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ABSTRACT

Representation learning is a central challenge in Computational Pathology (CP),
with direct implications for cancer research and precision medicine. While Self-
Supervised Learning (SSL) has advanced patch and slide-level analysis of Whole-
Slide Images (WSIs), single-cell representation learning has remained under-
explored, despite its importance for characterizing cell types and phenotypes.
We introduce LEMON (Learning Embeddings from Morphology Of Nuclei), a
self-supervised foundation model for scalable single-cell image representation.
Trained on millions of cell images spanning diverse tissues and cancer types,
LEMON provides versatile and robust morphology representations that enable
large-scale single-cell studies in pathology. We demonstrate its effectiveness
across diverse prediction tasks on five benchmark datasets, establishing LEMON
as a new paradigm for cell-level computational pathology.

1 INTRODUCTION

The proper function of tissue depends on the coordinated interaction of vast numbers of cells of
diverse types, whose spatial arrangement is essential for maintaining architecture and whose disrup-
tion often signals disease. The composition and interactions of these individual cells can strongly
influence disease development, and in some cases predict treatment response, providing biomark-
ers of high clinical value. A prominent example is the Tumor Microenvironment (TME), where
understanding the interplay between different cell types is critical for predicting disease progres-
sion, patient survival, and therapeutic response (de Visser & Joyce, 2023; Giraldo et al., 2019; Wang
et al., 2023). Computational methods for the analysis of tissues at single-cell resolution are therefore
important, both for mechanistic research and for clinical applications.

In recent years, numerous imaging technologies have enabled the molecular characterization of
single cells in their spatial context, at either the transcriptional or protein level. However, these
techniques are extremely costly, and datasets remain limited in scale. By contrast, Hematoxylin and
Eosin (H&E) staining is the most widely used imaging modality in pathology. As a routine clinical
practice, it provides detailed information on cell morphology and spatial organization, and large-
scale datasets containing hundreds of thousands of images are available. This abundance has fueled
the emerging field of computational pathology.

Learning robust feature representations from H&E images with limited labels remains a core chal-
lenge in computational pathology. Recent advances have largely been driven by SSL, which reduces
dependence on manual annotation (Balestriero et al., 2023). Because WSIs can exceed 50,000 pix-
els in width, most SSL approaches operate at the patch level, learning embeddings from small tiles
cropped from WSIs (Wang et al., 2022; Zimmermann et al., 2024; Saillard et al., 2024; Chen et al.,
2024). More recent work integrates the aggregation of patch features within the SSL framework
to produce a single slide-level representation (Lazard et al., 2022; Jaume et al., 2024b; Ding et al.,
2024; Vaidya et al., 2025). While effective for slide-level predictions, these approaches prevent the
analysis of fine-grained morphological details and cellular organisation. To date, work on cell-level
representation learning remains sparse. Notable examples include DinoBloom, which was designed
for hematology cell images from blood smears (Koch et al., 2024), and Volta (Nakhli et al., 2024),
a self-supervised contrastive learning model trained on a limited set of tissue-derived cell images.
These pioneering works are, however, limited by either their domain specificity or the scale and
diversity of their training data.
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A prerequisite for training powerful, general-purpose SSL models for cells is the assembly of a
large-scale, diverse datasets of cell images from WSIs. Recent advances in nucleus segmentation
have made large-scale cell extraction increasingly feasible. Models like Hover-Net (Graham et al.,
2019) and CellViT (Hörst et al., 2023; 2025), along with highly optimized implementations (Li-
akopoulos et al., 2024), can now automatically segment millions of cells across various tissue types
in a reasonable amount of time. This development opens the door to leveraging state-of-the-art SSL
paradigms, such as DINOv2 (Oquab et al., 2024) and MoCov3 (Chen et al., 2021), which are known
to benefit significantly from larger and more diverse training datasets both for natural images (Vo
et al., 2024) and for pathology images (Chen et al., 2025).

In this work, we capitalize on these advancements to address the gap in cell-level representation
learning. We introduce LEMON (Learning Embeddings from Morphology Of Nuclei), a new family
of SSL models for cell images. Our work not only sets a new state of the art for cell representation
learning but also provides a comprehensive blueprint for creating and training such models on this
particular type of images. Our main contributions are:

• We introduce a family of models trained with several contrastive and non-contrastive SSL
paradigms, to learn powerful representations of nuclear morphology.

• We curate several large-scale cell datasets derived from a diverse cohort of whole-slide
images, and we systematically study the impact of dataset scale and composition (number
of cells, slides, and organs) on downstream performance.

• We design and validate a set of domain-specific data augmentations tailored to the visual
characteristics of H&E stained cell images, demonstrating their crucial role in model gen-
eralization.

• We conduct an extensive benchmark evaluation showing that LEMON significantly outper-
forms prior art on five distinct downstream tasks, encompassing both cell classification and
regression challenges of varying difficulty.

1.1 SELF-SUPERVISED LEARNING

Contrastive Learning. The objective of contrastive learning is to learn an embedding space where
different augmented views of the same image (a positive pair) are pulled together, while views from
different images (negative pairs) are pushed apart. This is often formalized using the InfoNCE loss
(Oord et al., 2019). Given a query view q and a set of key views {k0, k1, ..., kN}, where k0 is the
positive key corresponding to q and {ki}Ni=1 are negative keys, the loss is defined as:

Lq = − log
exp(sim(q, k0)/τ)∑N
i=0 exp(sim(q, ki)/τ)

Here, sim(·, ·) is a similarity function (e.g., cosine similarity) and τ is a temperature hyperparameter.
While early methods struggled with strategies for sourcing effective negative pairs (Xu et al., 2022),
modern approaches like MoCov3 (Chen et al., 2021) have streamlined this process. MoCov3 sim-
plifies its predecessors by using a large batch of in-flight samples for the negative keys, removing
the need for a dedicated memory bank. It retains the teacher-student framework, where the stu-
dent network (which produces the query q) is trained via backpropagation, and the teacher network
(which produces the key k) is an Exponential Moving Average (EMA) of the student’s weights. This
momentum-based update ensures the keys remain consistent, which is crucial for stable training.

Non-Contrastive Learning. Non-contrastive methods learn representations by matching the out-
puts for different views of the same image, thereby avoiding the need for explicit negative pairs.
To prevent representational collapse, they employ a teacher-student architecture where the teacher’s
weights θt are an EMA of the student’s weights θs. The state-of-the-art DINOv2 (Oquab et al.,
2024) model advances this paradigm by composing three distinct loss functions: an image-level
matching loss (from DINO) (Caron et al., 2021), a patch-level masked-image modeling loss (from
iBOT) (Zhou et al., 2022), and a regularization loss (KoLeo).

The core objective, inherited from DINO (Caron et al., 2021), operates on multiple views of an im-
age generated by a multi-crop augmentation strategy. This strategy produces a set of high-resolution
”global” views (Vg) and a set of lower-resolution ”local” views (Vl). The teacher network processes
only the global views, while the student network processes all views. The goal is for the student’s
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output distribution Ps to match the teacher’s sharpened and centered distribution Pt. The loss is
composed of two cross-entropy terms:

• Global-to-Global Matching: The student’s output for one global view is matched against
the teacher’s output for the other global view.

Lg↔g = −
∑

v,v′∈Vg

v ̸=v′

Pt(v
′) logPs(v)

• Local-to-Global Matching: The student’s output for each local view is matched against
the teacher’s output for all global views.

Ll↔g = −
∑
vl∈Vl

∑
vg∈Vg

Pt(vg) logPs(vl)

The total image-level loss is LDINO = Lg↔g + Ll↔g .

To encourage the learning of fine-grained local features, DINOv2 integrates the masked-image mod-
eling objective from iBOT (Zhou et al., 2022). For an input image, a random subset of its patches
M is masked. The teacher receives the full, unmasked image, while the student receives the masked
image. The student is then tasked with predicting the teacher’s output tokens for the masked patches.
The loss is a cross-entropy between the student’s predictions and the teacher’s distribution for the
masked patches:

LiBOT = −
∑

xm∈M
Pt(xm) logPs(xm)

To further prevent feature collapse and promote feature space uniformity, DINOv2 adds the KoLeo
regularizer. This loss acts on the batch of embeddings produced by the teacher network. It en-
courages diversity by penalizing similarity between distinct images, specifically by maximizing the
distance between an embedding zi and its nearest neighbor zNN(i) in the batch. The loss is formu-
lated as:

LKoLeo =
∑

zi∈batch

− log ∥zi − zNN(i)∥22

This pushes embeddings apart, ensuring the feature space does not collapse to a small volume. The
final DINOv2 loss is a weighted sum of these three components: L = LDINO + αLiBOT + βLKoLeo.

1.2 SSL IN HISTOPATHOLOGY

The paradigms of self-supervised learning, proven effective on natural images, have been widely
adapted for computational pathology, predominantly at the level of image tiles or patches. These
methods can be broadly categorized by their core SSL strategy and their operational scale.

Tile-Level Representation Learning. Early successes in pathology SSL often involved adapting
contrastive learning frameworks. For instance, CTransPath (Wang et al., 2022) modified the MoCo
framework by defining positives not only as augmented views of the same tile, but also as other tiles
with high cosine similarity, which reflects the idea that tiles are much more similar to each other than
natural images. More recently, the field has shifted towards building non contrastive methods. In-
spired by the success of DINOv2, models like UNI (Chen et al., 2024), H-Optimus-0 (Saillard et al.,
2024), and Virchow2 (Zimmermann et al., 2024) have demonstrated the benefits of pre-training Vi-
sion Transformers on massive, curated datasets comprising millions of histopathology tiles. The
primary contribution of these works lies in meticulous data curation and demonstrating remarkable
scaling laws, where model performance on diverse downstream tasks consistently improves with the
scale of the pre-training data.

Cell-Level Representation Learning. In contrast to the extensive work at the tile level, research
on single-cell level representations remains limited. To our knowledge, Volta (Nakhli et al., 2024)
is the only SSL model specifically designed for this task in the context of histopathology. Volta
introduces a novel dual-contrastive learning objective. The first objective is a standard instance-
discrimination task, where augmented views of the same cell are pulled together in the embedding
space. The second objective contrasts the cell’s representation against a representation of its local
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Figure 1: Overview of the LEMON framework.

tissue microenvironment, which is obtained from the surrounding background patch after masking
cell nuclei.

2 METHODS

2.1 LARGE-SCALE CELL DATASET CURATION

To train our models, we curated a large-scale dataset of cell images from The Cancer Genome Atlas
(TCGA) database (Weinstein et al., 2013). We processed around 10,000 WSIs spanning 10 distinct
cancer types. To perform cell segmentation at this scale, we employed HoverFast (Liakopoulos
et al., 2024), a highly optimized implementation of the Hover-Net architecture that provides a 20x
speed-up, making slide-level segmentation computationally tractable. For each detected nucleus,
we extracted a 40× 40 pixel patch centered on the nucleus centroid. After that we selected random
nuclei from each WSI. This process yielded a pre-training dataset of several hundred million cell
instances. The small patch size, a key characteristic of this domain, starkly contrasts with the larger
resolutions (e.g., 224 × 224) common in natural image, necessitating adaptations in both model
architecture and training methodology.

2.2 SSL FOR CELL IMAGES

We adapted and compared the two leading SSL paradigms, contrastive learning (MoCov3 (Chen
et al., 2021)) and non-contrastive learning (DINOv2 (Oquab et al., 2024)), tailoring them to the
specific properties of our cell image data.

Architectural and Framework Adaptations. Given the small input resolution of our cell patches,
we utilized smaller model backbones than those typically used for SSL in natural images. For the
contrastive approach with MoCov3, we experimented with Vision Transformer (ViT) (Dosovitskiy
et al., 2021), ViTs refers to the small architecture and ViTb to the base architecture. We used a
patch size of 8 in our experiments which we indicate with ViTs8 for a small architecture. For the
DINOv2 framework, we made two critical modifications to the loss function. First, we removed the
local-to-global matching component of the DINO loss, as local crops of an already small 40 × 40
patch carry insufficient information to be meaningful. Second, consistent with observations in other
pathology applications (Zimmermann et al., 2024), we found the effect of the KoLeo regularizer
to be excessively strong, potentially leading to numerical errors in the loss. We therefore replaced
it with a more moderate Kernel Density Estimation (KDE) based loss, which encourages global
feature uniformity without excessively penalizing local neighborhoods in the embedding space:

LKDE =
∑
z

log
∑
z′

k(z, z′)

where k is a kernel function measuring similarity between embeddings.
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Domain-Specific Data Augmentations. We designed two custom augmentations to address the
unique characteristics of cellular images. First, to enforce rotational invariance, a critical prior
for cell morphology, which has no canonical orientation, we implemented a full random rotation
from 0◦ to 360◦ similar to (Alfasly et al., 2024). To avoid edge artifacts (e.g., black corners), we
implemented this by extracting a larger 60 × 60 patch, performing the rotation, and then taking
a central 40 × 40 crop. Second, we evaluated a random stain augmentation (Shen et al., 2022)
based on Macenko’s method (Macenko et al., 2009). This simulates the variability in H&E staining
that arises from different slide preparation protocols, training the model to learn features that are
invariant to color and intensity shifts and thus more robust for downstream applications.

2.3 BENCHMARKING DATASETS

To comprehensively evaluate the quality of the learned cell representations, we benchmarked our
models on seven distinct downstream tasks, encompassing four classification tasks and three regres-
sion tasks. These benchmarks were selected to test various aspects of the embeddings, including
fine-grained cell type discrimination, generalization across different domains, and the ability to pre-
dict molecular features from morphology.

• NuCLS (Amgad et al., 2022): A multi-class classification dataset of single-cell images
from breast cancer H&E slides. Its key feature is a hierarchical annotation scheme, with
labels reviewed and confirmed by pathologists. This structure allows us to evaluate the
representative power of our embeddings on both fine-grained (e.g., distinguishing immune
cell types) and coarse-grained (e.g., tumor vs. stromal) classification tasks. We refer to
them as NuCLS (super) for broad categories, NuCLS (main) for main cell type categories
and NuCLS (raw) for fine-grained type and subtype classifications.

• MIDOG++ (Aubreville et al., 2023): A dataset for binary classification of mitotic figures
(abnormal vs. normal). It is specifically designed to test model robustness and generaliza-
tion, as it contains cell images sourced from multiple species (human and canine), diverse
organs, and various digital slide scanners.

• HEST-derived Gene Expression Regression (Jaume et al., 2024a): To assess the capacity
of our embeddings to capture morpho-molecular relationships, we curated a novel regres-
sion dataset from the HEST database. We created 3 datasets by using slides originating
from breast cancer (HEST-breast), lung pulmonary fibrosis (HEST-lung) and bowel cancer
(HEST-bowel).

Further details on each dataset and preprocessing are provided in the Appendix A.

2.4 EMBEDDING EVALUATION

To assess the quality and discriminative power of the features learned by our SSL models, we fol-
lowed the standard linear probing protocol. This evaluation involves training a simple linear model
on fixed embeddings obtained from the pretrained model to perform a specific downstream task. The
rational for this approach is that a powerful feature extractor should produce representations that are
linearly separable. Consequently, the performance of a simple linear model serves as a direct and
reliable proxy for the quality of the learned embeddings. Alternative protocols like full fine-tuning,
parameter-efficient fine-tuning or few shot learning also exist, but these methods generally produce
similar conclusions about relative model performance (Marks et al., 2024). In our experiments, we
trained a logistic regression classifier on the embeddings for the classification tasks (NuCLS and
MIDOG++) and a ridge regression model for the gene expression prediction task (HEST). The per-
formance of these linear models is used to directly compare the efficacy of our different SSL training
configurations.

3 RESULTS

3.1 EXPERIMENTAL SETUP

Unless stated otherwise, we used a dataset of 10M cell images from 10 organs. All the models using
the MoCo v3 pretraining strategy are trained for 150 epochs with an epoch length of 1M images.
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The batch size is set to 4096. For the augmentations, we used the best combination that we found as
explained later in the experiments.

3.2 FULL BENCHMARKING

MIDOG++ NuCLS HEST-Bowel HEST-Breast HEST-Lung
bal acc bal acc pcc pcc pcc

Embeddings

Natural images TL
Imagenet (ResNet-18) 0.577 (0.008) 0.693 (0.005) 0.114 (0.023) 0.113 (0.023) 0.083 (0.021)
Imagenet (ResNet-50) 0.604 (0.013) 0.712 (0.005) 0.12 (0.035) 0.124 (0.023) 0.091 (0.013)

Natural images FM
DINOv2 (ViT-s/14) 0.642 (0.004) 0.732 (0.004) 0.146 (0.016) 0.157 (0.029) 0.116 (0.028)
DINOv2 (ViT-b/14) 0.653 (0.013) 0.732 (0.004) 0.145 (0.022) 0.156 (0.026) 0.118 (0.028)
DINOv2 (ViT-l/14) 0.645 (0.008) 0.721 (0.006) 0.142 (0.016) 0.153 (0.026) 0.117 (0.029)
DINOv2 (ViT-g/14) 0.654 (0.007) 0.734 (0.009) 0.153 (0.021) 0.164 (0.025) 0.118 (0.029)

Tile level FM
UNI (ViT-l/16) 0.619 (0.007) 0.733 (0.006) 0.15 (0.035) 0.151 (0.029) 0.118 (0.029)
Virchow2 (ViT-h/14) 0.621 (0.011) 0.754 (0.007) 0.148 (0.034) 0.154 (0.029) 0.11 (0.029)
H-Optimus-0 (ViT-g/14) 0.631 (0.013) 0.751 (0.006) 0.159 (0.029) 0.157 (0.029) 0.119 (0.029)

Cell level FM
Volta (ResNet-18) 0.726 (0.01) 0.736 (0.003) 0.148 (0.025) 0.115 (0.028) 0.118 (0.025)
LEMON-MoCov3 (ViT-s/8) 0.746 (0.015) 0.779 (0.005) 0.16 (0.027) 0.156 (0.021) 0.128 (0.028)

Table 1: Performance of pretraining strategy on downstream tasks. We report balanced accuracy
for NuCLS (supervised) and MIDOG++ (majority), and Pearson Correlation Coefficient for HEST
(breast, lung, bowel). Values are mean (s.d.) over folds, best values are highlighted in bold.

To assess performance, we benchmarked our model against strong baselines that use pre-trained rep-
resentations, grouped into three families: (1) models pre-trained on natural images: transfer learning
from ImageNet (Russakovsky et al., 2015) and the self-supervised DINOv2 (Oquab et al., 2024);
(2) foundation models trained on histopathology tile images from WSIs, including UNI (Chen et al.,
2024), H-Optimus-0 (Saillard et al., 2024), and Virchow2 (Zimmermann et al., 2024); and (3) Volta
(Nakhli et al., 2024), the current state of the art for cell-level representations. For transfer learn-
ing (Zhuang et al., 2020), we extracted embeddings from each model’s penultimate layer. Because
most baselines (except Volta) require 224×224 inputs, we resized nuclei images to the correct size.
Results are reported in Table 1.

Our method decisively outperformed models pre-trained on natural images across all datasets.
On MIDOG++, for instance, it achieves a balanced accuracy of 0.746 ± 0.015, compared with
0.604± 0.005 for an ImageNet-pretrained ResNet-50 and 0.654± 0.007 for the best DINOv2 vari-
ant. These gaps underline the limits of natural-image features and the importance of domain-specific
pre-training for cellular morphology.

Against contemporary tile-level Foundation Model (FM)s (UNI, H-Optimus-0, Virchow2), our ap-
proach performed significantly better on NuCLS and MIDOG++, and is highly competitive on the
HEST gene-expression prediction tasks. Gains were especially pronounced on MIDOG++, which
depends on fine-grained cellular cues that tile-level FMs tend to overlook.

Compared to Volta, the only other cell-level baseline, our model held a clear advantage across all
tasks. It surpassed Volta on NuCLS and MIDOG++ classification and delivered stronger results on
HEST gene-expression prediction, indicating more robust and generalizable cellular representations
for downstream computational pathology.

3.3 FLOATING POINT OPERATIONS (FLOPS) COMPARISON

Computational efficiency is crucial in the single-cell setting, where a single whole-slide image may
contain millions of nuclei, making large-scale embedding extraction prohibitively expensive with
heavyweight architectures. Tile-level foundation models typically rely on very large backbones (e.g.,

6
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Figure 2: Performance of pretraining strategies versus FLOPs. Left: mean balanced accuracy
across NUCLS (super, main, raw) and MIDOG++ for classification. Right: mean Pearson Correla-
tion Coefficient across breast, lung, and bowel datasets for regression. Marker size indicates model
parameter count; color indicates pretraining category. Cell-level foundation models achieve superior
performance compared to both natural image pretraining and tile-level foundation models, while re-
quiring significantly fewer FLOPs.

Vi-H/14, ViT-g/14) with high computational footprints, whereas LEMON leverages a lightweight
ViT-s/8 backbone, operating with orders of magnitude fewer FLOPs.

To evaluate the trade-off between performance and computational cost, we compared different pre-
training strategies by plotting downstream performances against the number of FLOPs required
during inference (Fig. 2). Our cell-level models achieves state-of-the-art performance while striking
an optimal balance between representational power and efficiency. Interestingly, for classification
tasks, histopathology tile-level models generally show improved performance with increasing model
size or FLOPs. In sharp contrast, LEMON breaks this trend, achieving the highest accuracy overall
(NuCLS super: 0.773, MIDOG++: 0.748) with only 0.5G FLOPs, compared to 295.9G FLOPs for
H-Optimus-0, the second-best performing model. For gene expression prediction, a more challeng-
ing task, the overall trends remain consistent.

3.4 CHOICE SSL FRAMEWORK

We compared two state-of-the-art SSL methods, MoCov3 Chen et al. (2021) and DINOv2 Oquab
et al. (2024), as pretraining strategies for small histopathology patches (see Table 5). While DINOv2
is one of the strongest SSL frameworks available, we observed several limitations when applied to
small 40×40 images. To address these, we introduced two modifications to the loss function: (i)
removing the local-to-global matching term, which is ill-suited for such small patches, and (ii)
replacing the strong KoLeo regularizer with a milder KDE-based loss. These two modifications
improved performance across all classification benchmark datasets. Despite these adjustments, Mo-
Cov3 consistently outperformed DINOv2, suggesting that contrastive SSL is more robust in low-
resolution pathology scenarios. We hypothesized that this advantage arises from the limited image
size, which diminishes the effectiveness of DINO-style local/global matching while favoring the
global contrastive objective used by MoCov3. Consequently, we focused the remainder of the study
on MoCov3, and LEMON refers to LEMON-MoCov3.

3.5 DATASET COMPOSITION

We first examined how dataset scale affects benchmark classification. As shown in the top row of
Figure 3, balanced accuracy increases consistently as the dataset grows, before saturating around
1M images for both ViT-S/8 and ViT-B/8. We kept ViT-S/8 as increasing the model sizes did not
lead to significantly better results with our training scheme.
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We then isolated the role of data diversity, motivated by evidence that training set diversity can
strongly influence downstream performance (Oquab et al., 2024; Vo et al., 2024). Fixing the dataset
size at 1M images, we varied the number of WSIs and the number of source organs used to extract
cell images. As shown in the bottom row of Figure 3, gains are driven primarily by increasing
the number of slides, while performance remained relatively stable with respect to the number of
organs, provided that the number of slides is sufficiently high. This suggests the model does not
require organ-specific pretraining for effective application across organs.

Figure 3: Performance of models vs. training data composition. Mean balanced accuracy (error
bars represents standard errors) across MIDOG++ and the three NuCLS classification tasks. Top:
Performance by training dataset size; models improve with larger datasets and level off near 1M
images. Bottom: With the total number of images held constant, models perform better as diversity
increases (more organs of origin and more slides).

3.6 DOMAIN-SPECIFIC AUGMENTATIONS

Augmentation policy strongly affects SSL performance (Morningstar et al., 2024). We revised the
pipeline with stronger color jitter, random patch masking, and a customized rotation protocol with-
out padding (a1), which improved both classification (NuCLS, MIDOG++) and gene-expression
prediction (HEST) with respect to the standard augmentation scheme (a0 (MoCo)).

Imposing robustness to color variations is important in digital pathology, as staining protocols and
scanners may vary between hostpitals. Adding grayscale augmentations (a1+gray) (Kang et al.,
2023) yielded the best MIDOG++ score and competitive NuCLS results, though HEST effects were
mixed. Surprisingly, RandstainNA color perturbations (Shen et al., 2022) mimicking realistic color
variations helped HEST when using a single color template (a1+gmm1) but reduced classification
accuracy, and the multi-template variant (a1+gmm10) underperformed overall.

Balancing these trade-offs, we adopted a1+gray as our default, as it combines the strongest clas-
sification gains with good HEST performance. The results are summarized in Table 2.

Table 2: Effect of augmentation policy on downstream tasks. We report balanced accuracy for Nu-
CLS (supervised) and MIDOG++ (majority), and Pearson Correlation Coefficient for HEST (breast,
lung, bowel). Values are mean (s.d.) over folds, best values are highlighted in bold.

MIDOG++ NuCLS HEST-Bowel HEST-Breast HEST-Lung
bal acc bal acc pcc pcc pcc

Augmentations

a0 (MoCo) 0.682 (0.013) 0.771 (0.003) 0.154 (0.03) 0.148 (0.023) 0.116 (0.027)
a1 0.715 (0.021) 0.784 (0.003) 0.161 (0.028) 0.155 (0.025) 0.133 (0.032)
a1+gray 0.746 (0.015) 0.779 (0.005) 0.16 (0.027) 0.156 (0.021) 0.128 (0.028)
a1+gmm1 0.736 (0.018) 0.768 (0.005) 0.164 (0.019) 0.162 (0.021) 0.126 (0.029)
a1+gmm10 0.725 (0.014) 0.765 (0.003) 0.159 (0.021) 0.152 (0.022) 0.123 (0.028)
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Figure 4: Morphological map of learned cell representations. A t-SNE projection of 100,000 cells
randomly sampled from a breast cancer whole-slide image (TCGA) is shown. A regular grid of cell
images visualizes the embedding space, revealing a smooth continuum of latent morphologies. Five
representative regions were annotated by an expert pathologist, corresponding to distinct cellular
phenotypes: (1) epithelial cells, (2) neoplastic epithelial cells with large, irregular nuclei, (3) small
lymphocytes, (4) plasma cells, and (5) fibroblasts.

3.7 REPRESENTATION ANALYSIS

We further examined the learned cell embeddings to assess whether they capture meaningful bi-
ological structure. For this, we projected the embeddings into two dimensions using t-distributed
Stochastic Neighbor Embedding (t-SNE) (Fig. 4).

The spatial organization of the latent space revealed clear biological structure. Along the first dimen-
sion, cells located on the far left (1) were predominantly epithelial. Within this region, we identified
a subpopulation in the central left area (2) characterized by large, rounded nuclei with irregular bor-
ders and prominent nucleoli, suggestive of neoplastic epithelial cells. In the upper right corner (3),
we observed clusters of cells with small, round nuclei, consistent with lymphocytes. An adjacent
cluster (4) likely corresponded to plasma cells, with eccentric nuclei. Finally, the lower right region
(5) contained elongated, spindle-shaped nuclei, suggestive of fibroblasts or myofibroblasts.

These observations highlight that the model captures not only broad cell-type distinctions but also
finer-grained morphological and pathological variations directly from the learned representations.

4 DISCUSSION

In this paper, we introduce LEMON, a self-supervised model for nuclei image representation learn-
ing. We build a large-scale dataset of nucleus crops using segmentation networks and show that our
approach achieves state-of-the-art performance across five downstream tasks. Notably, we demon-
strate that self-supervised learning can be effectively applied to very small images (40×40) with
minor adaptations to existing frameworks. By carefully tuning training schemes and augmenta-
tions, LEMON produces stable and meaningful embeddings that capture nuclear morphology and
chromatin organization, reducing the need for manual labels and enabling new explorations of the
morphological landscape of cell images. Beyond CP, these results suggest that SSL could be ex-
tended to other domains where only small image patches are available.

In future work, it would be interesting to systematically quantify batch effects across staining pro-
tocols and microscopes of our models to ensure robust generalization, an issue already documented
for tile level FM in CP (Kömen et al., 2024). Another interesting avenue would be to compare repre-
sentations learned at different physical scales (nucleus, tissue and slide level views) to best combine
the information learned at different physical scales.
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Jonah Kömen, Hannah Marienwald, Jonas Dippel, and Julius Hense. Do Histopathological Foun-
dation Models Eliminate Batch Effects? A Comparative Study, November 2024. URL http:
//arxiv.org/abs/2411.05489. arXiv:2411.05489 [cs].

Tristan Lazard, Marvin Lerousseau, Etienne Decencière, and Thomas Walter. Giga-SSL: Self-
Supervised Learning for Gigapixel Images, December 2022. URL https://arxiv.org/
abs/2212.03273v1.

Petros Liakopoulos, Julien Massonnet, Jonatan Bonjour, Medya Tekes Mizrakli, Simon Gra-
ham, Michel A. Cuendet, Amanda H. Seipel, Olivier Michielin, Doron Merkler, and Andrew
Janowczyk. HoverFast: an accurate, high-throughput, clinically deployable nuclear segmentation
tool for brightfield digital pathology images, May 2024. URL http://arxiv.org/abs/
2405.14028. arXiv:2405.14028 [q-bio].

11

http://arxiv.org/abs/2411.19666
http://arxiv.org/abs/2010.11929
https://www.nature.com/articles/s41416-018-0327-z
http://arxiv.org/abs/1812.06499
http://arxiv.org/abs/2306.15350
http://arxiv.org/abs/2306.15350
http://arxiv.org/abs/2501.05269
http://arxiv.org/abs/2406.16192
http://arxiv.org/abs/2408.02859
http://arxiv.org/abs/2408.02859
http://arxiv.org/abs/2212.04690
http://arxiv.org/abs/2212.04690
http://arxiv.org/abs/2404.05022
http://arxiv.org/abs/2411.05489
http://arxiv.org/abs/2411.05489
https://arxiv.org/abs/2212.03273v1
https://arxiv.org/abs/2212.03273v1
http://arxiv.org/abs/2405.14028
http://arxiv.org/abs/2405.14028


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marc Macenko, Marc Niethammer, J. S. Marron, David Borland, John T. Woosley, Xiaojun Guan,
Charles Schmitt, and Nancy E. Thomas. A method for normalizing histology slides for quan-
titative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, pp. 1107–1110, Boston, MA, USA, June 2009. IEEE. ISBN 978-1-4244-3931-7.
doi: 10.1109/ISBI.2009.5193250. URL http://ieeexplore.ieee.org/document/
5193250/.

TorchVision maintainers and contributors. TorchVision: PyTorch’s Computer Vision library,
November 2016. URL https://github.com/pytorch/vision. original-date: 2016-
11-09T23:11:43Z.

Markus Marks, Manuel Knott, Neehar Kondapaneni, Elijah Cole, Thijs Defraeye, Fernando
Perez-Cruz, and Pietro Perona. A Closer Look at Benchmarking Self-Supervised Pre-training
with Image Classification, July 2024. URL http://arxiv.org/abs/2407.12210.
arXiv:2407.12210 [cs] version: 1.

Warren Morningstar, Alex Bijamov, Chris Duvarney, Luke Friedman, Neha Kalibhat, Luyang Liu,
Philip Mansfield, Renan Rojas-Gomez, Karan Singhal, Bradley Green, and Sushant Prakash.
Augmentations vs Algorithms: What Works in Self-Supervised Learning, March 2024. URL
http://arxiv.org/abs/2403.05726. arXiv:2403.05726 [cs].

Ramin Nakhli, Katherine Rich, Allen Zhang, Amirali Darbandsari, Elahe Shenasa, Amir Had-
jifaradji, Sidney Thiessen, Katy Milne, Steven J. M. Jones, Jessica N. McAlpine, Brad H.
Nelson, C. Blake Gilks, Hossein Farahani, and Ali Bashashati. VOLTA: an enVironment-
aware cOntrastive ceLl represenTation leArning for histopathology. Nature Communications,
15(1):3942, May 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-48062-1. URL https:
//www.nature.com/articles/s41467-024-48062-1. Publisher: Nature Publishing
Group.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Con-
trastive Predictive Coding, January 2019. URL http://arxiv.org/abs/1807.03748.
arXiv:1807.03748 [cs].
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A APPENDIX

A.1 BENCHMARKING DATASETS

NuCLS dataset: It is a dataset of images from slides originating from breast cancer of annotated
cell type images. It is composed of three classification tasks with increased cell type resolution
super, main, raw. The label distribution is shown in Table 3.

(a) NuCLS (super)
Cell type Number of images
tumor any 16052
sTIL 13642
nonTIL stromal 7613

(b) NuCLS (main)
Cell type Number of images
tumor nonMitotic 15874
lymphocyte 9617
nonTILnonMQ stromal 6634
plasma cell 4025
macrophage 979
tumor mitotic 178

(c) NuCLS (raw)
Cell type Number of images
tumor 15874
lymphocyte 9617
fibroblast 6258
plasma cell 4025
macrophage 979
ductal epithelium 399
vascular endothelium 376
apoptotic body 293
mitotic figure 178
neutrophil 35
myoepithelium 33
eosinophil 2

Table 3: NuCLS dataset.

MIDOG++ dataset: It is a dataset of images from slides originating from multiple organs and
species with mytotic figure annotations. We didn’t use any of the metadata to create our splits. The
label distribution is shown in Table 4.

HEST dataset: This dataset is built from Xenium slides, a technology for Imaging-based Spatial
Transcriptomics (IST) that measures up to hundreds of distinct messenger RNA (mRNA) species
while preserving their spatial localisation. After cell segmentation, we construct cell–count matrices
in which each row corresponds to a cell, each column to a gene, and each entry to the number
of transcripts detected in that cell. We use the segmentation provided by the Xenium software.
The platform also provides a co-registered H&E slide aligned with the cell–count matrix, enabling
extraction of cell images that are spatially aligned with the transcriptomic measurements.

The prediction task is to identify the top 50 highly expressed genes, defined as follows. For every
slide, we compute the mean expression per gene, rank genes within the slide, combine the ranks
across slides, and retain the 50 highest-ranked genes. To standardize sample size, we subsample
10 000 cells per slide uniformly at random. We report performances with a leave-one-out slide
evaluation strategy.

We accessed the Xenium slides through the HEST database (Jaume et al., 2024a). The slide IDs
used for each subset are:

• HEST-bowel: TENX149, TENX148, TENX147, TENX139, TENX111

• HEST-breast: NCBI783, NCBI785, TENX94, TENX95, TENX98

• HEST-lung: NCBI856, NCBI857, NCBI858, NCBI859, NCBI860, NCBI861, NCBI864,
NCBI865, NCBI866, NCBI867, NCBI870, NCBI873, NCBI875, NCBI876, NCBI879,
NCBI880, NCBI881, NCBI882, NCBI883, NCBI884

Table 4: MIDOG++ dataset.

Class Number of images
NMF 10191
AMF 1748
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Table 5: Effect of architectural and framework adaptations on downstream tasks. We report balanced
accuracy for NuCLS (super) and MIDOG++ (majority). Values are mean (s.d.), best values are
highlighted in bold.

NuCLS MIDOG
(super) (majority)

Model

DINOv2-Baseline (ViT-s/8) 0.681 (0.002) 0.678 (0.011)
DINOv2-No local-to-global (ViT-s/8) 0.703 (0.003) 0.673 (0.012)
DINOv2-No local-to-global + KDE (ViT-s/8) 0.767 (0.007) 0.67 (0.011)
MoCov3 (ViT-s/8) 0.779 (0.005) 0.746 (0.015)

A.2 COMPARISON OF SSL METHODS

We evaluated two state-of-the-art SSL methods, MoCo v3 and DINOv2, on small cell histopathology
patches (40×40). As discussed in subsection 2.2, we tested several variants of DINOv2, including
the original baseline and modified versions where (i) the local-to-global matching term was removed,
and (ii) the KoLeo regularizer was replaced with a KDE-based loss.

The KDE loss employs a von Mises–Fisher kernel:

kvMF (x, y) = exp(κxT y)

where κ controls the concentration of the kernel around the mean direction. In our experiments, we
set κ to 5 and KDE loss weight to 0.05. This encourages global feature uniformity while avoiding
excessive penalties on local neighborhoods.

Table 5 summarizes the performance of MoCo v3 and DINOv2 variants across the five benchmark
datasets. MoCov3 consistently achieves the best results, outperforming all DINOv2 variants on Nu-
CLS (0.779 vs 0.767), MIDOG (0.746 vs 0.670–0.678), and HEST Bowel (0.160 vs 0.117–0.142),
which demonstrates its robustness for small 40×40 patches. The ablations on DINOv2 indicate
incremental improvements: removing the local-to-global matching term slightly improves perfor-
mances on most dataset (e.g,: Nucls: 0.703 vs 0.681, HEST-Breast 0.129 vs 0.119). Replacing
the KoLeo regularizer with the KDE-based loss yields the best DINOv2 variant, improving NuCLS
(0.767), HEST Breast (0.143), HEST Lung (0.147) and HEST Bowel (0.142) relative to the baseline.

A.3 AUGMENTATION STRATEGIES

We here detail the augmentation strategies that we used to train our models. For MoCov3, we
used the augmentations that we found in the pytorch implementation https://github.com/
facebookresearch/moco-v3. We used torchvision (maintainers & contributors, 2016) im-
plementations. For a0 (MoCo):

• RandomResizedCrop with scale=(0.08, 1.0)
• RandomHorizontalFlip

• ColorJitter with parameters = (0.4, 0.4, 0.2, 0.1) and p=0.8
• RandomGrayscale with p=0.2
• GaussianBlur with sigma=(0.1, 2.0)

For a1:

• RotationCrop with degree=360 (our implementation which prevent black pixel
padding)

• RandomResizedCrop with scale=(0.32, 1.0)
• RandomHorizontalFlip
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Figure 5: Examples of nuclei images with different augmentation strategies with three random aug-
mentations from either the MoCo v3 augmentation or ours.

• ColorJitter with parameters = (0.6, 0.7, 0.5, 0.2) and p=0.8
• RandomGrayscale with p=0.2
• RandomErasing with scale=(0.1, 0.3), ratio=(0.8, 1.2) and p=0.3
• GaussianBlur with sigma=(0.1, 2.0)

For a1+gray, we added RandomGrayscale with p=0.2 to the a1 augmentations. For stain-
specific augmentations, we first computed stain statistics on the training dataset with either 1 or
10 mixtures and then sample a new staining to augment the images. a1-gmm1 and a1-gmm10
correspond to a1 with these additional augmenations.

A.4 USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to aid and polish writing.
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