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Abstract

Recent work has shown that neural feature- and001
representation-learning approaches, and specif-002
ically the BERT model, demonstrates superior003
performance over traditional manual feature en-004
gineering and an SVM classifier for the task of005
translationese classification for various source006
and target languages. However, to date it is un-007
clear whether the performance differences are008
due to better representations, better classifiers009
or both. Moreover, it remains unclear whether010
the features learnt by BERT overlap with com-011
monly used manual features. To answer these,012
we exchange features between BERT-based013
and SVM classifiers, and show that, an SVM014
fed with BERT representations performs at the015
level of the best BERT classifiers, and BERT016
learning and using hand-crafted features per-017
forms at the level of traditional classifiers using018
hand-crafted features. Our experiments indi-019
cate that our hand-crafted feature set does not020
provide any additional information that BERT021
has not learnt already, and is likely to be a sub-022
set of features automatically learnt by BERT.023
Finally, we apply Integrated Gradients to ex-024
amine token importance for the BERT model,025
and find that part of its top performance results026
are due to just topic differences and spurious027
correlations with translationese.028

1 Introduction029

Translationese is a descriptive (non-negative) cover030

term for the systematic differences between trans-031

lated and originally authored text in same lan-032

guage (Gellerstam, 1986). Some aspects of transla-033

tionese such as source interference (Toury, 1980;034

Teich, 2003) are language dependent, others are035

presumed universal, e.g. simplification, explicita-036

tion, overadherence to target language linguistic037

norms (Volansky et al., 2015) in the products of038

translations. While translationese effects can be039

subtle, and even human experts may not be able040

to reliably distinguish between original texts and041

professional translations (Tirkkonen-Condit, 2002),042

corpus-based studies (Baker et al., 1993) and, in 043

particular, machine-learning classifier based stud- 044

ies (Rabinovich and Wintner, 2015; Volansky et al., 045

2015; Rubino et al., 2016; Pylypenko et al., 2021) 046

clearly reveal the differences. In this paper we fo- 047

cus on machine-learning classifier based research 048

on translationese. Here, typically a classifier is 049

trained to distinguish between original and trans- 050

lated texts (in the same language). Until recently, 051

most of this research (Baroni and Bernardini, 2005; 052

Volansky et al., 2015; Rubino et al., 2016) used 053

manually defined, often linguistically inspired, 054

feature-engineering based sets of features, (mostly) 055

using support vector machines (SVM). Once a clas- 056

sifier is trained, feature importance and ranking 057

methods are used to reason back to what aspects 058

of the input is responsible for (i.e. explains) the 059

classification. More recently, a small number of pa- 060

pers explored feature- and representation-learning 061

neural network based approaches to translationese 062

classification (Sominsky and Wintner, 2019). In 063

a systematic study Pylypenko et al. (2021) shows 064

that feature- and representation-learning deep neu- 065

ral network-based approaches (in particular BERT- 066

based, but also other neural approaches) to trans- 067

lationese classification substantially outperform 068

handcrafted feature-engineering based approaches 069

using SVMs. However, to date, two important ques- 070

tions remain: (i) it is not clear whether the substan- 071

tial performance differences are due to learned vs. 072

handcrafted features, the classifiers, or the combi- 073

nation of both, and (ii) what the neural feature and 074

representation learning approaches actually learn. 075

The contributions of our paper are as follows: 076

1. we address (i) by feeding BERT-based 077

learned features to SVMs and by letting BERT 078

architectures learn handcrafted features, as 079

well as feeding the handcrafted features into 080

BERT as embeddings. Our experiments 081

show that SVMs using BERT-learned fea- 082

tures perform on a par with our best BERT- 083
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translationese classifiers. Moreover, BERT084

using handcrafted features only performs at085

most as good as the SVM classifier.086

2. we present the first steps to address (ii)087

using attribution-based explainable AI ap-088

proaches (XAI) on our best performing full089

feature- and representation-learning BERT090

model and on BERT models that are pre-091

trained to predict handcrafted features and092

then fine-tuned for translationese classifica-093

tion. We present evidence that at least part094

of the high classification accuracy of BERT095

is due to names of places and countries, sug-096

gesting that part of the classification is topic-097

and not translationese-based (source texts in098

Spanish translated to English e.g. may have099

a higher likelihood of talking about Spanish100

places). Moreover, some top features suggest101

that there might be certain spurious correla-102

tions within our dataset.103

To the best of our knowledge this is the first104

paper that shows that feature- and representation-105

learning rather than the classifier is responsible106

for the substantial performance gap between deep107

neural networks and machine learning approaches108

using handcrafted features. It is also the first paper109

that uses XAI methods to (begin to) explain what110

neural methods learn in translationese classifica-111

tion.112

Finally, translationese research is not just an113

"academic" exercise in basic research into aspects114

of how translation works, but an important research115

topic in machine translation evaluation (Stymne,116

2017; Toral et al., 2018; Freitag et al., 2019;117

Edunov et al., 2020; Graham et al., 2020) and in118

further improving machine translation (Riley et al.,119

2020).120

2 Related Work121

(Kaas et al., 2020; Prakash and Tayyar Madabushi,122

2020; Lim and Madabushi, 2020) combine BERT-123

based and handcrafted features in an ensemble man-124

ner in order to improve over BERT’s accuracy, of-125

ten by concatenating the pooled output of BERT126

with a handcrafted feature vector (sometimes addi-127

tionally encoded by another network) and feeding128

them into another classifier. They show that even129

though BERT representations are powerful, care-130

fully picked handcrafted features may still provide131

additional information that aids the task in hand.132

We also aim to verify if there is an overlap between 133

the features learnt by BERT and our handcrafted 134

feature set. In some cases the classifier used for 135

ensembling BERT and handcrafted features is a 136

Support Vector Machine (Kazameini et al., 2020; 137

Ray and Garain, 2020). 138

Explainability methods for neural networks have 139

not been widely explored for translationese clas- 140

sification. Since many previous works have used 141

the traditional feature-engineering method, they of- 142

ten quantify handcrafted feature importance. Tech- 143

niques used for that include looking at SVM feature 144

weights (Avner et al., 2016; Pylypenko et al., 2021), 145

correlation (Rubino et al., 2016), Information Gain 146

(Ilisei et al., 2010), Chi-square (Ilisei et al., 2010), 147

decision trees or random forests (Rubino et al., 148

2016; Ilisei et al., 2010), ablating features and ob- 149

serving the change in accuracy (Baroni and Bernar- 150

dini, 2005; Ilisei et al., 2010), training separate 151

classifiers on each individual feature (or feature set) 152

and comparing accuracies (Volansky et al., 2015; 153

Avner et al., 2016). For n-grams, then difference in 154

frequencies between the original and translationese 155

classes (Koppel and Ordan, 2011; van Halteren, 156

2008), and the contribution to the symmetrized 157

Kullback-Leibler Divergence between the classes 158

(Kurokawa et al., 2009) have been used. 159

As for looking into the neural network perfor- 160

mance, Pylypenko et al. (2021) quantify whether 161

hand-crafted features can explain the variance in 162

the predictions of neural models, such as BERT, 163

LSTM, and Simplified Transformer, by training 164

per-feature linear regression models to output the 165

predicted probabilities of the neural models and 166

computing the R2 measure. They find that most of 167

the top features are either POS-perplexity-based, or 168

bag-of-POS features. However, this method treats 169

the neural network as a black-box, whereas we use 170

a method that accesses the internals of the model. 171

In our work we use the Integrated Gradients 172

method (Sundararajan et al., 2017) the method pro- 173

vides attribution scores for the input with respect to 174

a certain class. It involves calculating the integral 175

of gradients with respect to the input along the path 176

from a certain baseline (in our case, PAD tokens) 177

to the input. 178

3 Experimental Settings 179

3.1 Data 180

For our experiments, we use the monolingual Ger- 181

man dataset in the Multilingual Parallel Direct Eu- 182
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roparl (MPDE) (Amponsah-Kaakyire et al., 2021)183

corpus. The set contains 42k paragraphs with half184

of the texts German originals and the other half185

translations into German from Spanish. The aver-186

age length is 80 tokens per training sample. Since187

there exists a problem with pivot translations in188

Europarl (Bogaert, 2011), the DE-ES dataset con-189

tains only data from before 2004, when the pivot190

system was introduced. We additionally use a held-191

out corpus of around 30k paragraphs for estimating192

language models and n-gram quartile distributions.193

This corpus consists of originally produced texts194

only. For the heldout corpus, we sample texts from195

Europarl proceedings from 2004 onwards, since196

original data is not affected by the pivot translation197

problem.198

Figure 1: Mapping handcrafted features to embeddings
(Section 3.4).

3.2 Base Setup199

A fair comparison between learned and handcrafted200

features and two classifiers is non-trivial. We feed201

learned features into SVMs, and (i) let BERT learn202

handcrafted feature vectors used by SVMs and (ii)203

feed handcrafted feature vectors as embeddings204

into the BERT model. We compare this with full205

feature and representation learning settings with206

BERT, and SVMs with handcrafted features. To207

test this for translationese classification we repro-208

duce the models from Pylypenko et al. (2021):209

1. a linear SVM with 108 handcrafted fea-210

tures (with surface, lexical, unigram bag-211

of-PoS, language modelling and n-gram212

frequency distribution features), [handcr.-213

features+SVM]214

2. a pretrained BERT-base model (12 layers,215

768 hidden dimensions, 12 attention heads)216

fine-tuned on translationese classification. 217

[pretrained-BERT-ft] 218

We use multilingual BERT (Devlin et al., 2019) 219

(BERT-base-multilingual-uncased), and fine-tuning 220

is done with the simpletransformers1 library. We 221

use a batch size of 32, learning rate of 4 ·10−5, and 222

the Adam optimiser with epsilon 1 · 10−8. We esti- 223

mate n-gram language models with SRILM (Stol- 224

cke, 2002) and do POS-tagging with SpaCy.2 225

3.3 SVM Classifier with BERT Features 226

We train a SVM with linear kernel on the features 227

learnt by the pretrained BERT model fine-tuned on 228

the translationese classification task. We use the 229

output of the BERT pooler, which selects the last 230

layer [CLS] token vector, with linear projection 231

and tanh activation as our feature vector. We use: 232

1. BERT’s 768-dim pooled vector output, 233

[pretrained-BERT-ft-output+SVM ] 234

2. a 108-dim PCA projection of the vec- 235

tor. [pretrained-BERT-ft-output+PCA(108 236

dim) +SVM ] 237

The later allows us to match the handcrafted feature 238

vector dimensionality. 239

3.4 BERT with Handcrafted Features 240

Making neural networks use handcrafted features 241

in our comparison is non-trivial. We design two 242

strategies. 243

Pretraining on handcrafted feature prediction. 244

First, we train a BERT-base model from scratch, 245

using it to predict the 108 dimension vectors rep- 246

resenting handcrafted features originally used in 247

training the SVM [BERT-reg-full]. The weights 248

of this model encode the information of the hand- 249

crafted features. With this pretrained model, 250

1. we freeze the weights and train a classifier on 251

top for translationese classification, [BERT- 252

r2c-full-frozen] 253

2. we do not freeze but fine-tune on the transla- 254

tionese classification task. [BERT-r2c-full-ft] 255

We explore the same with a smaller BERT model 256

with only 6 layers instead of 12 [BERT-reg-half]. 257

We then load the weights of the small 6 layer model 258

into the embedding layer and the first 6 layers of a 259

12 layer non-pretrained BERT-base model and: 260

1github.com/ThilinaRajapakse/
simpletransformers

2https://spacy.io/
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Model Test accuracy (%)
handcr.-features + SVM 73.2±0.1
pretrained-BERT-ft-output + PCA(108 dim) + SVM 92.0±0.0
pretrained-BERT-ft-output + SVM 92.0±0.0
BERT-r2c-full-frozen-output + PCA(108 dim) + SVM 70.3±0.1
BERT-r2c-full-frozen-output + SVM 74.9±0.7
pretrained-BERT-ft 92.2±0.2
fromScratch-BERT 89.3±0.3
BERT-r2c-full-frozen 59.6±0.1
BERT-r2c-full-ft 89.3±0.4
BERT-r2c-half-frozen 67.5±0.4
BERT-r2c-half-ft 89.0±0.3
BERT-f2c L = 1 57.1±10.1
BERT-f2c L = 80 72.8±0.2
BERT-f2c L = 256 72.7±0.2
pretrained-BERT-f2c L = 80 68.0±2.1

Table 1: Translationese classification accuracy for all settings (average and standard deviation over 5 runs). All of
the models were trained/fine-tuned for the translationese classification task.

3. we freeze the loaded weights in the first 6261

layers and train the remaining 6 layers and262

classifier on the translationese classification263

task, [BERT-r2c-half-frozen]264

4. we do not freeze but fine-tune it on the trans-265

lationese classification task with randomly-266

initialised weights for the other 6. [BERT-267

r2c-half-ft]268

Interestingly, according to the losses when train-269

ing for predicting the handcrafted features, BERT-270

reg-half performs comparably to the BERT-reg-full271

(0.0041136 vs 0.0041148).272

We also train a BERT-base model with the same273

settings from scratch on the translationese classi-274

fication task as a baseline for all BERT models.275

[fromScratch-BERT].276

Mapping handcrafted features to embeddings.277

Even though the very low MSE results indicate278

that both versions of BERT-reg are able to learn279

handcrafted features well, using them in terms of280

frozen layers in translationese classification leads281

to low classification performance. This motivates282

us to explore an alternative way of encoding hand-283

crafted features: we convert the single vector of284

handcrafted features of dimension D (108 in our285

experiments) into a sequence of embeddings in286

BERT’s layers format, that is, length of feature287

embedding sequence L times the dimension of the288

hidden states H (768), while preserving the infor-289

mation of the single vector. (Fig. 1)290

To do this, we consider a batch of tokens with 291

size B and take in the handcrafted features as a 292

B ×D-dimensional input to the BERT model and 293

generate feature embeddings by passing the fea- 294

tures through 2 linear layers as follows. We first 295

unsqueeze the B ×D input to B × 1×D dimen- 296

sions and reshape it as B ×D × 1. This is passed 297

to the first linear layer. The resulting B ×D × L- 298

dimensional output is reshaped as B × L×D and 299

fed as input to the second linear layer which out- 300

puts a B×L×H-dimensional output as the feature 301

embeddings. 302

This hand-crafted feature embedding replaces 303

BERT’s embedding layer and serves as input to 304

the first BERT layer. The resulting BERT model 305

is trained on the translationese classification task. 306

We experiment with three different values for L: 307

1, 80 (average length of our training samples) and 308

256 (maximum input for BERT). [BERT-f2c L=1, 309

BERT-f2c L=80, BERT-f2c L=256] 310

4 Translationese Classification 311

Table 1 summarises results of the different trans- 312

lationese classification settings. As for feeding 313

pooled output of BERT into the SVM model, we 314

can observe that the accuracy is a lot higher compar- 315

ing to feeding handcrafted features, even when the 316

BERT vector dimensionality is reduced to match 317

the amount of handcrafted features. This empha- 318

sizes the fact that the features learnt by BERT are 319

superior to our current set of manual features. 320
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Figure 2: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). Comparison of different models.

When BERT is trained from scratch, transla-321

tionese classification accuracy reduces by 2.93 per-322

centage points, compared to the pretrained-BERT-323

ft. This suggests that pretraining on large data helps324

to encode additional information that turns out to325

be helpful in the translationese classification task.326

As for BERT pretrained to predict the hand-327

crafted features and frozen (BERT-r2c-full-frozen),328

it is assumed that BERT has learnt to encode the329

handcrafted features during pretraining. Neverthe-330

less, its accuracy, albeit higher than a random guess,331

is lower by ∼ 13 percentage points comparing to332

the SVM classifier. We perform an additional ex-333

periment, in order to check whether the difference334

in accuracy is due to BERT failing to sufficiently en-335

code the handcrafted features during pretraining, or336

due to the SVM classifier being superior to the lin-337

ear classification head of the BERT model. Namely,338

we train the SVM classifier on the pooled output339

of BERT-r2c-full-frozen model. The accuracy is340

around 75% (for both original and PCA-reduced341

dimensionality) which is as high as using SVM342

on handcrafted feature vectors. We conclude that343

BERT encodes the handcrafted features sufficiently 344

enough, but the linear classifier performs worse 345

than an SVM in these conditions, possibly due to 346

non-exhaustive hyperparameter search. 347

Further fine-tuning BERT, fully pretrained for 348

handcrafted feature prediction (BERT-r2c-full-ft), 349

for translationese classification results in accuracy 350

comparable to BERT that was not pretrained on 351

this task (fromScratch-BERT). This could suggest 352

that our handcrafted feature set is either a subset 353

of features learned by fromScratch-BERT, or that 354

the handcrafted features are discarded during fine- 355

tuning. The model where only the first 6 layers 356

were pretrained (BERT-r2c-half-ft), achieves simi- 357

lar accuracy, likely due to the same reasons. 358

By contrast, freezing the 6 handcrafted fea- 359

ture prediction pretrained layers (BERT-r2c-half- 360

frozen) largely reduces the accuracy, because the 361

model only has access to the 6th layer embeddings 362

that supposedly encode only the information about 363

the handcrafted features, and does not have ability 364

to extract its own features from the input text, due 365

to its inability to tune the embeddings. 366
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Figure 3: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). Comparison of different models.

The results of BERT-f2c models show that BERT,367

when fed the handcrafted features in the form of368

embeddings, can reach at most the same accuracy369

as the hancdr.-features+SVM approach, which sug-370

gests that the BERT architecture has no advantage371

over the SVM classifier in utilizing the handcrafted372

features for classification.373

5 Layer Integrated Gradients Saliency374

We compare input attributions of the ground truth375

classification label amongst pretrained-BERT-ft,376

fromScratch-BERT and the different settings of377

the translationese classification models pretrained378

on the hand-crafted feature prediction task. We379

use Layer Integrated Gradients from the Captum380

library (Kokhlikyan et al., 2020), and calculate the381

salience score for each token by averaging the attri-382

butions over the embedding dimension.383

5.1 Comparing Models384

Figure 2 displays Integrated Gradient attributions385

for a translated paragraph across different BERT386

models. Figure 3 shows attributions for an original387

paragraph. 388

Comparing the attributions of classification la- 389

bels to sample inputs amongst the various settings 390

of BERT, we observe that attributions are simi- 391

lar for fromScratch-BERT and the fine-tuned mod- 392

els: BERT-r2c-full-ft and BERT-r2c-half-ft. By 393

contrast, freezing the weights in BERT-r2c-full- 394

frozen and BERT-r2c-half-frozen resulted in very 395

different attributions from the fromScratch-BERT. 396

For BERT-r2c-half-frozen the attributions are more 397

peaked than for other models, with only a few to- 398

kens receiving large scores, and most tokens having 399

scores close to zero. Notably, pretrained-BERT- 400

ft displays a pattern that is overall similar to the 401

BERT trained from scratch, but some attributions 402

are reversed, and the peaks are on different tokens. 403

For BERT-r2c-full-frozen, it can be seen that 404

a substantial number of tokens with negative at- 405

tributions have positive attributions in the model 406

trained from scratch and also the fine-tuned models. 407

However some attributions overlap, which suggests 408

that BERT might be using some of the handcrafted 409

features. 410
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BERT-r2c-full-ft pretrained-BERT-ft
Rank Token Avg attribution score Rank Token Avg attribution score
1 sagte 0.60 1 entstand 0.70
2 gebiet 0.46 2 virus 0.63
3 ##dies 0.44 3 inti 0.60
4 ansicht 0.43 4 sagte 0.58
5 bezug 0.42 5 entdeckte 0.57
6 neige 0.40 6 gras 0.57
7 amt 0.40 7 nuts 0.56
8 pre 0.40 8 nicaragua 0.55
9 spanien 0.39 9 rekord 0.53
10 sprechen 0.38 10 bilbao 0.53
11 nuts 0.36 11 verfugte 0.53
12 barcelona 0.34 12 bol 0.51
13 ; 0.33 13 colombia 0.51
14 ##bien 0.32 14 nis 0.51
15 spanischen 0.32 15 och 0.49
16 wiederholt 0.31 16 vorkommen 0.49
17 einige 0.30 17 oecd 0.49
18 ##sprache 0.29 18 ; 0.46
19 weder 0.29 19 erklarte 0.45
20 territorium 0.28 20 clinton 0.45

Table 2: Top-20 tokens with highest average attribution score towards the translationese class in the test set.
BERT-r2c-full-ft and pretrained-BERT.

5.2 Comparing Checkpoints411

In Appendix A we provide additional results on412

examining training checkpoints for fromScratch-413

BERT and BERT-r2c-full-ft for an original and a414

translated paragraph.415

Results indicate that for fromScratch-BERT416

some attributions change into opposite during train-417

ing, whereas for BERT-r2c-full-ft the pattern ap-418

pears to be already settled from the early check-419

points onwards, and does not change much over420

the course of fine-tuning. This may support the421

hypothesis that the handcrafted features are a sub-422

set of features learnt by BERT, and thus provide a423

favorable initialization of weights for fine-tuning424

for translationese classification.425

5.3 Highest Average Attribution426

In order to make the interpretation less local, we427

compute the top tokens with highest attribution on428

average across the test set. The results for each429

class for best-performing models (pretrained BERT430

and BERT-r2c-full-ft) are given in Tables 2 and 3.431

For German translationese data translated from432

Spanish, some top tokens correspond to the ge-433

ographical areas, where Spanish is spoken, e.g.434

"spanien", "barcelona", "spanischen" for BERT-435

r2c-full-ft; "nicaragua", "colombia", "bilbao" for436

pretrained BERT. Likewise for original German 437

data, some of the top tokens are German geograph- 438

ical names, e.g. "stuttgart" for pretrained BERT. 439

The subword "##wald" also appears to be a com- 440

mon German toponymic suffix. This suggests that 441

topic is one of the spurious clues that is used by 442

BERT to determine the correct translationese class. 443

This is also supported by the fact that some nouns 444

that likely correspond to certain recurring discus- 445

sion topics for only one class within our data sam- 446

ple, receive high attribution, e.g. "virus", "soja", 447

"clinton", "orange" etc. The "ez" token, salient 448

for the original class, appears to be a starting sub- 449

word unit of the EZB abbreviation (Europäische 450

Zentralbank). 451

The "•" token having a high attribution for the 452

class originals for both models might suggest a 453

spurious correlation within the dataset, that is ap- 454

parently utilized by BERT. The ";" token is deemed 455

important for the translationese class by both mod- 456

els, which might also be a spurious correlation. 457

Conversely, this could be an indication that clauses 458

in Spanish are more often joint with the semi-colon, 459

than in German, which was preserved in the trans- 460

lation. 461

For both models the Präteritum forms "sagte", 462

"erklärte" etc. are also among the top tokens impor- 463
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BERT-r2c-full-ft pretrained-BERT-ft
Rank Token Avg attribution score Rank Token Avg attribution score
1 ##wegen 0.61 1 situations 0.37
2 • 0.55 2 • 0.36
3 eu 0.49 3 ria 0.34
4 daraufhin 0.49 4 ##lk 0.33
5 finde 0.45 5 ##iet 0.32
6 ##vo 0.45 6 golden 0.32
7 gerne 0.43 7 sak 0.30
8 ##abb 0.42 8 turm 0.30
9 ##hrte 0.42 9 ##emen 0.27
10 ausbau 0.42 10 orange 0.27
11 ! 0.42 11 hang 0.26
12 bekommen 0.42 12 ##wald 0.25
13 trips 0.41 13 1732 0.25
14 ez 0.41 14 dobe 0.24
15 ##gemeinde 0.40 15 ##pas 0.23
16 vot 0.36 16 profits 0.22
17 won 0.36 17 stuttgart 0.22
18 geplant 0.35 18 soja 0.21
19 demnach 0.35 19 r 0.21
20 ja 0.35 20 ruth 0.21

Table 3: Top-20 tokens with highest average attribution score towards the original class in the test set. BERT-r2c-
full-ft and pretrained-BERT.

tant for recognizing translationese. One possible464

explanation could be that the Perfekt form ("hat465

gesagt") is more common in German spoken lan-466

guage, and Präteritum is more common in writing.467

Therefore the translators, while translating Spanish468

speeches into German, could have preferred to use469

the Präteritum form more common for writing.470

6 Conclusion471

This paper addresses two open questions in472

classification-based translationese research: (1) are473

the substantial performance differences between474

feature- and representation-learning and classical475

handcrafted feature based approaches due to (i) the476

difference in the features, (ii) the classifiers, or (iii)477

both, and (2) what do feature- and representation-478

learning based approaches actually learn?479

We address (1) by exchanging features from both480

models examining a broad variety of settings. We481

confirm that SVMs perform as good as BERT when482

fed with features learnt by BERT. Likewise, BERT483

performs at the level of traditional SVM-based clas-484

sification with handcrafted features SVMs, when485

fed with handcrafted features only. Our findings re-486

veal that while pretraining on huge amount of data487

improves the classification accuracy, pretraining488

on handcrafted features does not guarantee an im-489

provement on classification accuracy with respect 490

to training from scratch. 491

To address question (2), we examine BERT’s in- 492

put attributions using Integrated Gradients Saliency 493

for various settings and observe that attributions are 494

indeed similar for the model trained from scratch 495

and the fine-tuned models that were pretrained on 496

handcrafted feature prediction. 497

Finally, analysis of top activated tokens in the 498

test set suggests that at least part of BERT’s strong 499

translationese classification accuracy is based on 500

topical differences between the classes (rather than 501

"proper" translationese phenomena), the topical 502

differences between the classes, and spurious cor- 503

relations. The next step would be to control these 504

factors, for instance by using named entity masking 505

and cleaning/normalizing the corpus, in order to 506

investigate whether BERT would still outperform 507

the traditional approach under such conditions. 508
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A Appendix686

A.1 Extra Information on MPDE dataset687

We use version 2.0.0 of the MPDE dataset li-688

censed under CC-BY 4.0. Specifically we use the689

mono_de_es train/dev/test splits of the German-690

Spanish language pair. Table 4 contains summary691

statistics of the data.692

Split Number of Examples
Train set 29580
Validation set 6366
Test 6344

Table 4: Dataset statistics

A.2 Extra Information on BERT models693

With the exception of pretrained-BERT-ft, we use694

the transformers library.3 Training is done across695

4 NVIDIA GeForce GTX TITAN X GPUs with a696

batch size of 8 per GPU. We use a learning rate of697

3 · 10−5 and train or fine-tune for 5 epochs. Table698

5 shows the number of parameters of the differ-699

ent BERT variants. Parameter counts include the700

embedding and respective prediction (classifier or701

regression) layers.702

Model Num. Params (M)
fromScratch-BERT 177.85
BERT-reg-full 177.94
BERT-reg-half 135.41
BERT-r2c-* 177.85
BERT-f2c L = 1 177.46
BERT-f2c L = 80 177.52
BERT-f2c L = 256 177.66
pretrained-BERT-f2c L = 80 177.52

Table 5: Number of parameters of the various BERT
models

3https://huggingface.co/transformers/
model_doc/bert.html
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Figure 4: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 5: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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Figure 6: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 7: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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