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Abstract

High-frequency control in continuous action and
state spaces is essential for practical applications
in the physical world. Directly applying end-to-
end reinforcement learning to high-frequency con-
trol tasks struggles with assigning credit to actions
across long temporal horizons, compounded by
the difficulty of efficient exploration. The alter-
native, learning low-frequency policies that guide
higher-frequency controllers (e.g., proportional-
derivative (PD) controllers), can result in a lim-
ited total expressiveness of the combined control
system, hindering overall performance. We intro-
duce EvoControl, a novel bi-level policy learning
framework for learning both a slow high-level
policy (using PPO) and a fast low-level policy (us-
ing Evolution Strategies) for solving continuous
control tasks. Learning with Evolution Strate-
gies for the lower-policy allows robust learning
for long horizons that crucially arise when op-
erating at higher frequencies. This enables Evo-
Control to learn to control interactions at a high
frequency, benefitting from more efficient explo-
ration and credit assignment than direct high-
frequency torque control without the need to hand-
tune PD parameters. We empirically demonstrate
that EvoControl can achieve a higher evaluation
reward for continuous-control tasks compared to
existing approaches, specifically excelling in tasks
where high-frequency control is needed, such as
those requiring safety-critical fast reactions.
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1. Introduction

High-frequency control is paramount for ensuring the safety
and reliability of real-world robotic systems (Hogan, 1984;
Oh et al., 2014; Venkataraman & Gulati, 1993; Dantec et al.,
2022). Failures to respond in real-time to unexpected colli-
sions, disturbances, or human interactions can lead to catas-
trophic consequences in safety-critical applications such
as surgery (Kuchenbecker et al., 2010), autonomous driv-
ing (Guo et al., 2019), and industrial automation (Vasic
& Billard, 2013). To achieve reliable performance, practi-
cal robotic systems commonly rely on low-level fixed con-
trollers (e.g., proportional-derivative (PD) controllers) oper-
ating at high frequencies. However, this approach raises the
fundamental question of whether we can remove these lower-
level fixed controllers entirely and instead directly control
motor torques at high frequency, potentially enabling faster
reactions and finer control.

Recent work falls into two main categories. First, directly
learning end-to-end high-frequency (often torque-based (Al-
jalbout et al., 2024)) policies, labeled direct torque control,
presents significant learning challenges as this increases
the number of state transitions within a fixed time window,
resulting in longer trajectories with complex temporal de-
pendencies that hinder exploration and credit assignment
(Peng & Van De Panne, 2017; Sutton & Barto, 2018; Dab-
ney et al., 2020)—and can often lead to suboptimal behavior
(Section 5.2).

Second, a common alternative is to learn a slower high-level
policy that outputs target positions or velocities, which are
then tracked by a faster (higher-frequency) low-level fixed
controller, such as a PD controller (Wei, 2019). This bi-
level approach, labeled as fixed controllers, is prevalent in
real-world continuous control tasks (Aljalbout et al., 2024,
Song et al., 2019) and simplifies learning by reducing the
effective time horizon of the high-level policy (Sutton et al.,
1999). For real-time control, this composition affords the
high-level policy larger inference time, key for handling
rich observations, such as images (i.e., at 30Hz) or using
larger networks, such as Visual-Language-Models (Ma et al.,
2024). While composing with a low-level PD controller that
operates at higher-frequencies ~ 500H z on robotic plat-
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forms, often only observing at high-frequency direct robot
proprioceptive observations such as robot joint positions,
velocities and torques (Borase et al., 2021). However, fixed
controllers are unable to produce fast interaction behavior
beyond simple state-goal-tracking limiting their expressive-
ness, and require manual tuning of their PD parameters for
each task.

An effective method for high-frequency control therefore
aims to have the following three core properties:

(P1) Efficient Exploration: Throughout learning, be able
to efficiently explore the state space as well as a high-level
policy with a fixed controller.

(P2) High-Frequency Interaction Control: Enable the
learning of a low-level controller capable of complex, adap-
tive behaviors at high frequencies.

(P3) Automate Controller Tuning: Reduce manual tuning
of the low-level PD controller parameters.

With these considerations, we introduce EvoControl, a novel
bi-level policy learning framework for learning both a slow
high-level policy and a fast low-level policy for continuous
control robotic tasks. EvoControl learns a high-level policy
with proximal policy optimization (PPO) and a low-level
proprioceptive policy with Evolution Strategies (ES) in alter-
nating stages. The low-level policy is initialized as a fixed
PD controller and gradually transitions to a learned neural
network policy throughout training via an annealing param-
eter ov. This staged training process enables stable learning
and effective exploration. ES at the low level provides ro-
bust learning, particularly beneficial for long horizon credit
assignment inherent in high-frequency control. These com-
ponents enable EvoControl to learn high-frequency interac-
tion control, automate controller tuning, and more efficiently
explore than direct high-frequency torque control.

Contributions: (D We introduce EvoControl, a novel bi-
level policy learning framework for learning both a slow (e.g.
30Hz) high-level policy and a fast (e.g. 5S00Hz) low-level
robot proprioceptive controller using PPO and ES, respec-
tively, for continuous-control tasks (Section 3). @) Theo-
retically, we show that there exist some continuous-time
Markov Decision Processes (CTMDPs) in which acting at
higher frequencies can yield strictly higher expected cumula-
tive reward (Proposition 2.1). Empirically, we demonstrate
that EvoControl can achieve a higher evaluation reward for
standard continuous-control tasks at high frequency com-
pared to existing approaches, excelling in tasks where high-
frequency control is needed, such as in safety-critical appli-
cations of unmodeled interactions (Section 5.1). (3) We gain
insight and understanding of how EvoControl can achieve
efficient exploration compared to direct torque control at
high-frequency, learn fast interactions, and demonstrate ro-
bustness to mistuned PD parameter settings.

2. Problem

We follow the standard continuous control reinforcement
learning (RL) setting with the inclusion of an optional low-
level controller.

States & Actions. We denote the environments state space
as S C R% and its action space as i/ C R%. At time
t € R, the system’s state is represented by s; € S, and its
action by u; € U. Considering action (e.g., actuator) limits,
the action space is constrained to a box in Euclidean space:
U= [umina umax]‘

Environment Dynamics. The transition dynamics for con-
tinuous control environments can be described by an un-
derlying unknown differential equation of s, = % =
f(st,ut). The transition function, which describes the
evolution of the state over a discrete time step A;, can
be approximated using the Euler method s;1a, ~ s +
A;f(st,ur). Given an action u; and current state s,
St4n, ~ P(stya,|st,us) is implicitly defined by this ap-
proximation. More sophisticated numerical integration
methods can also be used. We expand on the problem setup

in Appendix A.

Policies. The agent can be represented as a single policy 7 :
R4 —s R that observes the current observation at time
t and samples an action u; ~ m(s;) and then applies this
action to the environment at a given fixed A;. To formalize

Algorithm 1 Bi-Level Policy Interaction (Single High-Level
Step)

1: ag ~ p(sg) {High-level action}

2: fori =0to G — 1do

Ugti ~ B(Sg+i, ar) {Low-level action}
4 Spgigr ~ f(Skpin Ukgir A¢)

5. end for

w

a bi-level policy, we decompose 7 into two components: a
slow, high-level policy, p, and a fast, low-level policy, B.
Both policies interact with the environment as described
in Algorithm 1. At time step k, p outputs a latent action
ax ~ p(sk) (e.g., a target position or velocity). Operating
at a higher frequency, /3 receives ay and generates low-level
actions ug; (e.g., motor torques) at a finer-grained time
step i to achieve the target specified by p. With 3 operating
at frequency 1/A,, p’s latent action is executed by S for G
steps, making p’s effective frequency 1/(GA;).

Objective. The environment produces a reward r, sampled
from an unknown reward function r (s, u¢). The overall

objective of the agent is to maximize the expected future dis-

T—1_;
counted reward E s, wo.r 1, ror1 [Zizo fyln}, where

0 <~ < 1is the discount factor.



EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control

2.1. Existence of CTMDPs Requiring Higher-Frequency
Control for Optimality

In certain continuous-time Markov Decision Processes (CT-
MDPs), taking actions at a higher frequency strictly in-
creases the achievable reward—a point we make formally
in Proposition 2.1.

Proposition 2.1. Consider a continuous-time Markov De-
cision Process (CTMDP) with a finite state space and
action space. Let this CTMDP be discretized with time
step A;. There exist CTMDPs such that for any fixed dis-
cretization step Ay > 0, there exists a finer discretization
A} < Ay where the optimal policy for the A}-discretized
MDP achieves a higher expected cumulative reward over
a fixed time horizon T than the optimal policy for the As-
discretized MDP.

Proof. Full proof is in Appendix B; however, we present
the following sketch. Consider a CTMDP with states
{sgood7 Sbad} and actions {amaintaina arecover}" Under amaintain»
the system transitions from sgood tO Spaq at rate p > 0, while
(recover immediately transitions Spag tO Sgood. Let rewards
be 7(Sgood) = Tgood > 0 and r(spad) = Tpaa < 0, with
episode length T'. Discretizing at A,, the optimal policy
USES Amaintain WheN in Sgood aNd recover When in spyq, yielding
expected return R(A;) = Trgood — T'p A¢(rgood — Thad)-
Now refine to A; = A;/n where (n > 1). Recovery hap-
pens more quickly, reducing time spent in sp,q each Ay-
interval, so the finer-discretized return is R(A}) = T 1gg0d —
T”TA‘(rgood — rbad). The difference R(A}) — R(A;) =
Tp At(rg(,od — rbad)(l — %) > 0, so a finer discretization

leads to a strictly higher expected cumulative reward under
its optimal policy. O

This highlights the need for higher-frequency control in cer-
tain environments. This is analogous to the Pulse Width
Modulation (PWM) sampling theorem (Huang et al., 2011),
where variable pulse widths enable perfect signal reconstruc-
tion from discrete samples, similar to how high-frequency
actions enable optimal control in our MDP setting. We
further explore a continuous control safety-critical intuitive
example in Appendix B.1.

2.2. Background: Fixed PD Controllers

In continuous control and robotics, hierarchical structures
composed of a learned high-level policy (p) and a fixed low-
level controller (e.g., a PD controller (Oku et al., 2018; Find-
eisen et al., 1980)) are common. This hierarchical decompo-
sition reduces the number of decision steps for the high-level
policy by a factor of G within a fixed episode duration 7',
where G is the number of low-level actions executed per
high-level action. The high-level policy outputs a target ag,

Table 1: Common Fixed Low-Level PD Controllers

Method ay Control Law
PD Absolute Position q* = ay, 7(t) = Kp(g? — q) + Ka(§® — )
PD Delta Position 5q? = ar 7(t) = Kp((qr + 3q%) — q) + Ka(§? — )

PD Velocity i =ay () = Kp(¢* — ) + Ka(0 - §)
PD Integrated Velocity ¢ = ay, 7(t) = Kp((¢ + [ ¢%dt) — q) + Ka(0 — q)
PD Position & K, {¢%, K} = ay, () = Kp(g? — q) + Ka(§ — §)

often a desired position or velocity!, which the low-level
PD controller then tracks. The controller computes a control
signal u, based on the error between the target a; and the
measured system state s;, uy = K, (ar — s¢) + Kq(ar — $t)
where e; = aj, — s, is the tracking error, and K,,, K4 € Rt
are constant proportional and derivative gains. Common
PD controller designs using proprioceptive states (joint po-
sitions ¢, velocities ¢;, and torques 7;) are summarized
in Table 1. We provide an expanded background on PD
controllers in Appendix C.

3. EvoControl: Evolved Low-Level Controller
Framework

We now propose EvoControl, a novel bi-level policy learn-
ing framework for learning both a slow high-level policy
and a fast low-level policy for continuous control tasks.
The key idea is to stabilize the bi-level on-policy learning
of a higher-level policy by initially learning with a fixed-
low-level PD controller and then annealing to a gradually
ES-learned high-frequency controller—Figure 1 provides a
block diagram.

First, we formulate the bi-level policy optimization problem
and its challenges. Then, we discuss our approach and the
advantages of using ES for lower-level policy optimization.
Specifically our framework can be applied starting with dif-
ferent semantically meaningful high-level actions aj from
the high-level policy, such as position/velocity targets, com-
monly seen in existing PD controllers, as outlined in Table 1.

3.1. Promise and Challenges of Policy Hierarchies

Hierarchical reinforcement learning (HRL), employs multi-
ple levels of policies with increasing temporal abstraction.
It tackles complex tasks through improved exploration and
long-horizon planning (Parr & Russell, 1997; Sutton et al.,
1999; 2011). If high-level actions induce diverse low-level
trajectories, exploration can become more effective (Sutton
et al., 1999; Li et al., 2021; McClinton et al., 2021). For
instance, fixed low-level PD controllers, combined with a
learned high-level policy, act as temporally extended ac-
tions, facilitating efficient exploration if aligned with the

'The state s; can encompass a wide range of proprioceptive
information beyond joint positions (g:). We present the target
ay, and tracking error in terms of position/velocity to align with
common PD controller formulations.
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Figure 1: A) Bi-level Policy Interaction. The high-level policy py outputs latent action ay, which guides the low-level
policy ¢ for G steps. B) EvoControl Training Loop. EvoControl trains both the high-level (py, with parameters ) and
low-level (34, with parameters ¢) policies over the course of training divided into K discrete sections. Each section %
first optimizes 6 with PPO (fixed ¢), then optimizes ¢ with Evolution Strategies (fixed #). ES maintains a population of ¢
parameters, evaluates their fitness (episodic return, F'), and updates the parameter distribution to maximize average fitness.
This process, robust to long horizons, enables learning of complex low-level behaviors. To stabilize learning, 34 is initially
a PD controller (8pp, o = 1) and transitions to a learned controller as « anneals towards 0.

task? (Chiaverini et al., 1999).

However, simultaneously learning high- and low-level poli-
cies with an intermediate latent action can destabilize learn-
ing (Yang et al., 2021; Nachum et al., 2018a; Wohlke et al.,
2021). As the low-level policy updates, the same high-
level latent action may produce different low-level action
sequences, creating a non-stationary learning environment
for the high-level policy. Conversely, effective low-level pol-
icy learning requires informative high-level latent actions,
creating a co-dependency that can hinder both levels of the
hierarchy.

Bi-level learning presents further challenges: determining
optimal latent actions (Nachum et al., 2018a) and the appro-
priate low-level policy reward function to optimize. While
subgoal-based rewards (e.g., 7: = —||Sgoar — St|[2) are
promising and relate to PD control, they can struggle to
capture complex behaviors best optimized through overall
episodic return (R = ZT/ Ae—l r(Sin,, win, )A¢). Further-
more, optimizing R requires long-term credit assignment,
exacerbated by high-frequency low-level policies (Peng &
Van De Panne, 2017). This motivates our framework for
optimizing the episodic return R directly.

2For example, a PD absolute position controller can serve as an
effective prior for goal-reaching tasks, where the low-level control
actions u; correspond to torques applied to the robot’s actuators.

3.2. Efficient High-Level Policy Exploration

In the following, we outline how we train both the slow high-
level policy p and the fast low-level policy 3 by training each
level in K € Z stages, with the other fixed, which assists
in mitigating the issues of instability and long-horizon credit
assignment.

To deliver on the key advantage of efficient high-level state-
action exploration for the bi-level control approach, as out-
lined in Figure 1, we seek a stable way of initially learning
the high-level policy to overcome the non-stationary chal-
lenge of learning with a continually updating lower-level
policy. A key approach we choose, which, as we will see
later, also assists in stably learning a lower-level policy, is to
represent the lower-level policy as a convex combination of
a fixed PD controller Spp and a learned neural network actor
policy Sgnn With parameters ¢, and start initially training
with only the PD controller, with o = 1, € [0, 1] and
anneal « to 0 over the course of training. Specifically, we
formulate the bi-level policies during training in Algorithm 1
as:

po(sk),
B (Sk+ir ar) = afpp(Skyis ar) + (1 — &) Benn(Skti, ak)
This brings two immediate advantages: 1) the high-level
action aj, output from the high-level policy has an initial

semantic meaning, grounding it and allowing a user to select
the most appropriate PD controller for the given task, and 2)
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as « is annealed throughout training from 1 to 0, we inherit
the effective state-action exploration properties of having a
fixed PD controller initially (Section 5.2), and yet can still
retain the flexibility of learning more complex lower-level
behavior, beyond just sub-goal/state tracking.

To optimize the high-level policy, we employ Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017), a highly
effective on-policy reinforcement learning algorithm for
continuous control tasks. The high-level policy is repre-
sented by a continuous control agent consisting of a neural
network with separate critic and actor heads. The actor head
parameterizes a multivariate Gaussian distribution with a
diagonal covariance matrix, with parameters . Specifically,
the high-level policy is defined as:

ax, ~ po(sk) = N (po(sk), Zo(s1))

where pp(si) is the mean vector and Xy(sx) =
diag(cg , (sk), 05 o (sk) -, 05, (s1)) is the diagonal co-
variance matrix, with ag,l(sk) representing the variance
for the [-th action dimension at time step k.

3.3. ES-learning a Fast Low-level Policy

We seek to learn more complex lower-level behavior be-
yond prior work of simple goal-reaching low-level policies
(Nachum et al., 2018a). However, directly optimizing the
episodic return (R) is challenging due to the extended credit
assignment horizon, exacerbated by the higher-frequency
low-level controller and its increased number of steps (G)
per high-level latent action ay.

Policy gradient methods, while a natural choice for pol-
icy optimization, are known to struggle with the long hori-
zons encountered in high-frequency control (Peng & Van
De Panne, 2017)°. This difficulty is compounded by the
credit assignment problem (Sutton & Barto, 2018), where
the impact of individual low-level actions on the overall
return becomes increasingly diffused over longer horizons
(Dayan & Hinton, 1992). Furthermore, the increased tem-
poral density of actions at higher frequencies can lead to
heightened sensitivity to policy parameter variations, mak-
ing the optimization landscapes more challenging to navi-
gate and potentially leading to suboptimal solutions. Em-
pirical evidence supporting these challenges is presented in
Appendix J.2.

Instead, we seek a learning method that is invariant to
the long-horizon credit assignment issue and that can dis-
cover a globally optimal low-level policy. Motivated by
this, we adopt an Evolutionary Strategies (ES) approach (of-
ten termed Neuroevolution when applied to training neural

3Low-level controllers often operate at 500Hz-1KHz, resulting
in G = 50 — 100 low-level actions respectively for each high-
level action at 10Hz.

networks) (Rechenberg, 1973; Wierstra et al., 2014; Sali-
mans et al., 2017). ES is a gradient-free, black box, global
optimization method that optimizes the lower-level policy
neural network parameters ¢, by maintaining a population
of parameters represented by a distribution p,, (¢), itself pa-
rameterized by 17 and maximizes the average fitness value
Egy~p, F'(¢) over the population by searching for ¢ with
stochastic gradient ascent (Salimans et al., 2017). The core
idea rests upon optimizing the score function estimator of

1
VoEeno,n[F(¢+oe)] = ;EENN(O,I) [F(¢ + oe)e],

where A/(0, I) is the standard multivariate normal distribu-
tion, and o is a step size parameter. This estimator allows
for gradient estimation without explicit backpropagation by
sampling perturbations of €. Therefore, ES maintains a pop-
ulation of parameters, evaluates their fitness, and generates
a new population through selection, mutation (adding noise
oe), and recombination, as determined by a specific ES al-
gorithm used (Salimans et al., 2017). ES, while less sample
efficient compared to RL, are particularly well-suited for
scenarios where gradient-based methods struggle, such as
those with delayed rewards, noisy environments, or long-
horizon tasks (Salimans et al., 2017). The EvoControl frame-
work supports different ES algorithms, and we empirically
evaluate many competitive ES approaches in Appendix J.1
and find that the competitive approach of Policy Gradients
with Parameter-Based Exploration (PGPE) (Sehnke et al.,
2010) is both effective within EvoControl (Section 5.1) and
straightforward to implement.

One consideration is what to select as the fitness function
F(¢) for the parameters. Given the bi-level setup, we seek
to optimize the episodic return for the combined bi-level pol-
icy as a rollout in the environment, i.e. F'(¢) = R. Doing
so becomes a long horizon optimization problem, especially
when the lower-level operates at a higher frequency. Inter-
estingly, directly optimizing the parameters with gradient
descent is infeasible due to stochastic noise on the state
of the environment and potentially many steps of gradient
propagation through an entire bi-level policy rollout of the
environment. Crucially, to reduce the variance of the fit-
ness function F' and improve learning convergence of the
lower-level policy, we sample the mode of the probabilistic
high-level actor, and parameterize the lower-level actor as a
deterministic low-level policy neural network.

Another advantage of using ES for lower-level policy opti-
mization is the inherent parallelism of fitness evaluations.
This parallelism can lead to faster wall-clock time conver-
gence compared to gradient-based methods, even though
ES generally requires more samples (Salimans et al., 2017).
In our experiments, we find that this trade-off is benefi-
cial: the increased sample complexity is outweighed by
the ability to stably learn a high-frequency low-level policy
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(Appendix J.3).

The process of annealing with a PD controller further im-
proves learning a lower-level policy that can be directed
with a high-level latent action as input ay, that is directed
towards solving the task. Although initially the higher-level
policy will provide a latent-action ay, that would be applica-
ble to a particular PD controller that it was initially trained
with in the early stages of training, by enabling full opti-
mization of the lower-level policy we can evolve a better
performing lower-level policy, lessening the reliance on a
tuned PD controller. In practice we find this effective, even
if the PD controller is mistuned (Section 5.2). We provide
pseudocode for EvoControl in Appendix G.1.

4. Related Work

Here we provide the existing approaches to continuous con-
trol, and provide an extended related work in Appendix D.

Fixed Low-Level Controllers: Commonly involve com-
bining a learned high-level policy (often operating at
low frequency, e.g., 10-30Hz) with a fixed or analytical
high-frequency low-level controller (e.g., a Proportional-
Derivative (PD) controller operating at 500Hz or higher)
(Song et al., 2019). Whilst prevalent, due to the ease of
state-action space exploration (Peng & Van De Panne, 2017;
Pateria et al., 2021), this approach suffers from several draw-
backs. The low-level controller’s PD parameters require
careful tuning per task, and its fixed nature limits its ability
to handle high-frequency interactions, such as unexpected
collisions or disturbances, that involve more complex be-
havior than just reaching a given goal state or emergency
braking. Furthermore, recent work applying RL algorithms
to the physical world often restricts itself to relatively low-
frequency control (~20Hz) due to the reliance on analytical
impedance controllers (Martin-Martin et al., 2019; Luo et al.,
2018; Johannink et al., 2019; Davchev et al., 2022). Evo-
Control, in contrast, aims to achieve efficient exploration
while also enabling the learning of flexible and complex
high-frequency behaviors in the low-level policy.

Direct Torque Control: Methods learn end-to-end policies
that output joint torques at high frequency (Peng & Van
De Panne, 2017; Wahlstrom et al., 2015; Watter et al., 2015).
While offering greater flexibility, this approach suffers from
the curse of dimensionality imposed by the increased num-
ber of time steps in long horizons. The resulting explosion
in the number of possible action sequences significantly
hinders exploration and can lead to suboptimal policies
(Martin-Martin et al., 2019; Peng & Van De Panne, 2017).
EvoControl mitigates this challenge by employing a hierar-
chical structure, enabling more efficient exploration while
retaining the adaptability afforded by direct torque control
at the low level.

Table 2: EvoControl Ablation of PD Controllers.

Controller Variant BaN Obs. NN action
EvoControl (Full State) Sty Ay €ty s Gy t)T T
EvoControl (Residual State) e, t)T T
EvoControl (Target + Proprioceptive)  ag, q, Gt e, t/T T
EvoControl (Target) Qky @ty Qe t)T T
EvoControl (Learned Gains) Sty Ak, Gty Gty t)T Ky, Kq
EvoControl (Delta Position) Sty ks €ty ey Gy t)T T

Hierarchical Reinforcement Learning (HRL): Methods,
including options frameworks (Sutton et al., 1999; Bacon
et al., 2017), hierarchical actor-critic architectures (Ried-
miller et al., 2018; Vezzani et al., 2022), and recent exten-
sions to effectively train deep policies and critics (Rao et al.,
2021; Salter et al., 2022; Wulfmeier et al., 2020a;b), decom-
pose complex tasks into simpler subtasks. While these meth-
ods have demonstrated success in improving exploration
and learning, they typically focus on discrete skill/subgoal
decomposition. Furthermore, HRL subgoal methods of-
ten learn simpler lower-level policies limited by subgoal
attainment, rather than optimizing overall episode return
for complex behavior. EvoControl, inspired by HRL, ad-
dresses the challenges of continuous high-frequency control
with semantically meaningful exploration. Unlike typical
HRL, which focuses on skill discovery, EvoControl targets
learning a fast low-level policy that complements the slow
high-level policy. Uniquely, EvoControl combines PPO and
ES within its hierarchical framework for efficient explo-
ration and complex high-frequency control.

5. Experiments and Evaluation

In this section, we evaluate EvoControl and verify that it
can achieve a higher evaluation reward for both the same
number of high-level policy steps and the same number
of low-level enviornment steps compared to the existing
training of a high-level policy either with fixed controllers
or direct torque control.

Benchmark Environments. We evaluate performance on
thirteen high-dimensional continuous control environments.
Ten environments are adapted from standard Gym MuJoCo
tasks (Brockman et al., 2016a; Freeman et al., 2021), in-
cluding locomotion (e.g., Ant, HalfCheetah, Humanoid)
and manipulation tasks (e.g., Reacher, Pusher). Crucially,
we substantially modify these benchmarks by increasing
the control frequency to 500Hz (with episodes lasting 1000
steps or 2 seconds of real-time) and removing the typical
control-cost term. Typical Gym MuJoCo tasks operate at
control frequencies between 12.5—-100Hz, whereas our mod-
ifications explicitly examine whether directly controlling
motor torques at significantly higher frequencies can offer
advantages such as faster reactions and finer motor con-
trol. Additionally, we introduce two novel safety-critical
variants—Reacher and HalfCheetah—with randomly posi-



EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control

Table 3: Normalized evaluation returns (R) for benchmarks trained for an equivalent number of 1M high-level (p) steps per environment.
EvoControl consistently outperforms baseline methods (fixed controllers and direct torque control), with results averaged over 384 random
seeds (95% confidence intervals shown). Scores are normalized between 0 (random policy) and 100 (best-performing non-EvoControl
baseline). Bold values exceed the best baseline performance (scores >100). Corresponding unnormalized results are provided in Table 28.

Same PPO high-level alg. p with Ant Halfcheetah ~ Hopper  Hi id  Hi id dup Inverted Double Pend. Inverted Pend. Pusher Reacher  Reacher ID Walker2D
a Low-Level Policy (3 of RT RT Rt Rt RT Rt RT RT Rt RT RT
Fixed Cont. - PD Position 100£6.56  61.2+0.441  88.1+1.18  10042.96 100+0.974 99.940.03 100+2.86e-15  72.5+6.14  100+1.8 852+2.87  61.1£0.51
Fixed Cont. - PD Position Delta 244191 2.76+0.0888 96.2+1.30 96.6+1.71 2.96+0.0397 53.841.57 100+2.86e-15 0.04£0.0  40.9+3.23 152+7.6 72.740.19
Fixed Cont. - PD Int. Velocity 3.59+1.78  2.46+0.0932  71.84+0.87 83.4+1.13 0+0 49.7£1.55 86.5+2 0.0+£0.0 0+0 0+0 69.342.06
Fixed Cont. - PD : Position & K, 3.5542.54  16.740.151 100£1.00  90.9+1.19 29.84+1.42 97.540.751 100+£2.86e-15  100+£6.65  50.743.9 81.8+4.11 100+0.24
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.04:0.0 0.04:0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 17.240.316  1.37+£0.51  10.442.19 10.3+0.586 0+0 0+0 0974572 2.08+5.84  453+6.74 0.0+0.0
Direct Torque Cont. - Low Freq. (31.25Hz)  54.5£7.15 100+£1.21 69.24+0.62  98+2.55 80.6£2.56 100+0.0311 100+2.86e-15  53.0+£9.35 59.2+3.72 100+£1.94  80.7+2.16
EvoControl (Full State) 368+10.6 157+1.1 263+1.46 123427 116-£0.609 101:£0.0487 100+2.86e-15  26248.04 114+0.973  106+0.936  16343.72
EvoControl (Residual State) 18248.58 182+1.02 97+0.51 170+1.14 212+4.95 99.240.054 100+£2.86e-15  271+£7.75  106+1.29 104+1.19 165+2.19
EvoControl (Target + Proprio.) 319+14.1 168+1.41 164£5.08  165+1.77 165+4.94 99.740.0417 100+2.86e-15  2554+7.61 96.8+3.54  105+0.776  143+1.86
EvoControl (Target) 293+13.2 162+1.58 272+1.84 164+1.8 205+5.04 99.6+0.0377 100+£2.86e-15  255+6.93 112+0.785  105+0.78 151+2.44
EvoControl (Learned Gains) 266+14.1 113+1.6 198+9.62  150+2.55 117+0.205 99.540.0947 100+2.86e-15  239+7.61 116+0.747  105+1.21 158+3.63
EvoControl (Delta Position) 362+12.8 133+1.82 216+2.88  119+2.78 105:£0.285 101:£0.0364 100+2.86e-15 1934841  65.5£3.71 99.14£2.44  147+1.90

Table 4: Normalized evaluation returns (R) for benchmarks trained over an equivalent number of low-level (3) environment steps (fixed
environment duration of 2s per rollout). EvoControl here uses an evolutionary strategy with population size (es_pop_size = 64), detailed
further in Appendix J.4.1. Results, averaged over 6400 random seeds (95% confidence intervals shown), demonstrate EvoControl’s
superior normalized returns compared to baseline methods (fixed controllers and direct torque control). Scores are normalized to a 0-100
scale, where 0 indicates a random policy and 100 represents the highest score achieved by any non-EvoControl baseline. Bold values
highlight scores surpassing this baseline (scores >100).

Same PPO high-level alg. p with Ant Halfcheetah Hopper E Inverted Double Pend. Inverted Pend. Pusher Reacher  Reacher 1D  Walker2D
a Low-Level Policy 3 of R4t Rt R4 R R4t R4t R4t R4 Rt Rt R
Fixed Cont. - PD Position 100+5.17 66+0.555 90.2+0.489  92.8+29 87.8+1.3 99.6+0.0357 100+1.53e-06 100+9.4 100+1.24 88.7+2.6 68.7+0.285
Fixed Cont. - PD Position Delta 4.93+1.67 2.88+0.0891 84.3+0.854  100£1.79 3.16+0.024 57.1x1.6 100+1.53e-06  3.4+£9.98 42.8+2.99 2794748  854+0.513
Fixed Cont. - PD Int. Velocity 5.94+1.8  2.59+0.0938 569423  72.6+0.872 0+0 61.3£1.59 99+0.45 00 0+0 9.58+7.72 100+0.681
Fixed Cont. - Random 0.0£0.0 0.00.0 0.0£0.0 0.040.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.00.0 0.040.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 4440.794 42.940.53 63.6£2.37 5342.15 97.840.387 49.942.36 9.184+7.69 10.8+542  81.1+4.24 3224127
Direct Torque Cont. - Low Freq. (31.25Hz)  70.4+6.52 100+1.22 100+1.26 87.2+1.35 100-+£0.204 1004+0.0178 100+1.53e-06  83.1£10.2  67.243.05 100+1.79 69.2+1.38
EvoControl (Full State) 188+12 165+1.15 118+22.4 111+15.9 90.2£6.6 100+0.306 100£0 296+42.6  109+1.86 104+2.14 127+126
EvoControl (Residual State) 152+117 166+16.9 125+118 108+43 112+14.2 99.2+0.304 1000 302+18.1  102+1.08 104+2.07 169+59.6
EvoControl (Target + Proprio.) 183+69.2 135+11.1 130+55.2 126+12.1 124+58.8 87.1+53.3 1000 300+42.6  107+2.77 104+2.23 130+12.7
EvoControl (Target) 201+27.5 164+10.6 131+93.5 125+4.52 109+£12.2 99.5+1.7 1000 286+27  83.5+63.4 103£3.2 122+38
EvoControl (Learned Gains) 103+23.1 90+20.6 141+845 111+28.9 102£1.5 93.9426 1000 263+46.8 104+11.4 102+4.85 149+35.2
EvoControl (Delta Position) 168+29.9 123+75.2 95.9440.8 104+9.23 94.2+8.68 100+0.491 1000 300+61.6 594593 99.9+7.07 160+12.4

tioned obstacles penalizing collisions, explicitly designed to
test the value of rapid, high-frequency control. Environment
implementation details are provided in Appendix E.

Benchmark Methods. We compare EvoControl against
established baselines, using the same high-level PPO policy
(p) learning algorithm across all, varying only the low-level
policy (3). We consider fixed controllers: PD Position, PD
Position Delta, PD Integrated Velocity and PD Position &
K, (Aljalbout et al., 2024); direct torque control at both
high (500Hz) and low (31.25Hz) frequencies (Chen et al.,
2023); a Random policy (30Hz); and several EvoControl
ablations with varying state information provided to the
low-level neural network controller (Table 2). Here, the
EvoControl variants using position-based controllers are
annealed from their corresponding PD controllers. Method
implementation details are provided in Appendix F.

Evaluation. Unless otherwise stated we train each pol-
icy (high-level p and low-level 3) for 1M high-level steps.
Post-training, we evaluate performance using 128 rollouts
(different random seeds) per trained policy, calculating the
return for each 1,000-step episode. We repeat this process

for three training seeds per baseline. Results are reported
as the mean normalized score R (Yu et al., 2020) across all
384 evaluation rollouts (3 training seeds x 128 evaluation
rollouts), scaled from O (random policy performance) to 100
(best non-EvoControl baseline)—detailed in Appendix H.

5.1. Main Results

We evaluated all benchmark methods across our environ-
ments, with results tabulated in Table 3 and Table 4, for the
same number of high-level policy steps (p) and the same
number of low-level environment steps, respectively. Evo-
Control, on average, achieves higher normalized evaluation
return R on all environments. Specifically, EvoControl can
both achieve a high average return R while learning a slow
(31.25Hz) high-level policy and be able to solve an envi-
ronment task with a fast (S00Hz) learned low-level policy.
Furthermore, EvoControl can outperform direct torque con-
trol at high frequency, and outperform the same high-level
policy learning algorithm with position PD controllers, and
we provide insights in Section 5.2. Moreover, we also show
that EvoControl can support other ES for optimizing the
low-level policy in Appendix J.1.
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Figure 2: Top 3 Sub-Plots: State visitation histogram for
Reacher 1D. Empirically demonstrating that PPO with high-
frequency-direct torque control suffers from less efficient ex-
ploration compared to using PPO at a low-frequency with a
fixed-high-frequency PD controller. EvoControl can achieve
the same efficient exploration as a PD controller. Bottom:
Evaluation return R versus p policy steps on Reacher
1D. PPO at high-frequency with direct-torque control expe-
riences slower convergence compared to learning PPO at a
low-frequency with a fixed PD controller. EvoControl can
evolve its lower-level controller throughout training, leading
to a higher evaluation reward in comparison—additional
plots are provided in Appendix I.1.

5.2. Insight Experiments

Next, we analyze why EvoControl performs better than
learning a policy with standard fixed controllers or direct
torque control. We highlight the importance of controlling
an environment at high frequency when required without
sacrificing learning convergence ability.

Does EvoControl Possess Efficient Exploration? (P1). To
explore if the benchmarked methods during training possess
efficient exploration we analyze the learning curves for the
Reacher 1D environment and their state space visitation fre-
quency histograms in Figure 2 (with implementation details
in Appendix I.1). We observe that EvoControl can initially
achieve the same efficient state exploration due to temporal
abstractions, similar to that of a fixed PD position controller,
and then can further achieve a higher evaluation reward
throughout training. This suggests that the higher-frequency
control enabled by EvoControl, as theoretically motivated
by Proposition 2.1, contributes to an increased reward. This
is reminiscent of the principle behind Pulse Width Modula-
tion (PWM), where higher frequency allows for finer con-
trol and more accurate signal representation (Huang et al.,
2011). While a direct equivalence to PWM is not claimed,
the ability of high-frequency actions to improve control,
as demonstrated in Proposition 2.1, provides a theoretical

Table 5: Normalized evaluation returns (R) on the Safety Critical
Reacher environment, using the same normalization from Table 3.
EvoControl effectively learns a low-level controller capable of
rapid, adaptive responses at a high frequency, surpassing the fixed-
frequency limitations of traditional PD position controllers and
enabling quicker reactions to unexpected collisions. In contrast,
baseline controllers at lower frequencies fail to detect collisions
quickly enough, resulting in substantially lower performance.

Same PPO high-level alg. p with Safety Critical Reacher
a Low-Level Policy 3 of R T

Fixed Cont. - PD Position 100+19.2
Fixed Cont. - PD Position Delta 0+0
Fixed Cont. - PD Int. Velocity 67.1+11.4
Fixed Cont. - Random 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0

Direct Torque Cont. - Low Freq. (31.25Hz) 359+17.1
EvoControl (Full State) 205+14.1
EvoControl (Residual State) 124+24.3
EvoControl (Target + Proprio.) 237+11

EvoControl (Target) 121+24.9
EvoControl (Learned Gains) 169+7.15
EvoControl (Delta Position) 213+14.6

underpinning for EvoControl’s improved performance. Cru-
cially, we observe performing direct high-frequency torque
control suffers from poor state exploration, given the same
number of training steps (Appendix I.1).

Can EvoControl Learn High-Frequency Interaction
Control? (P2). High-frequency control can be crucial
for safety-critical tasks like collision avoidance, where rapid
responses to unexpected contacts are paramount. To inves-
tigate such a setting, we adapted the Reacher 1D environ-
ment to introduce a random object in 25% of the episodes
which block the arm from reaching its intended goal and
add both an observation for any measured contact force
and a reward penalty for this contact force (Safety Critical
Reacher). We tabulate the normalized performance of all
baselines in Table 5. We observe that EvoControl is able to
observe and react faster at high-frequency to un-modelled
collisions, compared to a low-frequency policy with a fixed-
high-frequency state tracking PD controller. Critically such
a collision detection and avoidance environment exemplifies
our intuition from Proposition 2.1, that higher-frequency
actions can achieve a higher reward. Intuitively, a well-
performing policy requires a change in behavior as soon
as any un-modeled collision is detected, intuitively similar
to fast automatic reflexes for a low-level system controller
with a high-level system, beyond simple goal-state tracking.
We provide experimental details in Appendix I.2.

This finding is further supported by experiments on the
higher-dimensional Safety Critical HalfCheetah task, de-
tailed in Appendix J.14, which features a more complex
19-dimensional state space. In this task, EvoControl sim-
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ilarly excels, leveraging high-frequency control to rapidly
detect and adapt to collisions, reinforcing the robustness and
generalizability of the approach.

Furthermore, we validated EvoControl’s practicality for real-
world deployment by demonstrating zero-shot sim-to-real
transfer on a 7-DoF Franka Emika Panda robot for tabletop
manipulation tasks. Our real-world validation showed Evo-
Control can operate effectively at high-frequency (200Hz
low-level control) with rapid inference (average 64 us per
step), comfortably surpassing typical robotic control rates.
Importantly, EvoControl reduced collision forces compared
to a tuned PD controller, highlighting benefits for safety-
critical applications. We include representative results and
visualizations in Figure 3 and Figure 4, and refer to Ap-
pendix K for comprehensive details of these real-robot ex-
periments.

Figure 3: Real-World Robot Setup. Left: MuJoCo simulation
of the Franka Emika Panda robot setup. Right: Corresponding real
hardware configuration for sim-to-real validation.

Figure 4: Real-Robot Tasks. Left: Block collision experiment
measuring collision forces. Right: Bin-opening task demonstrating
gentle high-frequency torque control.

Can EvoControl Automate Tuning of PD parameters?
(P3). A widespread limitation of any fixed-PD-low-level
controller is the inherent sensitivity of its state-tracking per-
formance to that of its fixed gains (K, K4). In practical
scenarios such gains require careful manual tuning to each
task and environment of operation. Therefore having an
approach that can be more robust to tuning PD gains than
just their inherent sensitivity is practically useful. Empiri-

Table 6: Normalized evaluation returns (R) for benchmark meth-
ods on the Reacher 1D environment, using the same normalization
from Table 3. EvoControl is more robust to the tuning of the un-
derlying PD controller than existing fixed PD controllers, which
can degrade as their PD controller parameter (/) becomes less
tuned for the task.

Same PPO high-level alg. p with K,=0001 | K, =01 | K, =10 | K, =10.0
a Low-Level Policy 3 of R T Rt RT Rt
Fixed Cont. - PD Position 0+0 13.5+£7.39 | 81.8+2.81 | 100+0.893
Fixed Cont. - PD Position Delta 0+0 0+0 14.6+7.31 | 78.8+3.58
Fixed Cont. - PD Int. Velocity 0£0 0+0 0+0 80.5+4.17
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 4361648 | 43.6+6.48 | 43.616.48 | 43.6+£6.48
Direct Torque Cont. - Low Freq. (31.25Hz) | 96.2+1.87 | 96.2+1.87 | 96.24+1.87 | 96.2+1.87
EvoControl (Full State) 99.1+£3.13 | 99.2+7.07 | 102+3.25 | 101+0.36
EvoControl (Residual State) 100+4.55 99.5+£5.62 | 100+3.29 | 102+2.18
EvoControl (Target + Proprio.) 98.6+3.5 97.9+1.48 | 101+4.43 | 101+0.894
EvoControl (Target) 94.6+6.85 96.5+10.1 | 101+1.58 | 100+0.995
EvoControl (Learned Gains) 91.84+5.37 93.44+6.69 | 101+2.35 100+3.04
EvoControl (Delta Position) 95.8+8.29 | 97.4+1.92 | 954+122 | 97.6+8.52

cally, evaluating on the Reacher 1D task, with varying the
K, ={0.001,0.1,1.0,10.0} gain, we observe EvoControl
achieving a higher average normalized return R than a PD
controller, crucially as the PD controllers become less tuned
K, — 0 their performance decreases, highlighting the sensi-
tivity of these fixed controllers. This highlights EvoControls
robustness to PD parameters, which could arise due to the
PD controller providing a semantically meaningful initial
latent action ay, that the lower-level policy can then refine.
Ablating the initial PD controller annealing in EvoControl
destabilizes learning of both the high-level and low-level
policies, confirming its importance (Appendix J.5).

6. Conclusion and Future Work

In this paper, we present EvoControl, a novel bi-level pol-
icy learning framework for learning both a slow high-level
policy and a fast low-level controller using PPO and ES,
respectively, for continuous-control tasks. Theoretically,
we show that there exist some CTMDPs in which acting at
higher frequencies can yield a strictly higher expected cumu-
lative reward. Empirically, EvoControl outperforms existing
high-frequency control methods, particularly in tasks requir-
ing fast reactions. Moreover the limitations of the current
approach, are that EvoControl still relies on the existence
of a fixed-PD controller for the task (common in robotics
applications, Appendix J.5) and can use more computational
complexity (Appendix J.4) compared to only performing
PPO, which can be readily parallelized in practice with mod-
ern accelerated compute platforms, both could be readily
improved. In addition, promising future directions include
exploring more complex nested hierarchies, direct low-level
to high-level information flow, and ensembles of policies
(Appendix L).



EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control

Acknowledgements

We thank the anonymous reviewers, and area chairs, and
specifically Francesco Nori, Leonard Hasenclever, Steven
Bohez, Thomas Lampe, Baruch Tabanpour, Antoine Moulin,
Nimrod Gileadi, Jose Enrique Chen and Taylor Howell for
their insightful comments and suggestions that ultimately
improved this work.

Impact Statement

Our novel bi-level policy learning framework, which trains
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A. Expanded Problem

In the following we expand the problem setup from the main paper.

States & Actions. We denote the environments state space as S C R% and its action space as i/ C R%. At time ¢ € R, the
system’s state is represented by s; € S, and its action by u; € U. Considering action (e.g. actuator) limits the action space
is constrained to a box in Euclidean space: U = [Upin, Umax]-

Environment Dynamics. The transition dynamics for continuous control environments can be described by an underlying
unknown differential equation of s; = % = f(s¢,ut). The transition function, which describes the evolution of the state
over a discrete time step A, can be approximated using the Euler method s; A, & s¢ + A¢f(s¢, u¢). Given an action u;
and current state S;, Stya, ~ P(St4a,|St, ut) is implicitly defined by this approximation. More sophisticated numerical
integration schemes (e.g., Runge-Kutta methods) can be employed for higher accuracy. In stochastic environments, the
dynamics function f can be considered to be stochastic, leading to a probability distribution over next states given the
current state and action. We consider the setting where there is an additional observation function that maps the current
environment state to an underlying observation z; = g(s;) + €, where € is optional observation noise, e.g. Gaussian noise
with zero mean ¢; ~ N(0,02)*. To simplify notation we use observation and state interchangeably and clarify the specifics

when needed.

Policies. The agent can be represented as a single policy 7 : R% — R% that observes the current observation at time ¢ and
samples an action u; ~ 7(s;) and then applies this action to the environment at a given fixed A;. In the case of a stochastic
policy, the action is sampled from a distribution conditioned on the state: u; ~ 7(-|s¢).

To formalize a bi-level policy, we decompose 7 into two components: a slow, high-level policy, p, and a fast, low-level
policy, 3. Both policies interact with the environment as described in Algorithm 1. The high-level policy p operates at a
lower frequency and outputs a high-level (latent) action, a;, ~ p(sk), at time step k. This latent action often represents
a desired high-level target, such as a target position or velocity. The low-level policy 5 operates at a higher frequency
and receives the high-level action ay, as input. 5 then generates the low-level actions, uy.,, at a finer-grained time step
1, corresponding to direct motor torques or other low-level control signals. These low-level actions aim to achieve the
high-level target specified by p. We denote the high-level time steps as k and low-level time steps as ¢ to maintain this
distinction. The fast, low-level policy /3 operates at a frequency of 1/A;, where A, is the low-level time step. The slow,
high-level policy p guides the low-level policy over a longer horizon. Specifically, p issues a latent action which is executed
by 3 for G steps. This means p effectively operates at a frequency of 1/(GA;) with a time step of GA;.

Objective. The environment produces a reward 7, sampled from an unknown reward function 7 (s, us), 7 : S X U — R.
The overall objective of the agent is to maximize the expected future discounted reward E,.7 v:7—1,R0:T—1 {Z;TF:_O:L fy"'n} ,
where 0 < v < 1 is the discount factor.

Markov Decision Process (MDP). We can model the environment as a Markov Decision Process (MDP), defined by the
tuple M = (S,U, P,r,~), where:

+ S C R% is the continuous state space.

» U C R% is the continuous action space.

P(s¢4+A,|8t, ut) is the state transition probability distribution, implicitly defined by the dynamics function f and the
discretization scheme (e.g., Euler method).

e 7:S x U — Ris the reward function, providing a scalar reward r, = r(s;, us) at each time step.

* v € [0, 1) is the discount factor, determining the importance of future rewards.

*For the standard MuJoCo Brax environments we use, the joint velocity observation has Gaussian noise added to it, following the
standard implementation of the environments (Freeman et al., 2021).
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B. Proof of Proposition 2.1: Existence of CTMDPs Requiring Higher-Frequency Control for
Optimality

Proposition B.1. Consider a continuous-time Markov Decision Process (CTMDP) with a finite state space and action
space. Let this CTMDP be discretized with time step ;. There exist CTMDPs such that for any fixed discretization step
Ay > 0, there exists a finer discretization A}, < A where the optimal policy for the A}-discretized MDP achieves a higher
expected cumulative reward over a fixed time horizon T than the optimal policy for the A;-discretized MDP.

Full Set of Assumptions:

We consider a CTMDP with state space S and action space A. When discretized with a time step A, the transition
probabilities are governed by a transition rate matrix Q(a), where Q;;(a) denotes the transition rate from state ¢ to state j
under action a. The transition probabilities in the discretized MDP are then given by:

Q@A + O(A]) i #j

P($j|5i7aaAt) = {[eQ(a)Ar]“+O(A?) Z:j

where e@(®)2+ is the matrix exponential. This is a standard assumption when discretizing CTMDPs, justifiable by the
Taylor expansion of the matrix exponential (see, e.g., Norris (1998), Chapter 2, Theorem 2.8.2). We assume that the error
terms O(A?) converge uniformly to zero as A; — 0. The reward function r(s, a) is the same for both the continuous and
discretized cases. The time horizon T' > 0 is fixed, and we assume 7' is an integer multiple of both A; and A}.

Proof. CTMDP and MDP Definition: We consider a CTMDP with the following properties:

+ State Space: S = {5g00d, Sbad }
e Action Space: A= {amaintaina arecnver}
¢ Transition Rates:

— Under amainein: transition rate from Sgood t0 Spag is p > 0. No other transitions.
— Under arecover: instantaneous transition from spaq 10 Sgo0d. NO other transitions.

* Reward Function: 7(Sgo0d; @) = T'g00a > 05 7"(Spad, @) = Tbaa < 0.
* Discount Factor: v = 1 (undiscounted)

* Episode Duration: T’

L]

Initial State: 55004

Discretizing this CTMDP with time step A, yields an MDP with transition probabilities as described in the assumptions
above, derived from the transition rates. Specifically, for small Ay:

P(Sbad|5gooda Gmaintain s At) ~ pAy
P(5g00d|sgooda Gmaintain 5 At) ~ 1 _pAt

P(5g00d|5bad7 Grecovers At) =1

Cumulative Reward Definition: The cumulative reward R(m, T, A;) for a policy 7 over a time horizon T" in the MDP with

discretization A; is:
T/A 1

R(ﬂ', T‘7 At) = Eﬂ— Z T(St, at)At
t=0

Proof Steps:
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1) Optimal Policies (7*(A;)): For any discretization Ay, the optimal policy 7*(A;) is to apply Grecover 1N Sbad a0 Amaintain
in Sgood-

2) Expected Cumulative Reward (Finer Discretization A} = %): Consider a finer discretization A} = % for some

integer n > 1. Under 7*(A}), the probability of transitioning to S, and staying there for a time kA within a A, interval

is approximately (7)(p5:)*(1 — p2£)"~k. Since recovery is immediate, the expected time in spqq within a A, interval is
2 2

S kAL(R) (p%)k(l - p%)"”c = p%. The expected time spent in 4404 1S then Ay — w. Thus the expected

reward per A, interval is:

p(A¢)? p(A¢)? p(A¢)?
(At - ( f) )Tgood + ( f) Tbad = At""good - ( f) (Tgood - Tbad)
n n n
And with Alt such intervals, the total expected cumulative reward is:
. T p(A)?
R(ﬂ- (A:t)aTa Afﬁ) = E(Atrgood - ( t) (Tgood - Tbad))
TpA
= Trgood - %(Tgood - Tbad)

3) Expected Cumulative Reward (Coarser Discretization A;): For a fixed A, the stationary distribution probabilities
under 7%(A;) can be approximated by solving the balance equations: jtgood(1 — pA¢) + fibad(1) = tgood and Lgood (PAL) +
/’Lbad(o) = Mbad- Also Hgood + Hbad = 1. This giVCS Mbad = pAt and Kgood = 1- pAt~

Thus, the expected reward per A, step is:

Rstep = HgoodT good + UbadTbad
= (1 - pAt)rgood + (pAt)Tbad
= T'good — pAtTgood + pAthad

= Tgood — pAt ('rgood - rbad)

Over the entire horizon T', with Alt steps, this gives:

T
R(ﬂ-* (At)a T, At) = Kt (Tgood - pAt (Tgood - Tbad))At

= Trgood - TpAt(rgood - Tbad)

4) Comparison: Comparing the rewards, we have:

R(F*(A;), T7 A;) - R(ﬂ-*(At)’ Ta At)

TpA
= (TTQOOd - n t(T!JOOd - rbad)) - (Trgood - TpAt (rgood - rbad))
TpA
= Trgood - %(rgood - rbad) - Trgood + TpAt (Tgood - Tbad)
TpA
= - n t (rgood - Tbad) + TpAy (Tgood - rbad)

1
= TpAt (Tgood - rbad)(l - ﬁ)

Since rgood > Thad> P > 0, Ay > 0, and n > 1, this difference is positive. Therefore, for any A, a finer discretization
A} = % with n > 1 leads to a higher expected cumulative reward under its optimal policy. O
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B.1. Intuitive Continuous Control Safety-Critical Example

Consider a safety-critical task involving a one-degree-of-freedom robot arm. The arm’s state is its joint angle 6;, and the
action is the motor torque 7;. The goal is to reach a target angle 64,, from an initial angle 6y within a fixed episode duration
T'. An immovable obstacle may appear in a random subset of episodes (e.g., 25% of the time), obstructing the direct path to
the goal. The reward function encourages reaching the target angle while penalizing contact forces with the obstacle:

T
—16:—0,
R = / (rgoale 16¢=Os0u| _ TcollisionFt> dt
0

where 7ga1 and ropiision are positive weighting constants, and Fy is the magnitude of the contact force between the arm and
the obstacle at time ¢ (0 if no contact). The policy receives the observation Oy = (6, 6, Ty measured )> Where T¢ measured 18 the
measured torque, reflecting contact forces if any.

A standard approach might use a position PD controller with a low-frequency high-level policy that provides the target angle
Btaree.. However, this approach faces limitations. If the obstacle is present, the PD controller will exert a continuous force
against it, incurring significant penalties. The low-frequency policy might only detect the collision after a substantial delay,
making it difficult to react effectively.

A high-frequency policy, on the other hand, can detect the collision much faster and take corrective action. Upon detecting a
sudden increase in T; measured it can immediately reduce the motor torque, minimizing the contact force F;. Furthermore, a
sophisticated high-frequency policy can learn to approach the target cautiously, probing for the obstacle with small torques.
If contact is detected, it can adjust its trajectory to reach the goal while avoiding further collisions.

This intuitive example illustrates how high-frequency control can be crucial for safety-critical tasks. It enables faster reaction
to unexpected events and allows for more nuanced control strategies that consider the full reward structure, including
collision avoidance. This motivates the development of methods like EvoControl, capable of effectively learning such
high-frequency policies. This example highlights scenarios where high-frequency control offers a significant advantage over
traditional low-frequency control coupled with fixed controllers, especially in tasks requiring rapid responses and nuanced
interaction behaviors.

C. Expanded Background: Fixed PD Controllers

Low-level PD controllers are extensively used within robotics applications, specifically when combined with a learned
high-level policy p. This hierarchical structure simplifies the learning problem and effectively reduces the number of
decision steps for the high-level policy. This reduction is achieved by allowing the high-level policy to operate at a timestep
of GA¢, where G is the number of low-level actions executed per high-level action, effectively reducing the number of
high-level actions within a fixed episode duration 7'.

In continuous control and robotics, these hierarchical structures, composed of a learned high-level policy (p) and a fixed
low-level controller (e.g., a PD controller (Oku et al., 2018)), are common (Peng & Van De Panne, 2017; Song et al., 2019;
Chentanez et al., 2018; Peng et al., 2018; Xie et al., 2020). The high-level policy outputs a target a; which the low-level PD
controller tracks using a control signal based on the error between aj and the measured system state s;.

Commonly, PD control is designed to track a second-order signal, such as position or velocity. The control signal, u, is
given by:
ur = Kp(ap — s¢) + Kalar — $¢), (1

where K, K; € RT are constant proportional and derivative gains, and e; = aj, — s, represents the tracking error.

Specifically for robotics, proprioceptive observed states can be represented as joint positions (g;), joint velocities (g;), and
torques (7). This leads to several common PD control designs, summarized in Table 1. These designs differ in how the
high-level target ay, is interpreted and used in the control law. For instance, in "PD Absolute Position," a, directly specifies
the desired joint position (¢?), while in "PD Delta Position," a;, represents a change in joint position (§¢%) relative to the
current position. The state s; in the control law can encompass a wider range of proprioceptive information beyond just
joint positions (gq;). We present the target a; and tracking error in terms of position/velocity for clarity and to align with
common PD controller formulations.
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D. Extended Related Work

Table 7: Comparison with related bi-level learning approaches in RL. Our method, EvoControl, can achieve efficient state-action
space exploration, whilst learning high-frequency interaction behavior, and avoids tuning of PD parameters.

Approach Ref. ™ Low-level High-level Action High-level (P1) Efficient  (P2) High-Frequency (P3) Automate Controller
B Reward Duration A, Action p Exploration  Interaction Control  Tuning PD Parameters

Fixed Controllers (Song et al., 2019) {Pans Bpd_controlter } t) — Sdesired ()] |2 GA, {qa, 4a, Ta} v

Direct Torque Control (Peng & Van De Panne, 2017) {0} 8 (sia win, ) A A a(t) 4 v

HRL: Skills (Sutton et al., 1999; Rao et al., 2021)  {pmanager, {0, B15 -, Bn}},n € Zp =2 il ! r(sin,, win,) A Zn € 2, v v

HRL: Sub Goals (Nachum et al., 2018b) {p.8} —[|s(t) = sdesirea(t)2 GA; Sdesirea (1) v v

EvoControl (Ours) {p.5} R= E,":/‘;A”‘ r(Sin,, win,) D¢ GA, 2 € {qa. Ga-7a} v v v

Existing approaches to continuous control in robotics primarily fall into two categories: those employing fixed low-level
controllers and those utilizing direct torque control learned end-to-end. EvoControl aims to addresses limitations inherent in
both approaches, and we summarize the key differences in Table 7.

Fixed Low-Level Controllers: A common strategy involves combining a learned high-level policy (often operating
at low frequency, e.g., 10-30Hz) with a fixed, high-frequency low-level controller (e.g., a Proportional-Derivative (PD)
controller operating at S00Hz or higher) (Song et al., 2019; Chentanez et al., 2018; Peng et al., 2018; Xie et al., 2020).
The high-level policy generates setpoints (e.g., desired positions or velocities), and the low-level controller tracks these
setpoints by adjusting actuator torques. While prevalent, this approach suffers from several drawbacks. The low-level
controller’s parameters require careful tuning, and its fixed nature limits its ability to handle high-frequency interactions
such as unexpected collisions or disturbances. Furthermore, recent work applying RL algorithms to the physical world
often restricts itself to relatively low-frequency control (~20Hz) due to the reliance on analytical impedance controllers
(Martin-Martin et al., 2019; Luo et al., 2018; Johannink et al., 2019). Even hierarchical approaches employing analytical
controllers often limit high-level policy frequencies (Davchev et al., 2022). EvoControl, in contrast, aims to achieve efficient
exploration while also enabling the learning of flexible and complex high-frequency behaviors in the low-level policy.

Evolutionary Strategies: Direct evolutionary strategies (ES approaches, (Béck et al., 2013)) have been shown to provide an
alternative for solving reinforcement learning environments; however the direct application of them, as shown by others are
that they can be sample inefficient, get stuck in global minima; however excel at discovering good performing long-horizon
tasks, sparse reward tasks and delayed reward tasks, as they often optimize the episodic return, rather than the intermediate
temporal difference return (Salimans et al., 2017). There exist works formulating hierarchical ES for both levels, however
still under-perform gradient-based RL policy methods (Abramowitz & Nitschke, 2022). EvoControl through it’s novel
combination of a PPO learned high-level policy, and a ES-learned low-level policy empirically outperforms the ablation
version of using ES for both the high-level and low-level in EvoControl, as shown in Appendix J.9.

Direct Torque Control: Alternatively, some methods learn an end-to-end policy that directly outputs joint torques at a
high frequency (Peng & Van De Panne, 2017; Wahlstrom et al., 2015; Watter et al., 2015). This approach, while potentially
offering greater adaptability, faces significant challenges. High-frequency control suffers from the curse of dimensionality
imposed by the increased number of time steps in long horizons. The resulting explosion in the number of possible action
sequences significantly hinders exploration and can lead to suboptimal policies (Martin-Martin et al., 2019; Peng & Van
De Panne, 2017). EvoControl mitigates these challenges by employing a hierarchical structure, enabling more efficient
exploration while retaining the adaptability afforded by direct torque control at the low level. Moreover, the related work
of Peng & Van De Panne (2017) compares learning policies with four different action spaces of direct torque control, PD
position control, PD velocity control and a muscle activation’s for the task of imitating gaits for planar walking robot
environments (continuous control). Their findings correlate with ours, in that they observed on average faster learning
convergence and higher task reward using a low-level high-frequency (fast) controller, such as PD controller compared to
performing direct torque control. Additionally Peng & Van De Panne (2017) due to having no prior controller parameters
for the environments that they wanted to control, Peng & Van De Panne (2017) similarly performed a related approach
where they optimized the fixed low-level controller parameters throughout training a high-level policy. However, all of
their low-level controllers used are simple, few parameter (2-7) controllers, such as a PD controller, and such fixed simple
controllers are all only capable of sub-goal simple tracking behavior. Whereas EvoControl, can represent the fast lower-level
policy with a neural network policy and learn this throughout training the high-level policy, learning fast adaptive behavior
of the low-level policy, that goes beyond simple sub-goal tracking behavior. Furthermore, the related work of Reda et al.
(2020) studied environment design for continuous control tasks, and found that varying the control frequency of performing
direct torque control in standard Mujoco Gym like environments (e.g. Ant, Hopper) could yield better learning and overall
policy return, however requires tuning the control frequency (or discrete action repeats of the simulation timestep A;)
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for each environment and task to get the best performance—Ilikely due to matching the inherent control frequency of the
dynamics of the environment. They also studied the use of learning with PD controllers, and determined that PD controllers
can aid in converging faster to good policy, however can get stuck in lower-reward solutions (local minima), motivating
the need for a method to practically perform high-frequency torque control. In summary, EvoControl can overall learn
a high-frequency policy 7 by learning both a slow-high-level policy p combined with a fast-low-level policy 3, learning
adaptive low-level behavior of an equivalent high-frequency policy, avoiding the difficulties of learning a direct torque
control high-frequency policy directly. Furthermore, we provide empirical evidence for the difficulty of learning a direct
torque control high-frequency policy, as even with an ever increasing number of training steps, such a policy may converge
to local minima Appendix J.3.

Hierarchical Reinforcement Learning (HRL): EvoControl draws inspiration from the HRL paradigm, which decomposes
complex tasks into simpler subtasks managed by separate policies. Existing HRL methods such as options frameworks
(Sutton et al., 1999; Bacon et al., 2017) and hierarchical actor-critic architectures (Riedmiller et al., 2018; Vezzani et al.,
2022) have been successfully applied to improve exploration and learning efficiency. However, these methods typically
focus on discrete skill selection or subgoal decomposition (Heess et al., 2016), while EvoControl explicitly addresses the
challenges of learning a low-level controller for continuous high-frequency control, enabling semantically meaningful
exploration in different control modes. Related work in the RHPO/HO2/MO2/HeLMS family (Rao et al., 2021; Salter et al.,
2022; Wulfmeier et al., 2020a;b) has also explored hierarchical approaches. However, unlike typical HRL, which focuses on
skill discovery, EvoControl targets learning a fast low-level policy that complements the slow high-level policy. Uniquely,
EvoControl combines PPO and ES within its hierarchical framework for efficient exploration and complex high-frequency
control.

Hybrid Combinations of RL and ES: Existing related work has looked into combining evolutionary strategies ES to
improve RL algorithms, specifically using them to collect diverse data as ES methods show superior exploration capabilities
compared to on-policy and off-policy RL algorithms, and also take updates for the RL agent itself (Sigaud, 2023; Suri
et al., 2020; Khadka & Tumer, 2018; Conti et al., 2018; Li et al., 2024; Bodnar et al., 2020). Specifically, Suri et al. (2020);
Khadka & Tumer (2018) use RL (SAC/DDPG) with ES data collection to collect diverse trajectories into the replay buffer to
update the RL agent. Suri et al. (2020) propose automatic mutation tuning to improve the ES component, and demonstrate
improved performance on 10 out of 15 continuous-control environments compared to the equivalent RL method baselines.
Khadka & Tumer (2018) also uses ES (Neuroevolution) to collect diversified trajectories, and use these trajectories in a
replay buffer to train an off-policy RL agent. They further, update the ES data collection agent with snapshots of the trained
RL agent throughout training, and demonstrate on continuous control tasks that this can lead to higher reward evaluation and
faster convergence in higher-dimensional state-action challenging environments. Furthermore, Zheng et al. (2020) proposes
a transfer approach that has a pool of agents containing three classes of agents: on-policy agents, off-policy agents, and
a population-based ES agents. All agents explore and collect trajectories into a replay buffer, with the on-policy and ES
agent initially transferred from the weights off-policy (global) agent; the trajectories of the on-policy agents are then more
frequently sampled when used to update the off-policy global agent, and use a threshold to control the frequency of policy
parameter transfer. There also exist alternative solutions to combine ES and RL, such as seeding ES with an RL agent for
symbolic regression (Mundhenk et al., 2021). Moreover, Elfwing et al. (2007) proposed a task decomposition method, using
MAXAQ, to break down a complex task into a hierarchy of subtasks on small dimensional state-action space problems, and
used a genetic programming algorithm to learn the hierarchical task decomposition automatically. Specifically in Elfwing
et al. (2007), each hierarchy corresponds to a different subtask that can be performed. Unlike EvoControl, all of these related
works do not consider the problem of learning at higher frequencies, operating their continuous control environments at
default large discrete time steps (e.g. 20-100Hz (Brockman et al., 2016a)), and do not focus on an hierarchical approach of
having a high-level policy outputting a latent action and a low-level policy following this latent action for G steps (providing
temporal action abstractions)—which limits the practical deployment of their agent, as if rich features are used as inputs to
the agent such as images or the use of larger architectures, such as Vision Language Transformers, the inference time of
the agent would increase (e.g. ~ 30H z for images from video), limiting the agents use where high-frequency control is
necessary for an environment. Conversely, EvoControl enabled from its hierarchical structure decomposing a high-level
policy and a low-level policy, the low-level policy can remain a simple neural network agent of a smaller size being able
to run with a fast inference time, and hence fast control operation of 500 — 1K H z, and still gain the benefit of having a
higher-level policy that can still take as input rich features arriving at a lower-frequency such as images.

Continuous-Time Control & Planning: A surge of recent work tackles reinforcement learning in continuous-time settings
where observations arrive irregularly and actions experience latency. Neural Laplace Control marries a Laplace—domain
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dynamics model with model predictive control (MPC) to handle unknown delays (Holt et al., 2023a). Complementarily,
Active Observing in Continuous-Time Control shows that when to measure the state is as critical as what to do, proving
that irregular sampling can strictly outperform uniform sensing while remaining computationally tractable (Holt et al.,
2023b). These ideas resonate with event-triggered control in multi-agent systems (Garcia & Antsaklis, 2012) and with
delay-robust model-based RL methods, e.g. Delay-Aware Model-Based RL (Chen et al., 2021a). For long horizons,
sequence-modelling planners—including Decision Transformer (Chen et al., 2021b) and diffusion-based policy refinement
(Chi et al., 2023)—provide strong baselines that can be embedded inside MPC loops, yielding hybrid RL-MPC schemes
with favourable stability guarantees (Reiter et al., 2025). While orthogonal to EvoControl, continuous-time control methods
naturally connect to high-frequency control—reducing the discretization timestep brings discrete-time methods closer to
continuous-time behavior. Future extensions of EvoControl could incorporate these continuous-time approaches, enabling
extremely fast-reacting low-level neural policies that outperform traditional MPC or planning methods constrained by
computational budget at very high control frequencies.

Interpretable Dynamics and Generative Simulation: Replacing black-box predictors with symbolic or sparse repre-
sentations improves transparency and extrapolation. SINDy uncovers compact governing equations from data (Brunton
et al., 2016), and recent work extends this philosophy to causal inference, which learns closed-form differential systems that
remain valid under irregular sampling, enabling counterfactual policy evaluation (Kacprzyk et al., 2024). Beyond inference,
high-fidelity simulators are indispensable for safe planning. Recent work automates simulator construction by letting a large
language model propose causal structure which is then empirically calibrated via gradient-free optimisation, achieving robust
generalisation beyond historical support (Holt et al., 2025). Such approaches complement physics-grounded generative
agents (Battaglia et al., 2018) and underscore the trend toward marrying interpretable models with powerful planners for
trustworthy, data-efficient control. In relation to EvoControl, leveraging automated simulator construction enables the
generation of diverse, open-ended training environments (Team et al., 2021), facilitating scalable online policy learning.
Future versions of EvoControl could integrate these capabilities, significantly enhancing the approach’s applicability to
more complex, varied tasks and objectives.

E. Environment Selection and Implementation Details

Benchmark environments. We compare against ten standard continuous-control environments (Brockman et al., 2016a;
Freeman et al., 2021), and also a safety critical continuous control environment. Specifically we use the continuous control
suite from Brax® (Freeman et al., 2021), which consists of ten standard continuous control environments, such as locomotion
based robot control tasks such as Ant, HalfCheetah and larger state-action space environments such as Humanoid (e.g.
controlling a humanoid robot with a state-action dimension of 60 to walk forwards with a given velocity). All the Brax
environments are released under the Apache-2.0 license. Furthermore, within this standard suite of tasks is manipulation
based environments such as Reacher and Pusher, where pusher is a 7 degree of freedom (DOF) robotic arm, with the task to
push a movable object on a table to a desired goal location. Moreover, we also construct a safety inspired environment,
adapting a single arm version of the Reacher environment, where introduce a random un-modeled contact that incurs a
large negative reward when the robot manipulator collides with the object. To compare the frequency element, we set the
frequency of each environment to 500Hz, and then motivated by a low-lever controller running at lower frequency such as
31.25Hz (G = 16) (a realistic assumption when involving cameras to determine state), we set this as the low-level frequency.

E.1. Standard Gym MuJuCo Tasks

We use Brax (Freeman et al., 2021), a differentiable physics engine, which provides efficient implementations of the
Ant, HalfCheetah, Hopper, Humanoid, HumanoidStandup, InvertedDoublePendulum, Pusher, Reacher, and Walker2d
environments. These environments encompass a range of locomotion and manipulation tasks, providing a diverse testbed for
evaluating EvoControl. For each environment, we set the simulation timestep A; to 0.002 (500Hz operation). High-level
policies operate at a frequency of 31.25Hz, achieved by executing each high-level action for G = 16 simulation steps. To
ensure a fair comparison across different control modes, we remove the action magnitude penalization from the default
reward function of each environment. The low-level policy receives the high-level action concatenated to a subset of the
environment observation state as its own observation, and the exact input specification for each EvoControl variation is
provided in Table 2. This allows the low-level controller to condition its actions on the target specified by the high-level
policy. The low-level action space is the same as the high-level action space. All environments have a fixed episode length

>The Brax continuous control environments are all publicly available from https: //github.com/google/brax.

23


https://github.com/google/brax

EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control

of low-level timesteps of 1,000 environment steps. To increase the realism of the simulation, we run the Brax environments
with the backend of MJX, that is a MuJoCo environment in Jax with XLLA. This enables us to even modify the MuJoCo
xml definition file (to create the Safety Critical Reacher) environment. For all MuJoCo environments, we incorporated
fixed PD controllers. We tuned the PD gains for each environment individually. Specifically, we set the proportional gain
(Kp) to 1.0. This value was chosen as the environments, by default, accept actions with a magnitude of 1, representing a
normalized torque input. To determine the optimal derivative gain (K), we leveraged MuJoCo’s dampratio parameter,
setting it to 1.0 (critically damped). We then empirically observed the K, value that corresponds to this dampratio within
the simulation. These tuned K, and K4 values were used consistently throughout our experiments unless explicitly stated
otherwise, providing a standardized and well-tuned PD baseline for comparison with EvoControl. This approach ensured
that the PD controllers were appropriately configured for each environment’s dynamics, providing a strong benchmark for
evaluating the performance of learned low-level policies.

E.2. Reacher 1D

The Reacher 1D environment is a simplified version of the standard Reacher environment. We remove the second arm link,
creating a 1DOF task suitable for detailed analysis. The goal is randomly placed within the reachable workspace of the
single arm link. The high-level state space consists of the angle and angular velocity of the arm, and the 2D position of the
target. The high-level action is the desired angle. The low-level state comprises the high-level state concatenated with the
high-level action, and the low-level action is the torque applied to the joint. To ensure reproducibility we provide the full
environment MuJoCo xml specification below.

<mujoco model="reacher_1d">
<compiler angle="radian" inertiafromgeom="true"/>
<default>
<joint armature="1" damping="1.0" limited="true"/>
<geom conaffinity="0" contype="0" friction="1 0.1 0.1" rgba="0.4 0.33 0.26 1.0"/>
</default>
<option gravity="0 0 0" timestep="0.002" />

<custom>
<!-— brax custom params -—>
<numeric data="0 0.1 -0.1" name="init_qpos"/>
<numeric data="1000 1000" name="constraint_stiffness"/>
<numeric data="1000" name="constraint_limit_stiffness"/>
<numeric data="3 0.1" name="constraint_vel_damping"/>
<numeric " name="constraint_ang_damping"/>
<numeric " name="ang_damping"/>
<numeric " name="spring_mass_scale"/>
<numeric " name="spring_inertia_scale"/>

<numeric data="5" name="solver_maxls"/>

</custom>

<worldbody >
<light diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/>
<!-- Arena -—>
<geom conaffinity="0"
<geom conaffinity "
<geom conaffinity
<geom conaffinity
<geom conaffinity="0"
<!-— Arm ——>

" size="1 1 10"

type="plane" rgba="1 11 1"/>
"sideS" size=" "

.02" type="capsule"/>
"sideE" size=".02" type="capsule"/>
deN" size=".02" type="capsule"/>
"sideW" size=".02" type="capsule"/>

<geom conaffinity="0" contype="0" fromto="0 0 0 0 0 0.02" name="root" size=".011" type="capsule"/>
<body name="body0" pos="0 0 0.01">
<joint axis="0 0 1" limited="true" name="joint0" pos="0 0 0" type="hinge" range="-3.13 3.13"/>
<geom fromto="0 0 0 0.2 0 0" name="link0" size=".01" type="capsule"/>
<body name="fingertip" pos="0.11 0 0">
<geom name="fingertip" pos="0 0 0" size=".01" type="sphere"/>
</body>
</body>

<!-— Target ——>
<body name="target
<joint armature
<joint armatur
<geom conaffinit
</body>
</worldbody >
<actuator >
<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="200.0" joint="joint0"/>
</actuator >
</mujoco>

limited="true" name

true" name
contype="0" name="target" pos="0 0 0" size=".009" type="sphere"/>

E.3. Safety Critical Reacher

The Safety Critical Reacher environment builds upon the Reacher 1D environment by introducing a safety aspect. In 25%
of the episodes, a randomly positioned obstacle is introduced, which the arm must avoid. A contact force sensor is added
to the observations, and a penalty is applied to the reward for any contact force exceeding a threshold. This encourages
the development of low-level controllers capable of reacting quickly to avoid collisions. The high-level state space adds a
contact force sensor to the Reacher 1D state, while action spaces for both high and low level controllers remain the same
as the Reacher 1D environment. This environment directly tests the hypothesis that higher-frequency actions can lead to
significantly better performance in safety-critical scenarios, aligning with the intuition presented in Proposition 2.1. The
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faster reaction time allowed by a high-frequency low-level controller is crucial for effective collision avoidance. To ensure
reproducibility we provide the full environment MuJoCo xml specification below. We also use the following reward:

r=— qu - gH — 3.1415927 - I(|| .|| > 0) @)

where qq is the joint angle (where gq indicates the first dimension of ¢ at time ¢), f. is the contact force between the arm and
the obstacle, and I(-) is an indicator function that equals 1 if the condition inside is true, and O otherwise. Where we used a
fixed goal location of 7/2, and initial starting state of ¢y = 0. To ensure reproducibility we provide the full environment
MuJoCo xml specification below.

<mujoco model="safety_critical_reacher">
<compiler angle="radian" inertiafromgeom="true"/>
<default>
<joint armature="1" damping="1" limited="true"/>
<geom friction="1 0.1 0.1" rgba="0.4 0.33 0.26 1.0"/>
</default>
<option gravity="0 0 0" timestep="0.002" />

<custom>
<!-— brax custom params ——>
<numeric '—-1.57 0.11 0.0 -0.3" name="init_qpos"/>
<numeric 000 1000" name="constraint_stiffness"/>
<numeric 000" name="constraint_limit_stiffness"/>
<numeric " name="constraint_vel_damping"/>
<numeric " name="constraint_ang_damping"/>
<numeric " name="ang_damping"/>
<numeric name="spring_mass_scale"/>
<numeric " name="spring_in _scale"/>
<numeric name="solver_maxls"/>

</custom>
<worldbody >
<light diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/>
<!-- Arena ——>
<geom conaffinity
<geom conaffinity
<geom conaffinity " contype=
<geom conaffinity " contype=
<geom conaffinity="0" contype="0"
<!-— Arm ——>
<geom conaffinity="0" contype="0" fromto="0 0 0 0 0 0.02" name="root" size=".011" type="capsule"/>
<body name="body0" pos="0 0 0.01">
<joint axis="0 0 1" limited="true" name="joint0" pos="0 0 0" range="-1.570 3.1415" type="hinge"/>
<geom fromto="0 0 0 0.2 0 0" name="link0" size=".01" type="capsule"/>
<body name="fingertip" pos="0.11 0 0">
<geom conaffinity="0" contype="0" name="fingertip" pos="0 0 0" size=".01" type="sphere"/>
</body>
</body>
<!-— Random Collision Capsule ——>
<body name="obstacle -body" pos="0 0 0.01">
0 0" damping="0" limited="true" name="obstacle_x" pos="0 0 0" range="-.
<joint axi 1 0" damping= bstacle_y" pos="0 0 0" range
<joint axi 0 1" damping " limited="true" name="obstacle_z" pos="0 0 0" range="-.
<geom pos="0 0 0" size=".02" fromto="0 0 -0.1 0 0 0.1" type="capsule" name="obstacle"/>
</body>
</worldbody >
<contact>
<pair geoml="obstacle" geom2="fingertip" condim="1" />
<pair geoml="obstacle" geom2="1ink0" condim="1" />
</contact>
<actuator >
<motor ctrlilimited="true" ctrlrange="-1.0 1.0" gear="200.0" joint="joint0"/>
</actuator >
</mujoco >"""

" contype="0"
" contype "

name="ground" pos="0

0" size="1 1 10" type="plane" rgba="1 1 1 1"/>

- " name="sideS" size=".02" type="capsule"/>
" name="sideE" " type="capsule"/>
" name deN" size=".02" type="capsule"/>
" name="sideW" size=".02" type="capsule"/>

" type="slide" armature="1el0"/>
" type="slide" armatur el0"/>
" stiffness="0" type="slide" armature="1el0"/>

<joint a

" limited="true" nam;

E.4. Safety Critical HalfCheetah

The Safety Critical HalfCheetah environment augments the standard HalfCheetah task with a single, vertically—oriented
capsule obstacle that the agent can collide with. At the start of each episode the obstacle is placed directly on the cheetah’s
trajectory with probability 25%; otherwise it is translated below the arena so that no contact can occur. The observation
vector is extended by the scalar magnitude of the measured contact force, while the 6-DoF action space remains unchanged.

Whenever any of the torso, fthigh, fshin or £foot geoms touches the obstacle, a reward of —200 is applied. We
omit the usual quadratic control cost so that collision-avoidance is the dominant optimisation signal. The per—timestep
reward therefore becomes

X - T
o= = 200 - 1| ]l > 0), 3
N——

run
where x; is the torso’s x-position, At is the physics timestep, f. is the contact force between the agent and the obstacle, and
I(+) is the indicator function. As argued in Proposition 2.1, this large, impulse—shaped penalty rewards policies that can
react at high frequency to avoid dangerous contacts. To ensure reproducibility we provide the full environment MuJoCo xml
specification below.

<mujoco model="cheetah">
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<compiler angle="radian" coordinate="local" inertiafromgeom="true" settotalmass="14"/>
<default>
<joint armature=".1" damping=".01" limited

0 .8 .03" solreflimit=".02 1" stiffness="8"/>

true" solimplimit

<geom conaffinity condim contype friction=".4 .1 .1" solimp="0.0 0.8 0.01" solref="0.02 1" rgba="0.4 0.33 0.26 1.0"/>
<motor ctrilimited rue" ctrlrange="-1

</default>

<size nstack="300000" nuser_geom="1"/>

<option gravity="0 0 -9.81" timestep="0.002" iterations="4" />

<custom>
<!-— brax custom params -—>

<numeric data="0 0 0 0 0 0 0 0 0 —10" name="init_gpos"/>

<numeric dat 10000" nam constraint_limit_stiffness"/>
<numeric dat 20000" nam constraint_stiffness"/>

<numeric dat 10 2 2 2 10 2 1 1" name="constraint_ang_damping"/>
<numeric dat 10" name="constraint_vel_damping"/>

<numeric -0.01" name="ang_damping"/>

<numeric 0.2" name="baumgarte_erp"/>

<numeric 0.3" name="spring_mass_scale"/>

<numeric "0.8" name="spring_inertia_scale"/>
<numeric data="50" name="solver_maxls"/>
</custom>
<asset>
<texture builti gradient” height="100" rgb1="1 1 1" rgb2="0 0 0" type="skybox" width="100"/>
<texture builtin="flat" height="1278" mark="cross" markrgb="1 1 1" name="texgeom" random="0.01" rgb1="0.8 0.6 0.4" rgh2="0.8 0.6 0.4" width
="127"/>

<texture builtin="checker" height="100" name="texplane" rgbl="0 0 0" rgh2="0.8 0.8 0.8" type="2d" width="100"/>
<material name="MatPlane" reflectance="0.5" shininess="1" specular="1" texrepeat="60 60" texture="texplane"/>
<material name="geom" texture="texgeom" texuniform="true"/>
</asset>
<worldbody >
<light cutoff="100" diffuse 1 1" dir="-0 0 -1.3" directional="true" exponent="1" pos="0 0 1.3" specular=".1 .1 .1"/>
<geom conaffinity="1" condim="3" material="MatPlane" name="floor" pos="0 0 0" size="40 40 40" type="plane" rgha="0.5 0.5 0.5 1.0"/>
<body name="torso" pos="0 0 .7">
<camera name="track" mode="trackcom"
<joint armature i
<joint armature
<joint armature=
<geom fromto=
<geom contype

xyaxes="1 0 0 0 0 1"/>
"false" name="rootx" pos
"rootz"
limited="false" name="rooty"
.5 0 0" name="torso" size="0.046" type="capsule"/>
axisangle="0 1 0 .87" name="head" pos=".6 0 .1" size="0.046 .15" type="capsule"/>
<!-— <site name="tip’ pos='.15 0 .11"/>-->
<body name="bthigh" pos= 0 0">
<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.52 1.05" stiffness="240" type="hinge"/>
<geom contype="1" axisangle="0 1 0 -3.8" name="bthigh" pos=".1 0 -.13" size="0.046 .145" type="capsule"/>
<body name="bshin" pos=".16 0 -.25">
<joint axis="0 1 0" damping="4.5" name="bshin" pos="0 0 0" range
<geom axisangle="0 1 0 -2.03" name="bshin" pos="-.14 0 -.07" si
<body name="bfoot" pos="
<joint axis="0 1 0" damping="3" "bfoot" pos="0 0 0" range="-.4 .785" stiffness="120" type="hinge"/>
<geom contype="1" axisangle="0 1 0 -.27" name="bfoot" pos=".03 0 -.097" size="0.046 .094" type="capsule"/>
</body>
</body>
</body>
<body name="fthigh" pos=".5 0 0">
<joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0 0" range="-1 .7" stiffness="180" type="hinge"/>
<geom contype="1" axisangle="0 1 0 .52" name="fthigh" pos="-.07 0 -.12" size="0.046 .133" type="capsule"/>
<body name="fshin" pos="-.14 0 24" >
<joint axis="0 1 0" dampin name="fshin" pos="0 0 0" range="-1.2 .87" stiffness="120" type="hinge"/>
<geom axisangle="0 1 0 —.6" name="fshin" pos=".065 0 -.09" size="0.046 .106" type="capsule"/>
<body name="ffoot" pos=".13 0 —.18">
<joint axis="0 1 0" damping="1.5" name="ffoot" pos="0 0 0" range="-.5 .5" stiffness="60" typ
<geom contype="1" axisangle="0 1 0 -.6" name="ffoot" pos=".045 0 -.07" size="0.046 .07" type="capsule"/>
</body>
</body>
</body>
</body>
<!-— Random Collision Capsule ——>
<body name="obstacle -body" pos="2.0 0 0.01">
<joint axis="0 0 1" damping= limited="true" name="obstacle_z" pos="0 0 0" range="-10.0 10.0" stiffness="0" type="slide"/>
<geom pos="0 0 0" size="1.0" fromto="0 0 -5.0 0 0 5.0" type="capsule" name="obstacle"/>
</body>
</worldbody >
<contact>

0 0" stiffnes
0 0" stiffnes
00

"-.785 .785" stiffness="180" type="hinge"/>
"0.046 .15" type="capsule"/>

<pair geoml="obstacle" geom2="torso" condim="1" />
<pair geoml="obstacle" geom2="fshin" condim="1" />
<pair geoml="obstacle" geom2="ffoot" condim

<pair geoml="obstacle" geom2="fthigh" condim="1" />

</contact>

<actuator >
<motor gear="120" joint="bthigh" name="bthigh"/>
<motor gear="90" joint="bshin"
<motor gear="60" joint="bfoot" name="bfoot"/>
<motor gear="120" joint="fthigh" name="fthigh"/>
<motor gear="60" joint="fshin" name="fshin"/>
<motor gear="30" joint="ffoot" name="ffoot"/>

</actuator >

</mujoco>

E.5. Low-Level Controller (PD) Parameters

For every benchmark environment we release the exact proportional (K,) and derivative (K ;) gains used to initialise the
fixed PD controllers®. These values were obtained with the critically—damped heuristic described in Appendix E and are

reproduced verbatim to enable reproducibility.

Position-Delta percentage. All position-delta controllers use a common relative percentage step size of 15% of the

low-level action from the low-level policy multiplied by the joint range.

®Identical values are used for the initial Sep in EvoControl (§3); for the annealing schedule see Appendix G.1.
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Table 8: PD gains for locomotion tasks (joint order as in the simulator).

Environment K, Ka

Ant fr.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, [0.013503286298071678,
1.01] 0.013387106015517087,
0.013503286298071678,
0.013387106015517087,
0.013503286298071678,
0.013387106015517087,
0.013503286298071678,
0.013387106015517087]
[0.013068637140440764,
0.012039072923754321,
0.011433132942037051,
0.011834836266943663,
0.015236008072342119,
0.02207607073966402]
Hopper [1.0, 1.0, 1.0] [0.027671617948625667,
0.0164347571023518¢64,
0.010611226997820387]
[0.04316262945905774,
0.021009366320377088,
0.005125036607986897,
0.04316262945905774,
0.021009366320377088,
0.005125036607986897]
[0.06294467526760232,
0.010484943278527236,
0.05253240964007362,
0.029011285582051016,
0.0032262763580096407,
0.009664385891402158,
0.006034450945849556,
0.029011285582051016,
0.0032262763580096407,
0.009668983583956587,
0.006034450945849556,
0.029129550027586302,
0.03411799312574108,
0.019725189664746758,
0.029129550027586305,
0
0
(
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[
[

HalfCheetah fr.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Walker2D (.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Humanoid [1.0 X 17]

.03411799312574109,
.01972518966474677]
0.054437005767013026,
.054733973353533194,
.014337546020293841,
.0032262763580096425,
.02901128558205103,
.00966438589140216,
.005682180594001962,
.0032262763580096425,
.02901128558205103,
.009668983583956589,
.005682180594001962,
.02912955002758632,
.03411799312574108,
.019725189664746755,
.02912955002758632,
.03411799312574109,
.019725189664746758]
0.017375593307861]

0.07871611563924959]

Humanoid Stand-up [1.0 x 17]

Inv. Double Pendulum [1.0]
Inverted Pendulum [1.0]
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Table 9: PD gains for manipulation and reacher-style tasks.

Environment K, Kq

Pusher' [1.0] [0.009740730108475674,
0.007738485648275393,
0.0021480515823664906,
0.003025365021942605,
0.0020592919232439886,
0.0020104689753536694,
0.0020340762132783027]

Reacher (2-DoF) [1.0] [0.01, 0.01]

Reacher 1D [1.01] [0.1]
[0

Safety-Critical Reacher [1.0] 1]

F. Benchmark Method Implementation Details

Benchmark methods. We seek to compare against competitive established baselines, using the same high-level PPO policy
(p) learning algorithm with the same high-level architecture across all baselines, varying only the low-level policy (/3). We
compare with fixed controllers baselines, which are deterministic PD controllers of: PD Position, PD Position Delta, and PD
Integrated Velocity (Aljalbout et al., 2024). We also compare against direct torque control baselines at both high (500Hz, i.e.
the simulation timestep) and low (31.25Hz) frequencies; and a Random policy (31.25Hz). Moreover, we seek to investigate
the EvoControl framework, and hence benchmark against several different variations from varying the observation for the
low-level policy, from the full-state to a restricted partially observed state (only observing the robot joint positions ¢ or
velocities ), following EvoControl types with their corresponding observations as outlined in Table 2. Additionally, the
EvoControl variants using position-based controllers are annealed from their corresponding PD controllers. We provide
more detailed implementation information for each benchmark method in the following.

F.1. High-Level Policy and PPO Implementation

The focus of the paper is on enabling high-frequency control with a learning based method, therefore to provide a thorough
competitive implementation of all the benchmark methods we use the same high-level policy neural network architecture
and learning algorithm of PPO (Schulman et al., 2017) across all the benchmark methods for all the main results. We did
also perform additional ablations of training the high-level policy with ES instead for all the benchmark methods, which can
be seen in Appendix J.9.

We use the standard PPO implementation (Schulman et al., 2017), specifically using the implementation from PureJaxRL’
(Lu et al., 2022), a Jax (Bradbury et al., 2021) implementation of PPO. We used the fixed PPO hyper-parameters from
PureJaxRL, which are derived from the PPO continuous-control environment parameters from CleanRL (Huang et al.,
2022) which are themselves derived from those from stable baselines (Raffin et al., 2021). These hyper-parameters
have been determined to provide good performance across a range of continuous-control environments. These param-
eters are specifically ‘learning_rate’=3e-4, ‘num_envs’=1024, ‘num_steps’=10 (number of environment steps per roll-
out), ‘total_timesteps’=1e6, ‘update_epochs’=4 (number of PPO update epochs per iteration), ‘num_minibatches’=8 (number
of minibatches for each PPO update),‘gamma’=0.99 (discount factor), ‘gae_lambda’=0.95 (generalized Advantage Estimation
parameter), ‘clip_eps’=0.2,‘ent_coef’=0.0,‘vf_coef’=0.5, and ‘max_grad_norm’=0.5 (gradient clipping threshold).

The PPO implementation uses batched environments for efficient data collection, accumulating ‘num_envs’ X ‘num_steps’
transitions before performing updates. This facilitates parallel environment interaction and accelerated training.

The high-level policy architecture (the same for all benchmark methods) py (with parameters ) is represented by an
actor-critic network implemented using Flax (a Jax based neural network library). Both the actor and critic share a common
base network consisting of two hidden layers with 256 units each and tanh activation’s (this architecture was initially
provided by PureJaxRL to provide effective performance). The actor head outputs the parameters of a multivariate Gaussian
distribution (mean and diagonal covariance)—as outlined in Section 3. The critic head outputs a scalar value estimating the
state-value function.

"The PureJaxRL PPO implementation can be found here https://github.com/luchris429/purejaxrl.
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F.2. PD Controller Implementation

We implement standard PD controllers as described in Table 1. For all environments, we tune the PD gains as described in
Section E. Briefly, K, is set to 1.0 and K is selected to correspond to a MuJoCo ‘dampratio’ of 1.0 (critically damped).
For the PD Position controller, the high-level action ay, is interpreted as the desired absolute joint position (g%). The PD
Delta Position controller interprets aj, as a change in joint position (6¢?) relative to the joint position at the time of the
high-level action ¢y, such that ¢ = g;, + d¢®. The Integrated Velocity controller interprets a;, as the desired joint velocity
and integrates it to obtain a target position. This integration is performed numerically using the trapezoidal rule. These
controllers provide a variety of baseline behaviors for comparison.

F.3. Fixed Controllers

The fixed controllers (PD Position, PD Position Delta, PD Integrated Velocity and PD Position & K,) are implemented
as deterministic policies. Given a state and the high-level action ay, they directly compute the low-level control action wu,
based on the corresponding control law as described in Table 1. Specifically, in PD Position & K, the high-level policy
outputs both a target position and a K, gain, which are then used by a fixed PD controller with a fixed derivative gain—this
allows the high-level policy to directly control the responsiveness of the low-level controller.

F.4. Direct Torque Control

For direct torque control, we use two variants: high-frequency (500Hz) and low-frequency (31.25Hz). In the high-frequency
variant, the policy operates at the simulation frequency, outputting a torque command at every simulation step. The
low-frequency variant operates at the same frequency as the high-level policy in the hierarchical setting. It outputs a torque
command every G = 16 simulation steps, which is held constant during the intervening steps. Both variants are trained
using PPO with the same hyperparameters as the high-level policy, except for the number of environment steps which is
adapted based on the direct torque control policy frequency. This allows for a direct comparison of the performance of
direct torque control at different frequencies. The same high-level PPO implementation is used to train both the high and
low-frequency policies, ensuring that any performance differences are due to the control frequency and not the learning
algorithm itself.
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G. EvoControl Implementation Details

In the following we provide implementation details for EvoControl. We used JAX (Bradbury et al., 2021) to implement
EvoControl, and present the core training loop in Algorithm 2.

Network Architectures. We use the exact same high-level policy architecture and learning algorithm as the baselines
use, from Appendix F.1. Therefore the high-level policy py (with parameters 6) is represented by an actor-critic network
implemented using Flax. Both the actor and critic share a common base network consisting of two hidden layers with 256
units each and tanh activations. The actor head outputs the parameters of a multivariate Gaussian distribution (mean and
diagonal covariance). The critic head outputs a scalar value estimating the state-value function. The low-level policy S4n n
(with parameters ¢) is a separate neural network, also implemented using Flax. It consists of three hidden layers with 256
units each and tanh activations. The output layer produces the low-level control actions (torques), 7 = u; (unless otherwise
specified, for example K, K4). Specifically the low-level takes as an input observation the EvoControl variant observation,
as detailed in Table 2.

Table 10: EvoControl Ablation of PD Controllers.

Controller Variant Bnn Obs. BN action
EvoControl (Full State) Sty Ak, €1, qt, Gty t)T T
EvoControl (Residual State) e, t/T T
EvoControl (Target + Proprioceptive) Ak, Qt, Gty €1, 0/ T T
EvoControl (Target) Gk, Gty Ge, t/T T
EvoControl (Learned Gains) Sty K, qt, Gty t)T K,, Ky
EvoControl (Delta Position) Sty ks €ty @ty Gty t)T T

Low-level Observation. For clarity we reproduce Table 2, here as Table 10. Specifically, the observation for the low-level
policy can consist of the current state s;, the high-level policy latent action ay, the PD controller error e; (that is used
during the annealing), the robots generalized positions ¢, the generalized velocities ¢, and the ratio of the percentage of the
low-level steps that the current high-level action is being followed for—for example with G = 16, T = G = 16, and hence
t = i (Algorithm 1) or the number of low-level steps out of G that the low-level policy is currently on whilst following the
high-level policy.

Annealing Strategy. The annealing parameter « controls the convex combination of the fixed PD controller (8pp) and the
learned low-level policy (84~ n). We use a linear decay schedule, starting at o = 1.0 and decreasing linearly to o = 0.0

over the K training sections, of o, = 1 — %, where k is the current training section.

ES Details. For ES we use Policy Gradients with Parameter-Based Exploration (PGPE) (Sehnke et al., 2010) algorithm to
optimize the low-level policy 34n n. The neural network’s parameter vector ¢ is directly optimized. We use a population
size of es_pop_size = 512, and each individual is evaluated over es_rollouts = 16 rollouts to estimate its fitness (episodic
return R). Adam (Kingma & Ba, 2014) is used within PGPE, and we we use the PGPE hyper-parameters of a center learning
rate of 0.05 and a standard deviation learning rate of 0.1. We use es_sub_generations = 8 generations per training section
k. The parameter distribution’s initial standard deviation is 0.1. We use the implementation of PGPE provided by EvoJax
(Tang et al., 2022), in Jax, and their recommended hyper-parameters for PGPE, which were empirically found to work well
for continuous control tasks. Furthermore, we set K = 8 per 1M high-level p steps used to train the high-level policy for,
and this was empirically determined to work well in practice.

G.1. EvoControl PseudoCode

For the following pseudocode; we used the same parameters as described above, specifically setting the total number of
training sections to /' = 8 (per 1M high-level p policy steps), and then training the PPO high-level policy for 1M (i.e. 1
Million) high-level steps, therefore performing N PPO updates of N = | 1e6/(num_envs xnum_stepsxK)| = 12. We note
that each step of the slow high-level policy when operating with a fast low-level policy is effectively G = 16 high-frequency
environment timesteps of A;.
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Algorithm 2 EvoControl Training

Require: Environment f(s:, u;), reward function (s, u), high-level policy pg(sy), initial low-level policy Spp(s;, ax),
total training sections K, steps per section N, annealing strategy for o, ES parameters 1, population size P, generations
per section G, rollouts per individual R.,,.
Ensure: Trained high-level policy py(sy), trained low-level policy B4(s;, ax).
1: Initialize o <— 1.0
2: Initialize low-level policy B(s;, ar) < aBpp(si, ar) + (1 — a)Benn (i, ak)
3: Initialize ES strategy (e.g., PGPE) with parameters n
4: for k = 1to K do
5:  // Train high-level policy pg with PPO
6: forn=1to N do
7: Collect rollout data using pg and S (Algorithm 1)
8: Update pg using PPO
9: end for
10:  // Train low-level policy 54 with ES
11:  for g =1to Geyo do

12: Gpop <— Sample P parameter sets from p,,(¢)

13: forp=1to Pdo

14: F,<0

15: for r = 1to R,y do

16: Collect rollout using pg (mode) and Sy (Algorithm 1)
17: F, < F,+ rollout return

18: end for

19: Fy < Fp/Revo

20: end for

21: Update ES parameters 7 using fitness values F}.p (e.g., PGPE update)
22:  end for

23: ¢ <« best performing parameter set from ES

24:  Bynn(Si, ar) < neural network with parameters ¢
25: B(sisax) < abpp(si,ax) + (1 — @) Bonn(si, ax)
26 a<+ 1—-k/K

27: end for

G.2. Detailed Analysis of EvoControl

This appendix provides a detailed analysis of the EvoControl algorithm, addressing the mathematical setting, assumptions,
complexity, and properties as requested.

G.2.1. MATHEMATICAL SETTING AND ASSUMPTIONS

EvoControl operates within the standard continuous control Reinforcement Learning (RL) framework. We consider a
Markov Decision Process (MDP) defined by the tuple M = (S, U, P,r, ), with definitions provided in Appendix A.

Assumptions:

* Markov Property: The environment dynamics satisfy the Markov property, meaning the next state depends only on the
current state and action, not on the history.

e Stationarity: The transition probabilities and reward function are stationary (do not change over time).

* Differentiable Policy: The high-level policy pg(sy) is parameterized by 6 and is differentiable with respect to 6. This
allows for gradient-based optimization.

* Representable Low-Level Policy: The low-level policy 84(si, aj) can be adequately represented by the chosen neural
network architecture with parameters ¢.
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G.2.2. COMPLEXITY ANALYSIS

Time Complexity: The time complexity of EvoControl is dominated by the PPO updates for the high-level policy (p) and
the rollout evaluations for ES of the low-level policy (3).

PPO Updates: The per-update complexity of PPO scales linearly with the number of environment interactions. For NV,
high-level steps, with ‘num_envs’ parallel environments running for ‘num_steps’ steps each, and PPO updates occurring
every K training sections, there are N,,/(K - num_envs - num_steps) PPO updates. Each PPO high-level environment step
involves G low-level environment steps.

ES Rollouts: Each training section involves ES of the low-level policy. With a population size of ‘es_pop_size’, ‘es_rollouts’
rollouts per individual, and ‘es_sub_generations’ generations per section, the number of rollouts per section is es_rollouts -
es_sub_generations - es_pop_size. Each rollout has ‘episode_length’ low-level steps.

Let Teny be the time for a single low-level environment step of duration A;. Then, the total time complexity, without
parallelization of environment rollouts, is:

O ((N, - G + K - es_rollouts - es_sub_generations - es_pop_size - episode_length) - Tepy)

We can also re-express this, as if we train the high-level policy for N, high-level p steps, and we train EvoControl with
K = 8 sections per 1M high-level p steps (i.e. K = (N, - 8)/(1e6)), then the time complexity can also be expressed as:

O((N, - G+
N, -8
1e6

- es_rollouts - es_sub_generations - es_pop_size - episode_length) - Teny)

However, both of these time complexity measures are worst case, and do not account for any availability to parallelize
environment rollouts, which is common in practice on modern GPUs. If we assume that a user has a GPU/CPU that can
parallelize the environment rollouts, then the time complexity can approach:

O((Ny, - num_steps - G+
N,-8
le6

- es_sub_generations - episode_length) - Teqy)

Where N,, = (N,)/(num_envs - num_steps).

We provide thorough additional experiments limiting the computational complexity of the above two approaches, as detailed
in Appendix J.4.

Space Complexity: The space complexity is primarily determined by the size of the neural networks for the high-level and
low-level policies, the size of the PPO buffer, and the population size for ES. Itis O(|0| + || + Sppo + P - |¢|), where |6
and |¢| are the number of parameters in the high-level and low-level policies respectively, and Sppo is the size of the PPO
buffer.

G.3. Computational Considerations

Building on the previous section, environment rollouts can be parallelized on modern GPUs.  Specifically
num_envs, es_rollouts, es_pop_size can all be parallelized. A benefit of ES here, is that the fitness evaluations (within
PGPE) are highly parallelizable. We leverage JAX’s ‘vmap’ function for vectorized rollouts, enabling efficient parallel
execution on GPUs or CPUs. This can also be readily further optimized, such as distributing the population across multiple
devices, to reduce training time (as ES is a gradient free approach) (Salimans et al., 2017).

Whilst the goal of our work is to provide an initial method that can learn a better low-level controller for use within a
high-level policy learning environment, to achieve higher final evaluation reward, we acknowledge that doing so increases
computational complexity compared to policy learning with a traditional fixed PD controller. Therefore to investigate, what
happens if we make the number of low-level environment steps equivalent we provide a further ablation in this setting in
Appendix J.4.
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H. Evaluation Metrics

For each environment, and for each baseline we train the joint policy 7 consisting of a high-level p and a low-level policy
S for the same number of high-level policy p steps, here 1M steps. Once the policies have been trained, we perform 128
evaluation rollouts, each with a different random seed and compute the undiscounted cumulative sum of rewards for each
rollout, i.e. the return for the episode, where each episode lasts 1,000 environment steps. We repeat training each baseline
policy across three random seeds. We quote each result as the mean across it’s random seeds and provide the corresponding
95% confidence intervals throughout for all metrics. Specifically we quote the normalized score R (Yu et al., 2020) of the
policy in the environment, averaged over 384 random seeds—normalized to the interval of 0 to 100, where a score of 0
corresponds to a random policy performance, and 100 to an existing fixed controller expert policy—which is whichever
non-EvoControl baseline scores the highest evaluation environment return.

All experiments were run on a NVIDIA H100 GPU, with 80GB VRAM with a 40 core CPU with 256 RAM. We detail the
hyper-parameters in Appendix F for each benchmark method, and how the hyper-parameters were selected, and their origin
of source. We did sweep over the learning rate for PPO with the fixed controller PD position baseline, however found the
initial hyper-parameters already provided by prior work (PureJaxRL (Lu et al., 2022), and hence CleanRL (Huang et al.,
2022)) to be the most performant, therefore they were kept constant throughout all experiments.

I. Additional Experimental Setup
L.1. Efficient Exploration Experimental Setup

To reproduce this experiment, we used the Reacher 1D environment, as detailed in Appendix E.2. Specifically to investigate
the efficiency of exploration, we modified the Reacher 1D environment to have a deterministic goal across new random
seeds, such that the goal location is geou = 7/2.0, and the initial starting position to ¢ = 0. This is to ensure that we can
correctly measure exploration, otherwise starting in a random state with a random goal, could already explore the state-action
space, just through environment resets—whereas the focus of this insight experiment is to compare the methods exploration
instead, hence fixing the environment starting state and end goal state. Specifically we run each baseline approach for 10,240
low-level environment steps each, and collect the state throughout training for these initial steps. We then process the state
collected, and plot the state visitation histograms, as shown in Figure 2.

1.2. High-frequency Interaction Control in Safety Critical Reacher

To reproduce this experiment, we follow the same setup for the Safety Critical Reacher environment, as detailed in
Appendix E.3.

J. Additional Experiments
J.1. EvoControl Supports Other Competitive ES Approaches

EvoControl supports using other competitive ES approaches to optimize the low-level policy neural network parameters. We
provide full results for diverse competitive ES approaches, where for each ES approach we replicate our full main-table of
results presented in the main paper. We provide this analysis empirically, as in Table 11, then follow with a discussion about
which ES a user can select to use within the EvoControl framework.

We benchmarked against the following ES approaches of:

¢ PGPE (Policy Gradients with Parameter-Based Exploration (Sehnke et al., 2010)): A policy search algorithm
that optimizes neural network parameters by maintaining a probability distribution over them and estimating gradients
directly in parameter space. Unlike traditional policy gradient methods, which suffer from high variance due to
per-timestep action sampling, PGPE samples policy parameters once per episode, ensuring deterministic rollouts within
each trajectory. This leads to significantly reduced gradient variance and improved learning stability, particularly in
reinforcement learning tasks with long time horizons and continuous action spaces. PGPE also supports symmetric
sampling, which further refines gradient estimates by leveraging paired perturbations, akin to central difference
approximations in finite difference methods. These properties make PGPE particularly effective for optimizing neural
network policies in complex, high-dimensional control problems.
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Table 11: EvoControl benchmarked with other ES approaches. Normalized evaluation return R for the benchmark methods, across each
environment. EvoControl on average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct
torque control. Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to a
0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl baseline in each
environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt RT RT Rt RT RT RT Rt RT RT Rt
Fixed Cont. - PD Position 100+6.56 | 61.240.441 91.6£1.23 100+2.96 100+0.974 99.9+0.03 100+2.86e-15 | 100£8.47 100+1.8 85.242.87 | 75.740.633
Fixed Cont. - PD Position Delta 244191 | 2.76+0.0888 100+1.35 96.6+1.71 | 2.9610.0397 53.8£1.57 100+2.86e-15 0+0 40.9+3.23 15.2+7.6 | 90.2+0.239
Fixed Cont. - PD Int. Velocity 3.59+1.78 | 2.46+0.0932 | 74.740.903 | 83.441.13 040 49.7+1.55 86.542 0+0 00 00 85.9+£2.55
Fixed Cont. - Random 0.0+0.0 0.00.0 0.0+0.0 0.0+0.0 0.040.0 0.0+0.0 0.00.0 0.0+0.0 0.00.0 0.00.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 17.2+0.316 | 1.4240.533 | 10.4+2.19 | 10.3+0.586 0+0 0+0 1.34+7.89 | 2.08+5.84 | 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) 54.54£7.15 100+£1.21 72+0.64 98+2.55 80.6+2.56 100+0.0311 100+2.86e-15 | 73.2412.9 | 59.2+£3.72 100+£1.94 100+2.68
PGPE - EvoControl (Full State) 368+10.6 157+1.1 274+1.52 123+2.7 116+0.609 101+0.0487 100+2.86e-15 | 362+11.1 | 114+0.973 | 106+0.936 | 203+4.61
PGPE - EvoControl (Residual State) 182+8.58 182+1.02 101+0.53 170+1.14 212-+4.95 99.240.054 100+2.86e-15 | 375+10.7 | 106+1.29 104+1.19 20542.72
PGPE - EvoControl (Target + Proprio.) 319+14.1 168+1.41 171+£5.28 165+1.77 165+4.94 99.7£0.0417 100+2.86e-15 | 353+10.5 | 96.8+3.54 | 105+0.776 | 178+2.31
PGPE - EvoControl (Target) 293+13.2 1624+1.58 283+1.91 164+1.8 205+5.04 99.6:£0.0377 100+2.86e-15 | 353+9.56 | 112+0.785 | 105+£0.78 | 188+3.02
PGPE - EvoControl (Learned Gains) 266+14.1 113+1.6 20610 150+2.55 117+0.205 99.5+0.0947 100+2.86e-15 | 330+10.5 | 116+0.747 | 105+1.21 196+4.5
PGPE - EvoControl (Delta Position) 362+12.8 133+1.82 225+2.99 119+2.78 105+0.285 101+0.0364 100+2.86e-15 | 267+11.6 | 65.5+3.71 | 99.1+2.44 183+2.36
CMA-ES - EvoControl (Full State) 97.8+61.8 104+15.9 139+0.484 | 93.5+12.9 78.4+7.85 100+0.11 100+0 2634522 | 109+2.34 106+3.64 131+2.25
CMA-ES - EvoControl (Residual State) 37.2+£82.9 102+10.2 201+£20.1 82+13.9 88.8+0.162 100+0.244 100+0 289+56.2 | 112+4.21 106+3.87 215+11.3
CMA-ES - EvoControl (Target + Proprio.) 62.6+50.4 | 89.5+16.4 261+£11.6 | 74.7+13.4 | 99.7+4.94 99.940.261 100+0 318+41.4 | 1154293 | 106+3.66 | 201+2.56
CMA-ES - EvoControl (Target) 72.3£50.7 98.5£12.6 212+2.77 | 78.9+7.23 85.945.98 99.1£0.0161 100+0 307+£50.1 | 115+5.12 1064 209+2.1
CMA-ES - EvoControl (Learned Gains) 42.74+53.3 5444134 156+1.75 129+16.2 116+0.579 99.640.629 10040 319+43.6 | 1114541 103+5.09 166+17.2
CMA-ES - EvoControl (Delta Position) 31.6+£52.7 85.449.41 128+2.29 | 97.8+13.7 104+3.27 100+0.228 100+0 304+54.8 70.8+18 84.5420.7 135+1.43
SEP-CMA-ES - EvoControl (Full State) 44.8461.3 85.8£17.6 108+0.305 | 71.5+13.5 | 103+0.567 100+0.126 100+0 281+46.4 | 115+3.64 106+3.67 150+6.6
SEP-CMA-ES - EvoControl (Residual State) 91.84+75.9 128+4.15 2464234 122+13.6 108+2.06 99.6+0.16 1000 305+34.4 | 112+2.78 106+4.28 171+22.6
SEP-CMA-ES - EvoControl (Target + Proprio.) 52.3+37.4 94.8+19.1 126+0.925 84.6+£20 107+3.32 99+0.0269 100+0 298+54.3 | 115+2.31 106+3.74 195+1.88
SEP-CMA-ES - EvoControl (Target) 96.74+61.6 92.6421.8 121+0.5 83+21.7 104+4.17 98.7+0.0231 10040 271+39.1 | 11245.76 106+3.65 196+4
SEP-CMA-ES - EvoControl (Learned Gains) 93.6+51.5 73+£7.49 159+2.52 107+11.9 116+3.22 100+0.137 100+0 320+43.8 | 114+5.71 104+6.3 151+13.6
SEP-CMA-ES - EvoControl (Delta Position) 26.6+44.6 54+8.43 125+1.79 81.5+£8.3 100+3.53 99.9+0.0987 100+0 252+48.4 | 63.2+18.6 | 85.5+£29.8 176+13.5
CMA-ES-JAX - EvoControl (Full State) 82.9+457.7 | 98.3%162 | 1134+0.0963 | 70.1+5.5 98.4£1.59 100+0.157 100+0 332:+50.8 | 113+£3.82 | 106+4.34 | 222+10.1
CMA-ES-JAX - EvoControl (Residual State) 161+70.7 99.843.83 148+57.2 114+16.7 | 98.5£0.926 100+0.156 100+0 237+54.1 | 111£6.67 106+4.1 183+5.28
CMA-ES-JAX - EvoControl (Target + Proprio.) 85.5+49.3 7774115 128+3.57 88.5+14.8 98.14+5.61 99.3+0.0247 1000 3124577 | 11243.12 106+3.88 175+£7.15
CMA-ES-JAX - EvoControl (Target) 128+57.5 80+18.2 126+1.16 61.7£11 93.742.07 99+40.00698 100+0 248+40.3 | 110+3.44 106+3.8 152+2.42
CMA-ES-JAX - EvoControl (Learned Gains) 63.8440.1 72.8410.3 187+0.624 | 134+14.5 110+3.01 100+0.101 100+0 3524434 | 105+9.81 105+4.48 136+11.4
CMA-ES-JAX - EvoControl (Delta Position) 77+63.2 88+12.8 107+0.122 64.3+10 96.4+0.213 99.940.12 100+0 3174427 | 67.2+15.2 | 87.1423.7 200+5.46
DE - EvoControl (Full State) 3.53+33.1 5.94+7.42 22.440.326 | 39.4£1.93 27.4+4.33 78.8+6.36 040 234+50.5 | 102+10.5 | 74.2+12.7 0+0
DE - EvoControl (Residual State) 7.544+5.79 23.345.98 0+0 142+11 7.71+0.364 45.7+18.2 0+0 2354558 | 107+7.37 106+3.87 | 1.374+0.158
DE - EvoControl (Target + Proprio.) 18.6£34.9 32.9420.7 0+0 99.7+16.5 47.249.07 100+0.142 29.7+12.3 3214498 | 57.3+£19.7 | 106+3.92 0+0
DE - EvoControl (Target) 0+0 23.3+6.18 00 20.9+6 2.35£0.652 100+-0.0638 92.14£3.02 319+47.8 | 64.8+17.5 | 106+5.11 00
DE - EvoControl (Learned Gains) 0+0 22.148.32 40.246.75 0+0 22.1£5.02 524+2.83 100+0 220+49.7 | 53.74+134 | 59.1+15 1.08+2.76
DE - EvoControl (Delta Position) 0+0 46.2+10 41.3+0.693 | 48.8£1.46 65.7£10.7 100+2.2 99.84+0 278+41.7 | 54.1£18.8 | 93.7x19.4 0+0
iAMaLGaM - EvoControl (Full State) 64.6+51.4 75.248.66 96.240.122 | 109+15.8 94.541.35 100-£0.0881 1000 3514495 | 95.5+4.55 106+4.1 135+9.64
iAMaLGaM - EvoControl (Residual State) 110+60.3 101+9.38 58.840.524 | 99.4+14.3 | 96.2+0.993 99.440.162 100+0 3334525 | 109+3.49 106+3.6 161+10.4
iAMaLGaM - EvoControl (Target + Proprio.) 54.3+54.2 87.6£16.6 93+0.293 110+12.4 105+0.427 99.440.117 100+0 327+40 63£19.1 106+3.82 140+18.2
iAMaLGaM - EvoControl (Target) 4724579 | 13348.06 140+5.71 | 90.7£10.9 | 98.54+5.56 100+0.148 100+0 299+44.7 | 59.6+17.9 104:£11 10142.15
iAMaLGaM - EvoControl (Learned Gains) 5.79460.1 53.6+8.81 125+8.93 104117 111£+1.32 100+0.108 100+0 285+50.6 | 114+8.62 102+8.91 93.8+8.74
iAMaLGaM - EvoControl (Delta Position) 13.8449.3 78.6+7.19 121+2.22 74+14.1 95.241.05 102+0.36 1000 300+72.6 | 54.3+£19.4 | 104+10.9 116+7.23
CR-FM-NES - EvoControl (Full State) 85.5+54.1 81+8.73 96.240.122 | 66.9£13.3 | 91.3+0.858 100-£0.0881 100+0 3514495 | 95.5+4.55 106+4.1 123+4.44
CR-FM-NES - EvoControl (Residual State) 85.9+£61.2 124+13.5 58.840.524 | 129+10.7 98.443.56 99.440.162 100+0 328+45.8 | 111+4.54 106+3.6 184+7.76
CR-FM-NES - EvoControl (Target + Proprio.) 614482 81415 93+0.293 97.1+18.9 106+1.11 99.44+0.117 100+0 327440 63+19.1 106+3.82 110+11.4
CR-FM-NES - EvoControl (Target) 67+52.9 75.8£12.2 140+5.71 113+13 118+3.46 100+0.148 100+0 299+44.7 | 59.6+17.9 | 107+4.03 113+4.1
CR-FM-NES - EvoControl (Learned Gains) 45.9467.2 58.746.94 125+8.93 120+14.3 97.943.28 100+0.108 1000 313+44.3 | 1144533 102+8.91 106+6.75
CR-FM-NES - EvoControl (Delta Position) 85.3+54.4 66.4+14.7 121+2.22 89+10.3 86.9+0.435 102+0.36 100+0 300+72.6 | 54.3+19.4 | 95.6+31.1 120+5.53
OpenES - EvoControl (Full State) 99.2455.1 10.4+3.53 46.7£0.295 | 68.2+3.38 | 61.7+0.316 43.1+3.24 1000 204+48.8 | 113+6.44 | 98.4+10.3 | 35.6%20.3
OpenES - EvoControl (Residual State) 15.6428.8 | 46.845.83 0+0 115+8.02 | 64.5+0.194 0+0 100+0 20648 1144+4.66 | 103+6.33 0+0
OpenES - EvoControl (Target + Proprio.) 36.3+£52.8 30.7+£8.83 87.2+0.144 87+3.14 81.2+0.335 00 100+0 214+46.9 1137 105+5.8 89.2£1.26
OpenES - EvoControl (Target) 20.7+63 0+0 134£0.0809 | 42.1£2.17 | 59.640.651 0+0 1000 203+47.6 85.1+£9.9 3574242 | 30.3£1.31
OpenES - EvoControl (Learned Gains) 4.79+53.4 18.1£15.9 84.9+0.104 | 3.444.48 92.745.65 100-£0.0948 100+0 2294482 | 104+13.2 | 455+154 31.3+6.6
OpenES - EvoControl (Delta Position) 22.14£30.7 | 6.22+0.488 | 9.28+0.156 | 76.7£3.63 | 73.6+0.162 72.9£9.62 100+0 220+60.5 56+20.1 00 11.7£6.91
PGPE - Direct Torque Cont. - High Freq. (500Hz) 106+31.8 94+£7.51 138+4.82 | 95.4+6.46 88.543.53 100+1.34 100+£0 3024213 | 57.8+12.1 8.98+14 126+3.66
CMA-ES - Direct Torque Cont. - High Freq. (500Hz) 70.4£29.1 80.6£6.53 118+3.48 100+7.04 95.6+3.73 99.7£1.17 100+0 268+27 55£11.8 00 111+2.74
SEP-CMA-ES - Direct Torque Cont. - High Freq. (500Hz) | 50.630.8 88.4410.4 102+9.51 110+8.82 85.343.82 84.74+5.96 1000 2734229 | 558+11.8 0+0 110+3.85
DE - Direct Torque Cont. - High Freq. (S00Hz) 0£0 57.3+15 114+5.35 | 62.5+7.87 79.4+4.41 43.4+8.48 57.9£17.5 288+26.9 | 57.2+11.7 | 20.9+19.8 | 87.9+11.6
iAMaLGaM - Direct Torque Cont. - High Freq. (S00Hz) 82.8+£29.4 87.7£10.1 77+4.58 70+£7.58 90.9£1.36 83.9+4.67 100+0 266125 57.6£11.8 00 114+7.32
OpenES - Direct Torque Cont. - High Freq. (500Hz) 17.9+11 12+1.74 9.4+0.445 | 41.8+4.51 42.4+10.9 24.141.78 6.8642.34 112+25.6 25.14+16 0+0 59.6+11.5

* CMA-ES (Covariance Matrix Adaptation Evolution Strategy (Hansen & Ostermeier, 2001)): A widely used,
competitive ES algorithm known for its efficiency in high-dimensional continuous optimization. It adapts the covariance

matrix of the search distribution, guiding the exploration towards promising directions in the parameter space.

¢ SEP-CMA-ES (Separable CMA-ES (Ros & Hansen, 2008)): A variant of CMA-ES that utilizes a separable
covariance matrix, reducing the computational complexity for high-dimensional problems.

* DE (Differential Evolution (Storn & Price, 1997)): Another popular ES algorithm that relies on vector differences
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between population members to generate new candidate solutions. It is known for its robustness and ability to handle
complex, multimodal objective functions.

¢ iAMaLGaM (incremental AMaL.GaM (Bosman et al., 2013)): A JAX-based, parallelized variant of AMalLGaM that
builds its probabilistic model incrementally for increased sample efficiency.

¢ CR-FM-NES (Cross-Entropy Fitness Model based Natural Evolution Strategies (Nomura & Ono, 2022)): An ES
algorithm that builds a surrogate fitness model to improve the sample efficiency of the search process.

¢ OpenES (OpenAl Evolution Strategies (Salimans et al., 2017)): A simple, parallelizable ES algorithm that utilizes
isotropic Gaussian mutations for exploration.

When evaluating these different ES approaches within EvoControl we used the open source implmentations from EvoJax
(Tang et al., 2022) and EvoSax (Lange, 2023). Specifically using their respective defined implementations, and using the
same broad ES hyper-parameters across all implementations as defined in Appendix G.

We empirically observe in Table 11 that EvoControl can support competitive ES approaches. Specifically PGPE achieves
competitive performance within the EvoControl framework across all of the evaluated environments. Interestingly, within
the EvoJax ES library PGPE achieves the highest evaluation reward in the environments that EvoJax benchmarked against®
(Tang et al., 2022), which correlates with our empirical findings.

In practice EvoControl can be used with other ES approaches, however we select PGPE for the main table of results
presented in the main paper, due to its good emprical performance (Table 11). Additioanlly, PGPE is computationally
efficient and well-suited for large-scale, high-dimensional optimization problems typical in policy search for reinforcement
learning. PGPE is straightforward to implementat and scales across multiple compute nodes, leveraging modern accelerators.
Furthermore, PGPE has demonstrated robust performance in tasks requiring fine-grained control, making it a suitable
choice for optimizing high-frequency low-level policies. Interestingly, more complicated ES algorithms like CMA-ES
and DE offer sophisticated search mechanisms, they come with increased computational complexity, such as: CMA-ES:
Adapts the covariance matrix but becomes computationally intensive in high-dimensional parameter spaces due to large
covariance matrices; DE: Effective in continuous optimization but may struggle with the noisy and dynamic nature of
reinforcement learning environments; Advanced ES Algorithms: Methods like iAMalLGaM and CR-FM-NES introduce
additional computational overhead without consistently yielding better performance in our context. Our experiments show
that while complex ES algorithms can perform well in certain tasks, PGPE offers a favorable balance between performance,
computational cost, and implementation within the EvoControl framework.

J.2. Ablation: Using PPO to Train the Lower-level Policy

We performed an additional ablation experiment, by training the low-level policy with PPO rather than ES. To be comparable
we used the same architecture that our existing high-level PPO agent uses, as described in Section 3, and Appendix G. We
follow the same setup, of training the high-level policy for 1M high-level environment steps, and now train the low-level
policy for the same 1M high-level steps, now training for the low-level for IMxG =16M low-level environment steps—to
give this ablation the most competitive performance comparison to EvoControl and the non-EvoControl baselines. We
perform a complete re-run across all environments as presented in the main paper main results table. The ablation with PPO
training the lower-level policy can be seen in Table 12. We observe that using PPO to train the lower-level policy within this
EvoControl ablation performs worse (achieves a lower average evaluation return) than using ES to train the lower-level
policy S—thus justifying the use of Neurevolution for training the low-level policy.

J.3. EvoControl Outperforms Direct Torque Control at High-frequency

In the following we provide empirical evidence for EvoControl outperforming the baseline of a high-frequency low-level
direct torque control policy. To address any sample complexity concerns, we also find when we limit EvoControl to use the
same computational complexity as all baselines, EvoControl still outperforms the baselines, which is evaluated in detail
in Appendix J.4. To provide a thorough analysis of the ability to learn a high-frequency low-level direct torque control
policy, we performed additional experiments of training the Direct Torque Cont. - High Freq. (500Hz) baseline for an

8The ES approach benchmark results for EvoJax are provided here: https://github.com/google/evojax/tree/main/
scripts/benchmarks.
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Table 12: Ablation. Training the lower-level policy with PPO instead of ES, training both the high-level policy and the low-level policy
for 1M high-level environment steps each, to produce a competitive ablation. Normalized evaluation return R for the benchmark methods,
across each environment. EvoControl on average achieves a higher normalized evaluation return than the baselines of fixed controllers and
direct torque control. Results are averaged over 384 random seeds, with =+ indicating 95% confidence intervals. Returns are normalized to
a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl baseline in each
environment. Scores bolded are greater than 100.

Method Name High-level Low-level Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
p with B with Standup Pendulum Pendulum 1D

RT RT RT RT RT RT RT RT RT RT RT
Fixed Cont. - PD Position PPO PD Position 100£6.56 | 61.2£0.441 91.6£1.23 | 100+£2.96 100+£0.974 99.940.03 100£1.53e-06 | 100+8.47 100£1.8 | 85.242.87 | 75.7+0.633
Fixed Cont. - PD Position Delta PPO PD Position Delta | 2.4£1.91 | 2.76:£0.0888 | 100+1.35 | 96.6+1.71 | 2.9640.0397 53.8+1.57 100+£1.53e-06 0+0 40.9+3.23 | 15.2£7.6 | 90.2+0.239
Fixed Cont. - PD Int. Velocity PPO PD Int. Velocity | 3.59+1.78 | 2.46+0.0932 | 74.7+0.903 | 83.4+1.13 0+0 49.7+1.55 86.5+2 0+0 0+0 0+0 85.9+2.55
Fixed Cont. - Random Random Direct Torque 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) PPO Direct Torque 0+0 17.240.316 1.42+0.533 | 10.4+2.19 10.3+0.586 0+0 0+0 1.34+£7.89 | 2.08+5.84 | 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) PPO Direct Torque 5454715 100£1.21 7240.64 98+2.55 80.642.56 100+0.0311 100+1.53e-06 | 73.2+£12.9 | 59.24£3.72 | 100£1.94 100+2.68
Ablation: EvoControl (Full State) PPO PPO 16.4£59.6 | 25.5453.6 102+55.7 142+20.3 82+78.8 83.8+40 69.4£132 105+209 55427.1 80.1£31.5 | 82.4+9.64
Ablation: EvoControl (Residual State) PPO PPO 12449.7 41.3+69.2 68.4+102 | 60.2+121 33.9£100 84.6+64.8 100+0 9474351 | 91.4+129 | 101+7.8 103+80.2
Ablation: EvoControl (Target + Proprio.) PPO PPO 0+0 25.5434.6 5414729 | 56.6+£34.2 | 38.5+52.6 34.6+138 29.8422.3 91.3415.3 | 44.7+44.8 | 62.3+85.1 | 20.8+119
Ablation: EvoControl (Target) PPO PPO 0+0 17.8416.7 88.243.09 | 69.8+76.3 45+40.6 13.5£119 27.8+121 1324146 | 59.3435.6 | 15.5+33.5 | 95.14432
Ablation: EvoControl (Delta Position) PPO PPO 0+0 2.8841.86 89+16.9 92.54+10.2 | 51.2458.1 98.942.64 81.2481 0+0 43.9410.7 | 5.07£10.6 | 61.6+48.6

increasing number of high-level p policy steps. Specifically, as tabulated in Table 13, we train for a larger number of p steps,
significantly greater than all the baselines were trained for (which is 1M p steps)—here being from 1M p steps to 10B p
steps. We observe that even with more high-level p steps, which corresponds to significantly more low-level environment
steps than that used in EvoControl, Direct Torque Cont. - High Freq. (500Hz) still on average achieves a lower normalized
return compared to EvoControl. This could suggest that direct high-frequency control with PPO produces policies that
get stuck in local minima, and fail to find a better performing global policy at high-frequency as EvoControl is able to
do—Ileveraging ES for learning the lower-level high-frequency policy.

Table 13: Additional Experiment. Training Direct Torque Cont. - High Freq. (500Hz) baseline for an increased number of high-level p
policy steps—from from 1M p steps to 10B p steps. Normalized evaluation return R for the baseline, across each environment. Results
are averaged over 384 random seeds, with =+ indicating 95% confidence intervals. Returns are normalized to a 0-100 scale, where 0
represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl baseline in each environment—using the
normalization from the main table of results, Table 3.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double | Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

RT RT RT RT RT Rt RT Rt RT Rt RT
1,000,000 Train p steps Direct Torque Cont. - High Freq. (500Hz) 0+0 17.240.336 | 3.63+0.259 | 15.6+3.64 174£1.2 0+0 0+0 2.9547.81 0+0 45.34+6.74 0+0
10,000,000 Train p steps Direct Torque Cont. - High Freq. (S00Hz) 6.3+14.9 63+1.43 93.54£2.82 | 87.943.41 78.3+£2 97.940.148 42.6+£1.48 | 21.949.03 | 42.4+5.19 | 87.8+3.62 | 36.5+£1.08
100,000,000 Train p steps Direct Torque Cont. - High Freq. (500Hz) 13717 10641.46 124+3.52 1334+4.13 13943.5 88.241.08 63.242.86 | 42.5+13.9 | 1034232 | 67.6+£6.25 | 91.546.51
1,000,000,000 Train p steps Direct Torque Cont. - High Freq. (500Hz) 125154 10141.35 14142.49 12743.79 | 11943.05 87.5%1 84.8+1.34 | 219+11.1 | 98.3£2.58 | 73.5+6.04 | 1494+6.47
10,000,000,000 Train p steps Direct Torque Cont. - High Freq. (500Hz) | 185£16.6 | 86.3£1.09 155+6.58 | 143+£6.98 | 71.3£1.3 91.8+1.08 84.6+1.21 | 75.5£12.7 | 88.5£3.01 | 81.2+4.86 | 2194+5.53

J.4. Ablation: Equal Computational Complexity for All Baselines

We investigate making the computational complexity the same for all baselines and EvoControl, in two approaches. First, the
most direct approach we set the budget of the number of low-level environment steps to be equivalent for all baselines, listed
as equivalent number of low-level environment steps in Appendix J.4.1. Second, we recognize that modern GPUs allow for
environment parallelization. Thus, we investigate only setting the same number of sequential low-level environment steps
to be equivalent for all baselines—where the bottleneck for parallelized rollouts is the number of sequential steps of the
parallelized environments. This is listed as equivalent number of sequential low-level environment steps in Appendix J.4.2.

J.4.1. EQUIVALENT NUMBER OF LOW-LEVEL ENVIRONMENT STEPS

Here we explicitly set the total number of low-level environment steps for all the baselines to be the same. For EvoControl,
that trains its high-level policy with PPO and its low-level policy with ES, this means that the high-level policy trained with
PPO now receives less high-level update steps compared to the baselines, to account for the low-level step budget used
by the low-level ES component. This is different from the main results within the paper (Section 5.1) which trained each
baseline for 1M high-level steps, thus meaning that the high-level policy p was trained for 1M steps, not accounting for the
potentially differing number of low-level steps used by updating or using the lower-level policy.

To set the total number of low-level environment steps for all the baselines to be the same, we first compute the total
number of low-level steps that EvoControl uses, where we train EvoControl’s high-level policy for 1M steps, and then
now train the baseline methods for this increased number of equivalent high-level steps. Specifically if we consider a PD
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position baseline, originally training this for 1M high-level environment steps, with a lower-level PD position controller,
operating at a higher frequency with G = 16, meaning that the number of low-level environment steps used in the
environment are 1M x 16 = 16 M. Here EvoControl, when the high-level is trained for 1M steps, the lower-level policy
also receives updates, therefore the total number of low-level environment steps used within the training of EvoControl
is K x es_rollouts x es_sub_generations X es_pop_size x episode_length. To simplify the comparison, we explicitly set
es_rollouts = 1 and leave the other inputs the same as they were for the main results (that of KX = 8, es_sub_generations =
8, episode_length = 1000). This leaves the input parameter of es_pop_size that we can vary. Therefore the total number
of low-level environment steps used by EvoControl is 1M X 16 4+ 64K x es_pop_size. Therefore, for the following
experiments we train all the other non-EvoControl baselines for IM x 16 + 64K X es_pop_size low-level environment
steps, by specifically determining how many high-level steps this is by dividing by G and using that as the input as the total
number of high-level steps to train for each baseline.

For the results, as discussed, we vary es_pop_size = {16, 32, 64, 128, 256} and re-run each non-EvoControl baseline with
the equivalent number of low-level steps as EvoControl—which means as EvoControl uses ES to update the low-level policy,
the high-level policy now receives less equivalent updates compared to the high-level policy of the non-EvoControl baselines.
We observe in Tables 14 to 18 that EvoControl even when limited to use the same number of low-level environment steps as
all the baselines, on average achieves a higher normalized evaluation return than all the baselines fixed controllers and direct
torque control.

Table 14: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 16. Normalized evaluation return R
for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the
baselines of fixed controllers and direct torque control. Results are averaged over 6400 random seeds, with + indicating 95% confidence
intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by
a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt Rt Rt RT RT RT Rt RT RT Rt
Fixed Cont. - PD Position 1004£1.75 | 62.1+0.115 | 97.5+0.246 | 100+0.629 | 10040.144 10040.00784 | 100+3.74e-07 | 100£2.91 | 100£0.337 | 8640.672 | 83.1+0.0441
Fixed Cont. - PD Position Delta 4.11£0.503 | 2.84+0.022 | 100£0.679 | 96.74+0.391 | 2.73+0.0111 55.9+0.412 10043.74e-07 | 33+3.84 | 42.2+0.705 | 18.6+1.74 | 93.8+0.052
Fixed Cont. - PD Int. Velocity 2.05+0.504 | 2.5340.0229 | 76.1+£0.319 | 86.5+0.315 0+0 48.1+0.388 86.6+0.496 0+0 0+0 0+0 73.1£0.633
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0£0 24.1£0.233 | 12.3+0.336 0=£0 31.3+0.434 3.34+0.797 60.2£1.07 243+£254 | 17.4+1.22 72.6£1.21 36.4+0.7
Direct Torque Cont. - Low Freq. (31.25Hz) | 46.5+1.42 10040.359 | 78.3+0.148 | 97.1+0.627 | 81.3+0.292 10040.00823 99.7+0.0278 | 80.6+3.86 | 59.8+0.801 | 100+0.504 | 100+0.272
EvoControl (Full State) 1454251 | 89.7+0.661 | 127+0.596 | 96.2+0.651 | 88.9+0.111 100+0.0083 1004:3.74e-07 | 423+3.41 | 107+0.192 | 106+0.183 | 134+0.491
EvoControl (Residual State) 1244245 125+0.595 | 83.5+0.719 | 117+0.768 | 101+0.159 99.6+0.0159 1004:3.74e-07 | 445+3.61 | 105+0.178 | 105+0.227 | 188+0.831
EvoControl (Target + Proprio.) 148+2.81 99.24+0.719 | 146+0.998 | 1224+0.707 | 99.1+0.452 99.7£0.0748 95.4+0.29 468+3.31 | 107+0.177 106+0.18 13240.498
EvoControl (Target) 1414279 1060993 | 135+0.621 | 124:+0.713 | 100+0.374 99.9+0.0148 1004:3.74e-07 | 420+3.17 | 65.3+£0.802 | 103+0.29 137+0.697
EvoControl (Learned Gains) 79.842.43 52.34+0.487 109+1.1 85.3+0.732 | 93.6+0.178 72.5+1.24 100£3.74e-07 | 409+3.45 | 99.5+0.421 | 97.94+0.449 11440.909
EvoControl (Delta Position) 139+2.81 99.2+0.85 141+0.382 | 97.6+0.764 | 68.8+0.63 87.6+0.565 10043.74e-07 | 398+3.32 | 63.2+0.802 | 102+0.337 | 150+0.529

Table 15: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 32. Normalized evaluation return R
for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the
baselines of fixed controllers and direct torque control. Results are averaged over 6400 random seeds, with =+ indicating 95% confidence
intervals. Returns are normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved by
a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher ‘Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D
Rt Rt Rt Rt Rt Rt Rt Rt Rt Rt Rt

Fixed Cont. - PD Position 100+1.23 59.640.195 | 99.540.0651 | 83.2+0.473 100+£0.275 99.940.00874 | 100+£3.74e-07 | 100£2.71 | 10040.258 | 86.340.645 | 74.840.128
Fixed Cont. - PD Position Delta 3.42+0.447 | 2.72+0.0204 | 10040.266 | 96.24+0.411 | 3.03+0.00787 56.6+0.395 10043.74e-07 | 50.7+3.73 | 42.64+0.682 | 18.54+1.72 | 93.3+0.072
Fixed Cont. - PD Int. Velocity 4.62+0.453 | 2.45+0.0214 | 82.540.702 | 79.4+0.275 0+0 50.6+0.404 96.94+0.226 0£0 0+0 040 100+0.519
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 00 44.3+0.269 | 33.8£0.449 | 27.9:+0.605 5540.664 34.74£0.47 92.74+0.287 | 3.92+£2.35 | 18.741.21 774113 47.540.404
Direct Torque Cont. - Low Freq. (31.25Hz) | 42.9+1.15 100+£0.257 99.440.446 | 100%0.449 96.340.133 100-£0.0082 100£3.74e-07 | 91.84+3.56 | 62.6+£0.749 | 10040.475 | 84.14+0.306
EvoControl (Full State) 158+2.4 14310.502 142+0.195 93+0.663 96.540.144 100+£0.00707 | 100+£3.74e-07 | 411+2.87 | 1074+0.163 | 106+0.17 | 149+0.484
EvoControl (Residual State) 158+2.18 1124+0.433 94.240.114 112+0.68 123:+0.683 99.540.0196 10043.74e-07 | 424+3.31 | 97.440.435 | 105+£0.209 | 200+0.515
EvoControl (Target + Proprio.) 152+2.39 120-£0.848 12740427 | 123+0.614 116-£0.405 99.340.0701 100-£3.74e-07 | 444+3.27 | 57.3+£0.813 | 10640.165 | 145+0.792
EvoControl (Target) 154+2.33 103+0.521 141+0.396 | 122+0.579 117+0.609 88.4:£0.494 100£3.74e-07 | 404+3.29 | 96.4+0.309 | 10440.219 | 136+0.557
EvoControl (Learned Gains) 104+2.31 67.1£0.518 155+1.98 96.940.657 100-£0.209 96.240.142 100-£3.74e-07 | 360+2.9 | 102+0.281 | 102+0.31 | 161+0.705
EvoControl (Delta Position) 161+2.53 105+0.707 127+0.91 101+0.674 7440.479 100£0.0103 100£3.74e-07 | 429+3.24 | 59.5+£0.774 | 1024+0.316 | 149+0.361
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Table 16: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 64. Normalized evaluation return R
for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the
baselines of fixed controllers and direct torque control. Results are averaged over 6400 random seeds, with =+ indicating 95% confidence
intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by
a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D
RT RT RT RT Rt RT RT RT RT Rt RT

Fixed Cont. - PD Position 100+£5.17 66+0.555 90.2+0.489 | 92.8+2.9 87.8+1.3 99.6+0.0357 100£1.53e-06 | 100+9.4 | 100+1.24 | 88.742.6 | 68.740.285
Fixed Cont. - PD Position Delta 4.93+1.67 | 2.88+0.0891 | 84.3+0.854 | 100+1.79 | 3.16+0.024 57.1£1.6 100£1.53e-06 | 3.4+9.98 | 42.842.99 | 27.9+£7.48 | 85.440.513
Fixed Cont. - PD Int. Velocity 5.94+1.8 | 2.5940.0938 | 56.9+2.3 | 72.6+0.872 0+0 61.3+1.59 99+0.45 0+0 0+0 9.58+7.72 | 100+0.681
Fixed Cont. - Random 0.0+0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 44+0.794 42.9+0.53 | 63.6+2.37 53+2.15 97.8+0.387 49.94+2.36 9.18+7.69 | 10.8+5.42 | 81.1+4.24 | 32.24+1.27
Direct Torque Cont. - Low Freq. (31.25Hz) | 70.4+6.52 100+1.22 100+1.26 87.2+1.35 | 100+0.204 100+0.0178 100+1.53e-06 | 83.1+10.2 | 67.2+3.05 | 100£1.79 | 69.2+1.38
EvoControl (Full State) 188+12 165+1.15 118+22.4 111+15.9 90.2+£6.6 100+0.306 100+0 296+42.6 | 109+1.86 | 104+2.14 127+126
EvoControl (Residual State) 152+117 166+16.9 125+118 108+43 112+14.2 99.240.304 100+0 302+£18.1 | 102+1.08 | 104+2.07 | 169+59.6
EvoControl (Target + Proprio.) 183+69.2 135+11.1 130+55.2 126+12.1 124+58.8 87.1£53.3 1000 300£42.6 | 107+2.77 | 104+2.23 | 130+12.7
EvoControl (Target) 201+27.5 164+10.6 131+93.5 125+4.52 109+12.2 99.5+1.7 100+0 286427 | 83.5+63.4 | 103+3.2 122438
EvoControl (Learned Gains) 103+23.1 90+20.6 1414845 111+28.9 102+1.5 93.9426 100+0 263+46.8 | 104+11.4 | 102+4.85 | 1494352
EvoControl (Delta Position) 168+29.9 123+75.2 95.9+40.8 104+£9.23 | 94.248.68 100+0.491 100+0 300£61.6 | 59+5.93 | 99.9+7.07 | 160+12.4

Table 17: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 128. Normalized evaluation return R
for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the
baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating 95% confidence
intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by
a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy (3 of Standup Pendulum Pendulum 1D
RT RT Rt Rt Rt Rt Rt Rt Rt Rt RT

Fixed Cont. - PD Position 100+9.19 | 73.24+0.419 | 86+0.878 | 89.5+2.72 78.44+1.31 99.7+0.0353 100+1.53e-06 | 100+£8.67 | 100+0.928 86+2.76 100+0.935
Fixed Cont. - PD Position Delta 3.33+2.59 | 3.1240.101 | 48.8+1.06 | 89+1.69 3.22+0.0153 70.2+1.95 100£1.53e-06 | 10.249.63 | 43.6+2.74 | 19.94+7.52 | 72.7+1.51
Fixed Cont. - PD Int. Velocity 8.1242.69 | 2.82+0.107 | 42.2+1.94 | 57.8+£0.929 0+0 52.241.66 100£1.53e-06 0+0 0+0 0.651+7.83 | 85.3%+0.32
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0£0.0
Direct Torque Cont. - High Freq. (S00Hz) | 4.16£15.4 | 66.5+2.22 | 46.6+1.49 | 54.8+£1.15 75.74+2.04 93.440.598 49.6+2.28 1424596 | 33.5+5.21 | 83.844.27 | 41.1+1.75
Direct Torque Cont. - Low Freq. (31.25Hz) | 53.9£7.67 | 100+1.74 100+3.31 10041.87 100£0.397 100£0.029 10041.53e-06 | 85.2+6.7 | 68.1+2.89 100+1.53 | 88.5+0.724
EvoControl (Full State) 328+88.2 | 148+68.4 | 105+2.16 87.1+8 97.1+13.4 101+0.0993 100+0 252+16.8 | 106+0.66 105+2.23 127+57.7
EvoControl (Residual State) 197+40.1 191+33 9424120 | 120420.9 121+42 99.8+0.474 100+0 239+18.6 | 102+4.38 104+6.29 138+127
EvoControl (Target + Proprio.) 274+752 | 202+14.7 | 121+£51.5 | 127+£19.1 152+89.5 90.6£37.6 100£0 253+44.6 | 107+2.27 105+2.33 135+23.9
EvoControl (Target) 313+£6.88 204+2.9 113+47.8 | 122+10.3 135+99 92.4+31.5 100+0 245+22.2 | 101+2.17 104+1.27 128+53.9
EvoControl (Learned Gains) 2424909 | 116+1.47 | 142+94.7 | 104+18.6 104+2.93 99.6+3.18 100+0 236+21.6 | 105+9.62 103+5.11 134+55.8
EvoControl (Delta Position) 296+14.1 151+50 61.5+287 | 98.8+4.74 93.3424.5 101+0.13 100£0 238+19.7 | 60.2424.1 | 95.6£19.8 123+41.4

Table 18: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 256. Normalized evaluation return R
for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the
baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with & indicating 95% confidence
intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by
a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt Rt R Rt Rt R Rt R1 Rt Rt
Fixed Cont. - PD Position 100£5.67 6040.402 473£1.17 | 100£1.78 | 96.2+0.628 100£0.0379 100£1.53e-06 | 100+6.56 | 100+0.959 | 85.4+2.66 | 10040.253
Fixed Cont. - PD Position Delta 3+1.86 2.71+0.0777 | 27.6+0.461 | 98.3+1.56 | 3.03+0.024 96.3+0.84 100£1.53e-06 | 8.47+8.21 | 49.4+2.42 | 21.9+7.31 | 57.242.07
Fixed Cont. - PD Int. Velocity 6.16+1.79 | 2.4640.0836 | 24.5+0.943 | 57.3+£1.29 0+0 22+40.756 100+£1.53e-06 0+0 0+0 3.33+£7.57 | 66.1£0.156
Fixed Cont. - Random 0.0+£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.00.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0

Direct Torque Cont. - High Freq. (500Hz) | 28.74+13.2 62.241.3 58.7£0.756 | 65.7£2.62 | 75.142.23 99.5+0.0862 60.9£3.02 19.34£5.42 | 45774495 | 83.4+£3.99 | 43.441.66
Direct Torque Cont. - Low Freq. (31.25Hz) | 52.445.84 | 100+0.992 100£0.664 94+1.3 100+0.435 100£0.0472 100£1.53e-06 | 89.8+£3.93 | 81.242.41 | 100£1.34 | 79.1+0.946

EvoControl (Full State) 302+40.8 144+17.5 69.9+£18.2 | 97.1+14.5 | 109+19.4 101+0.524 100+0 206+15.8 89+64.6 103+2.1 12343.79
EvoControl (Residual State) 138+28.7 162+22.8 37+£3.31 124+49 129+37.4 101+0.561 1000 2154219 | 99.9+£7.45 | 103+2.89 | 128+94.1
EvoControl (Target + Proprio.) 281+39.5 130+7.09 90.1£11.2 | 125+42.8 | 141+70.8 99.2+5.02 76.94+99.4 205+£11.8 | 104+3.39 | 103+2.14 | 118+30.7
EvoControl (Target) 241+42.1 150+19.8 75.14382 | 124+21.5 | 118+8.06 99.7£2.18 10040 198+21.5 | 75.7456.7 | 102+2.93 | 92.7+30.3
EvoControl (Learned Gains) 197+86.2 96.3+13.9 59.1450.9 | 111£21.7 | 107+1.18 101+0.202 100+0 190+45.5 | 104+0.793 | 102+2.65 135+40

EvoControl (Delta Position) 257+50.6 116+23.7 10242.25 | 98.4+14.1 | 98.54+11.2 101+1.57 10040 206254 | 65.34+40.5 95+£15 130-+:48.7
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J.4.2. EQUIVALENT NUMBER OF SEQUENTIAL LOW-LEVEL ENVIRONMENT STEPS

Here we set the total number of sequential low-level environment steps for all the baselines to be the same. This is approach
is different from setting the total number of low-level environment steps to be the same, as it acknowledges the more
realistic scenario of performing parallel environment rollouts on modern GPUs. With parallelized rollouts, the computational
bottleneck becomes the number of sequential steps within each environment, as the overhead of increasing the number of
parallel environments is negligible compared to increasing the number of sequential steps—assuming a user has a sufficiently
large GPU to perform parallelized rollouts of the environment. Such an assumption is common in practice (Huang et al.,
2022), with many implementations of PPO and simulation environments natively supporting parallelized rollouts for the
environment (Brockman et al., 2016b).

To set the total number of sequential low-level environment steps for all the baselines to be the same, we follow a similar
setup as described in Appendix J.4.1, now only accounting for the sequential low-level environment steps that EvoControl
uses. Specifically, we first compute the total number of sequential low-level steps that EvoControl uses, where we train
EvoControl’s high-level policy for 1M steps, and then now train the baseline methods for this increased number of equivalent
high-level steps. Specifically if we consider a PD position baseline, originally training this for 1M high-level environment
steps, with a lower-level PD position controller, operating at a higher frequency with G = 16, meaning that the number of
low-level environment steps used in the environment are 1M x 16 = 16/. Here EvoControl, when the high-level is trained
for 1M steps, the lower-level policy also receives updates, therefore the total number of sequential low-level environment
steps used within the training of EvoControl is K x es_sub_generations x episode_length. As es_rollouts and es_pop_size
are parallelized, they are not counted in the total number of sequential low-level steps, therefore we leave them as the
default values as defined in Appendix G. We leave the other parameters the same as they were for the main results (that
of K = 8,es_sub_generations = 8, episode_length = 1000). This leaves the input parameter of es_pop_size that we can
vary. Therefore the total number of sequential low-level environment steps used by EvoControl is 1M x 16 4 64K, a fixed
amount. Therefore, for the following experiments we train all the other non-EvoControl baselines for 1M x 16 + 64K
low-level environment steps, by specifically determining how many high-level steps this is by dividing by G and using that
as the input as the total number of high-level steps to train for each baseline.

For the results, as discussed, we vary es_pop_size = {16, 32, 64,128,256} and re-run each non-EvoControl baseline
with the equivalent number of sequential low-level steps as EvoControl—which means as EvoControl uses ES to update
the low-level policy, the high-level policy now receives less equivalent updates compared to the high-level policy of the
non-EvoControl baselines. We observe in Tables 19 to 23 that EvoControl even when limited to use the same number of
sequential low-level environment steps as all the baselines, on average achieves a higher normalized evaluation return than
all the baselines fixed controllers and direct torque control—which remains consistent with the results seen throughout.

Table 19: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 16. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return
than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating 95%
confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward
achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D
RT RT RT RT RT RT RT RT RT RT RT

Fixed Cont. - PD Position 100£7.29 | 69.34+0.723 | 93.7+1.28 | 1004+2.75 | 10040.194 99.94+0.0347 100£1.53e-06 | 1004+8.47 | 100+1.39 | 85+2.93 | 82.840.176
Fixed Cont. - PD Position Delta 4.81£1.78 | 3.14£0.101 | 100£1.55 | 97.7+£1.85 | 2.6+0.0436 53.9+2.1 100£1.53e-06 0+0 40.3+3.19 | 152+47.6 | 93.3+0.235
Fixed Cont. - PD Int. Velocity 4.8+1.82 | 2.840.106 | 75.2+0.875 | 84+1.34 00 48.8+1.93 87.8+1.97 00 0£0 0+0 84.14+3.36
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 19.340.355 | 3.85+£0.273 | 13.442.62 | 15.3£1.23 0+0 0+0 2.95+7.81 0+0 45.3+6.74 | 1.15+4.13
Direct Torque Cont. - Low Freq. (31.25Hz) | 55.6+6.39 | 100+2.73 | 75.9+0.496 | 89.7+2.27 | 71.9+2.3 100+0.041 10041.53e-06 | 75.4+12.8 | 59.243.7 | 100+£1.94 | 100+0.384
EvoControl (Full State) 116+62.6 10422 1274523 | 9474326 | 88.2+6.4 100+0.553 100+0 2724112 | 95.5465.5 | 105+£3.31 | 130+63.9
EvoControl (Residual State) 163+118 153+55 96.5+5.44 | 93.8+40.1 | 95.6+30.9 99.242.81 100+0 314443.1 | 107+1.46 | 105+2.39 | 194+3.42
EvoControl (Target + Proprio.) 121+54.9 | 92.14+20.7 131+£16.9 | 117+£10.2 | 101+3.66 99.4+12.5 100+0 311459.8 | 110+£5.76 | 106+2.39 | 137+1.04
EvoControl (Target) 129+78.2 | 1154594 133+2.96 | 110+£13.1 | 87.84+5.32 100+2.15 100+0 3034+53.2 | 71.3+46.9 | 104+4.91 143+382
EvoControl (Learned Gains) 46.8+£54.2 | 58.648.22 128+74.8 | 82.6+7.06 | 91.14+8.77 75.6+139 100+0 228+41.4 | 103+13.9 | 97.34+1.76 | 111+307
EvoControl (Delta Position) 117+33.8 | 1044573 154+41.2 | 8494235 | 67.6+56.7 98.1424.1 100£0 285452.1 | 58.6+6.77 | 99.743.16 | 135+68.1
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Table 20: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 32. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return
than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with % indicating 95%
confidence intervals. Returns are normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward
achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

RT Rt Rt Rt Rt RT Rt RT Rt Rt Rt
Fixed Cont. - PD Position 100£5.89 | 60.8+0.558 89.5£1.2 | 89.243.27 100+£1.83 99.840.0361 100+£1.53e-06 | 100+8.47 100£1.8 8542.93 | 76.8+0.193
Fixed Cont. - PD Position Delta 2.14+1.8 | 2.7740.0891 100£1.93 1004£1.7 | 2.73+0.0726 53.9+2.1 10041.53e-06 0+0 41+£3.24 15247.6 | 89.6+0.171
Fixed Cont. - PD Int. Velocity 1.8241.66 | 2.474+0.0937 | 7340.882 85+1.21 0+0 48.8+1.93 86.4+£2.01 0+0 0+0 0+0 81.3£3.18
Fixed Cont. - Random 0.0+£0.0 0.0+0.0 0.0+£0.0 0.0£0.0 0.0+0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+0.0 0.0+£0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 16.9£0.325 | 3.54+0.253 | 8.28+2.31 | 21.9+2.06 0+0 0+0 2.95+7.81 0+0 45.31+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) | 45.1+4.76 100+1.7 79.3+1.22 | 93.74£2.87 | 69.6+2.38 100+0.041 100+1.53e-06 | 73.1412.7 | 59.14+3.75 | 100+£1.94 | 100+0.637
EvoControl (Full State) 150+46.9 147+10 1324+27.3 | 97.8+33.7 105+17.5 100+£0.451 10040 305+32.8 | 115+2.56 | 105+1.89 138+75.6
EvoControl (Residual State) 155+102 121+11.3 93.7+4.42 116+19 121+9.93 100£1.45 100+0 323+60.3 | 94+66.9 105+3.69 161+327
EvoControl (Target + Proprio.) 156+33.6 111+49.3 141+20.5 | 126+12.3 117+22 99.340.367 100+£0 3244408 | 58.1+2.89 | 106+2.35 137+79.6
EvoControl (Target) 164+56.5 116+2.59 136+27.6 | 129+4.94 110+16.7 98.7+12.2 100+0 291+104 | 88.7+62.8 | 105+0.546 139+23
EvoControl (Learned Gains) 86.3+84.9 | 59.9+11.8 162+171 105+18.5 103+21.7 99.1+12.1 100+£0 303+57.5 | 110+6.3 102+4.43 155+160
EvoControl (Delta Position) 156+78.1 101+35.5 111+49.3 | 101£7.07 | 99.7+8.03 100+3.02 100+0 302+28.8 | 58.9+5.31 | 102+9.45 127+60.5

Table 21: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 64. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return
than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with % indicating 95%
confidence intervals. Returns are normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward
achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt Rt Rt Rt Rt Rt Rt Rt Rt Rt
Fixed Cont. - PD Position 1004£5.05 | 64.2+£0.518 | 91.8+1.13 98+2.75 10040.123 99.9+0.03 10041.53e-06 | 100+£8.47 100£1.8 854+2.93 | 82.2+0.371
Fixed Cont. - PD Position Delta 3.6+1.66 | 2.9+0.0928 100£1.55 100£1.79 | 2.49+0.0711 53.8+1.57 100+£1.53e-06 0+0 41+£3.24 15247.6 | 99.740.285
Fixed Cont. - PD Int. Velocity 44+1.56 | 2.5740.0976 | 75.2+£0.875 | 90.1+1.48 0+0 49.741.55 86.5+2 0+0 0+0 0+0 93.843.03
Fixed Cont. - Random 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 18.240.332 | 1.314+0.536 | 39.3+4.2 11.4+£0.92 0+0 0+0 4.36+7.75 0+0 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) | 48.2+5.32 100+1.64 77.540.571 | 95.64+2.64 | 74.5£1.78 100+0.0311 100+£1.53e-06 | 75.4412.8 | 59.1+£3.75 | 100£1.94 | 100+0.592
EvoControl (Full State) 175+5.49 163+6.17 148+32.6 | 115+254 103+27.3 101+0.306 10040 348+£3.02 | 1144595 | 106+2.17 | 166+85.1
EvoControl (Residual State) 143+73.5 163+32.4 170+162 144+7.81 116+10.2 99.440.305 100+0 349£8.24 | 108+1.2 | 105+3.87 | 228+27.1
EvoControl (Target + Proprio.) 183+124 126+57.2 164+48.3 137+13 114+12.7 87.3+53.4 10040 335+48.2 | 114+2.93 | 106+2.3 157+51.3
EvoControl (Target) 180+67.6 176+12.8 132+18.4 | 138+6.19 126166 99.7+1.7 1000 326+41.6 | 91.24+72.9 | 105+3.25 157+79
EvoControl (Learned Gains) 107+26.7 91.2+24.8 198+195 110+29.7 104+1.37 94.1£26.1 10040 291+19 112+6.83 | 104+1.37 | 211+37.8
EvoControl (Delta Position) 180+18.7 117+25.1 131+36.6 | 112+9.84 | 59.4+30.5 101+0.492 100+0 342470 | 61.749.32 | 101+7.19 | 159+36.7

Table 22: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 128. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return
than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating 95%
confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward
achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt R Rt Rt R1 R1 R R1 Rt Rt
Fixed Cont. - PD Position 100+5.68 | 67.5+0.452 82.2+1.12 100+2.82 | 100+0.151 99.9+0.03 100+1.53e-06 | 100+8.47 100+1.8 | 85.2+£2.87 | 75.540.396
Fixed Cont. - PD Position Delta 3.75+1.68 | 3.04+0.0975 | 100£1.17 | 92.9£1.59 | 2.4+0.064 53.8+1.57 100+1.53e-06 0+0 41.1£324 | 15247.6 | 92.940.185
Fixed Cont. - PD Int. Velocity 1.81+1.6 2.740.103 67.2+0.812 | 81.4+1.29 0+0 49.7+1.55 86.5+2 0+0 0+0 0+0 86.5+2.67
Fixed Cont. - Random 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 18.8+0.359 | 1.27+0.479 | 10+1.85 | 15.9+0.789 0+0 0+0 2.95+7.81 0+0 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) | 36.8+4.92 10042.11 65.2+0.505 | 90.442.1 87.4+1.02 100+0.0311 100£1.53e-06 | 73.1+12.7 | 60.6+£3.71 | 100+1.94 | 100+0.416
EvoControl (Full State) 258:+£60.9 124+13.1 157+62.4 | 99.4+£13.6 | 93.4+5.77 101+0.0993 1000 346+3.75 | 115+£3.34 | 106+2.28 184+45.5
EvoControl (Residual State) 166+86.1 180+23.9 128+163 147+17.9 | 1404915 99.8+0.474 100+0 340+30.4 | 109+4.07 | 104+5.95 | 211+39.8
EvoControl (Target + Proprio.) 241+45.1 198+4.9 172+68.9 139+13 1344106 90.6+37.6 10040 363125 116+2.5 106+2.07 163+68.3
EvoControl (Target) 218+53.3 197+5.49 165+93.1 132+20.7 134+99.5 92.4+31.5 100+0 335+40.4 | 109+2.03 | 105+1.27 155+21.1
EvoControl (Learned Gains) 165+85.1 107+10.1 170+174 124+11.7 | 98.1+£7.44 99.7+3.18 1000 309+49.7 | 112+8.66 | 104+5.15 | 194+87.8
EvoControl (Delta Position) 216+20.1 125427 114+153 115+12.1 | 94.4+21.9 101+0.13 10040 334+16.5 | 59.4+6.88 | 95.94+21.7 | 190+74.7
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Table 23: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 256. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return
than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating 95%
confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward
achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt RT Rt RT Rt Rt RT RT Rt Rt Rt
Fixed Cont. - PD Position 100+£6.25 | 63.240.599 89.3%1.2 92.6£2.05 | 100+0.208 99.940.03 100+£1.53e-06 | 100+8.47 | 100+1.77 85+2.93 | 81.740.384
Fixed Cont. - PD Position Delta 2.57+1.74 | 2.863+0.092 100+1.84 100+1.78 | 2.54+0.0542 53.8+1.57 100+1.53e-06 0+0 40.843.23 | 15.247.6 | 96.34+0.219
Fixed Cont. - PD Int. Velocity 2.46£1.51 | 2.55+0.0967 | 73.1+£0.844 | 86.6+1.33 040 49.7£1.55 86.5+2 0£0 0+0 040 93.7+£2.77
Fixed Cont. - Random 0.0+0.0 0.0+£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 00 18-+0.353 0.882+0.533 | 7.93+1.94 | 10.140.357 0+0 0+0 4.36+7.75 0+0 45.346.74 0+£0
Direct Torque Cont. - Low Freq. (31.25Hz) | 63+7.07 100+1.54 70.6+0.548 | 85.6+1.41 80+1.73 100+0.0311 100+1.53e-06 | 75.4+12.8 | 58.8+3.74 | 100+£1.94 | 100£1.06
EvoControl (Full State) 285+52.7 161+19.5 190+40.5 126+9.29 105+29.9 101+0.522 100+0 3494274 | 97.94£70.9 | 106+2.16 | 169+58.1
EvoControl (Residual State) 161+49.5 188+1.91 95.7£5.8 153+£13.7 175+160 100-£0.559 100£0 351+£54.3 | 1124146 | 105+2.97 | 204+60.3
EvoControl (Target + Proprio.) 293+108 134214 202+134 165+36.2 140+76.2 98.8+5 76.9+99.4 33845 114+3.76 | 106+2.18 | 179+30.8
EvoControl (Target) 248+25.5 165+31.1 175+86.6 152+31.8 150+148 99.342.17 100+0 356+14.6 | 95.6+23.8 | 105+2.87 | 148+31.3
EvoControl (Learned Gains) 214+12.7 111+11.2 128+69 125+72.2 102+8.52 100+0.201 100+0 327+81.4 | 115+£0.874 | 105+2.67 | 229+56.9
EvoControl (Delta Position) 281+76.8 141+£31.4 2021848 121+£8.27 | 96.3+16.3 101+£1.56 100£0 342+12.7 | 71.9+44.6 | 9744154 | 173+32.4

J.5. Ablation: No annealing with PD Controller

Here we conduct an ablation of removing the gradual annealing with a PD controller throughout training. Specifically, to do
this we set a = 0, therefore meaning that within EvoControl the high-level policy p output latent action ay, directly goes
into the initially un-trained low-level neural network policy 5. We observe in Table 24, that EvoControl as presented in
the main paper, the inclusion of annealing with a PD controller throughout learning does help EvoControl to achieve a
higher normalized return on average compared to no annealing with a PD controller, as shown in the ablation. This provides
empirical evidence for it’s inclusion, which could be explained by the intuitive arguments presented in the paper, of helping
the higher-level policy p to learn a stable policy using an initial goal-tracking sub-policy of a PD controller, and then switch
to an improved learned low-level controller throughout training. We also note, that although EvoControl performs well
with the inclusion of the annealed PD controller, not having the PD controller, it also performs acceptably compared to the
baselines. However, for best performance we recommend users to use the annealing with a PD controller.

Table 24: Main table of results (Table 3), with the ablation of EvoControl with no PD controller annealing (by setting o« = 0). Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation
return than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating
95% confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest
reward achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 8 of Standup Pendulum Pendulum 1D

Rt Rt Rt Rt Rt Rt Rt Rt Rt R Rt
Fixed Cont. - PD Position 100+6.56 | 61.20.441 91.6+1.23 100+2.96 100+0.974 99.9+0.03 100£1.53e-06 | 100+8.47 100£1.8 | 85.242.87 | 75.7+0.633
Fixed Cont. - PD Position Delta 244191 | 2.7640.0888 | 100+1.35 | 96.641.71 | 2.96+0.0397 53.8+1.57 100+1.53¢-06 0£0 4094323 | 15.247.6 | 90.2+0.239
Fixed Cont. - PD Int. Velocity 3.59+£1.78 | 2.46:£0.0932 | 74.740.903 | 83.4£1.13 00 49.7£1.55 86.5+2 0£0 00 00 85.9£2.55
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (S00Hz) 0+0 17.240.316 | 1.4240.533 | 10.44+2.19 | 10.3+0.586 0+0 00 1.34+£7.89 | 2.0845.84 | 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) 54.547.15 100£1.21 72+0.64 98+2.55 80.6+2.56 10040.0311 100£1.53e-06 | 73.2£12.9 | 59.243.72 | 100£1.94 10042.68
EvoControl (Full State) 368+73.2 157+18.3 274:20.6 123+19 116+18.4 10140859 1000 362+£12.5 | 114£7.51 | 106+2.75 203137
EvoControl (Residual State) 182+16.1 182+6.31 101+5.54 170+18.2 212+145 99.2+1.25 100+0 375+94.8 | 106+25.8 | 104+3.42 205+57.4
EvoControl (Target + Proprio.) 319+35.1 168+14.7 171+155 165+7.19 165+150 99.7£1.19 100+0 353+28.4 | 96.8+78.6 | 105+4.71 178+63.7
EvoControl (Target) 293:£87 162+23.5 283:£250 164+21.2 205147 99.6:£0.949 100+0 353+43.4 | 112+1.73 | 105+1.65 | 188+88.2
EvoControl (Learned Gains) 266-:104 113+10.5 206302 150+15.1 117+2.44 99.5+2.48 100+0 330+17.8 | 116+1.62 | 105+2.45 196118
EvoControl (Delta Position) 362+47.7 133+34.6 225+82.9 119+18 105+4.64 101+0.394 100+0 267+£30.2 | 655421 | 99.1+12.7 | 183+34.4
Ablation - No PD controller annealing (o = 0) - EvoControl (Full State) 35987 148+27.8 213+142 121+£17.3 116+17.1 101+0.51 100+0 349+15 655+16 | 104+4.52 | 218+39.7
Ablation - No PD controller annealing (o = 0) - EvoControl (Residual State) 164+195 121+:27.7 1604181 166+28.2 122425.6 99.7£1.47 100+0 366+:86.2 | 68.4+43.5 102+7 185109
Ablation - No PD controller annealing (o = 0) - EvoControl (Target + Proprio.) 294:£46 148+3.82 242:+193 173+18.4 165+147 89.3+43.8 100+0 357+44.2 | 63.2+12.6 | 104+5.84 188106
Ablation - No PD controller annealing (o = 0) - EvoControl (Target) 298+31.5 145+71.4 121+109 174+8.98 128+16.6 68.7£78.1 100+0.0223 356109 | 74.4441.3 | 91.6+39.9 | 195+74.4
Ablation - No PD controller annealing (o = 0) - EvoControl (Learned Gains) 255+58.2 140+19.9 95.7£127 156+23.9 119+5.95 100+0.554 100+0 340+49.4 | 87.9+40.1 | 92.7+4.95 179+117
Ablation - No PD controller annealing (o = 0) - EvoControl (Delta Position) 328110 151+67.6 255116 127+£2.02 120+8.73 101+0.365 1000 334£30.9 | 60£13.3 | 96.3£13.3 | 236+10.8
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J.6. Ablation: Main Results for More High-level Steps

In the following, we increase the high-level number of steps that each baseline is trained for. Initially in the main results
presented in the paper we trained all the results for 1M high-level p policy steps. Therefore we ask the question, how do all
the results compare if we run all the baselines for the high-level steps of 100M and 1B high-level steps. We tabulate these
results in Tables 25 to 27.

Table 25: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of 10M steps. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation
return than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with + indicating
95% confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest
reward achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher ‘Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

RT RT RT RT RT RT RT Rt RT RT RT
Fixed Cont. - PD Position 60.8+2.01 | 68.9+0.858 10041.23 10040.281 10040.308 100+0.033 89.6+1.48 100£4.99 | 93.8+2.48 | 84.9+2.56 100-£0.775
Fixed Cont. - PD Position Delta 0+0 4.134£0.107 | 45.44+0.0546 | 86.5+1.22 1.440.0198 98.2+0.485 100+1.53e-06 | 0.226+7.09 | 65.5+1.68 25.747.17 | 46.5+0.0729
Fixed Cont. - PD Int. Velocity 0+0 4.15+0.145 | 45.940.0263 | 58.840.93 | 1.59+0.0629 13.4+0.43 99.6+0.244 0+£0 0£0 9.68+7.5 53+0.887
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) | 0.36+4.11 70+1.51 35+1.66 42.1+£1.2 73.4£1.91 97.8+0.148 42.6+1.48 10.744.39 36.9£3.9 83.8£3.45 29.8+1.18
Direct Torque Cont. - Low Freq. (31.25Hz) | 100+4.06 100£1.39 94.6+3.91 96.3+0.355 79.5£2.01 100+0.0336 100+1.53e-06 | 41.7+3.83 100+1.33 100+1.66 74.842.44
EvoControl (Full State) 208+4.54 | 231+1.11 187+0.629 | 104+0.802 | 118+0.172 102+8.45e-05 | 10041.53e-06 | 223+3.06 | 97.1+£0.738 | 99.7+1.4 222+1.12
EvoControl (Residual State) 113+£3.74 | 208+1.23 128+4.11 124+0.865 228+4.5 101+0.0953 10041.53e-06 | 228+3.03 | 103+£0.646 | 101+0.634 | 150+0.501
EvoControl (Target + Proprio.) 178+3.88 | 230+0.842 | 177+0.467 | 169-+0.922 206+6.11 83.6+1.65 100+0.000679 | 22242.92 | 96.7+0.865 | 97.8+1.2 226+1.36
EvoControl (Target) 174+4.38 | 231+0.617 | 185+0.815 148+1.19 254+6.5 87.3+1.89 10041.53e-06 | 224+2.84 | 92.7+1.08 | 99.5+1.04 203+1.72
EvoControl (Learned Gains) 147+4.81 | 194+1.13 172+0.682 110+1.06 112+0.506 102+0.0572 10041.53e-06 | 200+4.62 | 102+0.651 | 99.8+0.836 | 186+1.55
EvoControl (Delta Position) 187+4.08 | 209+1.55 185+0.188 | 98.6+0.824 | 115:+0.389 102+6.05e-05 | 10041.53¢-06 | 155+5.18 | 93.4+1.03 | 98.4+0.777 | 179+0.635

Table 26: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of 100M steps. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation
return than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with £ indicating
95% confidence intervals. Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest
reward achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D

RT Rt RT Rt RT RT RT RT RT RT RT
Fixed Cont. - PD Position 62.5+1.4 38.6+0.485 | 85.1+2.69 | 100+0.289 3642.01 10040.19 98.9+0.418 100+4.58 | 100£1.97 85.5+2.5 75.7+£2.56
Fixed Cont. - PD Position Delta 2.34+0.431 | 4.14+0.0897 | 53.9+0.362 | 94.841.17 | 1.09+0.0471 99.9+0.25 100+1.53e-06 | 85.6+5.35 | 78.1+1.84 | 20.4+7.39 | 44.3+0.0682
Fixed Cont. - PD Int. Velocity 2.61+1.03 | 4.08+0.132 | 24.9+2.14 | 68.4+1.68 35+1.03 34.6+2.79 44.6+4.01 37.7+6.42 040 12,147 52.4+1.14
Fixed Cont. - Random 0.0£0.0 0.0+£0.0 0.0£0.0 0.0+£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 29.8+4.11 10041.82 7714223 | 75.1+2.87 100+2.88 86.5+1.06 63.2+£2.86 9.06+£6.19 | 844274 | 65.3+6.04 | 72.742.65
Direct Torque Cont. - Low Freq. (31.25Hz) 100+3.6 60.6£1.53 100+5.62 | 96.3+0.501 | 77.7+1.17 99.9+0.281 10041.53¢-06 | 72.5+4.49 | 927432 10042.19 10043.95
EvoControl (Full State) 188+3.19 191+0.581 227+0.36 159+1.64 199+£3.11 100+3.24e-05 | 100+£1.53e-06 | 278+3.5 | 102+0.708 | 102+0.577 | 264+1.06
EvoControl (Residual State) 109+3.06 1514+2.44 186+1.95 | 163+0.807 194+6.19 100+0.000688 | 100+£1.53e-06 | 284+3.14 | 104+1.47 | 102+0.826 | 211+3.09
EvoControl (Target + Proprio.) 155+3.15 192+0.605 216+1.79 192+1 241+4.83 96.7+0.226 100+0.0112 | 283+2.86 | 103+0.782 | 96.8+1.3 257+1.58
EvoControl (Target) 147+2.77 192+0.499 213+2.3 189+1.66 261+2.19 96.4+0.314 98.9+0.791 279+3.23 | 96.941.03 | 88.1+2.05 | 260+0.723
EvoControl (Learned Gains) 117+3.68 151+1.37 215+0.793 | 123+0.874 63.6+2.6 100+4.2¢-05 10041.53e-06 | 259+4.17 | 103£0.844 | 101--0.848 180+2.09
EvoControl (Delta Position) 180+3.45 186+1.03 225+1.32 122+1.86 111+0.265 100+3.4e-05 10041.53e-06 | 253+5.79 | 104+0.65 | 102+0.586 | 207+2.45
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Table 27: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of 1B steps. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation
return than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with £ indicating
95% confidence intervals. Returns are normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest
reward achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

RT Rt RT RT RT Rt RT RT RT RT RT
Fixed Cont. - PD Position 4544272 | 29.840.662 | 65.8+1.03 | 100+0.542 | 100+0.959 98.1+£0.743 98.2+0.595 100+1.6 100+£1.84 | 100+2.82 50.242.42
Fixed Cont. - PD Position Delta 1.63+£0.459 | 4.2+0.0834 | 60.9+0.057 | 90.9+£1.02 | 1.13+0.0683 10040.353 100+1.53e-06 | 46.5+5.03 | 76.6+£1.77 | 22.1+8.77 | 33.240.0273
Fixed Cont. - PD Int. Velocity 4.86+0.755 0+0 17.242.89 | 56.54+1.92 | 36.54+0.488 83.6+£2.23 19.6+3.86 30.4+2.04 0+0 6.56+8.56 | 4.81+1.27
Fixed Cont. - Random 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 40.8+3.72 + 100+1.74 | 86.3+2.36 | 52.9+3.39 93.8+0.622 95.3+0.751 + 88.6+2.27 | 82.9+6.85 +
Direct Torque Cont. - Low Freq. (31.25Hz) | 100£3.25 100+£0.983 + 93.440.18 | 74.4+1.41 95.9+1.17 98.4+0.557 | 86.9+2.08 + + 100+0.646
EvoControl (Full State) 220+4.55 197+0.54 | 285+0.424 | 159+0.844 | 185+1.02 101+5.28¢-05 | 100+1.53e-06 | 106-£1.63 | 104+0.61 | 120+0.664 | 196+0.435
EvoControl (Residual State) 134+3.24 149+2.34 270+1.21 159+1.79 | 365+0.986 | 101+0.000788 | 100+1.88¢-06 | 111+1.31 | 95.3+2.41 | 120+0.727 | 155+0.924
EvoControl (Target + Proprio.) 1824+3.71 | 19440.564 | 269+0.707 | 183+1.01 340+4.46 96.5+0.391 100+1.88¢-06 | 114+1.14 | 98.7+1.19 | 112+1.43 181+0.835
EvoControl (Target) 174+4.07 | 1944+0.527 | 269+0.71 | 180+0.805 | 355+1.42 97.5+0.179 100+1.53e-06 | 113+£1.22 | 96.5+1.21 112+1.5 198+0.428
EvoControl (Learned Gains) 87.3+1.98 | 39.3+0.435 | 80.7+0.277 | 103+0.745 | 83.1+2.83 101+0.0651 99.9+0.204 | 76.9+£3.27 | 94.742.51 | 103+2.44 78.9+3.05
EvoControl (Delta Position) 215+3.81 | 195+0.499 | 269+1.15 | 121+0.526 | 158+1.55 101+4.84e-05 | 100+1.53e-06 | 112+1.35 | 108+0.478 | 120+0.667 | 167+0.592

J.7. Main Table of Results Additional Metrics

For the main table of results presented in the paper (Table 3), we also provide un-normalized results in Table 28 and the time
taken to train the policies in Table 29. Regarding the training time, the wall-clock time for EvoControl can be substantially
improved, as the PPO implementation we use to train the high-level policies is implemented in Jax, and was pre-compiled,
across a batch of environments, using Jax based environments (Brax). Whereas the ES could further be compiled, however
for our implementation it was not, and only the population of rollouts was compiled in Jax. Ideally for optimal performance
the entire ES step could be compiled in Jax leading to speed improvements, however given that all the baselines, including
EvoControl could finish training their policies within a time interval of approximately one hour, further optimization was
not necessary.

Table 28: Un-normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a
higher evaluation return R than the baselines of fixed controllers and direct torque control. Results are averaged over 384 random seeds,
with £ indicating 95% confidence intervals.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double | Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

R R R Rt Rt RT RT RT RT Rt RT
Fixed Cont. - PD Position 1.47e+03+31 1.09e+03+8.22 1.05e+03+12.7 3.52e+03+74 1.88e+05+1.43e+03 | 9.21e+03+£1.97 | 1e+03£0 | -2.36e+03+£26.2 | -46.6+2.44 | -20.3+2.08 895+7.13
Fixed Cont. - PD Position Delta 1.01e+03£9.04 3.6£1.66 1.14e+03+13.9 3.43e+03+42.9 4.51e+04+58.3 6.18e+03£103 | 1e+03+0 | -2.73e+03426.6 | -12744.38 | -70.945.5 1.06e+0342.69
Fixed Cont. - PD Int. Velocity 1.01e+03+8.43 -2.14£1.74 876+9.33 3.1e+03+28.2 4.05e+04+17.5 5.91e+03£102 | 898+15.1 | -2.67e+03+£26.2 | -2294+7.85 | -84.745.62 1.01e+03+28.7
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 920+41.1 273+5.89 119£5.5 1.28e+03+54.8 5.59e+04+862 722+1.23 10643.72 | -2.67e+03+24.4 | -1794+7.92 | -49.1+4.87 -36.94£24.9
Direct Torque Cont. - Low Freq. (31.25Hz) | 1.26e+03+33.8 | 1.82e+03£22.5 848:£6.61 3.47e+03463.6 | 1.59¢+05+3.76e+03 | 9.22¢+03+2.05 | 1e+03+0 | -2.44e+03£39.9 | -102+£5.04 | -9.55+1.41 1.17e+03430.1
EvoControl (Full State) 2.74e+03+347 | 2.88e+03+341 2.94e+034+212 4.08e+03+474 | 2.11e+0542.71e+04 | 9.28e+03+56.5 | 1e+03+0 | -1.55e+03+38.7 | -27.6+10.2 | -5.44+1.99 | 2.32e+0341.54e+03
EvoControl (Residual State) 1.86e+03£76.2 | 3.35e+03+118 1.15e+03457.3 5.27e+03+456 | 3.52e+05+2.13e+05 | 9.17e+03£82.2 | 1e+03+0 | -1.51e+03£293 | -38.5435 | -6.69+2.47 2.35e+03+646
EvoControl (Target + Proprio.) 2.51e+03£166 | 3.08e+03+274 1.88e+03+1.6e+03 | 5.15e+03+180 | 2.83e+05+2.21e+05 | 9.2e+03+78.3 le+03+0 -1.58e+03+88 -50.9+107 | -5.74+3.4 2.05e+03£716
EvoControl (Target) 2.38e+03+412 | 2.96e+03:+438 | 3.03e+03:+£2.68¢+03 | 5.11e+03+530 | 3.42e+05+2.16e+05 | 9.2e+03+62.4 | 1e+03+0 | -1.58e+03+134 | -30.8+2.35 | -5.78£1.19 2.15e+03+993
EvoControl (Learned Gains) 2.26e+03+492 | 2.06e+03£195 | 2.23e+03+3.12e+03 | 4.77e+03+378 | 2.13e+05+3.58e+03 | 9.19e+03£163 le+03+0 -1.65e+03+55 | -24.9+2.19 -6+1.77 2.25e+03+1.32e+03
EvoControl (Delta Position) 2.71e+03+226 | 2.43e+03:+644 2.43e+031856 4e+03£450 1.95e+0546.82e+03 | 9.27e+03+26 | 1e+03+0 | -1.84e+03+93.5 | -93.4+28.5 | -10.2+9.16 2.1e+03:£387
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Table 29: Time Taken to train in minutes for each baseline against each environment, for the main table of results in Table 3. All the
baselines including EvoControl can train their policies on average within an hour. Results are averaged over 384 random seeds, with £
indicating 95% confidence intervals. As the random baseline does not perform any training, we put a placeholder of O for it.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy § of Standup Pendulum Pendulum 1D

RT RT RT RT RT RT RT RT Rt Rt RT
Fixed Cont. - PD Position 0.671£0.0112 | 1.15+0.0309 | 0.886+0.0451 | 0.574+0.281 | 1.360.297 | 0.536+0.0173 0.50340.011 | 0.799+0.285 | 0.587+0.00373 | 0.51940.00276 | 1.06£0.0154
Fixed Cont. - PD Position Delta 0.668+0.0118 | 1.08+0.00826 | 0.879+0.0303 | 0.57640.285 | 1.19£0.283 | 0.54240.00226 | 0.475+0.00815 | 0.847+0.332 | 0.595+0.0164 | 0.473+0.0101 | 1.16%0.0178
Fixed Cont. - PD Int. Velocity 0.66240.0253 | 1.06+:0.00543 | 0.888+0.0169 | 0.574+0.3 | 1.11+0.303 | 0.53+0.0161 0.506+0.0181 | 0.679+0.27 | 0.573+£0.0182 | 0.503+0.0125 1.24£0.0349
Fixed Cont. - Random 040 040 040 00 00 00 00 040 00 00 040
Direct Torque Cont. - High Freq. (500Hz) 0.597+0.0392 | 0.963+0.0137 | 0.738+0.0213 | 0.5134+0.273 | 1.06+0.277 | 0.457+0.00473 | 0.424+0.0121 | 0.679+0.291 0.585+0.02 0.501£0.00844 | 0.899+0.0231
Direct Torque Cont. - Low Freq. (31.25Hz) | 0.663-:0.041 1.14:£0.0165 | 0.908+0.00972 | 0.582:+0.277 | 1.4+0.281 0.58340.016 0.513£0.0115 | 0.917+0.274 | 0.736+0.0267 0.58-£0.0301 1.09+£0.0476
EvoControl (Full State) 12.8+0.0925 23.3+0.11 14.8+0.0829 20.4+0.505 | 77.3+£0.481 8.33+0.0986 6.93+0.0438 31.4£1.34 5.74+0.0747 4.6+0.0386 25.440.226
EvoControl (Residual State) 11.2:£0.0999 23.2:£0.106 14.3£0.0904 18+0.466 | 76.1:£0.407 | 7.94:£0.0885 740.0656 31.1+£0.725 5.84+0.331 4.59+0.00888 23.740.112
EvoControl (Target + Proprio.) 12.740.0899 | 23.140.0987 14.5:£0.103 19.540.499 | 76.7+0.205 | 8.25+0.0224 6.89+£0.00579 | 31.54+0.256 5.710.231 4.5540.0514 24.1+£0.154
EvoControl (Target) 11.4£0.0776 | 22.940.156 14.540 19.440.467 | 76.740.399 8.33+0.139 7.09+£0.0406 30.7£1.27 5.660.119 4.5540.0235 24+0.279
EvoControl (Learned Gains) 12.9+0.106 23.1£0.0689 13.3£1.06 20.3+0.517 | 76.8+0.173 | 8.09+0.0643 7.13£0.0462 27.4+£1.52 5.64+0.16 4.5140.0625 25.3+0.34
EvoControl (Delta Position) 12.8£0.124 22.3+0.162 14.8£0.175 20.5+£0.479 | 73.2£0.733 8.39+0.0537 6.93+0.0197 29.2+1.25 5.7240.151 4.5940.0536 25.7+0.0329

J.8. Learning Curves for All Baselines

We provide the learning curves for all environments presented in the main table of results in the paper, that of Table 3.
Specifically, we provide these plots in Figures 5 to 14. We observe that EvoControl on average consistently outperforms the
non-EvoControl baselines and achieves a higher evaluation return.
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Figure 5: Evaluation return R versus p policy steps on Ant, for main table of results Table 3.
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Figure 6: Evaluation return R versus p policy steps on Halfcheetah, for main table of results Table 3.
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Figure 7: Evaluation return R versus p policy steps on Hopper, for main table of results Table 3.
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Figure 8: Evaluation return R versus p policy steps on Humanoid Standup, for main table of results Table 3.
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Figure 9: Evaluation return R versus p policy steps on Inverted Double Pendulum, for main table of results Table 3.
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Figure 10: Evaluation return R versus p policy steps on Inverted Pendulum, for main table of results Table 3.
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Figure 11: Evaluation return R versus p policy steps on Pusher, for main table of results Table 3.
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Figure 12: Evaluation return R versus p policy steps on Reacher, for main table of results Table 3.
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Figure 13: Evaluation return R versus p policy steps on Reacher 1D, for main table of results Table 3.
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Figure 14: Evaluation return R versus p policy steps on Walker2D, for main table of results Table 3.
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J.9. Ablation: Training High-Level Policy with Evolution Strategies

In the following we perform an ablation whereby we train the high-level policy with Evolution Strategies (ES) rather than
PPO. We provide two variations: first, using ES to train the high-level policy with the same fixed low-level controllers for
all non-EvoControl baselines (Table 30), and second, within EvoControl modifying training the high-level policy with ES
instead of PPO.

First, we replace the high-level PPO policy, keeping the same high-level policy architecture and network as originally
used in the main paper, and instead using the same ES as was used to train the low-level policy. For this we provide two
versions, A) that of training the high-level policy with the same number of high-level p steps as the core baselines presented
in the paper, with 1M p steps—Ilabelled ES (IM p steps). Specifically, this uses es_rollouts = 1, K = 8, es_pop_size =
256, es_sub_generations = 8. Second, B) training the high-level policy with the same number of environment steps as
was used to train the low-level policy within EvoControl—labelled ES (same as EvoControl low-level). Specifically this uses
more low-level environment steps than A), with es_rollouts = 16, K = 8, es_pop_size = 512, es_sub_generations = 8.
The results are tabulated alongside the original main table of results for ease of comparison in Table 30. We observe on
average that EvoControl still outperforms the competitive baselines, and on average achieves a higher normalized evaluation
return R than the baselines of fixed-controllers and direct torque control.

Table 30: Ablation. Training the high-level policy with ES instead of PPO. Normalized evaluation return R for the benchmark methods,
across each environment. EvoControl on average achieves a higher normalized evaluation return than the baselines of fixed controllers and
direct torque control. Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to
a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl baseline in each
environment. Scores bolded are greater than 100.

Method Name High-level Low-level Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
p with 3 with Standup Pendulum Pendulum 1D
R1T R 1T RT RT RT RT R1T R1 R1 RT RT

Fixed Cont. - PD Position PPO PD Position 100£6.25 63.2:£0.599 89.3£1.2 92.64+2.05 100£0.208 99.940.03 100£1.53e-06 | 100£8.47 100£1.77 85+2.93 81.7:£0.384
Fixed Cont. - PD Position Delta PPO PD Position Delta | 2.57+1.74 2.86+0.092 100+1.84 100£1.78 | 2.54+0.0542 53.8+1.57 100+1.53e-06 0+0 40.8+3.23 152+7.6 | 96.3+0.219
Fixed Cont. - PD Int. Velocity PPO PD Int. Velocity 2.46+1.51 2.5540.0967 | 73.140.844 | 86.6+1.33 0+0 49.741.55 86.5+2 040 0+0 0+0 93.742.77
Fixed Cont. - Random Random Direct Torque 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0=0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) PPO Direct Torque 0+0 18+0.353 0.882+0.533 | 7.93+£1.94 10.1+0.357 040 0+0 4.36+7.75 0+0 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) PPO Direct Torque 63+7.07 100+1.54 70.6+0.548 | 85.6+1.41 80+1.73 100+0.0311 100£1.53e-06 | 75.4+12.8 | 58.843.74 100+1.94 100£1.06
EvoControl (Full State) PPO ES 368+73.2 157+18.3 2744206 123419 116+18.4 101-+0.859 10040 3624125 114+7.51 106+2.75 203+137
EvoControl (Residual State) PPO ES 182+16.1 182+6.31 101+5.54 170+18.2 212145 99.24+1.25 1000 375+94.8 106+:25.8 104:£3.42 205574
EvoControl (Target + Proprio.) PPO ES 319+35.1 168:14.7 171£155 165+7.19 165150 99.7£1.19 1000 3531284 | 96.8+£78.6 105+4.71 178+63.7
EvoControl (Target) PPO ES 293487 162+23.5 2834250 164+21.2 205+147 99.6+0.949 10040 3534434 112+1.73 105+1.65 188488.2
EvoControl (Learned Gains) PPO ES 266104 113£10.5 206-+302 150-+15.1 117+£2.44 99.54+2.48 100+0 330+17.8 116+1.62 105+2.45 196118
EvoControl (Delta Position) PPO ES 362+47.7 133+£34.6 2254829 119+18 105+4.64 101£0.394 100-£0 267+30.2 655421 99.1+12.7 183+34.4
Ablation: Fixed Cont. - PD Position ES (IM p steps) PD Position 136+1.02 52.5+0.881 104+1.1 1540149 118+0.205 101:0.0186 100:£1.08¢-06 | 390+1.33 | 69.1+0.37 | 86.7+0.179 | 179+1.18
Ablation: Fixed Cont. - PD Position Delta ES (IM p steps) PD Position Delta | 36.1+0.185 | 4.48+0.00862 | 133+0.535 | 137+0.738 | 4.61+0.00116 97.74+0.782 100-+:0.0594 279+3.12 52+0.174 1224083 | 126+0.512
Ablation: Fixed Cont. - PD Int. Velocity ES (IM p steps) PD Int. Velocity 128+2.31 67.6+0.85 96+0.941 156+0.381 120+0.21 97.9+1.22 55.241.81 256+1.19 | 61.240.179 | 59.7+0.869 | 130+1.73
Ablation: Fixed Cont. - Random Random Direct Torque 0.0£0.0 0.0£0.0 0.0£0.0 0.0+£0.0 0.0=0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Ablation: Direct Torque Cont. - High Freq. (S00Hz) ES (IM p steps) Direct Torque 224+2.01 135+0.509 117£1.05 159+1.2 118+0.891 102+0.323 100+1.08e-06 | 344+0.985 | 73.14+0.509 | 104+0.17 189+3.02
Ablation: Direct Torque Cont. - Low Freq. (31.25Hz) ES (IM p steps) Direct Torque 198+3.12 119-+:0.556 118+0.349 | 168+0.497 115+0.863 100--0.0525 100+1.08e-06 | 305+2.54 | 70.24+0.267 | 105+0.113 18442.28
Ablation: Fixed Cont. - PD Position ES (EvoControl I steps) PD Position 220+£0.748 52.5+0.881 104+1.1 158£0.395 119+0.158 101+0.0186 100+1.08e-06 | 390+1.33 | 69.1+0.37 | 86.7+0.179 | 152+1.38
Ablation: Fixed Cont. - PD Position Delta ES (EvoControl neuro. steps) | PD Position Delta | 36.2£0.172 | 4.48£0.00862 | 133£0.535 | 143:£0.337 | 4.6:£0.00358 97.7+0.782 100+:0.0594 279+3.12 52:0.174 122083 | 122:+£0.452
Ablation: Fixed Cont. - PD Int. Velocity ES (EvoControl neuro. steps) | PD Int. Velocity 82.7+1.97 67.6+0.85 96+0.941 172::0.689 118+0.124 97.9+1.22 55.2+1.81 256+1.19 | 61.240.179 | 59.74+0.869 | 140+2.56
Ablation: Fixed Cont. - Random Random Direct Torque 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+£0.0
Ablation: Direct Torque Cont. - High Freq. (500Hz) | ES (EvoControl neuro. steps) Direct Torque 288+£3.08 135:£0.509 117105 156£1.02 116:£0.851 102:0.323 100-£1.08¢-06 | 344::0.985 | 73.1+0.509 | 104:0.17 169£2.98
Ablation: Direct Torque Cont. - Low Freq. (31.25Hz) | ES (EvoControl neuro. steps) Direct Torque 223+1.56 11940.556 118+0.349 | 158+0.574 119+0.314 100+0.0525 100-£1.08¢-06 | 305+2.54 | 70.2+0.267 | 105+0.113 180+2.17

Second, within EvoControl we perform the ablation of training the high-level policy with ES instead of PPO, using the
same high-level policy architecture as used in the main paper. Again, we provide two versions, A) tha of training the
A) that of training the high-level policy with the same number of high-level p steps as the core baselines presented in
the paper, with 1M p steps—Ilabelled ES (IM p steps). Specifically, this uses es_rollouts = 1, K = 8, es_pop_size =
256, es_sub_generations = 8. Second, B) training the high-level policy with the same number of environment steps as
was used to train the low-level policy within EvoControl—labelled ES (same as EvoControl low-level). Specifically this uses
more low-level environment steps than A), with es_rollouts = 16, K = 8, es_pop_size = 512, es_sub_generations = 8.
The results are tabulated alongside the original main table of results for ease of comparison in Table 31. Crucially we
observe that on average EvoControl using PPO to train the high-level outperforms (on average achieves a higher normalized
evaluation return R) training the high-level with ES, confirming the main framework and EvoControl method presented in the
paper, and the advantages of the unique combination of a high-level PPO learned policy with a ES-learned low-level policy.
Furthermore, we also observe that on average these variations of EvoControl outperform the respective non-EvoControl
baselines of fixed-controllers and direct torque control.
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Table 31: Ablation. Training the high-level policy with ES instead of PPO for EvoControl. Normalized evaluation return R for the
benchmark methods, across each environment. EvoControl on average achieves a higher normalized evaluation return than the baselines
of fixed controllers and direct torque control. Results are averaged over 384 random seeds, with & indicating 95% confidence intervals.
Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Method Name High-level Low-level Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
p with 3 with Standup Pendulum Pendulum 1D
RT RT RT RT Rt Rt RT RT RT Rt Rt

Fixed Cont. - PD Position PPO PD Position 1004+6.25 | 63.2+0.599 89.3+1.2 92.6+2.05 100+0.208 99.9+0.03 10041.53e-06 | 100+8.47 | 100£1.77 854293 | 81.7+0.384
Fixed Cont. - PD Position Delta PPO PD Position Delta | 2.57+1.74 | 2.86+0.092 10041.84 1004178 | 2.54:40.0542 53.8+1.57 100+1.53e-06 0+0 40.8+3.23 | 152476 | 96.3+0.219
Fixed Cont. - PD Int. Velocity PPO PD Int. Velocity | 2.46+1.51 | 2.55+0.0967 | 73.1+0.844 | 86.6+1.33 0+0 49.7£1.55 86.5+2 0£0 0£0 0+0 93.7+£2.77
Fixed Cont. - Random Random Direct Torque 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) PPO Direct Torque 0+0 18+0.353 0.882+0.533 | 7.93+1.94 | 10.14+0.357 0+0 0+0 4.36+7.75 0+0 45.346.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) PPO Direct Torque 63£7.07 100+1.54 70.6+0.548 | 85.6+1.41 80+1.73 100+0.0311 10041.53e-06 | 75.4+12.8 | 58.8+3.74 | 100+1.94 100+1.06
EvoControl (Full State) PPO ES 368+73.2 157+18.3 274+20.6 123+19 116+18.4 101+0.859 100+0 362+£12.5 | 114+7.51 | 106+2.75 203+137
EvoControl (Residual State) PPO ES 182+16.1 18246.31 101+5.54 170+18.2 212+145 99.2+1.25 100+0 3754948 | 106+25.8 | 104+3.42 | 205+57.4
EvoControl (Target + Proprio.) PPO ES 319+35.1 168+14.7 171+155 165+7.19 165150 99.7+1.19 100+0 353+28.4 | 96.8+78.6 | 105+4.71 178+63.7
EvoControl (Target) PPO ES 29387 162+23.5 283+250 164+21.2 205£147 99.6+0.949 100+0 353+43.4 | 112+1.73 | 105+1.65 188+88.2
EvoControl (Learned Gains) PPO ES 266104 113+10.5 206302 150+15.1 117+2.44 99.5+2.48 100+0 330+17.8 | 116+1.62 | 105+2.45 196118
EvoControl (Delta Position) PPO ES 362+47.7 133+£34.6 2254829 119+18 105+4.64 101+0.394 100+0 267+30.2 | 65.5+21 99.1£12.7 | 183+34.4
Ablation: EvoControl (Full State) ES (1M p steps) ES 151+42.9 134+6.93 99.6+26.5 115+33.3 110+18.1 99.6+1.66 10040 320+84.2 | 55.4+16.4 | 4224563 | 144+72.4
Ablation: EvoControl (Residual State) ES (IM p steps) ES 136135 | 99.4:+21.3 90.94+2.96 138£13 115+3.68 67.7+38.9 17.5466.1 2924223 | 523115 | 298+2.12 | 117+34.9
Ablation: EvoControl (Target + Proprio.) ES (1M p steps) ES 130+13.9 151432.5 80.4+47.6 1214+20.7 107+22.8 44+52.2 23+48.6 296+74.9 | 53.9+12.4 | 7.38+17.6 | 126+24.4
Ablation: EvoControl (Target) ES (1M p steps) ES 135+7.57 101+19 75.6+£222 123+14.3 103+22 65.4+40.5 51.1+424 342+46.1 | 52.3+9.81 | 26+40.1 130+£42.2
Ablation: EvoControl (Learned Gains) ES (IM p steps) ES 174+£38.9 89460.3 67.2:£160 111423.9 11342.31 4674233 76.4+101 2524101 | 53.8+8.36 | 26.2429.4 | 113+18.4
Ablation: EvoControl (Delta Position) ES (1M p steps) ES 156+15.7 13049.55 1324261 119+17.6 107+17.1 90.6+40.5 10040 322+12.6 | 54.9+11.8 | 31.9+£72.6 | 112+98.9
Ablation: EvoControl (Full State) ES (EvoControl II steps) ES 176+6.59 143+12.4 94.4£15.6 1234243 108+13.4 95.849.58 10040 3344529 | 554+£16.4 | 15.7+28.3 | 1531435
Ablation: EvoControl (Residual State) ES (EvoControl 11 steps) ES 169+51.8 154+41.9 91.1£8.64 1314+44.1 142458 42.9+69.4 85.8+59.4 300+50.1 | 52.3+10.1 | 4.56+8.08 | 142+21.8
Ablation: EvoControl (Target + Proprio.) | ES (EvoControl Il steps) ES 153+13 137+19.3 94.6+0.0 122:+26.4 102+23.2 62.7+18.8 43.8465.7 291+16.4 | 53.9+12.3 | 27.3£52.4 122+26
Ablation: EvoControl (Target) ES (EvoControl I steps) ES 152461 131+109 63.5+77.1 120+22.9 99.6+25.1 48+24.7 204+£15 3134748 | 54.1£14.7 | 1884254 | 116+11.3
Ablation: EvoControl (Learned Gains) ES (EvoControl 11 steps) ES 145+166 90.5+35.2 13.9+80.3 126+12.6 107+21.8 71.8+18.3 97+12.8 237499.7 | 53.8+13.9 | 45.9£19.8 | 76.1£155
Ablation: EvoControl (Delta Position) ES (EvoControl 11 steps) ES 168+60 140+13.5 147+27 118+8.28 107+8.46 95.8+16.6 10040 315+103 | 55.6+13.2 | 50+83.2 172+67.5

J.10. Rollout Trajectory Plots of High-level Action for Baselines

In the following we plot rollout trajectories, including the high-level latent action a over one evaluation episode in the
Reacher 1D environment for all baselines. We take the trained policies, as trained in the main table of results in the paper
(Table 3), and evaluate them for one random seed to produce the rollout trajectory plot. To facilitate simpler comparison,
we use the same random seed across the baseline trajectory plots. Moreover, we use the Reacher 1D environment as it is
straightforward to plot and understand what an optimal policy 7 should do. In this case the initial reacher arm starts in a
random position (as defined on a circle go € (—, 7)), with a random velocity, and its goal is to move the arm to a randomly
sampled goal location (goal geou € (—, 7))—in the trajectory plots we plot the goal location with the red line, which is
constant throughout the episode. Therefore an optimal policy is one that moves the arm to the goal location, quickly and
keeps it there to maximize reward, where the reward is defined as —||xy_tip_of_arm(go) — xy_tip_of_arm(ggoa )| 2. We
provide the plots for each respective baseline in Figures 15 to 25. We observe that the EvoControl variants on average
consistently outperform the other non-EvoControl baselines and achieve a higher evaluation return R—which is also given
on each plot.
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Figure 15: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Position. Environment runs at 500Hz, with an
1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action,
qo is the reacher arm’s angle in radians, with the red-line indicating the random goal ggoa for the episode, 7; the instantaneous reward and
R the total return for the episode.
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Fixed Cont.
- PD Position Delta
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Figure 16: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Position Delta. Environment runs at 500Hz,
with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent
action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal g,.a for the episode, 7; the instantaneous
reward and R the total return for the episode.
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Figure 17: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Int. Velocity. Environment runs at 500Hz, with
an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent
action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal g,.ai for the episode, 7; the instantaneous
reward and R the total return for the episode.
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Figure 18: Evaluation Trajectory Rollout for Reacher 1D, for baseline Direct Torque Cont. - High Freq. (500Hz). Environment runs
at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay is the high-level
policy p latent action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal gl for the episode, r; the
instantaneous reward and R the total return for the episode.
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Direct Torque Cont.
- Low Freq. (31.25Hz)

— Goal go

Figure 19: Evaluation Trajectory Rollout for Reacher 1D, for baseline Direct Torque Cont. - Low Freq. (31.25Hz). Environment runs
at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level
policy p latent action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal gl for the episode, r; the
instantaneous reward and R the total return for the episode.
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Figure 20: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Full State). Environment runs at 500Hz, with an
1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action,
qo is the reacher arm’s angle in radians, with the red-line indicating the random goal ggoa for the episode, 7; the instantaneous reward and
R the total return for the episode.
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Figure 21: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Residual State). Environment runs at 500Hz, with an
1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action,
qo is the reacher arm’s angle in radians, with the red-line indicating the random goal ggoa for the episode, 7; the instantaneous reward and
R the total return for the episode.
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EvoControl
(Target + Proprio.)

— Goal go

Figure 22: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target + Proprio.). Environment runs at 500Hz, with
an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent
action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal g,.a for the episode, 7; the instantaneous
reward and R the total return for the episode.
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Figure 23: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target). Environment runs at 500Hz, with an 1,000
low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action, qo is
the reacher arm’s angle in radians, with the red-line indicating the random goal g,..i for the episode, r; the instantaneous reward and R
the total return for the episode.
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Figure 24: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Learned Gains). Environment runs at 500Hz, with
an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent
action, qo is the reacher arm’s angle in radians, with the red-line indicating the random goal g,.a for the episode, 7; the instantaneous
reward and R the total return for the episode.
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Figure 25: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Delta Position). Environment runs at 500Hz, with an
1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action,
qo is the reacher arm’s angle in radians, with the red-line indicating the random goal gg.al for the episode, 7; the instantaneous reward and
R the total return for the episode.

J.11. Ablation: Removing Communication Between the Layers in EvoControl

We performed a further ablation, which tests the hypothesis of if within EvoControl, whether there is useful communication
between the high-level and low-level policy. Specifically for the EvoControl variants that we considered, in some variations
the low-level policy receives only a restricted observation (just the joint positions of the robot, and not the random goal
location if one exists), compared to receiving the full observation (which includes any random goal location if one exists for
that environment).

Specifically, we consider two variants of EvoControl, where the low-level policy receives the full observation (EvoControl -
(Full State)), and where the low-level policy only receives a restricted observation without any goal location—necessitating
effective communication from the high-level to the low-level (EvoControl (Target)). We compare these on the Reacher 1D
task, visualizing the rollouts for a random high-level policy, and a zero high-level policy, as observed in Figures 26 and 27.
We observe that for both variations after the standard EvoControl training, removing the communication (by making the
high-level policy either a random policy or a null policy) significantly reduces the performance (return), and leads to an
unstable low-level policy, even when the low-level policy receives the full observation (s;). Intuitively, it could be the case
that the low-level policy learns a form of a PD controller, and the high-level policy, as trained initially with a PD position
controller, could converge to treat the low-level policy as a form of PD controller.
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Figure 26: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Full State), with ablation of a random high-level and
a null (zero action) policy. Here the observation for the low-level policy is s¢, ak, et, gz, ¢, t/T. We observe that even with the low-level
policy receiving the full observation it still relies on the communication from the high-level latent action as, and without it, the return
significantly reduces. Environment runs at 5S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0
seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the red-line indicating the random
goal ggoat for the episode, r; the instantaneous reward and R the total return for the episode.
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Figure 27: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target), with ablation of a random high-level and a
null (zero action) policy. Here the observation for the low-level policy is ax, g, g+, t/T. We observe that the low-level policy relies on the
communication from the high-level latent action ax, and without it, the return significantly reduces. Environment runs at S00Hz, with an
1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action,
qo is the reacher arm’s angle in radians, with the red-line indicating the random goal ggoa for the episode, 7; the instantaneous reward and
R the total return for the episode.
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J.12. Ablation on Varying Fixed Values of the Annealing Parameter «

First, we clarify that in EvoControl, the annealing parameter « is gradually reduced from 1 to 0 during training. Instead, we
analyze the impact of fixing « to a constant value throughout training.

By default, EvoControl anneals « over time, balancing control between the high-level and low-level controllers: o = 0
means full control by the high-level policy, while & = 1 means the low-level controller (initialized as a PD controller) has
full control. We present this analysis in Table 32.

Table 32: Ablation of EvoControl with fixed o parameter. Normalized evaluation return R for the benchmark methods, across the
Reacher 1D environment. EvoControl on average achieves a higher normalized evaluation return than the baselines of fixed controllers and
direct torque control. Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to
a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl baseline in each
environment. Scores bolded are greater than 100.

Reacher 1D (o = 0.0) | Reacher 1D (o = 0.1) | Reacher 1D (o = 0.2) | Reacher 1D (o = 0.4) | Reacher 1D (o = 0.6) | Reacher 1D (o = 0.8) | Reacher 1D (o = 1.0)

Same PPO high-level alg. p with Rt RT R T RT R T RT Rt
Fixed Cont. - PD Position 85+2.93 854+2.93 85+2.93 85+2.93 85+2.93 85+2.93 85+2.93
Fixed Cont. - PD Position Delta 15247.6 15247.6 152476 15.2+7.6 152476 15.2+7.6 15.2+7.6
Fixed Cont. - PD Int. Velocity 0+0 0+0 0+0 0+0 0+£0 0+0 0£0
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.040.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 45.3+6.74 45.3£6.74 45.3+6.74 45.3+6.74 45.3+6.74 45.3+6.74 45.3£6.74
Direct Torque Cont. - Low Freq. (31.25Hz) 100+£1.94 100£1.94 100£1.94 100£1.94 100£1.94 100+1.94 100£1.94
EvoControl (Full State) 105+1.25 106-+0.781 106:0.765 105+1.31 105+0.822 105+1 89.742.79
EvoControl (Residual State) 105+1.03 105+0.916 105+0.893 105+0.828 104£1.04 106:£0.754 89.742.79
EvoControl (Target + Proprio.) 105+0.947 106£0.693 105+£1.17 106+1.6 106-£0.844 105+0.733 89.7+2.79
EvoControl (Target) 104+0.943 105+0.794 105+1.02 104+1.29 104+1.62 105+0.935 89.7+£2.79
EvoControl (Learned Gains) 100+£1.66 105+1.68 10540.869 102+1.19 94.1+2.69 91.7+2.8 89.742.79
EvoControl (Delta Position) 101+2.5 103+1.28 102:+£1.53 103+1.83 100-+2.84 98.84+2.41 24.147.45

EvoControl consistently outperforms baselines across most « values, demonstrating the effectiveness of our hierarchical
approach. Performance degrades for some EvoControl variants at « = 1.0, indicating the importance of high-level policy
guidance. This aligns with our annealing strategy, gradually reducing the low-level controller’s influence as the high-level
policy learns. The low-frequency torque control is competitive, but EvoControl achieves higher rewards, especially for lower
« values, showcasing the benefits of learning the low-level control.

J.13. PD Position Delta Action Scaling Sweep

We performed an additional experimental action scaling sweep of the baseline Fixed Controller - PD Position Delta.
Specifically this baseline has a hyper-parameter of the action delta scaling parameter J.. We sweeped over d. for the Reacher
1D environment and present the results in Table 33. We observe that a larger 6. does improve the baseline’s performance,
however it still underperforms compared to EvoControl.

Table 33: Fixed Controller - PD Position Delta, action detla scaling parameter d. sweep. Normalized evaluation return R for the baselines
across the Reacher 1D environment. We use the same normalization as the main table of results in the paper, that of Table 3.

Reacher 1D (3, = 0.05) | Reacher 1D (5, = 0.1) | Reacher 1D (5, = 0.2) | Reacher 1D (5, = 0.4) | Reacher 1D (3. = 0.6) | Reacher 1D (5, = 0.8) | Reacher 1D (3. = 1.0) | Reacher 1D (5. = 2.0)
Same PPO high-level alg. p with R1 Rt R1 R1 R1 R1 R1 R
Fixed Cont. - PD Position Delta | 15.247.6 | 33.646.97 | 57.345.59 | 76+4.12 | 81.8+3.64 | 83.243.54 | 83.7+3.43 | 84.5+3.28
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J.14. Safety Critical HalfCheetah

High-frequency control is especially valuable in safety-critical locomotion, where an agent must react instantaneously to
unforeseen contacts. In the Safety-Critical HalfCheetah task (Appendix E.4) we insert a blocking capsule in 25% of episodes
and expose only the measured contact force to the policy—the observation vector is of dimensionality 19. A successful
controller must therefore (i) accelerate forward to maximise progress, yet (ii) immediately reverse direction upon detecting
a collision in order to avoid the large penalty of —200 (c.f. Eq. equation 3). Such behaviour demands rapid, reflex-like
adjustments that lower-frequency policies struggle to produce, thereby providing an empirical test-bed for Proposition 2.1.
This enviornment is illustrated in Figure 28.

Table 34 reports the normalised evaluation return R (1)—scaled to [0, 100] where 0 is a random policy and 100 is the
best non-EvoControl baseline—averaged over 384 random seeds with 95% confidence intervals. EvoControl variants
consistently outperform both fixed low-level controllers and direct torque control, even when the latter operates at 500 Hz.
Notably, EvoControl (Full State) attains 120 £ 13.9, exceeding the best baseline by more than 20% despite using the
same high-level PPO algorithm. These results corroborate our hypothesis that the ability to adapt low-level actions online at
high frequency is crucial for safe and efficient locomotion in un-modelled environments.

Table 34: Normalised evaluation return R on the Safety-Critical HalfCheetah. EvoControl achieves significantly higher
returns than both fixed high-frequency tracking controllers and direct torque control. Bold scores exceed the best baseline
(100).

Same PPO high-level algorithm p with ‘ Safety-Critical HalfCheetah R (1)
Fixed Controller — PD Position 84.7+1.68

Fixed Controller — PD Position Delta 0.04+0.0

Fixed Controller — Random 0.04+0.0

Direct Torque Control — High Freq. (500 Hz) 100 £1.42

Direct Torque Control — Low Freq. (31.25 Hz) 0.04+0.0
EvoControl (Full State) 120 +13.9
EvoControl (Residual State) 105 +5.84
EvoControl (Target + Proprio.) 117 £ 34.9
EvoControl (Target) 117 £5.33

1

A S /A A S H B W W S

(a) No Collision (b) Blocking Wall

Figure 28: Safety Critical Halfcheetah Environment—which is a halfcheetah enviornment (a), with a blocking wall that appears
25% of the episodes (b), and only contact force with wall can be observed, blocking the cheetahs goal path, and incurring a negative
reward for collision with the wall. Therefore a good policy in this environment is to move forwards with the halfcheetah and if the wall
collision is detected immediately retreat, otherwise continute forwards, therefore exemplifies the need for policies that take actions at a
higher-frequency to achieve higher reward, for un-modelled safety critical applications.
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J.15. Comprehensive Baseline Comparison

To contextualise the gains of EVOCONTROL we benchmark it against a wide suite of strong controllers, including both fixed
high—frequency tracking controllers and state-of-the-art model—free RL agents. We additionally train Soft Actor—Critic
(SAC) and Proximal Policy Optimisation (PPO) with publicly available Brax’ implementations at high frequency (500 Hz)
and the high-level low frequency (31.25 Hz). Pre-trained policies from standard MuJoCo tasks cannot be used directly
because our tasks require an order-of-magnitude faster actuation; instead, we retrain all methods from scratch under identical
hyperparameters. We tabulate these results in Table 35.

Normalisation and statistics. Returns are undiscounted and linearly normalised to [0, 100] such that 0 corresponds to a
random policy and 100 to the best non-EVOCONTROL baseline in each environment. All numbers are means over 384
random seeds; + indicates the 95% confidence interval.

Table 35: Normalised evaluation return R for all baselines and EVOCONTROL on the eight benchmark environments. Bold
values exceed the best non-EVOCONTROL baseline (R > 100).

Same PPO high-level alg. p with Ant Halfcheetah Hopper Inverted Double Inverted Reacher Reacher Walker2D
a Low-Level Policy 3 of Pendulum Pendulum 1D
R1T Rt R T Rt Rt RT R Rt

Fixed Cont. - PD Position 100£6.56 | 61.2+0.441 88.1£1.18 99.9+0.03 100+2.86e-15 100+£1.8 85.2+£2.87 | 61.1+0.51
Fixed Cont. - PD Position Delta 244191 | 2.76+£0.0888 | 96.2+1.30 53.84+1.57 100+2.86e-15 | 40.9+3.23 15.247.6 | 72.7+0.19
Fixed Cont. - PD Int. Velocity 3.594+1.78 | 2.461+0.0932 | 71.8+0.87 49.7+1.55 86.5+2 0.00.0 0+0 69.3+2.06
Fixed Cont. - PD : Position & K, 3.554+2.54 | 16.7+0.151 100+£1.00 97.540.751 100£2.86e-15 | 50.7£3.9 | 81.84+4.11 | 100+0.24
Fixed Cont. - Random 0.0£0.0 0.040.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.04+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 17.24+0.316 1.37£0.51 10.34+0.586 0+0 0.97+5.72 | 45.3+6.74 0.0+0.0
Direct Torque Cont. - Low Freq. (31.25Hz) 54.5+7.15 100+1.21 69.24+0.62 80.6+2.56 100+0.0311 53.0£9.35 | 100+1.94 | 80.742.16
EvoControl (Full State) 368+10.6 157+1.1 263+1.46 10140.0487 100+2.86e-15 | 114+0.973 | 106+0.936 | 163+3.72
EvoControl (Residual State) 182+8.58 182+1.02 97+0.51 99.240.054 100+2.86e-15 | 106+1.29 | 104+1.19 | 165+2.19
EvoControl (Target + Proprio.) 319+14.1 168+1.41 164+5.08 99.740.0417 100£2.86e-15 | 96.8+3.54 | 105+0.776 | 143+1.86
EvoControl (Target) 293+13.2 162+1.58 272+1.84 99.64+0.0377 100+2.86e-15 | 112+0.785 | 105+0.78 | 151+2.44
EvoControl (Learned Gains) 266+14.1 113+1.6 198+9.62 99.540.0947 100+2.86e-15 | 116+0.747 | 105+1.21 | 158+3.63
EvoControl (Delta Position) 362+12.8 133+1.82 216+2.88 10140.0364 100£2.86e-15 | 65.5+3.71 | 99.14+2.44 | 147+1.90
SAC (Brax) Direct Torque Cont. - High Freq. (500Hz) 11.842.64 | 33.6+0.646 174+1.38 100+0 100+0 63.6+4.17 | 106+1.43 | 155+0.523
SAC (Brax) Direct Torque Cont. - Low Freq. (31.25Hz) | 12.842.69 | 28.3+£0.478 | 90.240.0343 100+£0 100+0 63.9+4.09 | 105+2.08 | 156+0.41
PPO (Brax) Direct Torque Cont. - High Freq. (500Hz) 1.23+1.31 | 18.2+0.346 81+0.0225 100£0 100+0 62.1+4.13 | 104+1.54 | 114+2.67
PPO (Brax) Direct Torque Cont. - Low Freq. (31.25Hz) | 3.14+1.1 18.2+0.346 81+0.0225 100+0 10040 62.1+4.13 | 104+1.54 | 114+2.67

Across all eight environments EVOCONTROL attains the highest average normalised return, frequently > 50% above the
strongest baseline. Crucially, even when sophisticated RL agents are granted the same 500 Hz control bandwidth, the
population-based evolution of low-level reflexes in EVOCONTROL yields superior performance, underscoring the importance
of closed-loop online adaptation at millisecond time-scales.

https://github.com/google/brax
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K. Real-World Validation on a Franka Emika Panda

We validate EvoControl on a 7-DoF Franka Emika Panda robot equipped with a Robotiq 2F-85 gripper and a Robotiq
FT-300 force-torque sensor, aiming to demonstrate two key aspects:

1. Zero-shot sim-to-real transfer on a tabletop manipulation task;

2. Reduced collision forces via high-frequency torque control, compared to a simpler position-based controller.

Figure 29 shows the overall setup in both MuJoCo simulation (left) and the physical robot (right).

J b
»

Figure 29: Real-World Robot Setup. Left: MuJoCo scene of our 7-DoF Franka Emika Panda robot equipped with a Robotiq 2F-85

gripper and a Robotiq FT-300 force-torque sensor. Right: The corresponding real hardware. We deploy two sim-to-real tasks to evaluate
EvoControl.

Figure 30: Block Collision and Bin-Opening Tasks. Left: The robot collides with a block while moving its end-effector downward,

measuring contact forces. Right: Another example of applying high-frequency torque control for a soft bin-opening motion (qualitative
demonstration).

Task and Setup. We evaluate two tasks to highlight both free-space tracking and collision handling:
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1. Sim2Real Goal Tracking: The robot must track a randomly moving goal pose in free space. A shaped reward
encourages precise positioning of the end-effector (tool center point, TCP), through a reward to minimize the L2 norm
distance of the TCP to the goal location.

2. Sim2Real Block Collision: The same policy is tested with an enforced collision by commanding the end-effector to
move downward into a block. We measure the average forces at the end-effector.

In both scenarios, the low-level controller operates at 200 Hz (torque control) while the high-level policy (PPO) runs
at 10 Hz. We train each policy entirely in MuJoCo and deploy it zero-shot on the physical robot via the Franka Control
Interface (FCI). The robot’s built-in gravity compensation is enabled, allowing the learned controller to focus purely on
torque-level corrections and collision handling. The same robot platform was also used and developed further in Zakka et al.
(2025).

Baseline Controllers. We compare EvoControl (Full State) against two alternative low-level controllers, both paired
with the same high-level PPO policy learning algorithm:

e Fixed Controller - PD Position: A hand-tuned PD loop that tracks the high-level’s joint-position commands.

* Direct Torque Control (Hi-Freq): An end-to-end torque policy trained purely with RL at high frequency.

While direct-torque RL can in principle match EvoControl’s frequency, it often suffers from poor exploration and long-
horizon instability, as shown in the main paper.

Metrics. We measure:

* Avg. Tracking Error (m): The distance between the goal pose and the end-effector over an episode.

¢ Avg. Total Force (N): The mean force magnitude recorded at the wrist sensor, capturing the compliance or stiffness of
each approach.

Results. Table 36 presents the performance of each low-level controller across three conditions: (1) Sim-Goal Tracking
(evaluation in simulation), (2) Sim2Real Goal Tracking (physical free-space tracking), and (3) Sim2Real Block Collision
(intentional collision).

¢ Accuracy vs. Compliance: EvoControl maintains comparable or better tracking accuracy than the fixed PD controller
while reducing collision forces.

e Zero-Shot Transfer: No additional fine-tuning was performed on real hardware; EvoControl exhibits stable behavior
from the outset.

Table 36: Performance comparison of different low-level policies with a high-level PPO algorithm. EvoControl achieves superior
tracking performance and lower force application compared to other methods. Direct torque control at high frequency fails to complete
the task due to hitting joint limits. Bold values indicate the best performance in each metric.

| Sim-Goal Tracking | Sim2Real Goal Tracking | Sim2Real Block Push
Same PPO high-level alg. p with ‘ R7T ‘ Avg. Tracking Error (m) |  Avg. Total Force (N) | ‘ Avg. Tracking Error (m) |  Avg. Total Force (N) |
Fixed Cont. - PD Position 13,564 0.076 4.159 0.1537 9.056
Direct Torque Cont. High Freq. 10,413 Did Not Finish (Hits joint limits) Did Not Finish (Hits joint limits)
EvoControl (Full State) | 24213 | 0.0261 4331 | 0.1524 8.169

Conclusion. These real-robot results confirm that EvoControl can: Transfer directly from MuJoCo simulation to real
hardware without additional tuning; Retain accuracy for free-space tracking while show initial insights into high-frequency
torque controlled policies potentially having lower un-modelled interaction forces. Overall, this demonstrates EvoControl’s
practical viability for deployment to real robot setups to assist the future development of safe, adaptive, high-frequency
torque control in real-world robotic tasks.
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L. Limitations & Future Work

While EvoControl demonstrates promising results for high-frequency continuous control, several limitations and avenues for
future research warrant exploration.

« Still relies on the existence of a fixed-PD controller for the continuous-time control task. Although we demonstrate
robustness to some degree of PD parameter misspecification (Table 6), the reliance on a PD controller as a starting point
poses a limitation. In domains where designing a suitable PD controller is challenging or impossible (e.g., systems
with non-actuated joints, highly nonlinear dynamics, or discrete action spaces), applying EvoControl in its current form
may be difficult. We do perform an ablation where we show that EvoControl can still learn performant policies without
the existence of a fixed-PD controller Appendix J.5, however other approaches to stabilize and initialize policy learning
are promising directions for future work.

* EvoControl can require more computational complexity compared to only performing PPO, which can be readily
parallelized in practice with modern accelerated compute platforms, and restricting EvoControl to use the same
computational complexity, whilst still outperforming the baselines is also possible, Appendix J.4.

In addition, promising future directions include exploring more complex nested hierarchies, direct low-level to high-level
information flow, and ensembles of policies.

M. Reproducibility Statement

In the following we outline all the sections where the reader can find full information to fully reproduce all the main results.
We also clearly state the following of the assumptions of the method in Appendix G, experimental settings in Appendices E
to I, and the limitations of the work in Appendix L.

N. Common Questions and Discussion
N.1. Why Not Simply Pre-train with a PD Controller and Imitate?

One might consider using a PD position controller as a policy to collect rollout trajectories and then using imitation learning
to train a neural network to replicate its behavior. However, this approach has limitations. The learned network would
only be as capable as the PD controller itself, inheriting its limitations in expressiveness and inability to learn complex,
high-frequency interaction behaviors. EvoControl, by directly optimizing the low-level policy with ES, aims to surpass the
capabilities of the initial PD controller and discover more nuanced and adaptive control strategies. Furthermore, imitation
learning requires a substantial amount of demonstration data, while EvoControl learns directly from the environment reward
signal.

N.2. Relationship to Pulse-Width Modulation

The benefits of high-frequency control, as highlighted by Proposition 2.1, share a conceptual similarity with Pulse-Width
Modulation (PWM) in electrical engineering. In PWM, a high-frequency signal with varying pulse widths is used to
effectively represent a lower-frequency analog signal. Similarly, in EvoControl, high-frequency actions generated by the
low-level policy can represent and achieve the lower-frequency targets set by the high-level policy with greater precision
and responsiveness compared to a fixed-frequency PD controller. While not a direct analogy, this parallel highlights the
ability of high-frequency signals to enhance control and achieve desired outcomes more effectively.

N.3. Discussion of Theoretical Analysis on Convergence of the Bi-Level Framework

While a formal proof is beyond our current scope, we have designed EvoControl to promote stable learning and convergence
through the following mechanisms:

Staged Training and Annealing

* Alternating optimization of the high-level policy p (using PPO) and the low-level policy g (using evolutionary strategies)
reduces non-stationarity.
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¢ The annealing parameter « gradually transitions 8 from a fixed PD controller to a learned neural network, maintaining
stability.

Convergence Properties of PPO and Evolutionary Strategies

* PPO: Known for stable convergence due to its clipped surrogate objective (Schulman et al., 2017).

* Evolutionary Strategies: Robust in high-dimensional, non-convex spaces, effectively optimizing policies without
gradient information (Salimans et al., 2017).

Relation to Hierarchical Reinforcement Learning

* Our framework aligns with HRL methods such as the Options framework (Sutton et al., 1999) and FeUdal Networks
(Vezhnevets et al., 2017), which provide theoretical insights into hierarchical policies.

e Nachum et al. (2019) offer theoretical guarantees for HRL methods, supporting potential convergence in hierarchical
structures.

These design choices contribute to the stability and reliability of EvoControl, aligning with established reinforcement
learning principles.

N.4. Comparison of EvoControl with Model Predictive Control (MPC)
EvoControl differs from MPC in key aspects:
Learning-Based vs. Model-Based

* EvoControl: Entirely learning-based, using neural networks trained through interaction with the environment, without
explicit system models.

e MPC: Relies on explicit mathematical models to predict future states and optimize control actions.
Policy Optimization vs. Online Optimization

¢ EvoControl: Policies are optimized during training and map states to actions without online optimization during
execution.

e MPC: Performs online optimization at each control step during execution.
Hierarchical Structure

* EvoControl: Employs a hierarchical policy with temporal abstraction, where a high-level policy guides a low-level
policy at a higher frequency.

* MPC: Does not inherently incorporate hierarchical policies with different operating frequencies.
Novelty and Significance

* Integration of PPO and Evolutionary Strategies: Combining PPO for the high-level policy with evolutionary
strategies for the low-level policy in a hierarchical setting is, to our knowledge, novel.

* Annealing Strategy: Transitioning from a fixed PD controller to a learned policy stabilizes training, a feature not
present in MPC.

¢ Empirical Performance: Our experiments show superior performance in high-frequency control tasks compared to
standard RL methods and fixed-controller baselines.
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