and alter-
nate Gaussian noising with gradient-based denoising steps in a Gibbs scheme to improve mixing
on multi-modal targets (Chen et al., 2024). Similarly, Iterative Reasoning through Energy Diffusion
(IRED) learns annealed energy landscapes but still depends on local energy gradients at test time

2
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(Du et al., 2024). However, all test-time gradient based methods are limited by the informativeness
of local energy gradients.

Discrete sampling Grathwohl et al. (2021) introduced Gibbs-with-Gradients (GWG), using model
gradients to choose which coordinate to flip rather than sampling indices uniformly. Since then,
a flurry of work has pushed discrete MCMC forward along complementary axes: locally bal-
anced/informed proposals that improve Metropolis–Hastings tuning (Zanella, 2017; Sun et al.,
2022); non-local or parallel gradient moves via discrete Langevin and related formulations (Zhang
et al., 2022; Sun et al., 2023); automatic cyclical scheduling of gradient-based updates for better
mixing and reduced tuning (Pynadath et al., 2024); MALA-inspired discrete kernels with auxiliary-
variable preconditioning (Rhodes & Gutmann, 2022); and reheated gradient-based samplers tailored
to difficult combinatorial objectives (Li & Zhang, 2025). Our method is compatible with all of these
gradient-based discrete kernels and could be combined with their proposal mechanisms or sched-
ules; for simplicity, we use GWG throughout our discrete experiments.

Coarse-to-Fine Learning A growing body of theory suggests that gradient-based training and sam-
pling in high-dimensional models proceeds in a coarse-to-fine manner. In diffusion models, linear
and Gaussian analyses show that high-variance or low-frequency modes of the data covariance are
learned and expressed in samples much earlier than low-variance, fine-detail modes, leading to an
ordered emergence of global structure before local detail (Wang, 2025; Wang & Vastola, 2024). Re-
lated analyses of SGD on neural networks reveal multi-phase, saddle-to-saddle dynamics in which
low-complexity or small-support features are acquired first, progressively enabling the learning of
higher-order interactions (Abbe et al., 2023). Similar spectral decompositions of the NTK further
indicate that only a few dominant eigendirections are amplified early in training, biasing learning
toward coarse structure before finer modes are fit (Murray et al., 2022).

3 METHODS

Test-time setting. We work in a plug-and-play regime with a trained predictor f∗ : X →R (MSE-
trained on {(xi, yi)}), and we sample from its induced density π∗(x) ∝ exp{f∗(x)}, optionally
under hard constraints. We do not compare against setups that modify training or fit auxiliary gener-
ative/score models (e.g., diffusion); our contribution is entirely in the test-time sampling procedure.

Trajectory annealing. Rather than run MCMC only on π∗, we traverse checkpoints along the
training trajectory {ft}Tt=0 with fT ≡ f∗, defining intermediate targets πt(x) ∝ exp{ft(x)}. Start-
ing from t = 0, we apply a short Markov kernel for Nt steps targeting πt, carry the resulting state
forward as the initializer for πt+1, and continue this coarse-to-fine progression until t = T . For
kernels, we use GWG+MH (Gibbs w/ Gradients + Metropolis Hastings) for discrete x and MALA
(Metropolis-Adjusted Langevin Algorithm) for continuous x.

Neural networks learn coarse→fine: low-frequency structure emerges early, high-frequency later.
In discrete models trained with SGD, gradients align more with lower-degree monomials, so those
coefficients converge first. In continuous models in the NTK regime, kernel eigenvalues decay
with spherical-harmonic degree; the predictor is f∗ convolved with the kernel, giving strong early
smoothing that relaxes over time.

3.1 BOOLEAN VARIABLES

Abbe et al. (2023) show SGD learns Boolean functions hierarchically: low-degree monomials are
learned first as fewer variables leads to greater gradient alignment. We leverage this to turn expo-
nential sampling into polynomial time. We study two hard classes: (i) f∗ that are hard because of
high-frequency, high-magnitude variation—here, early checkpoints haven’t learned the high-degree
spikes yet, so the landscape is smooth and mixes quickly; and (ii) f∗ that are hard because there’s
no variation (the needle gadget). For needles, local sampling is a random walk - exponential in
the needle dimension d. However, mixing on f∗ projected to monomials of degree ≤ 2 mixes in
O(d log d), with mixing worsening as the largest degree increases. The low-degree projection of f∗

also acts as an associative memory that can store many needles.
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3.1.1 BACKGROUND: LOWER DEGREE MONOMIALS ARE LEARNED FIRST

Abbe et al. (2023) formalize a hierarchy in how SGD fits sparse Boolean targets. Writing the target
as a sum of Boolean monomials, they define the leap as the smallest k for which one can order the
nonzero monomials so that, when adding the next monomial in that order, the union of involved
variables introduces at most k new variables. A pure “staircase” target—each term extending the
previous by one fresh variable (e.g. x1+x1x2+ x1x2x3) -has leap 1.

This notion predicts hierarchical learning under SGD. For staircase-like functions, lower-degree
monomials are learned first and higher-degree monomials later: initial gradients correlate more
strongly with terms that require fewer new variables, so SGD first aligns a small set of coordinates;
that alignment then amplifies gradients toward the next monomial, and so on. The trajectory passes
through saddle-to-saddle plateaus; a phase that requires acquiring L new variables at once takes
Θ̃
(
dmax(L−1, 1)

)
steps, so the training time is dominated by the largest leap (i.e., the hardest stage).

They prove this in a restricted setting—two-layer fully connected networks with smooth activations,
trained on i.i.d. data using a modified SGD (layer-wise updates plus a projection step)—and are
complemented by empirical evidence: loss curves for deeper networks on hypercube data exhibit
clear plateaus and drops consistent with learning across successive leaps (Abbe et al., 2023).

We provide additional empirical evidence for the hierarchical-learning picture across fully connected
and convolutional networks, spanning a variety of activations, widths, and depths in Appendix C.
Two regularities emerge: (i) lower-degree Fourier–Walsh components finish aligning with the target
function earlier than higher-degree components, and (ii) the degree-wise mass grows only after all
its monomials are fully aligned. See Fig. 1 for an example. A caveat is transformers, where we
observe experimentally they satisfy (i) but not (ii). A degree-2 monomial could become aligned and
grow in mass before all degree-1 monomials were aligned.

Core assumption (degree-wise checkpoints). We assume the setting in Abbe et al. (2023) holds
for the larger networks we consider. Specifically, along the training trajectory {ft}Tt=0 with fT ≡ f∗,
there exist increasing checkpoints τ0 < τ1 < · · · < τK ≤ T such that at τk the model has effec-
tively learned all interactions up to degree k, while higher-degree components are still negligible.
Equivalently, we may treat fτk as the degree-k projection of the final model:

fτk ≈ f≤k, f≤k(x) :=
∑
S⊆[d]
|S|≤k

f̂∗(S)
∏
i∈S

xi.

Between these checkpoints, higher-degree terms may be partially learned; we assume only the exis-
tence and monotone ordering of {τk}.

3.1.2 HIGH-MAGNITUDE, HIGH-FREQUENCY VARIATION

Early checkpoints in the training trajectory suppress high-degree terms, smoothing the landscape
and making it easy to mix. We exploit this to handle targets with large high-degree components.

As a running example, consider x ∈ {±1}d with

πγ(x) ∝ exp
( d∑

i=1

xi + γ

d∏
i=1

xi

)
,

where the linear term favors many +1 entries and the parity term
∏

i xi creates a high barrier when
|γ| is large.

At low temperature, vanilla Gibbs on the full objective mixes in exponential time Θ̃
(
exp{c|γ|}

)
:

once a random start flips to satisfy the parity term, any move that increases the number of +1 bits
must cross a |γ|-sized barrier, so the chain gets stuck near suboptimal states.

Our trajectory sampler avoids this. We first run a short chain at checkpoint τ1; this mixes in
O(d log d) under Gibbs (see App. A) and quickly reaches states with many +1 entries. We then
continue the chain at the final checkpoint to adjust the parity. Thus, we are able to hit the global
maxima in near-linear time - sidestepping the exponential barrier.

4
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Figure 1: Fourier–Walsh L2 mass by degree during training on a d=10 indicator. The tar-
get is f(x) = 1{x = z⋆} with xi, z

⋆
i ∈ {±1}. In {±1}-coordinates this expands as f(x) =

2−d
∑

S⊆[d]

∏
i∈S(z

⋆
i xi), so the degree-k component consists of all k-way monomials

∏
i∈S(z

⋆
i xi)

aligned with the pattern z⋆. Curves show
∑

|S|=k f̂t(S)
2 over epochs for a 3-layer FCNN (width

128). Vertical dashed lines mark the alignment epoch for each degree k: the first epoch at which the
sign of every degree-k coefficient agrees with the sign implied by its aligned monomial (i.e., all signs
point toward z⋆). We observe a consistent ordering: each degree first becomes aligned and then its
Fourier mass rises, with lower degrees aligning and growing earlier than higher degrees. Although
some final masses are larger at higher degrees (there are

(
d
k

)
degree-k monomials), this effect does

not change the early-epoch ordering—low-degree components begin to align and increase first.

3.1.3 SYNERGISTIC INTERACTIONS

Needle-like synergistic interactions. In our setting, variables interact synergistically: payoff arises
only when a specific joint configuration is met (a “needle gadget”). Let z⋆ ∈ {±1}d denote that
pattern and define the indicator

f∗(x) = 1{x = z⋆}, x ∈ {±1}d.
Over the Boolean (Walsh) basis, f decomposes into all 2d monomials aligned with z⋆:

f∗(x) = 2−d
d∏

i=1

(
1 + z⋆i xi

)
= 2−d

∑
S⊆[d]

∏
i∈S

(
z⋆i xi

)
so the degree–k component is the sum of all k–way monomials

∏
i∈S(z

⋆
i xi) with |S| = k.

Because the density is flat off of a tiny set C (e.g., a single configuration), a local Markov chain be-
haves like a simple random walk on the 2d–vertex hypercube until it enters the 1–Hamming neigh-
borhood of C. This is exponential in d.

Intermediate checkpoint (degree-2 aligned) Now suppose we are at checkpoint τ2. Let aligned
spins yi := xiz

⋆
i . The degree-≤ 2 surrogate can be written as

fτ2(y) ≈ f≤2(y) = 2−d

 d∑
i=1

yi +
∑

1≤i<j≤d

yiyj

 , (1)

which is the Curie–Weiss Hamiltonian with a positive external field up to scaling. Existing results
show that in the low-temperature regime, we can hit z⋆ with high probability after O(d log d) steps

5
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with a constant number of parallel chains. See App. B for details. By exploiting the checkpoint
τ2, we have converted the exponential random walk into near-linear mixing.

Multiple Needles Even with multiple needles, we show theoretically (via connections to binary
Hopfield models) and experimentally that low-degree monomials are sufficient to store and retrieve
needles. Further details are in App. D.

All checkpoints help Sampling against f≤k shows a monotone pattern: as k grows during training,
the landscape sharpens and the needle hitting time increases. Empirical evidence is in App. E.
Sampling is fastest with k = 2 but sampling from any intermediate checkpoint with k < d helps.

3.2 CONTINUOUS VARIABLES

Let f⋆ : Sd−1 → R and let t denote the time parameter. Gaussian (diffusion) smoothing on the
sphere acts degree-wise on spherical harmonics: at time t, the degree-k coefficient of ft equals
the degree-k coefficient of f⋆ multiplied by Mk(t) = exp{−t k(k + d − 2)} (larger t ⇒ more
smoothing; higher k ⇒ stronger damping). NTK training (idealized FCNN: infinite width, zero init,
uniform data) also acts degree-wise on spherical harmonics: the scaling Mk(t) decays with degree k
as determined by the activation, Θ(k−d) for ReLU and Θ

(
k−de−

√
k
)

for Tanh (Murray et al., 2022).
Takeaway. The NTK training trajectory {ft} already provides a continuum of smoothed versions
of f⋆—the same coarse-to-fine effect as heat-kernel smoothing, unlike diffusion which learns these
smoothed functions explicitly. See App. F for more details.

4 RESULTS

We evaluate our method under matched compute on sampling from discrete functions - synthetic
boolean functions (ruggedness, synergy), binary MNIST-EBM, DNA design task (including con-
strained sampling), and continuous functions - Ackley 10-D, and a superconductor design task.

4.1 DISCRETE SAMPLING EXPERIMENTS

Experimental details are in App. I.

4.1.1 SYNTHETIC BOOLEAN EXPERIMENTS

We conceptually show how our method can turn exponential mixing into near-linear on synthetic
targets. It succeeds by leveraging (1) fast mixing on low-degree surrogates and (2) knowledge of the
function’s support gleaned from those surrogates.

We evaluate four functions: (i) targets dominated by high-degree components, (ii) indicator func-
tions of increasing size, (iii) indicators with adversarial non-convex linear terms, and (iv) multiple
indicators (synergistic interactions). To stress (2), every task includes 500 spurious variables.

To make the contrast stark, we run GWG on the final checkpoint for up to 2000 steps, while our
method uses only 40 steps total.We report the percentage of runs that reach the global optimum.
Even with 50× more steps (2000 vs 40), GWG’s hit rates remain very low (e.g. ≤ 3%), whereas
our method is near-perfect on most tasks.

This is because GWG is a random walk that succeeds mainly when it starts near the target, and that
probability collapses exponentially with growing indicator size, more distinct synergies to satisfy,
and many spurious variables. In contrast, our method’s (1) fast mixing and (2) support knowledge
do not degrade in these regimes.

6
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Table 1: Sampling with 500 spurious variables on an 8-variable polynomial target dominated by
high-frequency variation f(x) = 0.1

∑7
i=0 xi + 0.2

∑3
i=0 x2ix2i+1 + 0.4

∑
i∈{0,4}

∏3
k=0 xi+k +

0.8
∑

i∈{0,2}
∏5

k=0 xi+k + 3.0
∑

i∈{0}
∏7

k=0 xi+k. Success = hits all +1 global max. on 8
variables. Result: Ours outperforms both baselines (0.52 vs. 0.04) with a fraction of steps.

Ours: Success (95% CI) GWG: Success (95% CI) GWG + Temp Anneal: Success (95% CI)
0.5200 (0.45–0.59) 0.01 (0.00–0.02) 0.04 (0.01–0.06)

High-magnitude, high-frequency variation We construct a synthetic function whose coefficients
increase with degree. With only 40 steps (vs 2000 for the baseline), we hit the global maxima 52%,
compared to 4% for temperature-annealed GWG on the final checkpoint. See Table 1. This is
because the early checkpoint allows for fast mixing without the high-frequency variation.

Table 2: Sampling with 500 spurious variables and d indicator variables. Ours = 20 GWG steps
at epoch 25 plus 20 at final. Baseline = GWG on the final checkpoint for 2000 steps. All runs use
GWG with β = 10. Reported are success fractions with 2SD CIs; Success = hits indicator. Baseline
also reports median steps to first hit (conditional on success; CI lower bounds clipped at 0).

Success probability (95% CI) GWG: median steps to first hit (given success) [95% CI]

d Ours GWG Med. steps

3 0.98 (0.96–1.00) 0.47 (0.40–0.54) 1 [1–1]
5 1.00 (1.00–1.00) 0.21 (0.15–0.27) 1 [1–1]
8 1.00 (1.00–1.00) 0.17 (0.11–0.22) 4 [0–22.9]
10 0.99 (0.98–1.00) 0.12 (0.07–0.16) 2 [0–56.8]

Indicator function For an indicator function with 500 spurious variables, a random walk takes,
on average, 500× 2d steps. GWG’s conditional median steps (given a hit) are 1–4 steps, indicating
it mostly succeeds when the initialization is close to the target. Thus, its hits degrade as d increases
(12% for d = 10) whereas our method remains perfect (despite having only 1

50 steps). See Table 2.

Indicator function with adversarial non-convexity We add an adversarial degree-1 terms that
are opposite to the indicator pattern. However, because the indicator dominates the stationary mea-
sure, the local field is still dominated by the indicator’s low-degree expansion. Thus, the adversarial
linear term has a minimal impact and our method has a perfect hit rate. See Table 3.

Table 3: Sampling in a non-convex binary landscape. The objective is an indicator on 10 des-
ignated variables that yields 10 only at the all-ones pattern (and 0 otherwise), plus a linear term
−0.1

∑10
i=1 xi on the same variables that pulls toward all −1s; 500 additional variables are spurious

(no effect). Success = hitting the indicator. Result: Ours is near perfect as the non-convexity is not
able to dampen the signal from the intermediate checkpoint

Ours: Success (95% CI) GWG: Success (95% CI)

1.00 (1.00–1.00) 0.080 (0.0416–0.1184)

Table 4: Sampling with 500 spurious variables and 3 non-overlapping length-5 indicators. Success
= hits all 3 indicators at once. Result: Ours is near-perfect, while the baseline is near chance. With
only one length 5 indicator (see Table 3), success rate is 0.21, drops with more indicators.

Ours: Success (95% CI) GWG: Success (95% CI)

1.00 (1.00–1.00) 0.0250 (0.0029–0.0471)

Multiple indicator functions GWG for a length-5 indicator has a modest hit-rate of 21% (see
Table 1), however, performance collapses to 3% when we have three length-5 indicators (on non-

7
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overlapping subsets). However, our method remains perfect. This is because GWG depends on
starting near a good basin (which becomes exponentially unlikely as synergies compound). How-
ever, our method leverages (i) fast mixing on lower-degree surrogates and (ii) knowledge of the
support to consistently (100% vs 3%) find the solution in a fraction of steps. See Table 4.

4.1.2 SAMPLING FROM MNIST ENERGY-BASED MODEL

The phenomena emphasized above – high-frequency variation and many synergistic interactions –
are common to real-world data. Thus, we test our method’s ability to efficiently sample from energy
based models (EBMs) trained on binary MNIST.

We train a binary EBM with GWG using the implementation from Grathwohl et al. (2021). At test
time, we compare temperature-annealing from the final checkpoint (the baseline inference method
used in Grathwohl et al. (2021), which we denote Temp-GWG) vs. annealing along the training
trajectory (our method). For both methods, we report FID after either 1K or 10K GWG sampling
steps. For our method, we evenly distribute the steps across 500 evenly spaced checkpoints.

Table 5: FID (↓) on binary MNIST using LeNet features. Mean (std) over 10 bootstraps

Method 1K steps 10K steps

Temp-GWG 29.61 (0.239) 21.12 (0.138)
Ours 11.73 (0.284) 5.49 (0.119)
Ground-truth 0.01 (0.013) –

Controlling for the number of steps, we observe substantially better FIDs in Table 5. We provide
ablations on the number of checkpoints in App. G, which show significant improvements over the
baseline across a wide range of checkpoint counts. App. H contains random samples; ours are
substantially sharper.

4.1.3 DNA DESIGN EXPERIMENT

Recently, CNNs have matched or exceeded transformers for both protein and DNA language mod-
eling—consistent with the fact that local, repeated motif patterns align naturally with convolutional
filters (Yang et al., 2024; Bo et al., 2025). Moreover, standard TF assays reach million-scale because
short oligo are mass-processed, yielding abundant data with higher-order motif structure, so trained
regression models are both accurate and difficult to sample from (Berger et al., 2006).

We train a CNN on a dataset that measures binding affinity to the transcription factor (TF) MAX
(Badis et al., 2009). The dataset consists of 42K 60-mer sequences. For sampling, we sampled
a random length-60 sequence and performed 60 steps of GWG (on the final checkpoint for the
baseline, and across training checkpoints for our method).

Table 6 shows that our median samples are over 108 more performant (fitness is on a log-scale),
partially driven by the ease of sampling the TF’s motif (79% for ours vs. 39% for baseline).

We also show our method’s robustness in the constrained sampling setting where we want to
sample within a Hamming ball of a fixed starting point. This mirrors common biological use
cases such as identifying minimal gene perturbations, minimal amino-acid mutations, or minimal
CRISPR/base-editor edits to boost activity.

Notably, this setting is not straightforward to handle with standard diffusion pipelines. Diffusion
models support inpainting tasks conditioned on fixed portions of the final output, but enforcing an
exact constraint such as remaining within a Hamming ball of a fixed sequence typically requires
additional machinery (e.g., auxiliary guidance networks Shen et al. (2024) or SMC-style schemes
Wu et al. (2023)) rather than a single pre-trained denoiser. By contrast, our method handles this
naturally by enforcing the Hamming-ball constraint throughout the sampling process, simply by
restricting the MCMC chain to the constraint set. This plug-and-play ability to impose new hard
constraints at test time, without training any additional generative or reward model, is a practical
advantage of our predictor-based approach in this application.
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Table 7: Per-run metrics with 95% bootstrap percentile CIs (B=500) for constrained sampling. Sam-
pling trajectory is restricted to always stay within a hamming distance of 7 from the starting point.
Each run starts from a random length-60 DNA sequence, runs 60 mutation steps, and keeps the best;
repeated 300 times. Diversity/novelty are recomputed per bootstrap. Percentiles are vs. the training
set restricted to y > 0.

Method Fitness (median) Pct. Diversity Novelty Motif (%)

Ours 7.42 [7.03, 7.63] 99.45 [99.38, 99.47] 45 [45, 45] 33 [33, 33] 63.0 [58.2, 68.0]
GWG 2.09 [0.98, 3.06] 91.89 [66.36, 96.65] 45 [45, 45] 33 [33, 34] 31.3 [26.0, 37.3]
AISAutoTemp-GWG −0.32 [−0.79, −0.10] 0.00 [0.00, 0.00] 45 [45, 45] 33 [33, 34] 3.0 [1.3, 5.0]
PT-GWG 1.92 [1.51, 2.58] 90.18 [83.25, 95.03] 45 [45, 45] 33 [33, 34] 24.3 [19.3, 29.3]

Table 8: Main and secondary metrics. Bracketed values are 95% CIs computed as Student-t intervals
across seeds on per-seed means. Secondary metrics for Superconductor are reported as median
[IQR]. Refs: Ackley 0.0; Superconductor 185.0.

Experiment Method Best Mean [95% CI] Novelty /
Diversity [IQR]

Ackley (10D, ↓)

MCMC–Final 8.5628 16.2164 [16.1559, 16.2770] – / –
SMC–Temp 7.8595 16.3141 [16.2735, 16.3547] – / –
AISAutoTemp 8.8096 16.3095 [16.2679, 16.3512] – / –
PT 13.6225 19.8698 [19.4593, 20.2803] – / –
SMC–Train 3.6942 13.3311 [12.0867, 14.5755] – / –

Superconductor (↑)

MCMC–Final 107.4 76.68 [76.42, 76.94] 17.30 [4.98] / 11.76 [7.47]
SMC–Temp 80.7 21.98 [21.39, 22.56] 34.39 [2.42] / 12.76 [2.69]
AISAutoTemp 107.4 24.42 [23.88, 24.97] 35.66 [5.18] / 26.05 [5.28]
PT 107.4 25.97 [24.31, 27.62] 35.29 [5.01] / 25.40 [4.91]
SMC–Train 318.4 155.2 [105.6, 204.8] 20.86 [3.64] / 16.60 [6.87]

Table 7 illustrates the challenging task of finding a length-7 Hamming perturbation to a random
length-60 DNA sequence to improve the sequence’s fitness. Again, our method finds samples that
are 105 more performant, and are twice as likely (63% vs 31%) to contain the motif.

Table 6: Per-run metrics with 95% bootstrap percentile CIs (B=500). Each run starts from a random
length-60 DNA sequence, runs 60 mutation steps, and keeps the best; repeated 300 times. Diver-
sity/novelty are recomputed per bootstrap. Percentiles are vs. the training set restricted to y > 0.

Method Fitness (median) Pct. Diversity Novelty Motif (%)

Ours 10.04 [9.74, 10.20] 99.78 [99.77, 99.80] 45 [45, 45] 34 [33, 34] 74.3 [69.7, 79.3]
GWG 2.72 [1.60, 5.53] 95.54 [85.24, 98.83] 45 [45, 45] 33 [33, 34] 38.7 [33.3, 44.0]
AISAutoTemp-GWG 0.56 [0.16, 0.85] 42.86 [12.99, 59.72] 45 [45, 45] 33 [33, 33] 4.0 [2.0, 6.3]
PT-GWG −0.79 [−1.17, −0.25] 0.00 [0.00, 0.00] 45 [45, 45] 33 [33, 34] 13.0 [9.3, 16.7]

4.2 CONTINUOUS SAMPLING EXPERIMENTS

Setup. We compare four samplers under matched compute: Sequential Monte Carlo with tempera-
ture annealing (SMC–Temp), Annealed Importance Sampling (AISAutoTemp), Parallel Tempering
(PT), and our Sequential Monte Carlo with training-time checkpoints (SMC–Train). All share the
same compute budget, with results averaged over 5 seeds. Sampling/budget details are in App. K;
SMC and checkpointing specifics are in App. J.

Ackley (10D). Rugged continuous optimization on [−10, 10]10; SMC–Train attains the top mean
and best-of-set under matched compute with non-overlapping CIs (See Table 8).

Superconductor. A real-world benchmark in high-D materials design taken from the design
benchmark in Trabucco et al. (2022). It has a rugged, non-convex, heavy-tailed landscape. Inputs
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x ∈ R87 encode element composition; the target y is the critical temperature Tc (K). SMC–Train
achieves the highest mean and best-of-set Tc, exceeding the reference and all baselines (See Table 8).

5 DISCUSSION

Discrete vs. Continuous In continuous domains, early training in the NTK (linearized) regime
induces frequency-selective smoothing; as training leaves the NTK regime, this smoothing fades.
In discrete domains, the effect is stronger. Because boolean targets are learned low-to-high degree,
there are less new variables in the high degree term, causing higher gradient alignment. This allows
for faster learning - in fact, the number of steps is asymptotically optimal, matching Correlational
Statistical Query (CSQ) lower bounds (Abbe et al., 2023). Other work suggests that SGD learns
with an optimal number of steps in more general settings (Barak et al., 2022). Thus, hierarchical
learning arises naturally from SGD’s inherent efficiency.

Architectures Continuous For FCNNs, the NTK eigenfunctions are spherical harmonics, so spectral
bias aligns directly with smoothness (low degree ↔ larger eigenvalues); CNNs/ResNets inherit this
(Geifman et al., 2022; Belfer et al., 2024). Transformers have different eigenfunctions, so this does
not apply. (Hron et al., 2020). Discrete Hierarchical interaction learning under SGD is FCNN-
specific and transfers to CNNs/ResNets (we report results for all three). Transformers, by contrast,
learn interactions via the attention matrix, which is qualitatively different.

Limitations Our method does not apply to transformers. However, commonly deployed models in
medicine, personalized recommendations, and decision support tend to be CNN/MLPs, as detailed
in Section 1 – interpretability is crucial in these domains. In addition, for protein/DNA predictor
models, CNNs outperform transformers in low-N fitness tasks (Dallago et al., 2021), and have re-
cently exceeded transformers in pretrained protein/DNA language models (Yang et al., 2024; Bo
et al., 2025). This is because local, repeated motif patterns align naturally with convolutional filters.

6 CONCLUSION

Sampling from a trained predictor f⋆ is important for interpretability and compute-efficient design.
However, rugged and needle-gadget landscapes lead to exponential mixing times that standard,
temperature-annealing based MCMC methods cannot overcome. We demonstrate our trajectory-
annealed samplers bypass this barrier across (1) three common architectures (FCNNs, CNNs, and
ResNets) ranging from 2-20 layers and across (2) diverse tasks such as synthetic stress-tests, real-
world design tasks, and EBM sampling. We theoretically characterize our method’s benefits, show-
ing exponential → near-linear sampling improvements under idealized conditions. To our knowl-
edge, we are the first to identify and exploit this training-trajectory lens for neural network sampling.
We hope our analysis can spark further research on this topic, including extensions to transformers.
Given the method’s simplicity, we hope it can become a useful tool for efficiently probing predictors.

7 ETHICS STATEMENT

This work introduces a sampling procedure that reuses training checkpoints to improve efficiency
when exploring a trained predictor’s landscape. When paired with interpretability workflows, this
can help surface spurious correlations, biases, and failure modes prior to deployment.

At the same time, any method that accelerates sampling or optimization over model scores has dual-
use potential: it could make it easier to construct high-confidence but misleading inputs (adversarial
examples or jailbreak prompts), search for harmful designs , or probe models in ways that risk model
inversion or privacy leakage if training data contain sensitive information.

8 REPRODUCIBILITY STATEMENT

The code and data for all experiments are contained in the supplementary zip file. The only exception
is the MNIST-EBM sampling experiments. Here, the GWG repo was used as-is, with minimal
changes for our inference method. Those minimal changes are explained in I.3.2.

10
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A O(d log d) MIXING FROM τ1 CHECKPOINT

Setting. Let Ω = {−1, 1}d and let

f(x) =

d∑
i=1

hi xi

be a sum of degree-1 monomials (linear function) on the Boolean hypercube. We want to sample
from the Gibbs measure proportional to exp(f):

π(x) =
1

Z
exp

(
f(x)

)
=

1

Z

d∏
i=1

exp(hixi) =

d∏
i=1

πi(xi),

so π is a product distribution with one-dimensional marginals πi(xi) ∝ exp(hixi). Consider
random-scan single-site Gibbs: at each step pick It ∼ Unif([d]) and resample Xt(It) from
π( · |Xt−1(¬It)), which for this product target equals the marginal πIt .

Claim. For random-scan single-site Gibbs on a product target,

tmix(ε) ≤ d
(
log d+ log(1/ε)

)
.

In particular, tmix(1/4) ≤ d(log d+ log 4) = O(d log d).

Proof. Let the refresh time

τref = min{t : each coordinate i ∈ [d] has been selected at least once by time t}.

Because π is a product, whenever coordinate i is selected we resample it fresh from πi, indepen-
dently of everything else. Hence, at time τref we have resampled every coordinate from its marginal,
so

Xτref ∼
d∏

i=1

πi = π.

This makes τref a strong stationary time, which implies∥∥P t(x, ·)− π
∥∥
TV

≤ Pr(τref > t) for all starting states x and times t ≥ 0. (2)

It remains to bound the tail of τref. Each step picks a coordinate uniformly from [d], so this is the
coupon-collector process. For any fixed i,

Pr
(
i was never chosen in t steps

)
= (1− 1/d)t ≤ e−t/d.

A union bound over the d coordinates then gives

Pr(τref > t) = Pr(∃ i unrefreshed) ≤ d e−t/d. (3)

Combining equation 2 and equation 3 and choosing t so that de−t/d ≤ ε yields

t ≥ d
(
log d+ log(1/ε)

)
,

which proves the claim. □

B O(d log d) MIXING FROM τ2 CHECKPOINT

At checkpoint τ2, let aligned spins yi := xiz
⋆
i . The degree-≤ 2 surrogate can be written as

fτ2(y) ≈ f≤2(y) = 2−d

 d∑
i=1

yi +
∑

1≤i<j≤d

yiyj

 , (4)

which is the Curie–Weiss Hamiltonian with a positive external field up to scaling.
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In the low-temperature regime, existing results show that censored Gibbs dynamics on just the
degree-2 monomials (ignoring the degree 1 monomials) mixes in O(d log d) time (Ding et al., 2009).
By censoring, we mean if a proposed update would make the alignment with the pattern negative,
we reflect all of the update variables.

Without censoring and with a uniform start at low temperature and zero field, the chain falls into
the +yi or −yi basin with probability ≈ 1

2 each; a positive field (as is the case in our setting) biases
toward the +yi basin.

After scaling with β = 2d, f≤2(z
⋆) is at least 2d higher than all the other configurations. Thus, under

the measure exp 2df≤2(y), the target z⋆ is at least e2d more probable than all other configurations.
Since there are 2d configurations in total, the lower bound for z⋆’s likelihood is e2d

2d−1+e2d
= 1 −

e−Θ(d). Consequently, after O(d log d) steps the chain is at z⋆ with high probability (so a constant
number of parallel chains suffices).

C EMPIRICAL EVIDENCE OF LOWER DEGREES ALIGNING/GROWING BEFORE
HIGHER DEGREES
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D MULTIPLE NEEDLES

With multiple needles, the degree-2 interaction is equivalent to a Hopfield model with weights set
by a Hebbian learning rule; increasing the number of stored needles shrinks attraction basins, poten-
tially slowing local MCMC (McEliece et al., 1987; Storkey & Valabrègue, 1999). For the standard
pairwise Hopfield model with unbiased needles, the capacity scales linearly as Nmax ≈ αcd with
αc ≃ 0.138 (Amit et al., 1985). For pure p-spin Hopfield models, the number of storable patterns
scales as Nmax ≈ αpd

p−1, with αp a p-dependent constant (Bovier & Niederhauser, 2001).

Table 9 shows that across multiple needles, sampling along the training trajectory is still more
sample-efficient than running Gibbs-with-gradient on the final trajectory.
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Table 9: Needle gadget: hit rates across 5 runs for GWG vs. our method (1 needle hit). Task: 10-D
indicator “needle” with 10 additional linear terms; model: 3-layer FCNN (width 128); sampling: 3
particles, 60 total steps per run across checkpoints {5, 25, 50, 75, 100, final} (10 steps per check-
point); baseline: 60 steps of GWG on final checkpoint

# Needles GWG: runs with ≥1 hit (out of 5) Ours: runs with ≥1 hit (out of 5)
5 0/5 5/5
4 2/5 5/5
3 1/5 5/5
2 0/5 5/5
1 0/5 5/5

E EMPIRICAL EVIDENCE OF SAMPLING FROM INDICATOR FUNCTION
PROJECTED TO TERMS OF ORDER ≤ P

The below graphs contain the median number of steps needed to hit the target when sampling
from an indicator function that is only non-zero for the target. However, its boolean expan-
sion is projected down to terms of degree ≤ P . We consistently observe that the median num-
ber of steps increases as P increases. For each value of P , we select the best β value across
(1.0,0.5,0.3,0.2,0.1,0.07,0.05,0.03,0.02,0.01), conduct 300 trials, and cap the number of steps at
2d. Sampling is done via Gibbs (random-index heat bath).
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F NTK-ALIGNED TRAINING MAP

Setup. Let the input domain be the unit sphere Sd−1 with the uniform measure. Expand any
square-integrable f : Sd−1 → R in spherical harmonics Yk,j (degree k ∈ {0, 1, . . . }, multiplicity
index j):

f(x) =

∞∑
k=0

Nk∑
j=1

ak,j Yk,j(x), ak,j = ⟨f, Yk,j⟩.

For isotropic (zonal) operators on the sphere, each degree-k subspace is an eigenspace, so all coef-
ficients {ak,j}Nk

j=1 evolve by the same scalar multiplier.

Idealized NTK dynamics. Consider a fully connected network in the linearized NTK regime (in-
finite width), trained by kernel gradient flow with squared loss and learning rate η, from zero ini-
tialization, on data drawn uniformly from Sd−1. The analytical NTK K is a zonal kernel whose
eigenfunctions are the spherical harmonics and whose degree-k eigenvalue we denote by λk > 0.
Along each degree-k subspace the (prediction) coefficient obeys

d

dt

(
ak,j(t)− a⋆k,j

)
= −η λk

(
ak,j(t)− a⋆k,j

)
,

so from ak,j(0) = 0 we get
ak,j(t) =

(
1− e−ηλkt

)
a⋆k,j .

Equivalently, at time t the entire degree-k block is scaled by

MNTK
k (t) = 1− e−η λkt ∈ [0, 1].

This corresponds to Eq. (7) in Bowman (2023); see that reference for a fuller introduction.

Using x
1+x ≤ 1− e−x ≤ x for x ≥ 0 with x = ηt λk, we obtain

ηt λk

1 + ηt λk
≤ MNTK

k (t) ≤ ηt λk.

Hence for large k (so λk → 0),
MNTK

k (t) ∼ ηt λk,

i.e., MNTK
k (t) ≍ λk up to constants depending on ηt.

Activation choice controls the spectrum {λk} and thus the decay of MNTK
k (t) across degrees:

for ReLU, λk = Θ(k−d) (polynomial “spectral bias”); for Tanh, λk = Θ
(
k−de−

√
k
)

(super-
polynomial). For fixed t and large k, MNTK

k (t) ≈ ηt λk, so high degrees are damped more (Murray
et al., 2022).

Comparison: Gaussian (heat) smoothing. Heat-kernel smoothing on Sd−1 multiplies the degree-
k block by

Mheat
k (t) = exp{−t µk}, µk = k(k + d− 2),

i.e., an exponential-in-k2 decay (stronger high-frequency suppression). Note the time contrast:
larger diffusion time t means more smoothing, whereas larger NTK training time t means
MNTK

k (t) ↑ 1 and less smoothing (the predictor approaches f⋆).

Takeaway. Under the NTK idealization, the training trajectory {ft} is a family of degree-wise
smoothed versions of f⋆, with the spherical harmonics as eigenfunctions and activation-controlled
frequency decay. Diffusion performs a similar degree-wise smoothing but with heat-kernel multi-
pliers.

G BINARY MNIST CHECKPOINT ABLATIONS

We report FID scores for varying numbers of checkpoints used in our method for a fixed budget of
1K total GWG steps. The model was trained for 50,000 epochs. For a given number of checkpoints,
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we choose them to be evenly spaced along the training trajectory and allocate an equal number of
sampling steps to each checkpoint. The Temp-GWG baseline samples only from the final checkpoint
using temperature annealing.

Table 10: FID (↓) on binary MNIST as a function of the number of checkpoints used by our method,
with a fixed budget of 1K GWG sampling steps. Entries are mean (std) over 10 bootstrap resamples.

# Checkpoints Mean FID (std)

Temp-GWG (baseline) 29.61 (0.239)
5 16.10 (0.237)
10 14.42 (0.322)
25 12.56 (0.289)
50 11.93 (0.355)
100 12.08 (0.435)
500 11.73 (0.284)

As shown in Table 10, we see dramatic gains from using even 5 checkpoints, with additional check-
points yielding diminishing marginal returns and performance saturating around 50–500 check-
points. The key empirical observation is that the training trajectory tends to evolve from coarse
to fine, so any set of evenly spaced epochs can leverage this structure to speed up sampling.
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H SAMPLING FROM BINARY MNIST

Figure 17: First 49 random samples from standard sampling with 1K steps.
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Figure 18: First 49 random samples from our method with 1K steps. These samples are substantially
sharper than the above.
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Figure 19: First 49 random samples from standard sampling with 10K steps.
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Figure 20: First 49 random samples from our method with 10K steps. Again, these samples are
sharper.

I DISCRETE EXPERIMENTAL DETAILS AND COMPUTE BUDGETS

I.1 CHECKPOINT AND TEMPERATURE SELECTION

For all experiments, we run an equal number of MCMC steps at each stage. We use checkpoints at
epoch 25 and temperature = 10.0 for most experiments with a few exceptions detailed below.

For the DNA design experiment, we add an additional checkpoint at epoch 50 due to the additional
complexity of the task.

For the discrete high-frequency experiment, we use temperature = 100.0 (instead of the 10.0 used in
all other settings) because we are sampling from lower-magnitude component.

For the MNIST sampling experiment, we save the model every 100 epochs during training and use
these as the checkpoints. We use the default temperature hyperparameters used in the repo; we make
no changes.

I.2 KERNEL

All experiments and baselines use the Gibbs-with-Gradients (GWG) kernel introduced in Grathwohl
et al. (2021). This kernel uses gradient-informed proposals for categorical flips under a ±1 encoding,
drawing moves from a softmax over approximate first-order energy changes. Each proposal is then
corrected by a Metropolis–Hastings step that accounts for both the approximate energy difference
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and the asymmetric forward/reverse proposal probabilities. The choice of temperature for the kernel
is detailed in the subsection above.

For the synthetic experiments we use the exact GWG kernel where the y values are the exact y val-
ues, not those estimated via gradients. This is to remove the effect of gradient estimation noise. For
the subsequent experiments, we use the standard GWG kernel where the y values is approximated
from the gradient.

For the MNIST sampling experiment, we use the kernel implementation from the repo (also GWG-
MH); we make no changes.

For the constrained DNA sampling task, we modify the GWG-MH kernel so that it incorporates
the Hamming distance constraint. If a sampled single-flip would exceed the Hamming cap, we
pair it with a gradient-guided reversion on some already-flipped position so the net move stays on
the Hamming boundary. Both legs are sampled from the same GWG softmax over their respective
candidate sets.

I.3 CHECKPOINT POLICY AND BASELINES

I.3.1 SYNTHETIC

We run 20 steps of our kernel at epoch 25, and then run another 20 steps at the final epoch. For the
baseline, we run 2000 steps of the same kernel at only the final checkpoint. From random starting
particles, we measure the fraction of particles that hit the global maxima of the function along their
trajectory.

For the synthetic experiments, we only benchmark against GWG. This is because for the indicator
function, other methods only manipulate the temperature of the final checkpoint. However, rescaling
the temperature does not help - the landscape is still a random-walk.

For the High-magnitude, high-frequency variation experiment, we additionally benchmark against
temperature annealing with a linear schedule. Here, the temperature was annealed from 0 to 100 (the
temperature value used for this experiment) across 2000 steps, where one MCMC step was taken at
each temperature value.

I.3.2 MNIST SAMPLING

We utilize the code, as-is, in GWG repo. This is trained for 50K epochs, and we save the checkpoint
every 100 steps. For sampling with 1K steps, we run 2 steps of the kernel at each checkpoint. For
sampling with 10K steps, we run 20 steps of the kernel at each checkpoint. We do not adjust any
of the kernel hyperparameters for our task - we only change the checkpoints. For the baseline, we
use the existing sampling code in the repo, which samples from the final checkpoint using linear
temperature annealing and takes one kernel step for each temperature value. We control for the
number of kernel steps across comparisons.

For the FID calculations, we use the repo https://github.com/abdulfatir/gan-metrics-
pytorch/tree/master. We also use their MNIST LeNet model checkpoint for computing the
metrics. We collect 8K random samples from the binary MNIST test set, our sampling method,
and the existing sampling method. For the ground-truth FID value, we calculate FID between two
random 8K subsets of the binary MNIST test set.

I.3.3 TF-DNA SAMPLING

We start from a random length-60 DNA sequence, and run 60 steps of the MCMC kernel. All
methods only use 60 steps. Other than plain GWG, all of the methods use 3 stages with an equal
number of steps for each stage.

For our method, we run 20 steps at epoch 25, 20 steps at epoch 50, and 20 steps at the final check-
point.

For the GWG baseline, we run 60 steps at only the final checkpoint.
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For the parallel tempering baseline, we run 3 replicas over a geometric β-ladder from 0.05→10.0,
doing 20 local steps per replica with swaps every 5 steps (60 total local updates across replicas). For
the replica starting point, the cold chain starts at x0, while the mid and hot chains randomly reassign
25% and 50% of positions, respectively, to diversify exploration from the outset.

For annealed importance sampling with automated temperature adjustment, we run annealed impor-
tance sampling with an ESS-targeted adaptive temperature schedule (β : 0 → 10) without resam-
pling, preserving one-to-one lineages; each stage re-weights particles and picks the next β to keep
ESS near 0.6 N. After reweighting, it performs K=20 GWG rejuvenation sweeps at the new β; with
3 stages, this is 60 sweeps per particle.

For the constrained sampling task, we start from a random DNA sequence and want the best sample
within a hamming distance of 7. We use the same setup as before except with a modified GWG-MH
kernel detailed in Sec. I.2.

Diversity is calculated as the median of pairwise (Hamming) distances within each bootstrap re-
sample. Novelty is calculated as median of per-seq min distance to training, within each bootstrap
resample.

I.4 ARCHITECTURE AND TRAINING DETAILS

For the synthetic experiment, we use a 3-layer FCNN with hidden dim 128. It is trained for 30000
epochs with a learning rate of 2e-3. Indicator functions have y value of 10.

For the MNIST experiment, we use ResNet-EBM architecture specified in the GWG repo. The
architecture is an EBM with a 3×3 stem conv, two strided residual downsampling blocks (each:
Swish → 3×3 conv → 3×3 conv + a 1×1 projection shortcut), followed by six identity residual
blocks (Swish → 3×3 → 3×3, no projection), then global spatial averaging and a single linear head
to a scalar energy. In total, it has 19 conv layers and 1 fully connected layer. Training is done
according to the repo’s instructions.

For the TF-DNA experiment, we use the same architecture from de Almeida et al. (2022). Specif-
ically, we apply a Conv1d(4→64, kernel=11), ReLU, then global max pooling over the sequence
dimension for each filter, and then a linear head that outputs a scalar.

I.5 DATASETS

For the synthetic experiments, we have 8-10 main variables that are part of the function and 500
spurious variables. We construct synthetic datasets where the spurious variables are randomly sam-
pled.

We use the binary MNIST datasets provided in GWG repo.

For the TF-DNA experiment, the data consists of length-60 DNA sequences. The last 24 DNA letters
are always the same; the first 36 are close to random. The TF (MAX, from the mouse species) binds
strongly when the motif ”CACGTG” is present. The binding strength increases depending on where
the motif is present (upstream leads to stronger binding), the flanking sequences surrounding the
motif, the number of times the motif is present, the GC % in the sequence, etc. The dataset is taken
from Badis et al. (2009).

I.6 CI DETAILS

All reported CIs are 2SD, unless specified otherwise.

For the synthetic experiments, we run the above test on 200 random particles, calculate the hit
fraction (whether a particle reaches the global maxima along its trajectory),and report 2SD CIs from
these results.

For the MNIST experiment, FID is calculated across sets of 8K samples. The standard deviation is
calculated over 10 bootstraps.

For the DNA design experiment, we sample with 300 particles, and calculate 95% bootstrap per-
centiles (B=500) from the results.
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J SAMPLING ALONG THE TRAINING PATH WITH SMC

Let πt(x) ∝ exp
(
ft(x)

)
denote the (unnormalized) target associated with the checkpoint at time t

(e.g., from the model’s energy or surrogate negative log-likelihood).

Rather than selecting a single smoothing level, we sample along the NTK training trajectory t ∈
[0, T ] using Sequential Monte Carlo (SMC):

1. Choose a schedule 0 = t0 < t1 < · · · < tL = T (e.g., geometric).
2. Initialize particles from an easy reference.
3. For ℓ = 1, . . . , L: compute incremental weights w(x) ∝ πtℓ(x)

/
πtℓ−1

(x), resample, and
apply a short MCMC move targeting πtℓ .

4. Output particles at t = T (the desired final target).

This procedure exploits the frequency–selective filtering MNTK
k (t) to traverse from a

smooth–dominated intermediate distribution toward the final target while maintaining particle di-
versity.

K CONTINUOUS EXPERIMENTAL DETAILS AND COMPUTE BUDGETS

K.1 SHARED SETTINGS (ALL EXPERIMENTS)

• Parallel trajectories. All methods use concurrent trajectories.
• Compute parity. Within each experiment, every trajectory performs the same total number

of Metropolis–Adjusted Langevin Algorithm (MALA) steps across methods.
• Kernels. Ackley and Superconductor use MALA for all five methods.
• Checkpoint policy (SMC–Train). Train for 10,000 epochs; checkpoint every 10 epochs.

Smooth the training-loss curve and keep the earliest prefix of checkpoints up to (but not
beyond) the plateau; exclude later flat checkpoints (each kept checkpoint has strictly lower
loss than the previous one).

• SMC–Temp schedule. Linear inverse-temperature ladder with the same number of distri-
butions as SMC–Train for that task.

• AIS schedule. Annealed Importance Sampling (AIS) chooses temperatures adaptively
each stage to maintain a target conditional effective sample size (cESS); rejuvenation uses
the same MALA kernel as other methods.

• PT schedule. Parallel Tempering (PT) with a fixed temperature ladder across replicas;
propose swaps between adjacent replicas every stage; within-replica moves are MALA
with the same per-step budget.

K.2 EXPERIMENT-SPECIFIC PARAMETERS

Ackley (10D). Proposal: MALA with step size 10−2; adaptation target acceptance 0.57 (adap-
tation off unless stated). SMC–Temp: resample when ESS < 0.5N . SMC–Train: resample when
ESS < 0.5N . AIS–Auto: choose temperatures to hit cESS = 0.5N per increment (bisection tol.
10−4, max 50 iters). PT–MALA: power temperature ladder (parameter 4.0); per-replica MALA step
scales as ε/β1.0. MCMC–Final: plain MALA with the same step size; no burn-in, no thinning.

Superconductor. Inputs x ∈ R87. Proposal: MALA with base step size ε = 0.05/
√
d; adap-

tation target acceptance 0.57 (off by default). Stabilization in latent z: per-dimension percentiles
[1%, 99%] and radial cap at 99.5%. SMC–Temp / AIS–Auto: resample / choose temperatures to
maintain cESS = 0.5N ; rejuvenation uses the same MALA step. SMC–Train: same cESS rule;
default initialization from a Gaussian prior over z. PT–MALA: geometric temperature ladder up to
βmax = 1.0, swaps every stage; replicas chosen to evenly factor the parallel budget; report adjacent-
swap rates and per-β MALA acceptance. MCMC–Final: if adaptation is enabled: target acceptance
0.57 with updates every 10 steps (clip ε to [10−4, 0.5]).
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K.3 COMPUTE BUDGETS

Table 11: Per-trajectory budgets. L is the number of intermediate distributions (temperatures for
SMC–Temp/AIS/PT; checkpoints for SMC–Train). Total Steps = L × K for SMC/AIS/PT and
= Smcmc for MCMC.

Experiment Method Parallel # Dists L Rejuv./Dist. K Total Steps

Ackley (10D) MCMC–Final N=10,000 — — 50
SMC–Temp N=10,000 10 5 50
SMC–Train N=10,000 10 5 50
AIS–Auto N=10,000 10 5 50
PT–MALA N=10,000 10 5 50

Superconductor MCMC–Final N=500 — — 250
SMC–Temp N=500 50 5 250
SMC–Train N=500 50 5 250
AIS–Auto N=500 50 5 250
PT–MALA N=500 50 5 250

K.4 DATA & MODELS BY TASK

Ackley (10D). Model: MLP with layers [1024, 512, 256], Tanh activations. Training
data: synthetic coverage over [−10, 10]10 with three components: (i) uniform “plateau,” (ii) strat-
ified radial shells spanning target f -levels, and (iii) a small ball near the origin for additional f≈0
mass; 3,601,000 total points. Target: regress f(x). Sampling kernels: MALA for all five methods.

Superconductor (Design-Bench). Dimensions: d=87. Model: MLP with layers [2048,
2048], ReLU activations. Training data: train on the full available dataset; no oracle fine-tuning.
Target: regress the provided score f(x) (higher is better). Sampling kernels: MALA for all five
methods.

Novelty & Diversity (Superconductor). Distances are computed in standardized feature space
using the input scaler fit on the training set. Novelty is the per-sample ℓ1 (Manhattan) distance to the
nearest training point (scikit-learn NearestNeighbors, metric=manhattan); we report the
median and IQR across samples. Diversity is the median and IQR of pairwise ℓ1 distances among
generated samples, computed over all unordered pairs (n(n − 1)/2 for n samples). All summaries
are reported as median [IQR].

K.5 EXTENDED RESULTS

Ackley (10D, ↓). Under matched compute, SMC–Train achieves the best mean and best-of-set
with non-overlapping CIs relative to all baselines (Table 8). Quantitatively, SMC–Train reduces the
mean objective vs. MCMC–Final by 17.8% (16.22 → 13.33), vs. SMC–Temp by 18.3% (16.31 →
13.33), vs. AIS by 18.3% (16.31 → 13.33), and vs. PT by 32.9% (19.87 → 13.33). On best-of-set,
SMC–Train improves over MCMC–Final by 56.9% (8.56 → 3.69), over SMC–Temp by 53.0%
(7.86 → 3.69), over AIS by 58.1% (8.81 → 3.69), and over PT by 72.9% (13.62 → 3.69). The 95%
CIs for SMC–Train (13.33 [12.09, 14.58]) are disjoint from the tight ranges of the other methods
(≈ 16.16−16.35), indicating consistent improvement across seeds.

Superconductor (↑). In high-dimensional materials design, SMC–Train leads both on best-of-
set and mean (Table 8). Mean reward increases by 102.4% vs. MCMC–Final (76.68 → 155.2), by
606.1% vs. SMC–Temp (21.98 → 155.2), by 535.5% vs. AIS (24.42 → 155.2), and by 497.6% vs.
PT (25.97 → 155.2). Relative to the reference score (185.0), the mean reaches 83.9% of the target,
while the best-of-set (318.4) is 172.1% of the reference (i.e., +72.1% over target). These gains
come with wider uncertainty for SMC–Train (95% CI: [105.6, 204.8]), reflecting more aggressive
exploration that can land very high-reward candidates.
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On novelty and diversity. Table 8 shows that AIS and PT achieve the highest novelty (median
∼35.3–35.7) and diversity (median ∼25.4–26.1), while SMC–Train is moderate on these axes (nov-
elty 20.86; diversity 16.60). However, these higher exploration metrics do not translate into better
objective quality: both AIS and PT have substantially lower mean rewards (24–26) than SMC–
Train (155.2). We observe that the methods with the highest novelty/diversity also retain many
low-quality samples, inflating dispersion-based metrics without improving the objective. In con-
trast, SMC–Train balances exploration and exploitation: it traverses the space broadly enough to
discover strong candidates (best-of-set 318.4) while concentrating mass to raise the mean reward.
Thus, more novelty/diversity does not necessarily imply better design quality when a significant tail
of poor samples is preserved.

Takeaways. (i) Under matched compute, SMC–Train consistently outperforms baselines on Ack-
ley and Superconductor by large margins in both mean and best-of-set. (ii) For Superconductor, ap-
parent exploration advantages (higher novelty/diversity) from AIS/PT coincide with lower objective
quality—suggesting these methods over-emphasize exploration and retain weak samples. (iii) Re-
porting both mean and best-of-set, alongside novelty/diversity, is essential: together, they show that
SMC–Train drives objective gains while maintaining reasonable exploration, rather than chasing
dispersion alone.
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K.6 FIGURES
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Figure 21: Full energy histogram for Ackley (10D). Samples from MCMC–Final, SMC–Temp, and
SMC–Train.

K.6.2 SUPERCONDUCTOR
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Figure 22: Samples are partitioned into Tc deciles (0–10%, . . . , 90–100%). Within each bin, we plot
the distribution of nearest-neighbor L1 distances (in standardized feature space) among the samples
in that bin. Broad—and non-shrinking—within-bin L1 distributions at higher Tc percentiles indicate
that sample diversity does not collapse as Tc increases.
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Figure 23: Each point shows a sample’s predicted Tc (x-axis) versus its minimum L1 distance to
any training example in standardized space (y-axis). High-Tc proposals do not systematically move
closer to the training set; many top-Tc samples remain well separated, indicating genuine novelty
rather than simple memorization.
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Figure 24: Side-by-side violins of the predicted critical temperature (Tc) for the three sampling
methods, aggregated over seeds. The plot highlights differences in central tendency and tail behavior
across methods.
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Figure 25: For each method, we compute selected Tc percentiles (50th–100th) per seed and report
the mean ± standard deviation across seeds. Our method consistently gives higher Tc samples than
the other two methods.

L USAGE OF LLMS

We utilize LLMs to assist with the writing of the paper. We provided GPT-5 an outline of our key
points for each paragraph, and GPT-5 converted them to a paragraph format with latex formatting.
We also utilized LLMs to research related work for each of our 4 sections.
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