

000 001 002 003 004 005 006 007 008 009 010 FROM PREDICTORS TO SAMPLERS VIA THE TRAINING TRAJECTORY

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Sampling from trained predictors is fundamental for interpretability and as a
 012 compute-light alternative to diffusion models, but local samplers struggle on the
 013 rugged, high-frequency functions such models learn. We observe that standard
 014 neural-network training implicitly produces a coarse-to-fine sequence of models.
 015 Early checkpoints suppress high-degree/ high-frequency components (Boolean
 016 monomials; spherical harmonics under NTK), while later checkpoints restore de-
 017 tail. We exploit this by running a simple annealed sampler across the training
 018 trajectory, using early checkpoints for high-mobility proposals and later ones for
 019 refinement. In the Boolean domain, this can turn the exponential bottleneck arising
 020 from rugged landscapes or needle gadgets into a near-linear one. In the con-
 021 tinuous domain, under the NTK regime, this corresponds to smoothing under the
 022 NTK kernel. Requiring no additional compute, our method shows strong empiri-
 023 cal gains across a variety of synthetic and real-world tasks, including constrained
 024 sampling tasks that diffusion models are unable to handle.

025 1 INTRODUCTION

027 In contrast to the trend toward billion-parameter Transformer LLMs, model deployments for
 028 medicine, recommendation systems, and decision support based on structured data continue to
 029 be dominated by small CNNs/MLPs. These dominate AI in medical devices (Singh et al., 2025;
 030 Mienye et al., 2025), production models for personalized recommendations (MLCommons Asso-
 031 ciation, 2025; Feng et al., 2024), and decision support models for credit scoring, recidivism risk,
 032 insurance underwriting, and hospital operations triage (eba, 2023; Grinsztajn et al., 2022; McEl-
 033 fresh et al., 2023; Holzmüller et al., 2024).

034 Despite their relative simplicity, they can be opaque and encode brittle shortcuts. For example, a
 035 dermatology CNN approved for EU clinical use was shown post-hoc to over-weight surgical skin
 036 markings/rulers rather than lesion content; adding a simple violet marker to the same benign lesion
 037 skyrocketed its melanoma probability (Winkler et al., 2019; Bevan & Atapour-Abarghouei, 2022).
 038 Sampling minimal counterfactual edits could have revealed this shortcut. Such cases underscore the
 039 importance of sampling from the trained predictor.

040 Apart from interpretability, we often want to sample from a trained predictor to pick high-value
 041 candidates for active learning. For instance, many works sample fit DNA sequences from models
 042 predicting DNA-transcription factor (TF) affinity (de Almeida et al., 2022; Reddy et al., 2024). This
 043 works well as DNA-TF affinity assays test millions of sequences per experiment, often from largely
 044 random libraries—enabling near-unbiased exploration of sequence space (Gallego Romero & Lea,
 045 2023). Similarly, for protein engineering, many methods sample sequences from a learned fitness
 046 model for bayesian optimization (Hu et al., 2022; Ren et al., 2022).

047 However, these sampling tasks can become difficult for certain common landscapes. When the
 048 landscape is rugged, high-frequency, high-magnitude fluctuations create many sharp local optima.
 049 Another key culprit is synergy — outcomes depend on rare combinations of variables—so the
 050 individual effects look innocuous while the rare, joint effect is large. Such concealed interactions evade
 051 single-step proposals and short-horizon heuristics, which only “see” myopic gains. As a result, dis-
 052 covering the right multi-variable change becomes essentially a needle-in-a-haystack problem, with
 053 success of random exploration drops exponentially as the number and order of synergistic interac-
 054 tions grow, along with the number of spurious variables.

To deal with this difficulty, one option is to train a reward-conditioned diffusion or discrete-walk jump sampler. These are powerful generative approaches, but in the settings we focus on they have three drawbacks: (1) They require training a separate generative model in addition to the predictor, which can demand substantial extra compute compared to reusing an already-trained predictor with test-time trajectory-annealed MCMC. In many domains, strong predictors have already been trained on large, unbiased data, and practitioners operate in a compute-constrained regime where training an additional generative model is not feasible. (2) Implementing hard constraints such as a Hamming-radius ball or minimal counterfactual edits typically requires additional machinery (e.g., auxiliary guidance networks Shen et al. (2024) or SMC-style schemes Wu et al. (2023)), rather than a simple modification of the sampling rule. (3) They do not directly support sampling from a deployed model for interpretability, whereas our method operates on the existing predictor without any additional training.

We study the plug-and-play test-time sampling problem for a trained scalar predictor $f^* : \mathcal{X} \rightarrow \mathbb{R}$, and we aim to draw from the Gibbs density it induces, $\pi^*(x) \propto \exp\{f^*(x)\}$, optionally under hard constraints. Our solution is *trajectory annealing*: rather than sample only from π^* , we traverse training checkpoints $\{f_t\}_{t=0}^T$ and run brief MCMC updates targeting $\pi_t(x) \propto \exp\{f_t(x)\}$ before arriving at π^* .

This exploits the coarse-to-fine learning dynamics of predictors: early checkpoints suppress high-degree components, smoothing the landscape for rapid mixing. This yields two wins. For $\pi^*(x)$ with high-magnitude, high-frequency variation, early checkpoints bypass the rugged barriers that cause exponential mixing. For synergistic interactions where only higher order, rare combinations of variables are predictive, we show that early checkpoints correspond to low degree projections that reveal modes of $\pi^*(x)$, converting random-walk behavior with exponential mixing times to near-linear. Our method **works as-is**, requiring no additional compute or training changes. We demonstrate strong empirical gains on synthetic tasks, sampling from discrete energy-based models, and challenging real-world DNA and materials design tasks. *To the best of our knowledge, this is the first work to leverage a neural network’s training trajectory to improve sampling.*

2 RELATED WORK

Smoothing for sampling There is a long line of work that smooths the target to accelerate sampling. Prominent examples include reward-conditioned diffusion and discrete walk-jump schemes that walk on a smoothed manifold and jump back to the discrete space (Yuan et al., 2023; Frey et al., 2024). Kirjner et al. (2024) train graph-smoothed protein fitness models (250K-node sequence graphs), and Zhu et al. (2025) show this smoothing induces a spectral bias that disproportionately damps high-degree Boolean monomials. Our approach instead leverages the *natural* smoothing in a network’s training trajectory; we focus on the no-extra-compute regime and therefore do not benchmark against explicit smoothing methods.

Interpretability Many approaches probe a trained predictor via sampling/optimization. Minimal counterfactual edits are typically posed as constrained optimization on the fixed model, with sparsity or proximity regularization (Verma et al., 2024). A complementary line samples the predictor to quantify rare events—e.g., using MCMC to estimate the mass of inputs that violate a property or elicit outlier predictions (Webb et al., 2019). However, these approaches inherit the exponential barriers from rugged, high-frequency landscapes and random-walk exploration for synergistic interactions - issues our method mitigates when substituted for the sampling/optimization.

Test-Time MCMC Sampling Existing test-time, plug-and-play MCMC methods use gradient-guided methods for search and temperature annealing to overcome barriers. However, such temperature annealing methods (e.g. parallel tempering, annealed importance sampling, etc.) cannot bypass the random walk exploration that occurs from rare synergies (Hénin et al., 2022). Furthermore, for functions with high barriers, tempering relaxes barriers but offers little directional guidance - leading back to the random walk exploration. Thus, mixing time in the above settings remains exponential. Recent methods such as Diffusive Gibbs Sampling introduce an auxiliary noisy variable and alternate Gaussian noising with gradient-based denoising steps in a Gibbs scheme to improve mixing on multi-modal targets (Chen et al., 2024). Similarly, Iterative Reasoning through Energy Diffusion (IRED) learns annealed energy landscapes but still depends on local energy gradients at test time

(Du et al., 2024). However, all test-time gradient based methods are limited by the informativeness of local energy gradients.

Discrete sampling Grathwohl et al. (2021) introduced Gibbs-with-Gradients (GWG), using model gradients to choose which coordinate to flip rather than sampling indices uniformly. Since then, a flurry of work has pushed discrete MCMC forward along complementary axes: locally balanced/informed proposals that improve Metropolis–Hastings tuning (Zanella, 2017; Sun et al., 2022); non-local or parallel gradient moves via discrete Langevin and related formulations (Zhang et al., 2022; Sun et al., 2023); automatic cyclical scheduling of gradient-based updates for better mixing and reduced tuning (Pynadath et al., 2024); MALA-inspired discrete kernels with auxiliary-variable preconditioning (Rhodes & Gutmann, 2022); and reheated gradient-based samplers tailored to difficult combinatorial objectives (Li & Zhang, 2025). Our method is compatible with all of these gradient-based discrete kernels and could be combined with their proposal mechanisms or schedules; for simplicity, we use GWG throughout our discrete experiments.

Coarse-to-Fine Learning A growing body of theory suggests that gradient-based training and sampling in high-dimensional models proceeds in a coarse-to-fine manner. In diffusion models, linear and Gaussian analyses show that high-variance or low-frequency modes of the data covariance are learned and expressed in samples much earlier than low-variance, fine-detail modes, leading to an ordered emergence of global structure before local detail (Wang, 2025; Wang & Vastola, 2024). Related analyses of SGD on neural networks reveal multi-phase, saddle-to-saddle dynamics in which low-complexity or small-support features are acquired first, progressively enabling the learning of higher-order interactions (Abbe et al., 2023). Similar spectral decompositions of the NTK further indicate that only a few dominant eigendirections are amplified early in training, biasing learning toward coarse structure before finer modes are fit (Murray et al., 2022).

3 METHODS

Test-time setting. We work in a plug-and-play regime with a trained predictor $f^* : \mathcal{X} \rightarrow \mathbb{R}$ (MSE-trained on $\{(x_i, y_i)\}$), and we sample from its induced density $\pi^*(x) \propto \exp\{f^*(x)\}$, optionally under hard constraints. We do **not** compare against setups that modify training or fit auxiliary generative/score models (e.g., diffusion); our contribution is entirely in the test-time sampling procedure.

Trajectory annealing. Rather than run MCMC only on π^* , we traverse checkpoints along the training trajectory $\{f_t\}_{t=0}^T$ with $f_T \equiv f^*$, defining intermediate targets $\pi_t(x) \propto \exp\{f_t(x)\}$. Starting from $t = 0$, we apply a short Markov kernel for N_t steps targeting π_t , carry the resulting state forward as the initializer for π_{t+1} , and continue this coarse-to-fine progression until $t = T$. For kernels, we use GWG+MH (Gibbs w/ Gradients + Metropolis Hastings) for discrete x and MALA (Metropolis-Adjusted Langevin Algorithm) for continuous x .

Neural networks learn *coarse*–*fine*: low-frequency structure emerges early, high-frequency later. In discrete models trained with SGD, gradients align more with lower-degree monomials, so those coefficients converge first. In continuous models in the NTK regime, kernel eigenvalues decay with spherical-harmonic degree; the predictor is f^* convolved with the kernel, giving strong early smoothing that relaxes over time.

3.1 BOOLEAN VARIABLES

Abbe et al. (2023) show SGD learns Boolean functions hierarchically: low-degree monomials are learned first as fewer variables leads to greater gradient alignment. We leverage this to turn *exponential* sampling into *polynomial* time. We study two hard classes: (i) f^* that are hard because of high-frequency, high-magnitude variation—here, early checkpoints haven’t learned the high-degree spikes yet, so the landscape is smooth and mixes quickly; and (ii) f^* that are hard because there’s no variation (the needle gadget). For needles, local sampling is a random walk - exponential in the needle dimension d . However, mixing on f^* projected to monomials of degree ≤ 2 mixes in $O(d \log d)$, with mixing worsening as the largest degree increases. The low-degree projection of f^* also acts as an associative memory that can store many needles.

162
163

3.1.1 BACKGROUND: LOWER DEGREE MONOMIALS ARE LEARNED FIRST

164
165
166
167
168

Abbe et al. (2023) formalize a hierarchy in how SGD fits sparse Boolean targets. Writing the target as a sum of Boolean monomials, they define the *leap* as the smallest k for which one can order the nonzero monomials so that, when adding the next monomial in that order, the union of involved variables introduces at most k new variables. A pure “staircase” target—each term extending the previous by one fresh variable (e.g. $x_1+x_1x_2+x_1x_2x_3$)—has leap 1.

169
170
171
172
173
174

This notion predicts hierarchical learning under SGD. For staircase-like functions, *lower-degree monomials are learned first and higher-degree monomials later*: initial gradients correlate more strongly with terms that require fewer new variables, so SGD first aligns a small set of coordinates; that alignment then amplifies gradients toward the next monomial, and so on. The trajectory passes through saddle-to-saddle plateaus; a phase that requires acquiring L new variables at once takes $\tilde{\Theta}(d^{\max(L-1, 1)})$ steps, so the training time is dominated by the largest leap (i.e., the hardest stage).

175
176
177
178

They prove this in a *restricted* setting—two-layer fully connected networks with smooth activations, trained on i.i.d. data using a modified SGD (layer-wise updates plus a projection step)—and are complemented by empirical evidence: loss curves for deeper networks on hypercube data exhibit clear plateaus and drops consistent with learning across successive leaps (Abbe et al., 2023).

179
180
181
182
183
184
185

We provide additional empirical evidence for the hierarchical-learning picture across fully connected and convolutional networks, spanning a variety of activations, widths, and depths in Appendix C. Two regularities emerge: (i) *lower-degree* Fourier–Walsh components finish aligning with the target function earlier than *higher-degree* components, and (ii) the degree-wise mass grows only after all its monomials are fully aligned. See Fig. 1 for an example. A caveat is transformers, where we observe experimentally they satisfy (i) but not (ii). A degree-2 monomial could become aligned and grow in mass before all degree-1 monomials were aligned.

186
187
188
189
190
191

Core assumption (degree-wise checkpoints). We assume the setting in Abbe et al. (2023) holds for the larger networks we consider. Specifically, along the training trajectory $\{f_t\}_{t=0}^T$ with $f_T \equiv f^*$, there exist increasing checkpoints $\tau_0 < \tau_1 < \dots < \tau_K \leq T$ such that at τ_k the model has effectively learned all interactions up to degree k , while higher-degree components are still negligible. Equivalently, we may treat f_{τ_k} as the degree- k projection of the final model:

192
193
194

$$f_{\tau_k} \approx f_{\leq k}, \quad f_{\leq k}(x) := \sum_{\substack{S \subseteq [d] \\ |S| \leq k}} \hat{f}^*(S) \prod_{i \in S} x_i.$$

195
196
197

Between these checkpoints, higher-degree terms may be partially learned; we assume only the existence and monotone ordering of $\{\tau_k\}$.

198
199

3.1.2 HIGH-MAGNITUDE, HIGH-FREQUENCY VARIATION

200
201

Early checkpoints in the training trajectory suppress high-degree terms, smoothing the landscape and making it easy to mix. We exploit this to handle targets with large high-degree components.

202
203

As a running example, consider $x \in \{\pm 1\}^d$ with

204
205
206

$$\pi_\gamma(x) \propto \exp\left(\sum_{i=1}^d x_i + \gamma \prod_{i=1}^d x_i\right),$$

207
208

where the linear term favors many +1 entries and the parity term $\prod_i x_i$ creates a high barrier when $|\gamma|$ is large.

209
210
211
212

At low temperature, vanilla Gibbs on the full objective mixes in **exponential** time $\tilde{\Theta}(\exp\{c|\gamma|\})$: once a random start flips to satisfy the parity term, any move that increases the number of +1 bits must cross a $|\gamma|$ -sized barrier, so the chain gets stuck near suboptimal states.

213
214
215

Our trajectory sampler avoids this. We first run a short chain at checkpoint τ_1 ; this mixes in $O(d \log d)$ under Gibbs (see App. A) and quickly reaches states with many +1 entries. We then continue the chain at the final checkpoint to adjust the parity. Thus, we are able to **hit the global maxima in near-linear time - sidestepping the exponential barrier**.

Figure 1: **Fourier–Walsh L^2 mass by degree during training on a $d=10$ indicator.** The target is $f(x) = \mathbb{1}\{x = z^*\}$ with $x_i, z_i^* \in \{\pm 1\}$. In $\{\pm 1\}$ -coordinates this expands as $f(x) = 2^{-d} \sum_{S \subseteq [d]} \prod_{i \in S} (z_i^* x_i)$, so the degree- k component consists of all k -way monomials $\prod_{i \in S} (z_i^* x_i)$ aligned with the pattern z^* . Curves show $\sum_{|S|=k} \hat{f}_t(S)^2$ over epochs for a 3-layer FCNN (width 128). Vertical dashed lines mark the *alignment epoch* for each degree k : the first epoch at which the sign of every degree- k coefficient agrees with the sign implied by its aligned monomial (i.e., all signs point toward z^*). We observe a consistent ordering: each degree first becomes aligned and then its Fourier mass rises, with *lower degrees* aligning and growing *earlier* than higher degrees. Although some *final* masses are larger at higher degrees (there are $\binom{d}{k}$ degree- k monomials), this effect does not change the early-epoch ordering—low-degree components begin to align and increase first.

3.1.3 SYNERGISTIC INTERACTIONS

Needle-like synergistic interactions. In our setting, variables interact *synergistically*: payoff arises only when a specific joint configuration is met (a “needle gadget”). Let $z^* \in \{\pm 1\}^d$ denote that pattern and define the indicator

$$f^*(x) = \mathbb{1}\{x = z^*\}, \quad x \in \{\pm 1\}^d.$$

Over the Boolean (Walsh) basis, f decomposes into all 2^d monomials aligned with z^* :

$$f^*(x) = 2^{-d} \prod_{i=1}^d (1 + z_i^* x_i) = 2^{-d} \sum_{S \subseteq [d]} \prod_{i \in S} (z_i^* x_i)$$

so the degree- k component is the sum of all k -way monomials $\prod_{i \in S} (z_i^* x_i)$ with $|S| = k$.

Because the density is flat off of a tiny set C (e.g., a single configuration), a local Markov chain behaves like a simple random walk on the 2^d -vertex hypercube until it enters the 1-Hamming neighborhood of C . This is **exponential** in d .

Intermediate checkpoint (degree-2 aligned) Now suppose we are at checkpoint τ_2 . Let aligned spins $y_i := x_i z_i^*$. The degree- ≤ 2 surrogate can be written as

$$f_{\tau_2}(y) \approx f_{\leq 2}(y) = 2^{-d} \left(\sum_{i=1}^d y_i + \sum_{1 \leq i < j \leq d} y_i y_j \right), \quad (1)$$

which is the Curie–Weiss Hamiltonian with a positive external field up to scaling. Existing results show that in the low-temperature regime, we can hit z^* with high probability after $O(d \log d)$ steps

270 with a constant number of parallel chains. See App. B for details. **By exploiting the checkpoint**
 271 **τ_2 , we have converted the exponential random walk into near-linear mixing.**

272 **Multiple Needles** Even with multiple needles, we show theoretically (via connections to binary
 273 Hopfield models) and experimentally that low-degree monomials are sufficient to store and retrieve
 274 needles. Further details are in App. D.

275 **All checkpoints help** Sampling against $f_{\leq k}$ shows a monotone pattern: as k grows during training,
 276 the landscape sharpens and the *needle hitting time increases*. Empirical evidence is in App. E.
 277 Sampling is fastest with $k = 2$ but sampling from any intermediate checkpoint with $k < d$ helps.

279 **3.2 CONTINUOUS VARIABLES**

280 Let $f^* : S^{d-1} \rightarrow \mathbb{R}$ and let t denote the time parameter. Gaussian (diffusion) smoothing on the
 281 sphere acts degree-wise on spherical harmonics: at time t , the degree- k coefficient of f_t equals
 282 the degree- k coefficient of f^* multiplied by $M_k(t) = \exp\{-t k(k + d - 2)\}$ (larger $t \Rightarrow$ more
 283 smoothing; higher $k \Rightarrow$ stronger damping). NTK training (idealized FCNN: infinite width, zero init,
 284 uniform data) also acts degree-wise on spherical harmonics: the scaling $M_k(t)$ decays with degree k
 285 as determined by the activation, $\Theta(k^{-d})$ for ReLU and $\Theta(k^{-d}e^{-\sqrt{k}})$ for Tanh (Murray et al., 2022).

286 **Takeaway.** The NTK training trajectory $\{f_t\}$ already provides a continuum of smoothed versions
 287 of f^* —the same coarse-to-fine effect as heat-kernel smoothing, unlike diffusion which learns these
 288 smoothed functions explicitly. See App. F for more details.

290 **4 RESULTS**

291 We evaluate our method under matched compute on sampling from discrete functions - synthetic
 292 boolean functions (ruggedness, synergy), binary MNIST-EBM, DNA design task (including con-
 293 strained sampling), and continuous functions - Ackley 10-D, and a superconductor design task.

294 **4.1 DISCRETE SAMPLING EXPERIMENTS**

295 Experimental details are in App. I.

301 **4.1.1 SYNTHETIC BOOLEAN EXPERIMENTS**

303 We conceptually show how our method can turn exponential mixing into near-linear on synthetic
 304 targets. It succeeds by leveraging (1) *fast mixing on low-degree surrogates* and (2) *knowledge of the*
 305 *function’s support gleaned from those surrogates*.

306 We evaluate four functions: (i) targets dominated by high-degree components, (ii) indicator func-
 307 tions of increasing size, (iii) indicators with adversarial non-convex linear terms, and (iv) multiple
 308 indicators (synergistic interactions). To stress (2), every task includes 500 spurious variables.

309 To make the contrast stark, we run GWG on the final checkpoint for up to **2000** steps, while our
 310 method uses only **40** steps total. We report the percentage of runs that reach the global optimum.
 311 **Even with 50x more steps (2000 vs 40), GWG’s hit rates remain very low (e.g. $\leq 3\%$), whereas**
 312 **our method is near-perfect on most tasks.**

313 This is because GWG is a random walk that succeeds mainly when it starts near the target, and that
 314 probability collapses exponentially with growing indicator size, more distinct synergies to satisfy,
 315 and many spurious variables. In contrast, our method’s (1) fast mixing and (2) support knowledge
 316 do not degrade in these regimes.

324
 325 Table 1: Sampling with 500 spurious variables on an 8-variable polynomial target dominated by
 326 high-frequency variation $f(x) = 0.1 \sum_{i=0}^7 x_i + 0.2 \sum_{i=0}^3 x_{2i}x_{2i+1} + 0.4 \sum_{i \in \{0,4\}} \prod_{k=0}^3 x_{i+k} +$
 327 $0.8 \sum_{i \in \{0,2\}} \prod_{k=0}^5 x_{i+k} + 3.0 \sum_{i \in \{0\}} \prod_{k=0}^7 x_{i+k}$. Success = hits all +1 global max. on 8
 328 variables. *Result*: Ours outperforms both baselines (0.52 vs. 0.04) with a fraction of steps.

Ours: Success (95% CI)	GWG: Success (95% CI)	GWG + Temp Anneal: Success (95% CI)
0.5200 (0.45–0.59)	0.01 (0.00–0.02)	0.04 (0.01–0.06)

332
 333 **High-magnitude, high-frequency variation** We construct a synthetic function whose coefficients
 334 increase with degree. With only 40 steps (vs 2000 for the baseline), we hit the global maxima 52%,
 335 compared to 4% for temperature-annealed GWG on the final checkpoint. See Table 1. This is
 336 because the early checkpoint allows for fast mixing without the high-frequency variation.

337 Table 2: Sampling with 500 spurious variables and d indicator variables. **Ours** = 20 GWG steps
 338 at epoch 25 plus 20 at final. **Baseline** = GWG on the final checkpoint for 2000 steps. All runs use
 339 GWG with $\beta = 10$. Reported are success fractions with 2SD CIs; Success = hits indicator. Baseline
 340 also reports median steps to first hit (conditional on success; CI lower bounds clipped at 0).

d	Success probability (95% CI)		GWG: median steps to first hit (given success) [95% CI]
	Ours	GWG	Med. steps
3	0.98 (0.96–1.00)	0.47 (0.40–0.54)	1 [1–1]
5	1.00 (1.00–1.00)	0.21 (0.15–0.27)	1 [1–1]
8	1.00 (1.00–1.00)	0.17 (0.11–0.22)	4 [0–22.9]
10	0.99 (0.98–1.00)	0.12 (0.07–0.16)	2 [0–56.8]

349
 350 **Indicator function** For an indicator function with 500 spurious variables, a random walk takes,
 351 on average, 500×2^d steps. GWG’s conditional median steps (given a hit) are 1–4 steps, indicating
 352 it mostly succeeds when the initialization is close to the target. Thus, its hits degrade as d increases
 353 (12% for $d = 10$) whereas our method remains perfect (despite having only $\frac{1}{50}$ steps). See Table 2.

354
 355 **Indicator function with adversarial non-convexity** We add an adversarial degree-1 terms that
 356 are opposite to the indicator pattern. However, because the indicator dominates the stationary
 357 measure, the local field is still dominated by the indicator’s low-degree expansion. Thus, the adversarial
 358 linear term has a minimal impact and our method has a perfect hit rate. See Table 3.

359 Table 3: Sampling in a non-convex binary landscape. The objective is an indicator on 10 des-
 360 ignated variables that yields 10 only at the all-ones pattern (and 0 otherwise), plus a linear term
 361 $-0.1 \sum_{i=1}^{10} x_i$ on the same variables that pulls toward all -1 s; 500 additional variables are spurious
 362 (no effect). Success = hitting the indicator. *Result*: Ours is near perfect as the non-convexity is not
 363 able to dampen the signal from the intermediate checkpoint

Ours: Success (95% CI)	GWG: Success (95% CI)
1.00 (1.00–1.00)	0.080 (0.0416–0.1184)

368
 369 Table 4: Sampling with 500 spurious variables and 3 non-overlapping length-5 indicators. Success
 370 = hits all 3 indicators at once. *Result*: Ours is near-perfect, while the baseline is near chance. With
 371 only one length 5 indicator (see Table 3), success rate is 0.21, drops with more indicators.

Ours: Success (95% CI)	GWG: Success (95% CI)
1.00 (1.00–1.00)	0.0250 (0.0029–0.0471)

376
 377 **Multiple indicator functions** GWG for a length-5 indicator has a modest hit-rate of 21% (see
 378 Table 1), however, performance collapses to 3% when we have three length-5 indicators (on non-

378 overlapping subsets). However, our method remains perfect. This is because GWG depends on
 379 starting near a good basin (which becomes exponentially unlikely as synergies compound). How-
 380 ever, our method leverages (i) fast mixing on lower-degree surrogates and (ii) knowledge of the
 381 support to consistently (100% vs 3%) find the solution in a fraction of steps. See Table 4.
 382

383 4.1.2 SAMPLING FROM MNIST ENERGY-BASED MODEL

385 The phenomena emphasized above – high-frequency variation and many synergistic interactions –
 386 are common to real-world data. Thus, we test our method’s ability to efficiently sample from energy
 387 based models (EBMs) trained on binary MNIST.

388 We train a binary EBM with GWG using the implementation from Grathwohl et al. (2021). At test
 389 time, we compare temperature-annealing from the final checkpoint (the baseline inference method
 390 used in Grathwohl et al. (2021), which we denote *Temp-GWG*) vs. annealing along the training
 391 trajectory (our method). For both methods, we report FID after either 1K or 10K GWG sampling
 392 steps. For our method, we evenly distribute the steps across 500 evenly spaced checkpoints.

393 Table 5: FID (\downarrow) on binary MNIST using LeNet features. Mean (std) over 10 bootstraps
 394

395 Method	1K steps	10K steps
397 Temp-GWG	29.61 (0.239)	21.12 (0.138)
398 Ours	11.73 (0.284)	5.49 (0.119)
399 Ground-truth	0.01 (0.013)	–

401 Controlling for the number of steps, we observe substantially better FIDs in Table 5. We provide
 402 ablations on the number of checkpoints in App. G, which show significant improvements over the
 403 baseline across a wide range of checkpoint counts. App. H contains random samples; ours are
 404 substantially sharper.

406 4.1.3 DNA DESIGN EXPERIMENT

408 Recently, CNNs have matched or exceeded transformers for both protein and DNA language mod-
 409eling—consistent with the fact that local, repeated motif patterns align naturally with convolutional
 410 filters (Yang et al., 2024; Bo et al., 2025). Moreover, standard TF assays reach million-scale because
 411 short oligo are mass-processed, yielding abundant data with higher-order motif structure, so trained
 412 regression models are both accurate and difficult to sample from (Berger et al., 2006).

413 We train a CNN on a dataset that measures binding affinity to the transcription factor (TF) MAX
 414 (Badis et al., 2009). The dataset consists of 42K 60-mer sequences. For sampling, we sampled
 415 a random length-60 sequence and performed 60 steps of GWG (on the final checkpoint for the
 416 baseline, and across training checkpoints for our method).

417 Table 6 shows that **our median samples are over 10^8 more performant** (fitness is on a log-scale),
 418 partially driven by the ease of sampling the TF’s motif (79% for ours vs. 39% for baseline).

419 We also show **our method’s robustness in the constrained sampling setting** where we want to
 420 sample within a Hamming ball of a fixed starting point. This mirrors common biological use
 421 cases such as identifying minimal gene perturbations, minimal amino-acid mutations, or minimal
 422 CRISPR/base-editor edits to boost activity.

423 Notably, this setting is not straightforward to handle with standard diffusion pipelines. Diffusion
 424 models support inpainting tasks conditioned on fixed portions of the final output, but enforcing an
 425 exact constraint such as remaining within a Hamming ball of a fixed sequence typically requires
 426 additional machinery (e.g., auxiliary guidance networks Shen et al. (2024) or SMC-style schemes
 427 Wu et al. (2023)) rather than a single pre-trained denoiser. By contrast, our method handles this
 428 naturally by enforcing the Hamming-ball constraint throughout the sampling process, simply by
 429 restricting the MCMC chain to the constraint set. This plug-and-play ability to impose new hard
 430 constraints at test time, without training any additional generative or reward model, is a practical
 431 advantage of our predictor-based approach in this application.

432 Table 7: Per-run metrics with 95% bootstrap percentile CIs (B=500) for constrained sampling. Sam-
 433 pling trajectory is restricted to always stay within a hamming distance of 7 from the starting point.
 434 Each run starts from a random length-60 DNA sequence, runs 60 mutation steps, and keeps the best;
 435 repeated 300 times. Diversity/novelty are recomputed per bootstrap. Percentiles are vs. the training
 436 set restricted to $y > 0$.

Method	Fitness (median)	Pct.	Diversity	Novelty	Motif (%)
Ours	7.42 [7.03, 7.63]	99.45 [99.38, 99.47]	45 [45, 45]	33 [33, 33]	63.0 [58.2, 68.0]
GWG	2.09 [0.98, 3.06]	91.89 [66.36, 96.65]	45 [45, 45]	33 [33, 34]	31.3 [26.0, 37.3]
AISAutoTemp-GWG	-0.32 [-0.79, -0.10]	0.00 [0.00, 0.00]	45 [45, 45]	33 [33, 34]	3.0 [1.3, 5.0]
PT-GWG	1.92 [1.51, 2.58]	90.18 [83.25, 95.03]	45 [45, 45]	33 [33, 34]	24.3 [19.3, 29.3]

437 Table 8: Main and secondary metrics. Bracketed values are 95% CIs computed as Student- t intervals
 438 across seeds on per-seed means. Secondary metrics for Superconductor are reported as median
 439 [IQR]. *Refs*: Ackley 0.0; Superconductor 185.0.

Experiment	Method	Best	Mean [95% CI]	Novelty / Diversity [IQR]
Ackley (10D, \downarrow)	MCMC-Final	8.5628	16.2164 [16.1559, 16.2770]	- / -
	SMC-Temp	7.8595	16.3141 [16.2735, 16.3547]	- / -
	AISAutoTemp	8.8096	16.3095 [16.2679, 16.3512]	- / -
	PT	13.6225	19.8698 [19.4593, 20.2803]	- / -
	SMC-Train	3.6942	13.3311 [12.0867, 14.5755]	- / -
Superconductor (\uparrow)	MCMC-Final	107.4	76.68 [76.42, 76.94]	17.30 [4.98] / 11.76 [7.47]
	SMC-Temp	80.7	21.98 [21.39, 22.56]	34.39 [2.42] / 12.76 [2.69]
	AISAutoTemp	107.4	24.42 [23.88, 24.97]	35.66 [5.18] / 26.05 [5.28]
	PT	107.4	25.97 [24.31, 27.62]	35.29 [5.01] / 25.40 [4.91]
	SMC-Train	318.4	155.2 [105.6, 204.8]	20.86 [3.64] / 16.60 [6.87]

460 Table 7 illustrates the challenging task of finding a length-7 Hamming perturbation to a random
 461 length-60 DNA sequence to improve the sequence’s fitness. Again, our method finds samples that
 462 are 10^5 more performant, and are twice as likely (63% vs 31%) to contain the motif.

463 Table 6: Per-run metrics with 95% bootstrap percentile CIs (B=500). Each run starts from a random
 464 length-60 DNA sequence, runs 60 mutation steps, and keeps the best; repeated 300 times. Diver-
 465 sity/novelty are recomputed per bootstrap. Percentiles are vs. the training set restricted to $y > 0$.

Method	Fitness (median)	Pct.	Diversity	Novelty	Motif (%)
Ours	10.04 [9.74, 10.20]	99.78 [99.77, 99.80]	45 [45, 45]	34 [33, 34]	74.3 [69.7, 79.3]
GWG	2.72 [1.60, 5.53]	95.54 [85.24, 98.83]	45 [45, 45]	33 [33, 34]	38.7 [33.3, 44.0]
AISAutoTemp-GWG	0.56 [0.16, 0.85]	42.86 [12.99, 59.72]	45 [45, 45]	33 [33, 33]	4.0 [2.0, 6.3]
PT-GWG	-0.79 [-1.17, -0.25]	0.00 [0.00, 0.00]	45 [45, 45]	33 [33, 34]	13.0 [9.3, 16.7]

4.2 CONTINUOUS SAMPLING EXPERIMENTS

476 **Setup.** We compare four samplers under matched compute: Sequential Monte Carlo with tempera-
 477 ture annealing (SMC-Temp), Annealed Importance Sampling (AISAutoTemp), Parallel Tempering
 478 (PT), and our Sequential Monte Carlo with training-time checkpoints (SMC-Train). All share the
 479 same compute budget, with results averaged over 5 seeds. Sampling/budget details are in App. K;
 480 SMC and checkpointing specifics are in App. J.

481 **Ackley (10D).** Rugged continuous optimization on $[-10, 10]^{10}$; **SMC-Train** attains the top mean
 482 and best-of-set under matched compute with non-overlapping CIs (See Table 8).

483 **Superconductor.** A real-world benchmark in high-D materials design taken from the design
 484 benchmark in Trabucco et al. (2022). It has a rugged, non-convex, heavy-tailed landscape. Inputs

486 $\mathbf{x} \in \mathbb{R}^{87}$ encode element composition; the target y is the critical temperature T_c (K). **SMC-Train**
 487 achieves the highest mean and best-of-set T_c , exceeding the reference and all baselines (See Table 8).
 488

489 5 DISCUSSION

490 **Discrete vs. Continuous** In continuous domains, early training in the NTK (linearized) regime
 491 induces frequency-selective smoothing; as training leaves the NTK regime, this smoothing fades.
 492 In discrete domains, the effect is stronger. Because boolean targets are learned low-to-high degree,
 493 there are less new variables in the high degree term, causing higher gradient alignment. This allows
 494 for faster learning - in fact, the number of steps is asymptotically optimal, matching Correlational
 495 Statistical Query (CSQ) lower bounds (Abbe et al., 2023). Other work suggests that SGD learns
 496 with an optimal number of steps in more general settings (Barak et al., 2022). *Thus, hierarchical
 497 learning arises naturally from SGD’s inherent efficiency.*

498 **Architectures Continuous** For FCNNs, the NTK eigenfunctions are spherical harmonics, so spectral
 499 bias aligns directly with smoothness (low degree \leftrightarrow larger eigenvalues); CNNs/ResNets inherit this
 500 (Geifman et al., 2022; Belfer et al., 2024). Transformers have different eigenfunctions, so this does
 501 not apply. (Hron et al., 2020). **Discrete** Hierarchical interaction learning under SGD is FCNN-
 502 specific and transfers to CNNs/ResNets (we report results for all three). Transformers, by contrast,
 503 learn interactions via the attention matrix, which is qualitatively different.

504 **Limitations** Our method does not apply to transformers. However, commonly deployed models in
 505 medicine, personalized recommendations, and decision support tend to be CNN/MLPs, as detailed
 506 in Section 1 – interpretability is crucial in these domains. In addition, for protein/DNA predictor
 507 models, CNNs outperform transformers in low-N fitness tasks (Dallago et al., 2021), and have re-
 508 cently exceeded transformers in pretrained protein/DNA language models (Yang et al., 2024; Bo
 509 et al., 2025). This is because local, repeated motif patterns align naturally with convolutional filters.

512 6 CONCLUSION

513 Sampling from a trained predictor f^* is important for interpretability and compute-efficient design.
 514 However, rugged and needle-gadget landscapes lead to exponential mixing times that standard,
 515 temperature-annealing based MCMC methods cannot overcome. We demonstrate our trajectory-
 516 annealed samplers bypass this barrier across (1) three common architectures (FCNNs, CNNs, and
 517 ResNets) ranging from 2-20 layers and across (2) diverse tasks such as synthetic stress-tests, real-
 518 world design tasks, and EBM sampling. We theoretically characterize our method’s benefits, show-
 519 ing exponential \rightarrow near-linear sampling improvements under idealized conditions. To our knowl-
 520 edge, we are the first to identify and exploit this training-trajectory lens for neural network sampling.
 521 We hope our analysis can spark further research on this topic, including extensions to transformers.
 522 Given the method’s simplicity, we hope it can become a useful tool for efficiently probing predictors.

524 7 ETHICS STATEMENT

525 This work introduces a sampling procedure that reuses training checkpoints to improve efficiency
 526 when exploring a trained predictor’s landscape. When paired with interpretability workflows, this
 527 can help surface spurious correlations, biases, and failure modes prior to deployment.

528 At the same time, any method that accelerates sampling or optimization over model scores has dual-
 529 use potential: it could make it easier to construct high-confidence but misleading inputs (adversarial
 530 examples or jailbreak prompts), search for harmful designs, or probe models in ways that risk model
 531 inversion or privacy leakage if training data contain sensitive information.

535 8 REPRODUCIBILITY STATEMENT

536 The code and data for all experiments are contained in the supplementary zip file. The only exception
 537 is the MNIST-EBM sampling experiments. Here, the GWG repo was used as-is, with minimal
 538 changes for our inference method. Those minimal changes are explained in I.3.2.

540 REFERENCES
541

- 542 Machine learning for irb models: Follow-up report from the consultation on the discus-
543 sion paper. Technical Report EBA/REP/2023/28, European Banking Authority, August
544 2023. URL https://eba.europa.eu/sites/default/files/document_library/Publications/Reports/2023/1061483/Follow-up%20report%20on%20machine%20learning%20for%20IRB%20models.pdf.
- 545
- 546 Emmanuel Abbe, Esther B Adserà, and Thibault Misiakiewicz. Sgd learning on neural networks:
547 leap complexity and saddle-to-saddle dynamics. In *Conference on Learning Theory (COLT)*,
548 2023.
- 549
- 550 Daniel J. Amit, Hanoch Gutfreund, and H. Sompolinsky. Storing infinite numbers of patterns in
551 a spin-glass model of neural networks. *Physical Review Letters*, 55(14):1530–1533, 1985. doi:
552 10.1103/PhysRevLett.55.1530.
- 553
- 554 Gwenael Badis, Michael F Berger, Anthony A Philippakis, Shaheynoor Talukder, Andrew R Gehrke,
555 Savina A Jaeger, Esther T Chan, Genita Metzler, Anastasia Vedenko, Xiaoyu Chen, et al. Diversity
556 and complexity in dna recognition by transcription factors. *Science*, 324(5935):1720–1723, 2009.
- 557
- 558 Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, Eran Malach, and Cyril Zhang.
559 Hidden progress in deep learning: Sgd learns parities near the computational limit. In *Ad-
560 vances in Neural Information Processing Systems (NeurIPS) 35*, pp. later published on arXiv
561 with version v3, January 2023, 2022. URL <https://arxiv.org/abs/2207.08799>.
562 arXiv:2207.08799v3 [cs.LG].
- 563
- 564 Yuval Belfer, Amnon Geifman, Meirav Galun, and Ronen Basri. Spectral analysis of the neural
565 tangent kernel for deep residual networks. *Journal of Machine Learning Research*, 25(184):1–49,
566 2024.
- 567
- 568 Michael F. Berger, Anthony A. Philippakis, Aaron M. Qureshi, Fangxue S. He, Preston W. Es-
569 step, and Martha L. Bulyk. Compact, universal dna microarrays to comprehensively determine
570 transcription-factor binding site specificities. *Nature Biotechnology*, 24(11):1429–1435, 2006.
571 doi: 10.1038/nbt1246.
- 572
- 573 Peter Bevan and Amir Atapour-Abarghouei. Skin deep unlearning: Artefact and instrument debias-
574 ing in the context of melanoma classification. In *Proceedings of the 39th International Confer-
575 ence on Machine Learning (ICML)*, PMLR 162, 2022. URL <https://proceedings.mlr.press/v162/bevan22a/bevan22a.pdf>.
- 576
- 577 Yu Bo, Weian Mao, Yanjun Shao, Weiqiang Bai, Peng Ye, Xinzhu Ma, Junbo Zhao, Hao Chen,
578 and Chunhua Shen. Revisiting convolution architecture in the realm of dna foundation mod-
579 els. In *International Conference on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=B07dLVWLyD>.
- 580
- 581 Anton Bovier and Beat Niederhauser. The spin-glass phase transition in the hopfield model with
582 p -spin interactions. *Advances in Theoretical and Mathematical Physics*, 5(6), 2001.
- 583
- 584 Benjamin Bowman. A brief introduction to the neural tangent kernel. 2023.
- 585
- 586 Wenlin Chen, Mingtian Zhang, Brooks Paige, José Miguel Hernández-Lobato, and David Barber.
587 Diffusive gibbs sampling. *arXiv preprint arXiv:2402.03008*, 2024.
- 588
- 589 Christian Dallago, Jody Mou, Kadina E Johnston, Bruce J Wittmann, Nicholas Bhattacharya,
590 Samuel Goldman, Ali Madani, and Kevin K Yang. Flip: Benchmark tasks in fitness landscape
591 inference for proteins. *bioRxiv*, pp. 2021–11, 2021.
- 592
- 593 Bernardo P. de Almeida, Franziska Reiter, Michaela Pagani, and Alexander Stark. Deepstarr pre-
594 dictors enhancer activity from dna sequence and enables the de novo design of synthetic enhancers.
595 *Nature Genetics*, 54:613–624, 2022. doi: 10.1038/s41588-022-01048-5.
- 596
- 597 Jian Ding, Eyal Lubetzky, and Yuval Peres. Censored glauber dynamics for the mean field
598 ising model. *Journal of Statistical Physics*, 137(3-4):407–458, 2009. doi: 10.1007/s10955-009-9859-1.

- 594 Yilun Du, Jiayuan Mao, and Joshua B Tenenbaum. Learning iterative reasoning through energy
 595 diffusion. *arXiv preprint arXiv:2406.11179*, 2024.
- 596
- 597 H. Feng, B. Zhang, F. Ye, M. Si, C.-H. Chu, J. Tian, C. Yin, S. Deng, Y. Hao, P. Balaji, T. Geng, and
 598 D. Tao. Accelerating communication in deep learning recommendation model training with dual-
 599 level adaptive lossy compression. In *Proceedings of SC '24*, 2024. URL <https://arxiv.org/abs/2407.04272>.
- 600
- 601 Nathan C. Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanassee,
 602 Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas,
 603 Vladimir Gligorijevic, and Saeed Saremi. Protein discovery with discrete walk-jump sampling. In
 604 *Proceedings of the Twelfth International Conference on Learning Representations (ICLR)*, 2024.
 605 URL <https://arxiv.org/abs/2306.12360>.
- 606
- 607 Irene Gallego Romero and Amanda J. Lea. Leveraging massively parallel reporter assays for evolution-
 608 ary questions. *Genome Biology*, 24(26), 2023. doi: 10.1186/s13059-023-02856-6.
- 609
- 610 Amnon Geifman, Meirav Galun, David Jacobs, and Basri Ronen. On the spectral bias of convolutional
 611 neural tangent and gaussian process kernels. *Advances in Neural Information Processing Systems*, 35:11253–11265, 2022.
- 612
- 613 Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops
 614 i took a gradient: Scalable sampling for discrete distributions. In *International Conference on
 615 Machine Learning*, pp. 3831–3841. PMLR, 2021.
- 616
- 617 Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outper-
 618 form deep learning on typical tabular data? In *Advances in Neural Information Processing Sys-
 619 tems (NeurIPS) Datasets and Benchmarks*, 2022. URL <https://arxiv.org/abs/2207.08815>.
- 620
- 621 Jérôme Hénin, Tony Lelièvre, Michael R. Shirts, Omar Valsson, and Lucie Delemotte. Enhanced
 622 sampling methods for molecular dynamics simulations. *arXiv preprint arXiv:2202.04164*, 2022.
- 623
- 624 David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps
 625 and boosted trees on tabular data. In *Advances in Neural Information Processing Systems
 626 (NeurIPS)*, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2ee1c87245956e3eaa71aaba5f5753eb-Paper-Conference.pdf.
- 627
- 628 Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
 629 ntk for deep attention networks. In *Proceedings of the 37th International Conference on Machine
 630 Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 4376–4386. PMLR,
 2020. URL <https://proceedings.mlr.press/v119/hron20a.html>.
- 631
- 632 Ruyun Hu, Lihao Fu, Yongcan Chen, Junyu Chen, Yu Qiao, and Tong Si. Protein engineering
 633 via bayesian optimization-guided evolutionary algorithm and robotic experiments. *Briefings in
 634 Bioinformatics*, 24(1):bbac570, 2022. doi: 10.1093/bib/bbac570.
- 635
- 636 Andrew Kirjner, Jason Yim, Raman Samusevich, Shahar Bracha, Tommi Jaakkola, Regina
 637 Barzilay, and Ila Fiete. Improving protein optimization with smoothed fitness land-
 638 scapes. In *International Conference on Learning Representations (ICLR)*, 2024.
 639 URL https://proceedings.iclr.cc/paper_files/paper/2024/hash/cbb7a23649b25001e797a726cf75498e-Abstract-Conference.html. See also
 arXiv:2307.00494.
- 640
- 641 Muheng Li and Ruqi Zhang. Reheated gradient-based discrete sampling for combinatorial optimiza-
 642 tion. *arXiv preprint arXiv:2503.04047*, 2025.
- 643
- 644 Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, C. Vishak Prasad, Benjamin Feuer,
 645 Chinmay Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When do neural
 646 nets outperform boosted trees on tabular data? In *Advances in Neural Information Processing
 647 Systems (NeurIPS)*, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/f06d5ebd4ff40b40dd97e30cee632123-Paper-Datasets_and_Benchmarks.pdf.

- 648 Robert J. McEliece, Edward C. Posner, Eugene R. Rodemich, and Santosh S. Venkatesh. The
 649 capacity of the hopfield associative memory. *IEEE Transactions on Information Theory*, 33(4):
 650 461–482, 1987. doi: 10.1109/TIT.1987.1057328.
- 651 I. D. Mienye, T. G. Swart, G. Obaido, M. Jordan, and P. Ilono. Deep convolutional neural networks
 652 in medical image analysis: A review. *Information*, 16(3):195, 2025. doi: 10.3390/info16030195.
 653 URL <https://www.mdpi.com/2078-2489/16/3/195>.
- 654 MLCommons Association. MLperf inference benchmark suite (v4.0–v5.1 model list). https://docs.mlcommons.org/inference/index_gh/, 2025. Includes DLRM-v2 recom-
 655 mendation benchmark across recent releases.
- 656 Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. Characterizing the spectrum of
 657 the ntk via a power series expansion. *arXiv preprint arXiv:2211.07844*, 2022.
- 658 Patrick Pynadath, Riddhiman Bhattacharya, Arun Hariharan, and Ruqi Zhang. Gradient-based dis-
 659 crete sampling with automatic cyclical scheduling. *Advances in Neural Information Processing
 660 Systems*, 37:46728–46763, 2024.
- 661 Aniketh Janardhan Reddy, Xinyang Geng, Michael H. Herschl, Sathvik Kolli, Avi-
 662 ral Kumar, Patrick D. Hsu, Sergey Levine, and Nilah M. Ioannidis. Design-
 663 ing cell-type-specific promoter sequences using conservative model-based optimiza-
 664 tion. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
 665 URL https://papers.neurips.cc/paper_files/paper/2024/file/a9619dd0f0d54a5cf7734add1dc38cd1-Paper-Conference.pdf.
- 666 Zhizhou Ren, Jiahua Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration for
 667 model-guided protein sequence design. In *Proceedings of the 39th International Conference on
 668 Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 18520–18536.
 669 PMLR, 2022. URL <https://proceedings.mlr.press/v162/ren22a.html>.
- 670 Benjamin Rhodes and Michael U. Gutmann. Enhanced gradient-based mcmc in discrete spaces.
 671 *arXiv preprint arXiv:2208.00040*, 2022. URL <https://arxiv.org/abs/2208.00040>.
- 672 Yifei Shen, Xinyang Jiang, Yifan Yang, Yezhen Wang, Dongqi Han, and Dongsheng Li. Under-
 673 standing and improving training-free loss-based diffusion guidance. *Advances in Neural Information
 674 Processing Systems*, 37:108974–109002, 2024.
- 675 R. Singh, M. Bapna, A. R. Diab, E. S. Ruiz, and W. Lotter. How ai is used in fda-authorized
 676 medical devices: a taxonomy across 1,016 authorizations. *npj Digital Medicine*, 8:388,
 677 2025. doi: 10.1038/s41746-025-01800-1. URL <https://www.nature.com/articles/s41746-025-01800-1.pdf>.
- 678 Amos Storkey and Romain Valabregue. The basins of attraction of a new hopfield learning rule.
 679 *Neural Networks*, 12(6):869–876, 1999. doi: 10.1016/S0893-6080(99)00038-6.
- 680 Haoran Sun, Hanjun Dai, and Dale Schuurmans. Optimal scaling for locally balanced proposals in
 681 discrete spaces. *arXiv preprint arXiv:2209.08183*, 2022. URL <https://arxiv.org/abs/2209.08183>.
- 682 Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin samplers
 683 via wasserstein gradient flow. In *Proceedings of AISTATS*, volume 206 of *PMLR*, pp. 6290–6313,
 684 2023. URL <https://proceedings.mlr.press/v206/sun23f.html>.
- 685 Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
 686 for data-driven offline model-based optimization. In *International Conference on Machine Learn-
 687 ing*, pp. 21658–21676. PMLR, 2022.
- 688 Sarthak Verma, Raphael Boonsanong, Minh Hoang, Keegan E. Hines, John P. Dickerson, and Chirag
 689 Shah. Counterfactual explanations and algorithmic recourses for machine learning: A review.
 690 *ACM Computing Surveys*, 2024. doi: 10.1145/3677119.
- 691 Bin Xu Wang. An analytical theory of power law spectral bias in the learning dynamics of diffusion
 692 models. *arXiv preprint arXiv:2503.03206*, 2025.

- 702 Bin xu Wang and John J. Vastola. The unreasonable effectiveness of gaussian score approximation
 703 for diffusion models and its applications. *arXiv preprint arXiv:2412.09726*, 2024.
- 704
- 705 Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. A statistical approach to
 706 assessing neural network robustness. In *International Conference on Learning Representations*
 707 (*ICLR*), 2019. doi: 10.48550/arXiv.1811.07209. URL <https://arxiv.org/abs/1811.07209>.
- 708
- 709 Julia K. Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Holger A. Haenssle, et al. As-
 710 sociation between surgical skin markings in dermoscopic images and diagnostic performance
 711 of a deep learning convolutional neural network for melanoma recognition. *JAMA Dermatology*,
 712 155(10):1135–1141, 2019. doi: 10.1001/jamadermatol.2019.1735. URL <https://jamanetwork.com/journals/jamadermatology/fullarticle/2740808>.
- 713
- 714 Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P. Cunningham. Practical and
 715 asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information*
 716 *Processing Systems*, 36:31372–31403, 2023.
- 717
- 718 Kevin K. Yang, Alex Lu, and Nicolò Fusi. Convolutions are competitive with transformers for
 719 protein sequence pretraining. *Cell Systems*, 2024. doi: 10.1016/j.cels.2024.01.008. URL [https://www.cell.com/cell-systems/fulltext/S2405-4712\(24\)00029-2](https://www.cell.com/cell-systems/fulltext/S2405-4712(24)00029-2).
- 720
- 721 Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-
 722 directed conditional diffusion: Provable distribution estimation and reward improve-
 723 ment. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023. URL
 724 https://proceedings.neurips.cc/paper_files/paper/2023/file/be93b16564e96859da8401b917f307c6-Paper-Conference.pdf.
- 725
- 726 Giacomo Zanella. Informed proposals for local mcmc in discrete spaces. *arXiv preprint*
 727 *arXiv:1711.07424*, 2017. URL <https://arxiv.org/abs/1711.07424>.
- 728
- 729 Ruqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions. In
 730 *International Conference on Machine Learning*, pp. 26375–26396. PMLR, 2022.
- 731
- 732 Hao Zhu, Daniel M. Steinberg, and Piotr Koniusz. Protein fitness landscape: Spectral graph the-
 733 ory perspective. In *The 28th International Conference on Artificial Intelligence and Statistics*
 734 (*AISTATS*), volume 1, 2025.
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 A $O(d \log d)$ MIXING FROM τ_1 CHECKPOINT
757758 **Setting.** Let $\Omega = \{-1, 1\}^d$ and let
759

760
$$f(x) = \sum_{i=1}^d h_i x_i$$

761
762

763 be a sum of degree-1 monomials (linear function) on the Boolean hypercube. We want to sample
764 from the Gibbs measure proportional to $\exp(f)$:
765

766
$$\pi(x) = \frac{1}{Z} \exp(f(x)) = \frac{1}{Z} \prod_{i=1}^d \exp(h_i x_i) = \prod_{i=1}^d \pi_i(x_i),$$

767
768

769 so π is a *product* distribution with one-dimensional marginals $\pi_i(x_i) \propto \exp(h_i x_i)$. Consider
770 random-scan single-site Gibbs: at each step pick $I_t \sim \text{Unif}([d])$ and resample $X_t(I_t)$ from
771 $\pi(\cdot | X_{t-1}(\neg I_t))$, which for this product target equals the marginal π_{I_t} .
772773 **Claim.** For random-scan single-site Gibbs on a product target,
774

775
$$t_{\text{mix}}(\varepsilon) \leq d(\log d + \log(1/\varepsilon)).$$

776

776 In particular, $t_{\text{mix}}(1/4) \leq d(\log d + \log 4) = O(d \log d)$.
777778 **Proof.** Let the *refresh time*
779

780
$$\tau_{\text{ref}} = \min\{t : \text{each coordinate } i \in [d] \text{ has been selected at least once by time } t\}.$$

781

782 Because π is a product, whenever coordinate i is selected we resample it *fresh* from π_i , independently of everything else. Hence, at time τ_{ref} we have resampled every coordinate from its marginal,
783 so
784

785
$$X_{\tau_{\text{ref}}} \sim \prod_{i=1}^d \pi_i = \pi.$$

786

786 This makes τ_{ref} a strong stationary time, which implies
787

788
$$\|P^t(x, \cdot) - \pi\|_{\text{TV}} \leq \Pr(\tau_{\text{ref}} > t) \quad \text{for all starting states } x \text{ and times } t \geq 0. \quad (2)$$

789

790 It remains to bound the tail of τ_{ref} . Each step picks a coordinate uniformly from $[d]$, so this is the
791 coupon-collector process. For any fixed i ,
792

793
$$\Pr(i \text{ was never chosen in } t \text{ steps}) = (1 - 1/d)^t \leq e^{-t/d}.$$

794

794 A union bound over the d coordinates then gives
795

796
$$\Pr(\tau_{\text{ref}} > t) = \Pr(\exists i \text{ unrefreshed}) \leq d e^{-t/d}. \quad (3)$$

797

797 Combining equation 2 and equation 3 and choosing t so that $d e^{-t/d} \leq \varepsilon$ yields
798

799
$$t \geq d(\log d + \log(1/\varepsilon)),$$

800

800 which proves the claim. \square
801802 B $O(d \log d)$ MIXING FROM τ_2 CHECKPOINT
803804 At checkpoint τ_2 , let aligned spins $y_i := x_i z_i^*$. The degree- ≤ 2 surrogate can be written as
805

806
$$f_{\tau_2}(y) \approx f_{\leq 2}(y) = 2^{-d} \left(\sum_{i=1}^d y_i + \sum_{1 \leq i < j \leq d} y_i y_j \right), \quad (4)$$

807
808

809 which is the Curie–Weiss Hamiltonian with a positive external field up to scaling.
810

810
 811 In the low-temperature regime, existing results show that *censored* Gibbs dynamics on just the
 812 degree-2 monomials (ignoring the degree 1 monomials) mixes in $O(d \log d)$ time (Ding et al., 2009).
 813 By censoring, we mean if a proposed update would make the alignment with the pattern negative,
 814 we reflect all of the update variables.

815 Without censoring and with a uniform start at low temperature and zero field, the chain falls into
 816 the $+y_i$ or $-y_i$ basin with probability $\approx \frac{1}{2}$ each; a positive field (as is the case in our setting) biases
 817 toward the $+y_i$ basin.

818 After scaling with $\beta = 2^d$, $f_{\leq 2}(z^*)$ is at least $2d$ higher than all the other configurations. Thus, under
 819 the measure $\exp 2^d f_{\leq 2}(y)$, the target z^* is at least e^{2d} more probable than all other configurations.
 820 Since there are 2^d configurations in total, the lower bound for z^* 's likelihood is $\frac{e^{2d}}{2^d - 1 + e^{2d}} = 1 -$
 821 $e^{-\Theta(d)}$. Consequently, after $O(d \log d)$ steps the chain is at z^* with high probability (so a constant
 822 number of parallel chains suffices).

823
 824 **C EMPIRICAL EVIDENCE OF LOWER DEGREES ALIGNING/GROWING BEFORE**
 825 **HIGHER DEGREES**

D MULTIPLE NEEDLES

With multiple needles, the degree-2 interaction is equivalent to a Hopfield model with weights set by a Hebbian learning rule; increasing the number of stored needles shrinks attraction basins, potentially slowing local MCMC (McEliece et al., 1987; Storkey & Valabregue, 1999). For the standard pairwise Hopfield model with unbiased needles, the capacity scales linearly as $N_{\max} \approx \alpha_c d$ with $\alpha_c \simeq 0.138$ (Amit et al., 1985). For pure p -spin Hopfield models, the number of storable patterns scales as $N_{\max} \approx \alpha_p d^{p-1}$, with α_p a p -dependent constant (Bovier & Niederhauser, 2001).

Table 9 shows that across multiple needles, sampling along the training trajectory is still more sample-efficient than running Gibbs-with-gradient on the final trajectory.

1134 Table 9: Needle gadget: hit rates across 5 runs for GWG vs. our method (1 needle hit). Task: 10-D
 1135 indicator ‘‘needle’’ with 10 additional linear terms; model: 3-layer FCNN (width 128); sampling: 3
 1136 particles, 60 total steps per run across checkpoints {5, 25, 50, 75, 100, final} (10 steps per check-
 1137 point); baseline: 60 steps of GWG on final checkpoint

1138

# Needles	GWG: runs with ≥ 1 hit (out of 5)	Ours: runs with ≥ 1 hit (out of 5)
5	0/5	5/5
4	2/5	5/5
3	1/5	5/5
2	0/5	5/5
1	0/5	5/5

1145

1146

1147 **E EMPIRICAL EVIDENCE OF SAMPLING FROM INDICATOR FUNCTION
 1148 PROJECTED TO TERMS OF ORDER $\leq P$**

1149

1150 The below graphs contain the median number of steps needed to hit the target when sampling
 1151 from an indicator function that is only non-zero for the target. However, its boolean ex-
 1152 pansion is projected down to terms of degree $\leq P$. We consistently observe that the median num-
 1153 ber of steps increases as P increases. For each value of P , we select the best β value across
 1154 (1,0,0.5,0.3,0.2,0.1,0.07,0.05,0.03,0.02,0.01), conduct 300 trials, and cap the number of steps at
 1155 2^d . Sampling is done via Gibbs (random-index heat bath).

1156

1157

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1242 **F NTK-ALIGNED TRAINING MAP**
12431244 **Setup.** Let the input domain be the unit sphere \mathbb{S}^{d-1} with the *uniform* measure. Expand any
1245 square-integrable $f : \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ in spherical harmonics $Y_{k,j}$ (degree $k \in \{0, 1, \dots\}$, multiplicity
1246 index j):

1247
$$f(x) = \sum_{k=0}^{\infty} \sum_{j=1}^{N_k} a_{k,j} Y_{k,j}(x), \quad a_{k,j} = \langle f, Y_{k,j} \rangle.$$

1248
1249

1250 For isotropic (zonal) operators on the sphere, each degree- k subspace is an eigenspace, so all coef-
1251 ficients $\{a_{k,j}\}_{j=1}^{N_k}$ evolve by the same scalar multiplier.
12521253 **Idealized NTK dynamics.** Consider a fully connected network in the *linearized NTK* regime (in-
1254 finite width), trained by kernel gradient flow with squared loss and learning rate η , from zero ini-
1255 tialization, on data drawn uniformly from \mathbb{S}^{d-1} . The analytical NTK K is a zonal kernel whose
1256 eigenfunctions are the spherical harmonics and whose degree- k eigenvalue we denote by $\lambda_k > 0$.
1257 Along each degree- k subspace the (prediction) coefficient obeys

1258
$$\frac{d}{dt} (a_{k,j}(t) - a_{k,j}^*) = -\eta \lambda_k (a_{k,j}(t) - a_{k,j}^*),$$

1259
1260

1261 so from $a_{k,j}(0) = 0$ we get

1262
$$a_{k,j}(t) = (1 - e^{-\eta \lambda_k t}) a_{k,j}^*.$$

1263 Equivalently, at time t the entire degree- k block is scaled by

1264
$$M_k^{\text{NTK}}(t) = 1 - e^{-\eta \lambda_k t} \in [0, 1].$$

1265

1266 This corresponds to Eq. (7) in Bowman (2023); see that reference for a fuller introduction.

1267 Using $\frac{x}{1+x} \leq 1 - e^{-x} \leq x$ for $x \geq 0$ with $x = \eta t \lambda_k$, we obtain

1268
$$\frac{\eta t \lambda_k}{1 + \eta t \lambda_k} \leq M_k^{\text{NTK}}(t) \leq \eta t \lambda_k.$$

1269
1270

1271 Hence for large k (so $\lambda_k \rightarrow 0$),

1272
$$M_k^{\text{NTK}}(t) \sim \eta t \lambda_k,$$

1273

1274 i.e., $M_k^{\text{NTK}}(t) \asymp \lambda_k$ up to constants depending on ηt .1275 Activation choice controls the spectrum $\{\lambda_k\}$ and thus the decay of $M_k^{\text{NTK}}(t)$ across degrees:
1276 for ReLU, $\lambda_k = \Theta(k^{-d})$ (polynomial ‘‘spectral bias’’); for Tanh, $\lambda_k = \Theta(k^{-d} e^{-\sqrt{k}})$ (super-
1277 polynomial). For fixed t and large k , $M_k^{\text{NTK}}(t) \approx \eta t \lambda_k$, so high degrees are damped more (Murray
1278 et al., 2022).
12791280 **Comparison: Gaussian (heat) smoothing.** Heat-kernel smoothing on \mathbb{S}^{d-1} multiplies the degree-
1281 k block by
1282

1283
$$M_k^{\text{heat}}(t) = \exp\{-t \mu_k\}, \quad \mu_k = k(k+d-2),$$

1284

1285 i.e., an exponential-in- k^2 decay (stronger high-frequency suppression). Note the *time* contrast:
1286 larger diffusion time t means more smoothing, whereas larger NTK training time t means
1287 $M_k^{\text{NTK}}(t) \uparrow 1$ and less smoothing (the predictor approaches f^*).1288 **Takeaway.** Under the NTK idealization, the training trajectory $\{f_t\}$ is a family of degree-wise
1289 smoothed versions of f^* , with the spherical harmonics as eigenfunctions and activation-controlled
1290 frequency decay. Diffusion performs a similar degree-wise smoothing but with heat-kernel multi-
1291 pliers.
12921293 **G BINARY MNIST CHECKPOINT ABLATIONS**
12941295 We report FID scores for varying numbers of checkpoints used in our method for a fixed budget of
1K total GWG steps. The model was trained for 50,000 epochs. For a given number of checkpoints,

1296 we choose them to be evenly spaced along the training trajectory and allocate an equal number of
 1297 sampling steps to each checkpoint. The Temp-GWG baseline samples only from the final checkpoint
 1298 using temperature annealing.
 1299

1300 Table 10: FID (\downarrow) on binary MNIST as a function of the number of checkpoints used by our method,
 1301 with a fixed budget of 1K GWG sampling steps. Entries are mean (std) over 10 bootstrap resamples.
 1302

	# Checkpoints	Mean FID (std)
	Temp-GWG (baseline)	29.61 (0.239)
1304	5	16.10 (0.237)
1305	10	14.42 (0.322)
1306	25	12.56 (0.289)
1307	50	11.93 (0.355)
1308	100	12.08 (0.435)
1309	500	11.73 (0.284)

1311
 1312 As shown in Table 10, we see dramatic gains from using even 5 checkpoints, with additional check-
 1313 points yielding diminishing marginal returns and performance saturating around 50–500 check-
 1314 points. The key empirical observation is that the training trajectory tends to evolve from coarse
 1315 to fine, so any set of evenly spaced epochs can leverage this structure to speed up sampling.
 1316

1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350
1351 **H SAMPLING FROM BINARY MNIST**
1352
1353

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 17: First 49 random samples from standard sampling with 1K steps.

1404
1405 Figure 18: First 49 random samples from our method with 1K steps. These samples are substantially
1406 sharper than the above.
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459

Figure 19: First 49 random samples from standard sampling with 10K steps.

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 Figure 20: First 49 random samples from our method with 10K steps. Again, these samples are
 1513 sharper.

I DISCRETE EXPERIMENTAL DETAILS AND COMPUTE BUDGETS

I.1 CHECKPOINT AND TEMPERATURE SELECTION

For all experiments, we run an equal number of MCMC steps at each stage. We use checkpoints at epoch 25 and temperature = 10.0 for most experiments with a few exceptions detailed below.

For the DNA design experiment, we add an additional checkpoint at epoch 50 due to the additional complexity of the task.

For the discrete high-frequency experiment, we use temperature = 100.0 (instead of the 10.0 used in all other settings) because we are sampling from lower-magnitude component.

For the MNIST sampling experiment, we save the model every 100 epochs during training and use these as the checkpoints. We use the default temperature hyperparameters used in the repo; we make no changes.

I.2 KERNEL

All experiments and baselines use the Gibbs-with-Gradients (GWG) kernel introduced in Grathwohl et al. (2021). This kernel uses gradient-informed proposals for categorical flips under a ± 1 encoding, drawing moves from a softmax over approximate first-order energy changes. Each proposal is then corrected by a Metropolis–Hastings step that accounts for both the approximate energy difference

1566 and the asymmetric forward/reverse proposal probabilities. The choice of temperature for the kernel
 1567 is detailed in the subsection above.

1568 For the synthetic experiments we use the *exact* GWG kernel where the y values are the exact y val-
 1569 ues, not those estimated via gradients. This is to remove the effect of gradient estimation noise. For
 1570 the subsequent experiments, we use the standard GWG kernel where the y values is approximated
 1571 from the gradient.

1572 For the MNIST sampling experiment, we use the kernel implementation from the repo (also GWG-
 1573 MH); we make no changes.

1575 For the constrained DNA sampling task, we modify the GWG-MH kernel so that it incorporates
 1576 the Hamming distance constraint. If a sampled single-flip would exceed the Hamming cap, we
 1577 pair it with a gradient-guided reversion on some already-flipped position so the net move stays on
 1578 the Hamming boundary. Both legs are sampled from the same GWG softmax over their respective
 1579 candidate sets.

1580

1581 I.3 CHECKPOINT POLICY AND BASELINES

1582 I.3.1 SYNTHETIC

1584 We run 20 steps of our kernel at epoch 25, and then run another 20 steps at the final epoch. For the
 1585 baseline, we run 2000 steps of the same kernel at only the final checkpoint. From random starting
 1586 particles, we measure the fraction of particles that hit the global maxima of the function along their
 1587 trajectory.

1588 For the synthetic experiments, we only benchmark against GWG. This is because for the indicator
 1589 function, other methods only manipulate the temperature of the final checkpoint. However, rescaling
 1590 the temperature does not help - the landscape is still a random-walk.

1591 For the High-magnitude, high-frequency variation experiment, we additionally benchmark against
 1592 temperature annealing with a linear schedule. Here, the temperature was annealed from 0 to 100 (the
 1593 temperature value used for this experiment) across 2000 steps, where one MCMC step was taken at
 1594 each temperature value.

1596 I.3.2 MNIST SAMPLING

1598 We utilize the code, as-is, in GWG repo. This is trained for 50K epochs, and we save the checkpoint
 1599 every 100 steps. For sampling with 1K steps, we run 2 steps of the kernel at each checkpoint. For
 1600 sampling with 10K steps, we run 20 steps of the kernel at each checkpoint. We do not adjust any
 1601 of the kernel hyperparameters for our task - we only change the checkpoints. For the baseline, we
 1602 use the existing sampling code in the repo, which samples from the final checkpoint using linear
 1603 temperature annealing and takes one kernel step for each temperature value. We control for the
 1604 number of kernel steps across comparisons.

1605 For the FID calculations, we use the repo <https://github.com/abdlutfatir/gan-metrics-pytorch/tree/master>. We also use their MNIST LeNet model checkpoint for computing the
 1606 metrics. We collect 8K random samples from the binary MNIST test set, our sampling method,
 1607 and the existing sampling method. For the ground-truth FID value, we calculate FID between two
 1608 random 8K subsets of the binary MNIST test set.

1610 I.3.3 TF-DNA SAMPLING

1612 We start from a random length-60 DNA sequence, and run 60 steps of the MCMC kernel. All
 1613 methods only use 60 steps. Other than plain GWG, all of the methods use 3 stages with an equal
 1614 number of steps for each stage.

1615 For our method, we run 20 steps at epoch 25, 20 steps at epoch 50, and 20 steps at the final check-
 1616 point.

1618 For the GWG baseline, we run 60 steps at only the final checkpoint.

1619

1620 For the parallel tempering baseline, we run 3 replicas over a geometric β -ladder from $0.05 \rightarrow 10.0$,
 1621 doing 20 local steps per replica with swaps every 5 steps (60 total local updates across replicas). For
 1622 the replica starting point, the cold chain starts at x_0 , while the mid and hot chains randomly reassign
 1623 25% and 50% of positions, respectively, to diversify exploration from the outset.

1624 For annealed importance sampling with automated temperature adjustment, we run annealed impor-
 1625 tance sampling with an ESS-targeted adaptive temperature schedule ($\beta : 0 \rightarrow 10$) without resam-
 1626 pling, preserving one-to-one lineages; each stage re-weights particles and picks the next β to keep
 1627 ESS near 0.6 N. After reweighting, it performs K=20 GWG rejuvenation sweeps at the new β ; with
 1628 3 stages, this is 60 sweeps per particle.

1629 For the constrained sampling task, we start from a random DNA sequence and want the best sample
 1630 within a hamming distance of 7. We use the same setup as before except with a modified GWG-MH
 1631 kernel detailed in Sec. I.2.

1632 Diversity is calculated as the median of pairwise (Hamming) distances within each bootstrap re-
 1633 sample. Novelty is calculated as median of per-seq min distance to training, within each bootstrap
 1634 resample.

1636 I.4 ARCHITECTURE AND TRAINING DETAILS

1638 For the synthetic experiment, we use a 3-layer FCNN with hidden dim 128. It is trained for 30000
 1639 epochs with a learning rate of 2e-3. Indicator functions have y value of 10.

1641 For the MNIST experiment, we use ResNet-EBM architecture specified in the GWG repo. The
 1642 architecture is an EBM with a 3×3 stem conv, two strided residual downsampling blocks (each:
 1643 Swish $\rightarrow 3 \times 3$ conv $\rightarrow 3 \times 3$ conv + a 1×1 projection shortcut), followed by six identity residual
 1644 blocks (Swish $\rightarrow 3 \times 3 \rightarrow 3 \times 3$, no projection), then global spatial averaging and a single linear head
 1645 to a scalar energy. In total, it has 19 conv layers and 1 fully connected layer. Training is done
 1646 according to the repo's instructions.

1647 For the TF-DNA experiment, we use the same architecture from de Almeida et al. (2022). Specif-
 1648 ically, we apply a Conv1d($4 \rightarrow 64$, kernel=11), ReLU, then global max pooling over the sequence
 1649 dimension for each filter, and then a linear head that outputs a scalar.

1650 I.5 DATASETS

1652 For the synthetic experiments, we have 8-10 main variables that are part of the function and 500
 1653 spurious variables. We construct synthetic datasets where the spurious variables are randomly sam-
 1654 pled.

1655 We use the binary MNIST datasets provided in GWG repo.

1657 For the TF-DNA experiment, the data consists of length-60 DNA sequences. The last 24 DNA letters
 1658 are always the same; the first 36 are close to random. The TF (MAX, from the mouse species) binds
 1659 strongly when the motif "CACGTG" is present. The binding strength increases depending on where
 1660 the motif is present (upstream leads to stronger binding), the flanking sequences surrounding the
 1661 motif, the number of times the motif is present, the GC % in the sequence, etc. The dataset is taken
 1662 from Badis et al. (2009).

1663 I.6 CI DETAILS

1665 All reported CIs are 2SD, unless specified otherwise.

1667 For the synthetic experiments, we run the above test on 200 random particles, calculate the hit
 1668 fraction (whether a particle reaches the global maxima along its trajectory), and report 2SD CIs from
 1669 these results.

1670 For the MNIST experiment, FID is calculated across sets of 8K samples. The standard deviation is
 1671 calculated over 10 bootstraps.

1672 For the DNA design experiment, we sample with 300 particles, and calculate 95% bootstrap per-
 1673 centiles (B=500) from the results.

1674 **J SAMPLING ALONG THE TRAINING PATH WITH SMC**
16751676 Let $\pi_t(x) \propto \exp(f_t(x))$ denote the (unnormalized) target associated with the checkpoint at time t
1677 (e.g., from the model’s energy or surrogate negative log-likelihood).
16781679 Rather than selecting a single smoothing level, we sample *along* the NTK training trajectory $t \in$
1680 $[0, T]$ using Sequential Monte Carlo (SMC):
1681

1. Choose a schedule $0 = t_0 < t_1 < \dots < t_L = T$ (e.g., geometric).
2. Initialize particles from an easy reference.
3. For $\ell = 1, \dots, L$: compute incremental weights $w(x) \propto \pi_{t_\ell}(x)/\pi_{t_{\ell-1}}(x)$, resample, and
1684 apply a short MCMC move targeting π_{t_ℓ} .
4. Output particles at $t = T$ (the desired final target).

1685 This procedure exploits the frequency-selective filtering $M_k^{\text{NTK}}(t)$ to traverse from a
1686 smooth-dominated intermediate distribution toward the final target while maintaining particle di-
1687 versity.
16881691 **K CONTINUOUS EXPERIMENTAL DETAILS AND COMPUTE BUDGETS**
16921693 **K.1 SHARED SETTINGS (ALL EXPERIMENTS)**

- **Parallel trajectories.** All methods use concurrent trajectories.
- **Compute parity.** Within each experiment, every trajectory performs the same total number
1697 of Metropolis–Adjusted Langevin Algorithm (MALA) steps across methods.
- **Kernels.** Ackley and Superconductor use MALA for all five methods.
- **Checkpoint policy (SMC–Train).** Train for 10,000 epochs; checkpoint every 10 epochs.
1700 Smooth the training-loss curve and keep the earliest prefix of checkpoints up to (but not
1701 beyond) the plateau; exclude later flat checkpoints (each kept checkpoint has strictly lower
1702 loss than the previous one).
- **SMC–Temp schedule.** Linear inverse-temperature ladder with the same number of distri-
1704 butions as SMC–Train for that task.
- **AIS schedule.** Annealed Importance Sampling (AIS) chooses temperatures adaptively
1706 each stage to maintain a target conditional effective sample size (cESS); rejuvenation uses
1707 the same MALA kernel as other methods.
- **PT schedule.** Parallel Tempering (PT) with a fixed temperature ladder across replicas;
1709 propose swaps between adjacent replicas every stage; within-replica moves are MALA
1710 with the same per-step budget.

1713 **K.2 EXPERIMENT-SPECIFIC PARAMETERS**
17141715 **Ackley (10D).** **Proposal:** MALA with step size 10^{-2} ; adaptation target acceptance 0.57 (adap-
1716 tation off unless stated). **SMC–Temp:** resample when $\text{ESS} < 0.5N$. **SMC–Train:** resample when
1717 $\text{ESS} < 0.5N$. **AIS–Auto:** choose temperatures to hit $\text{cESS} = 0.5N$ per increment (bisection tol.
1718 10^{-4} , max 50 iters). **PT–MALA:** power temperature ladder (parameter 4.0); per-replica MALA step
1719 scales as $\varepsilon/\beta^{1.0}$. **MCMC–Final:** plain MALA with the same step size; no burn-in, no thinning.
17201721 **Superconductor.** Inputs $\mathbf{x} \in \mathbb{R}^{87}$. **Proposal:** MALA with base step size $\varepsilon = 0.05/\sqrt{d}$; adap-
1722 tation target acceptance 0.57 (off by default). **Stabilization in latent z :** per-dimension percentiles
1723 [1%, 99%] and radial cap at 99.5%. **SMC–Temp / AIS–Auto:** resample / choose temperatures to
1724 maintain $\text{cESS} = 0.5N$; rejuvenation uses the same MALA step. **SMC–Train:** same cESS rule;
1725 default initialization from a Gaussian prior over z . **PT–MALA:** geometric temperature ladder up to
1726 $\beta_{\max} = 1.0$, swaps every stage; replicas chosen to evenly factor the parallel budget; report adjacent-
1727 swap rates and per- β MALA acceptance. **MCMC–Final:** if adaptation is enabled: target acceptance
0.57 with updates every 10 steps (clip ε to $[10^{-4}, 0.5]$).

1728 K.3 COMPUTE BUDGETS
17291730 Table 11: Per-trajectory budgets. L is the number of intermediate distributions (temperatures for
1731 SMC-Temp/AIS/PT; checkpoints for SMC-Train). Total Steps = $L \times K$ for SMC/AIS/PT and
1732 = S_{mcmc} for MCMC.
1733

1734 Experiment	1735 Method	1736 Parallel	1737 # Dists L	1738 Rejuv./Dist. K	1739 Total Steps
1735 Ackley (10D)	MCMC-Final	$N=10,000$	—	—	50
	SMC-Temp	$N=10,000$	10	5	50
	SMC-Train	$N=10,000$	10	5	50
	AIS-Auto	$N=10,000$	10	5	50
	PT-MALA	$N=10,000$	10	5	50
1740 Superconductor	MCMC-Final	$N=500$	—	—	250
	SMC-Temp	$N=500$	50	5	250
	SMC-Train	$N=500$	50	5	250
	AIS-Auto	$N=500$	50	5	250
	PT-MALA	$N=500$	50	5	250

1745 K.4 DATA & MODELS BY TASK
17461747 **Ackley (10D).** **Model:** MLP with layers [1024, 512, 256], Tanh activations. **Training**
1748 **data:** synthetic coverage over $[-10, 10]^{10}$ with three components: (i) uniform “plateau,” (ii) stratified
1749 radial shells spanning target f -levels, and (iii) a small ball near the origin for additional $f \approx 0$ mass;
1750 3,601,000 total points. **Target:** regress $f(x)$. **Sampling kernels:** MALA for all five methods.
17511752 **Superconductor (Design-Bench).** **Dimensions:** $d=87$. **Model:** MLP with layers [2048,
1753 2048], ReLU activations. **Training data:** train on the full available dataset; no oracle fine-tuning.
1754 **Target:** regress the provided score $f(x)$ (higher is better). **Sampling kernels:** MALA for all five
1755 methods.
17561757 **Novelty & Diversity (Superconductor).** Distances are computed in standardized feature space
1758 using the input scaler fit on the training set. **Novelty** is the per-sample ℓ_1 (Manhattan) distance to the
1759 nearest training point (scikit-learn NearestNeighbors, metric=manhattan); we report the
1760 median and IQR across samples. **Diversity** is the median and IQR of pairwise ℓ_1 distances among
1761 generated samples, computed over all unordered pairs ($n(n - 1)/2$ for n samples). All summaries
1762 are reported as median [IQR].
17631764 K.5 EXTENDED RESULTS
17651766 **Ackley (10D, \downarrow).** Under matched compute, **SMC-Train** achieves the best mean and best-of-set
1767 with non-overlapping CIs relative to all baselines (Table 8). Quantitatively, **SMC-Train** reduces the
1768 mean objective vs. MCMC-Final by **17.8%** ($16.22 \rightarrow 13.33$), vs. SMC-Temp by **18.3%** ($16.31 \rightarrow$
1769 13.33), vs. AIS by **18.3%** ($16.31 \rightarrow 13.33$), and vs. PT by **32.9%** ($19.87 \rightarrow 13.33$). On best-of-set,
1770 **SMC-Train** improves over MCMC-Final by **56.9%** ($8.56 \rightarrow 3.69$), over SMC-Temp by **53.0%**
1771 ($7.86 \rightarrow 3.69$), over AIS by **58.1%** ($8.81 \rightarrow 3.69$), and over PT by **72.9%** ($13.62 \rightarrow 3.69$). The 95%
1772 CIs for **SMC-Train** ($13.33 [12.09, 14.58]$) are disjoint from the tight ranges of the other methods
1773 ($\approx 16.16 - 16.35$), indicating consistent improvement across seeds.
17741775 **Superconductor (\uparrow).** In high-dimensional materials design, **SMC-Train** leads both on best-of-set
1776 and mean (Table 8). Mean reward increases by **102.4%** vs. MCMC-Final ($76.68 \rightarrow 155.2$), by
1777 **606.1%** vs. SMC-Temp ($21.98 \rightarrow 155.2$), by **535.5%** vs. AIS ($24.42 \rightarrow 155.2$), and by **497.6%** vs.
1778 PT ($25.97 \rightarrow 155.2$). Relative to the reference score (185.0), the *mean* reaches **83.9%** of the target,
1779 while the *best-of-set* (**318.4**) is **172.1%** of the reference (i.e., +72.1% over target). These gains
1780 come with wider uncertainty for SMC-Train (95% CI: [105.6, 204.8]), reflecting more aggressive
1781 exploration that can land very high-reward candidates.
1782

1782
 1783 **On novelty and diversity.** Table 8 shows that AIS and PT achieve the highest *novelty* (median
 1784 $\sim 35.3\text{--}35.7$) and *diversity* (median $\sim 25.4\text{--}26.1$), while **SMC-Train** is moderate on these axes (nov-
 1785 elty 20.86; diversity 16.60). However, these higher exploration metrics do not translate into better
 1786 objective quality: both AIS and PT have substantially lower mean rewards (24–26) than **SMC-**
 1787 **Train** (155.2). We observe that the methods with the highest novelty/diversity also *retain many*
 1788 *low-quality samples*, inflating dispersion-based metrics without improving the objective. In con-
 1789 trast, **SMC-Train** balances exploration and exploitation: it traverses the space broadly enough to
 1790 discover strong candidates (best-of-set 318.4) while concentrating mass to raise the *mean* reward.
 1791 Thus, *more novelty/diversity does not necessarily imply better design quality* when a significant tail
 1792 of poor samples is preserved.

1792 **Takeaways.** (i) Under matched compute, **SMC-Train** consistently outperforms baselines on Ack-
 1793 ley and Superconductor by large margins in both mean and best-of-set. (ii) For Superconductor, ap-
 1794 parent exploration advantages (higher novelty/diversity) from AIS/PT coincide with *lower* objective
 1795 quality—suggesting these methods over-emphasize exploration and retain weak samples. (iii) Re-
 1796 porting both mean and best-of-set, alongside novelty/diversity, is essential: together, they show that
 1797 **SMC-Train** drives objective gains while maintaining reasonable exploration, rather than chasing
 1798 dispersion alone.

1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836 K.6 FIGURES
18371838 K.6.1 ACKLEY
18391856 Figure 21: Full energy histogram for Ackley (10D). Samples from MCMC–Final, SMC–Temp, and
1857 **SMC–Train**.1858
1859 K.6.2 SUPERCONDUCTOR
18601874 Figure 22: Samples are partitioned into Tc deciles (0–10%, …, 90–100%). Within each bin, we plot
1875 the distribution of nearest-neighbor L1 distances (in standardized feature space) among the samples
1876 in that bin. Broad—and non-shrinking—within-bin L1 distributions at higher Tc percentiles indicate
1877 that sample diversity does not collapse as Tc increases.1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1911 Figure 23: Each point shows a sample's predicted Tc (x-axis) versus its minimum L1 distance to
1912 any training example in standardized space (y-axis). High-Tc proposals do not systematically move
1913 closer to the training set; many top-Tc samples remain well separated, indicating genuine novelty
1914 rather than simple memorization.

1932 Figure 24: Side-by-side violins of the predicted critical temperature (Tc) for the three sampling
1933 methods, aggregated over seeds. The plot highlights differences in central tendency and tail behavior
1934 across methods.

1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 25: For each method, we compute selected Tc percentiles (50th–100th) per seed and report the mean \pm standard deviation across seeds. Our method consistently gives higher Tc samples than the other two methods.

L USAGE OF LLMs

We utilize LLMs to assist with the writing of the paper. We provided GPT-5 an outline of our key points for each paragraph, and GPT-5 converted them to a paragraph format with latex formatting. We also utilized LLMs to research related work for each of our 4 sections.