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Abstract

Humans have the ability to utilize visual cues,001
such as lip movements and visual scenes, to002
enhance auditory perception, particularly in003
noisy environments. However, current Auto-004
matic Speech Recognition (ASR) or Audio-005
Visual Speech Recognition (AVSR) models of-006
ten struggle in noisy scenarios. To solve this007
task, we propose a model that improves tran-008
scription by correlating noise sources to visual009
cues. Unlike works that rely on lip motion010
and require the speaker’s visibility, we exploit011
broader visual information from the environ-012
ment. This allows our model to naturally filter013
speech from noise and improve transcription,014
much like humans do in noisy scenarios. Our015
method re-purposes pretrained speech and vi-016
sual encoders, linking them with multi-headed017
attention. This approach enables the transcrip-018
tion of speech and the prediction of noise la-019
bels in video inputs. We introduce a scal-020
able pipeline to develop audio-visual datasets,021
where visual cues correlate to noise in the au-022
dio. We show significant improvements over023
existing audio-only models in noisy scenarios.024
Results also highlight that visual cues play a025
vital role in improved transcription accuracy.026

1 Introduction027

Automatic Speech Recognition (ASR) models have028

applications in many voice-enabled applications,029

including audio-video calls, intelligent virtual as-030

sistants, and media processing. These models are031

expected to work well in noisy conditions for their032

effective use in real-world scenarios. Several stud-033

ies demonstrate that the human brain uses both034

audio and visual streams (e.g. lip motion, visual035

scenes) for listening, particularly when the speech036

is noisy (Sumby and Pollack, 1954; McGurk and037

MacDonald, 1976; Boots et al., 2020). These mod-038

els have applications where the visual stream is039

also available as additional input. These observa-040

tions have led to the development of audio-visual041

speech recognition (AVSR) models. 042

Several AVSR models show that transcription 043

can be improved in the noisy scenario by attend- 044

ing to lip-region movement (Burchi and Timofte, 045

2023; Shi et al., 2022) and exploiting the correla- 046

tion of visual scenes with spoken content (Seo et al., 047

2023). Recently Luo et al. (2024) show that back- 048

ground scenes can help in improving transcription 049

in a given environment. However, its dependence 050

on a manually collected dataset and limited align- 051

ment between visual context and audio hinder its 052

scalability and effective utilization of visual cues. 053

Building on these insights, we address these 054

limitations by proposing a scalable data creation 055

pipeline and finetuning method that utilizes pre- 056

trained checkpoints. Our automated pipeline al- 057

lows the mixing of audio-visual noise datasets with 058

clean speech at variable noise ratios, eliminating 059

the need for specialized datasets. In this work, we 060

propose an architecture that integrates pretrained 061

audio and visual encoders via Multi-Headed Atten- 062

tion. We hypothesize that training AVSR models 063

with visual cues of the noise sources will improve 064

speech recognition in noisy scenarios. 065

We use AudioSet (Gemmeke et al., 2017) mixed 066

with a clean speech corpus, People speech (Galvez 067

et al., 2021) for finetuning purposes. We extract 068

speech embeddings for each time-step in audio and 069

then calculate enhanced representations by attend- 070

ing to visual features obtained from CLIP visual 071

encoder (Radford et al., 2021). Our model takes 072

(audio, video) pairs and finetunes the speech en- 073

coder for multi-modal speech recognition and noise 074

label prediction jointly using CTC loss (Graves 075

and Graves, 2012). We hypothesize that leveraging 076

the correlation between noise sources and visual 077

cues will lead to more accurate transcription by 078

providing richer context than background scene 079

awareness alone. 080

The resultant finetuned model improves tran- 081

scription quality while also predicting noise labels. 082
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Ablation experiments further suggest that these im-083

provements in transcription accuracy, are primarily084

due to our model’s ability to attend to visual cues.085

The main contributions of this work are two-fold,086

(i) We propose a scalable dataset creation pipeline087

to develop audio-visual datasets, where visual cues088

correlate to noise sources in the audio. (ii) This089

work introduces a finetuning method that is visu-090

ally aware of the noise while doing transcription.091

The dataset and code will be made publicly avail-092

able. (iii) Finally, we present extensive ablation093

experiments to analyze our model.094

2 Related Work095

Audio only noisy speech recognition. Noise can096

be removed as a pre-processing step before being097

fed to ASR systems for improved transcription.098

Noise removal can be done either via signal en-099

hancement techniques (Steinmetz et al., 2023) and100

via source separation methods (Rouard et al., 2023;101

Défossez, 2021; Petermann et al., 2023). Recent102

advancements have explored integrating speech en-103

hancement modules directly into end-to-end ASR104

systems, allowing joint optimization for both en-105

hancement and recognition tasks. This approach106

aims to mitigate the distortions introduced by sepa-107

rate enhancement stages and improve overall recog-108

nition performance in noisy environments (Zhu109

et al., 2022). However, purely audio-based models110

still face difficulties in extreme noise conditions,111

highlighting the need for multi-modal approaches,112

such as AVSR, which leverage visual cues to han-113

dle noise better.114

Audio-visual Speech Recognition. Recent stud-115

ies propose AVSR models capable of exploiting116

visual cues for improved performance. Multiple117

works have focused on exploiting lip motion as ad-118

ditional information along with audio to improve119

transcription (Shi et al., 2022; Huang and Kings-120

bury, 2013; Burchi and Timofte, 2023). In the121

context of full frame features, some works show122

that having visual cues related to the topics spo-123

ken helps with better word disambiguation (Gabeur124

et al., 2022; Seo et al., 2023). However these works125

only see visual information to correlate with actual126

spoken content, instead, we focus on exploiting127

visual context as a cognition enhancer for ASR128

systems.129

3 Dataset Creation Pipeline 130

We aim to create a dataset where audio noise is 131

closely correlated with the video content and each 132

noise instance is uniquely annotated along ground 133

truth transcriptions. To facilitate this, we have de- 134

veloped a dataset creation pipeline that selectively 135

filters AudioSet (Gemmeke et al., 2017) for videos 136

and corresponding noise audio with annotated la- 137

bels. We then mix noise-labeled videos with the 138

People’s Speech dataset (Galvez et al., 2021), that 139

have ground-truth transcriptions. Further details 140

are discussed below. 141

Filtering AudioSet. AudioSet (Gemmeke et al., 142

2017) comprises of 2 million human-labelled, 10- 143

second audio clips from YouTube, categorized into 144

632 audio event classes arranged hierarchically. 145

This work targets only the videos associated with 146

a noise label; thus, we exclude any video labelled 147

with speech or human voice. We limit our scope 148

to videos that only have a single noise label. We 149

found that there is a big skew in the class distribu- 150

tion of noise labels, therefore we only select labels 151

having at least 750 samples. This filtered subset 152

of AudioSet has 44 unique noise labels (e.g. car, 153

water, fireworks). 154

Mixing with People’s Speech. People’s 155

Speech (Galvez et al., 2021) is an ASR dataset 156

featuring 30K hours of transcribed English speech 157

from a diverse range of speakers. We utilize 158

clean subset of it for our dataset. Since AudioSet 159

videos are of 10 seconds each, we select speech 160

samples longer than 10 seconds and then trim both 161

audio and transcripts. We take a clean speech 162

sample and run an off-the-shelf forced aligner from 163

the NeMo toolkit (Kuchaiev et al., 2019). The 164

forced-aligned output provides word time stamps, 165

allowing us to trim both audio and transcripts 166

to a 10-second duration. We append the noise 167

label as the final word to the transcripts, enabling 168

the model to learn both transcription and noise 169

label prediction for each sample. We process our 170

filtered AudioSet (10-second video clips) and clean 171

speech recordings to generate samples consisting 172

of: video (without audio), corresponding noisy 173

audio, clean speech, and corresponding transcripts. 174

A noisy speech is obtained by mixing the clean 175

speech recording with the original noisy audio 176

extracted from the same video clip in a one-to-one 177

correspondence. 178

Finally, we divide the dataset curated into train- 179
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ing, validation, and testing subsets, ensuring each180

set contains a uniform distribution of noise sam-181

ples from AudioSet. We refer to this dataset as182

the Visual-Aware Noisy Speech (VANS) dataset in183

further sections. The current VANS dataset con-184

tains 28K samples, providing 75 hours of training185

data, and 2K samples each contributing 6.1 hours186

for validation and testing. It is important to note187

that this dataset is scalable and can be expanded188

by incorporating more samples from AudioSet that189

may contain multiple labels, as well as more sam-190

ples from People’s Speech. Furthermore, we can191

enhance the dataset by dynamically altering the192

sample mixing mappings during model training to193

create augmentations.194

4 Method195

To enhance ASR robustness in noisy conditions,196

we adopt a late fusion approach inspired by recent197

multi-modal studies (Gabeur et al., 2022; Burchi198

and Timofte, 2023). Our model leverages a pre-199

trained Conformer-based E2E ASR encoder1 to200

extract audio embeddings Ha from noisy input201

speech. Visual features Hv are obtained using202

CLIP’s ViT-L/14 image encoder (Radford et al.,203

2021). While both encoders are frozen, we en-204

hance the speech encoder with trainable adapters.205

As shown in Figure 1, dense layers WA and WV206

project Ha and Hv into a shared space, producing207

At and Vt respectively. Formally,208

At = WAHa +EM
A +ET

A, (1)209
210

Vt = WVHv +EM
V +ET

V. (2)211

ET
A and ET

V represent the positional embeddings212

for the audio and video time series, respectively.213

We use separate positional embeddings for audio214

and visual features to enhance the system’s ability215

to track context across both modalities. Addition-216

ally, EM
A for audio and EM

V for video are modality217

embeddings, enabling the system to effectively dis-218

tinguish between audio and visual information.219

At and Vt from (1) and (2) are then passed220

through a standard transformer encoder block, facil-221

itating Multi-Head Self-Attention across the modal-222

ities (Vaswani, 2017). This cross-modal interaction223

yields outputs Za for audio and Zv for video respec-224

tively. For our task, we only utilize the visual-aware225

audio outputs Za and ignore Zv. Za is then pro-226

cessed through a convolutional decoder and then227

1https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_large

Linear Layer Linear Layer

Speech Encoder Visual EncoderAdapter 🔥 

… … … …

…

Convolution Decoder

Transcript and Noise Label Prediction

❆ ❆

… …

… …

Multi-Head 
Self Attention

,

Transformer 
Encoder

Figure 1: A visualization of our architecture. Speech
and Visual representations are first obtained from their
respective encoders, then aligned and enhanced via a
Transformer-based Multi-Head Self-Attention mecha-
nism. The output is then decoded using a convolutional
decoder for simultaneous transcript and noise label pre-
diction.

optimized for transcription task using standardized 228

CTC loss. In our case, the last word in the tran- 229

scripts refers to the noise label. 230

Base Model Pretraining. Existing ASR models 231

and tokenizers typically include only transcription- 232

related tokens, whereas our model requires the final 233

token to represent noise label, which is not covered 234

by the pretrained ASR tokenizer. Following (Karan 235

et al., 2023), we extended the tokenizer to include 236

special tokens for noise labels, necessitating the 237

reinitialization of the prediction layer in the convo- 238

lutional decoder. To adapt the model, we performed 239

pretraining on 420 hours of People’s Speech data 240

using CTC loss and the extended tokenizer. This 241

resulted in a pretrained speech encoder capable of 242

jointly predicting the transcription followed by a 243

noise label as last token in the final output. 244

5 Experiments & Results 245

Implementation details. Our experiments utilize 246

a pretrained model, initially trained solely on tran- 247

scription task without visual inputs, as described 248

earlier. For visual information, we extract CLIP 249

features at 5 fps. We use a Transformer Encoder 250

with 4 layers with a dimensionality of 512. We 251

assess model performance using Word Error Rate 252

(WER) for transcription task and noise label pre- 253

diction accuracy. For each prediction, we first strip 254

away the noise label at the end, if present, and 255

then compare the remaining transcript against the 256
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ground truth transcript of the audio clip. We use257

the extracted noise label to evaluate the accuracy258

of the noise label prediction task.259

Models. We conducted a series of experiments260

to demonstrate the improved performance of our261

model in noisy conditions by leveraging visual in-262

formation. Thus, we selected 10dB SNR noisy263

speech samples for our experiments and train au-264

dio and audio-visual models. We recognize that265

it is impractical to train a separate model for each266

possible noise level, therefore we adopt a uniform267

sampling strategy to dynamically choose the SNR268

values in the range of -5 dB to +5 dB for each sam-269

ple. This method, termed AV-UNI-SNR, ensures270

that our model encounters a varied but controlled271

set of noise scenarios, thus enhancing its ability to272

generalize across similar conditions.273

5.1 Results274

Model SNR (dB) Pr VT VI WER ACC (%)

1 Conformer-CTC - - - - 26.99 -
2 A-SNR 10 ✓ - - 23.30 02.98
3 A-UNI-SNR [-5,5] ✓ - - 23.11 04.54
4 AV-SNR 10 ✓ ✓ ✓ 21.83 60.95
5 AV-SNR 10 - ✓ ✓ 23.59 58.59
6 AV-UNI-SNR [-5,5] ✓ ✓ ✓ 20.71 54.23
7 AV-UNI-SNR [-5,5] ✓ ✓ - 22.29 02.36

Table 1: Model Performance at SNR 10 dB. Pr refers
to pretraining, VT refers to visual information avail-
able during training, and VI refers to visual information
available during inference. "A" indicates models using
only audio, while "AV" represents models utilizing both
audio and video while training. "UNI" refers to models
trained with uniformly sampled SNR levels. For details,
please refer to section 5.1.

Table 1 presents the results of our experiments.275

On comparing R2 and R4 shows gains over the276

audio-only model in transcription accuracy with vi-277

sual awareness. Notably, results depict a big gain in278

the correct prediction of noise labels when model279

learns to exploit cues from visual background. This280

proves our hypothesis that the correlation of noise281

with the visual cues helps with improved transcrip-282

tion and noise label predictions. The comparison283

between R4 and R5 shows the importance of pre-284

training, in preparing the model for both transcrip-285

tion and noise prediction tasks.286

Results for AV-UNI-SNR models show the best287

performance overall. Performance gains are higher288

when visual information is provided at both fine-289

tuning and inference time. However, R7 vs R3290

shows our model improves over the audio-only291

model even when visual information is not pro- 292

vided at inference time. This suggests that models 293

trained with visual guidance for noise detection 294

also perform well when only audio is used during 295

inference. It shows that models trained with vi- 296

sual cues develop a more nuanced understanding 297

of complex acoustic environments than audio-only 298

models. However, it falls short in predicting noise 299

labels without visual input. The model naturally 300

tends to rely on video context for noise prediction, 301

as it offers clearer cues. Consequently, when tested 302

with only audio inputs, the model’s performance on 303

the noise prediction task declines. Details on across 304

SNR results, baseline performances, ablations, and 305

compute in section A. 306

Models LS test-clean LS test-other
1 Conformer-CTC (Gulati et al., 2020) 31.07 39.89
2 A-UNI-SNR (Ours) 28.05 37.91
3 AV-UNI-SNR (Ours) 27.86 37.47

Table 2: Models Performance at SNR 0 dB
on LibriSpeech (LS) Test Sets.

Out-of-Domain Evaluation. While AV-UNI- 307

SNR is pretrained on People’s Speech, and 308

Conformer-CTC is pretrained on a broader range 309

of datasets including People’s Speech and Lib- 310

riSpeech (Panayotov et al., 2015), there may be con- 311

cerns that AV-UNI-SNR’s superior performance on 312

noisy audio is due to its specialized training on 313

People’s Speech. To address this, we conducted 314

an additional experiment using LibriSpeech, mixed 315

with AudioSet samples as described in section 3. 316

Importantly, LibriSpeech is within the domain for 317

Conformer-CTC but out-of-domain for our model. 318

As shown in Table 2, our model still outperforms 319

R1 and R2 on this dataset as well, confirming that 320

R3 is robust in noisy environments even with out- 321

of-domain data. 322

6 Conclusion 323

In this work, we show that exploiting visual cues 324

with audio signals significantly improves transcrip- 325

tion accuracy for noisy scenarios. Our automated 326

dataset creation pipeline, designed to align noise 327

with visual cues, provides a promising foundation 328

for enhancing AVSR models. We show that models 329

trained across varied SNR levels, especially the AV- 330

UNI-SNR model, excel in diverse noise conditions. 331

Our proposed method is easily adaptable to other 332

pretrained architectures and checkpoints. 333
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Limitations334

While AudioSet provides a scalable foundation, the335

success of this approach relies heavily on its fine-336

grained noise-to-video correlations. These annota-337

tions, although extensive, are still manually curated338

and may not fully capture the complexity of real-339

world noisy environments. Incorporating visual340

inputs during inference introduces computational341

overhead, primarily due to the use of a pretrained342

CLIP visual encoder. While this overhead exists343

for achieving the best performance, our approach344

mitigates this by outperforming audio-only mod-345

els even when used with only audio inputs during346

inference. However, for scenarios demanding the347

highest accuracy, the additional computational cost348

remains a trade-off.349
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A Appendix465

In this section, we present additional experi-466

ments and comparisons with state-of-the-art mod-467

els across various SNR levels A.1, followed by abla-468

tion studies on key design choices A.2. We also an-469

alyze the computational costs of our AV model A.3,470

evaluate class-wise noise prediction accuracy A.4,471

and outline directions for future work A.5.472

A.1 Results across SNRs473

The results in Table 3 show that AV-UNI-SNR gen-474

eralizes well across varying SNR levels, outper-475

forming the individual models in lower SNR con-476

ditions (below -5 dB). However, models trained at477

fixed SNRs perform better at higher SNR values.478

These findings, along with the results from Table479

1, suggest that training on variable SNR values, as480

in the AV-UNI-SNR model, enables robust perfor-481

mance across noisy conditions, and using visual482

cues further enhances generalization, even when483

visual cues are absent during inference.484

The results in Table 3 demonstrate the effective-485

ness of our proposed models, particularly AV-UNI-486

SNR, in achieving consistently low WERs across487

a wide range of SNR conditions. Despite having488

significantly fewer parameters (453M) compared489

to models like Whisper Large V3 (1550M) and490

Whisper Medium (769M), AV-UNI-SNR delivers491

competitive or superior performance, especially in492

low SNR regimes (below 0 dB), where it achieves493

second-best performance at 20 dB, 15 dB, and 5494

dB.495

Compared to larger models like Gemini (Cloud,496

2024) and Whisper (Radford et al., 2022), which497

have access to significantly larger datasets and com-498

pute costs, our models are more parameter-efficient499

and adaptable. The AV-SNR variant, though trained500

at a fixed SNR level, still demonstrates strong per-501

formance and surpasses many larger baselines in502

mid-to-low SNR regions. 503

This robustness can be attributed to two key fac- 504

tors: (1) training the model across a uniform distri- 505

bution of SNR levels rather than a fixed SNR value, 506

and (2) incorporating visual modality acts as a ad- 507

ditional guide and encourages the model to learn 508

noise-invariant representations. This modeling is 509

more effective than scaling model size alone for 510

robustness in real-world noisy speech scenarios. 511

Training Details. Our AVSR model was trained 512

for 10 epochs on a single L40S GPU with a batch 513

size of 96, completing in approximately 8 hours. 514

The model employs a 4-layer Transformer Encoder 515

with 8 attention heads and a dimensionality of 512. 516

Linear adapters with a dimensionality of 64 are 517

incorporated into the speech encoder. For all other 518

hyperparameters, we adhere to the NEMO toolkit 519

defaults. We focused on CTC-based experiments 520

in this project to prioritize training simplicity, mod- 521

ularity, and compatibility with external models for 522

rapid prototyping and evaluation. 523

A.2 Ablations 524

# Model WER ACC (%)

1 Conformer-CTC (Gulati et al., 2020) 26.99 -
2 AV-UNI-SNR (VL) 22.24 47.62
3 AV-UNI-SNR (Start) 20.85 54.07
4 AV-UNI-SNR 20.71 54.23

Table 4: WER and ACC (%) performance of ablation
models at SNR 10 dB.

Table 4 presents ablation results assessing the 525

impact of variable-length training and an alterna- 526

tive prediction strategy where the noise token is 527

predicted as the start token of a transcript. By 528

variable-length training, we refer to randomly crop- 529

ping and injecting noise at varying positions within 530

human speech samples, aiming to better simulate 531

real-world conditions. However, as seen in Row 3 532

Model # Params 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB -15 dB -20 dB

Conformer-CTC 120M 21.53 23.13 26.99 34.42 47.34 64.58 79.53 87.65 92.06
AV-SNR ((Ours)) 453M 21.76 20.85 21.83 25.38 33.72 50.01 65.70 78.53 87.62
AV-UNI-SNR Ours 453M 18.50 19.08 20.71 24.96 33.83 50.06 68.52 80.48 87.42
Whisper Medium 769M 17.15 17.47 19.31 24.96 35.72 53.03 80.43 94.87 97.92
Whisper Large V3 1550M 14.44 15.53 16.64 19.68 28.09 47.31 71.11 85.22 90.22
Gemini 2.0 Flash - 19.31 19.96 21.26 25.15 34.06 50.63 68.76 81.30 89.95
Gemini 1.5 Flash - 19.16 19.82 20.95 25.00 31.26 46.46 65.15 78.76 86.66

Table 3: WER (%) performance of different models across varying SNR levels. Bold indicates the best (lowest)
WER and underlined indicates the second-best per SNR level.
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(VL), this approach slightly degrades performance.533

This is likely because, although AudioSet provides534

labels indicating the presence of certain noises in535

videos, it does not specify their exact temporal lo-536

cations. As a result, random cropping may lead to537

segments that do not actually contain the intended538

noise, weakening the correlation between the au-539

dio and corresponding visual cues. This weaker540

alignment can also be observed in the drop in ACC,541

making it more challenging for the model to asso-542

ciate specific visual content with particular noise543

types.544

Row 4 evaluates an alternative noise prediction545

method that places the noise token at the start of the546

transcription rather than the end (our default setup).547

Interestingly, this strategy yields performance com-548

parable to the default. This is because both audio549

and visual tokens are contextualized using multi-550

head self-attention (MHSA), which allows tokens551

at all time steps to interact, making the position552

of the noise token less critical. Nonetheless, we553

choose to place the noise token at the end, as it is554

more suitable for potential online inference scenar-555

ios—where predictions occur in real time—making556

this setup more practical for deployment.557

A.3 Computational costs?558

Models Params A V WER
1 Conformer-CTC Large 120M ✓ - 26.99
2 Conformer-CTC XLarge (XL) 635M ✓ - 26.15

3 A-UNI-SNR (Large Backbone) 150M ✓ - 23.11
4 A-UNI-SNR (XL Backbone) 665M ✓ - 22.34

5 AV-UNI-SNR (Ours) 453M ✓ ✓ 20.71
6 AV-UNI-SNR (Ours) 150M ✓ - 22.29

Table 5: Comparison of Models, Parameters, Modalities,
and WER on Test Set of proposed dataset at 10dB.

We discuss the computational costs of our AV559

model in Table 5. Using visual inputs at inference560

requires an additional 300M parameters for CLIP561

feature extraction R5, increasing computational562

overhead compared to audio-only models. How-563

ever, our AV-UNI-SNR model is flexible, support-564

ing both audio-visual and audio-only inference. No-565

tably, when used with only audio R6 it requires just566

30M more parameters than the Conformer-CTC567

Large model (R1). Despite this smaller increase in568

parameters, our AV-UNI-SNR model outperforms569

the A-UNI-SNR XL model (R4), trained on audio-570

only data with 4x more parameters, demonstrating571

the superior efficiency and performance of our AV572
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Figure 2: Prediction accuracy per noise type based on
final token match between predicted and reference noise
labels.

framework. 573

A.4 Noise Prediction Accuracy. 574

Figure 2 shows the model (AV-UNI-SNR) accuracy 575

in predicting the correct noise type for each sam- 576

ple at 10dB SNR. We observe that categories like 577

Blender, Toilet flush, and Sewing machine show 578

higher accuracy—these objects are typically large, 579

stationary, and visually distinct in their environ- 580

ments, making their presence easier to detect in 581

frames. On the other hand, sounds such as Rustle, 582

Heavy engine, Hum or Whack, thwack tend to be 583

visually ambiguous or associated with smaller or 584

transient objects (e.g., foliage, distant vehicles, or 585

quick actions), reducing their visibility and making 586

accurate association with the noise source more 587

challenging for the model. This highlights the im- 588

portance of clear visual grounding in achieving 589

robust multimodal noise recognition. 590
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A.5 Future Work591

We plan to improve our model by exploring addi-592

tional pretrained speech and visual encoder check-593

points and expanding our dataset pipeline to in-594

clude AudioSet samples with multiple noise labels,595

enhancing visual context awareness. Furthermore,596

we plan to extend this approach to scalable audio-597

visual speech transcription, incorporating not only598

noise labels but also other visual cues and related599

events as tags.600

Our framework discussed in section 3 has the601

potential to scale up and generate over 4000 hours602

of data by leveraging the full clean subset of Peo-603

ple’s Speech and AudioSet. This scalability enables604

the community to adopt and expand our approach605

for AVSR training, facilitating the development of606

models that leverage our AV training strategy. Such607

models could achieve superior performance with608

audio-only inputs at test time compared to those609

trained solely with audio.610
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