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ABSTRACT

Mixture-of-Experts (MoE) architectures in large language models (LLMs) deliver
exceptional performance and reduced inference costs compared to dense LLMs.
However, their large parameter counts result in prohibitive memory requirements,
limiting practical deployment. While existing pruning methods primarily focus
on expert-level pruning, this coarse granularity often leads to substantial accu-
racy degradation. In this work, we introduce HEAPr, a novel pruning algorithm
that decomposes experts into smaller, indivisible atomic experts, enabling more
precise and flexible atomic expert pruning. To measure the importance of each
atomic expert, we leverage second-order information based on principles similar
to Optimal Brain Surgeon (OBS) theory. To address the computational and stor-
age challenges posed by second-order information, HEAPr exploits the inherent
properties of atomic experts to transform the second-order information from ex-
pert parameters into that of atomic expert parameters, and further simplifies it to
the second-order information of atomic expert outputs. This approach reduces the
space complexity from O(d4), where d is the model’s dimensionality, to O(d2).
HEAPr requires only two forward passes and one backward pass on a small cali-
bration set to compute the importance of atomic experts. Extensive experiments on
MoE models, including DeepSeek MoE and Qwen MoE family, demonstrate that
HEAPr outperforms existing expert-level pruning methods across a wide range of
compression ratios and benchmarks. Specifically, HEAPr achieves nearly lossless
compression at compression ratios of 20% ∼ 25% in most models, while also re-
ducing FLOPs nearly by 20%. The code can be found at anonymous-code-B927.

1 INTRODUCTION

Mixture-of-experts (MoE) models have recently emerged as a promising alternative to dense large
language models (LLMs), replacing dense feed-forward layers with sparsely activated experts and
dynamic routing. This design allows MoE models to match or surpass the performance of dense
LLMs while activating only a fraction of parameters during inference (Fedus et al., 2022; Zhu et al.,
2024; Liu et al., 2024a), making them particularly attractive for large-scale, concurrent deployment.
However, while sparse activation reduces computational cost, it exacerbates memory requirements.
For example, DeepSeek-V3 (Liu et al., 2024a) activates only 37B parameters per inference, yet all
671B parameters must still be stored in GPU memory, resulting in prohibitively high deployment
costs. Notably, MoE layers typically account for over 97% of total model parameters, and they
represent the dominant storage bottleneck. Therefore, compressing MoE layers becomes critical to
overcoming inference inefficiency and making deployment feasible in resource-constrained devices.

Model pruning has been widely explored as an effective compression strategy to reduce stor-
age and improve efficiency. Yet a fundamental trade-off persists: fine-grained pruning typically
preserves accuracy but yields limited speedups on hardware, whereas coarse-grained pruning di-
rectly enables acceleration but often incurs obvious accuracy loss. Within MoE models, pa-
rameter sparsification (Xie et al., 2024) faces similar limitations, as hardware inefficiencies con-
strain its practical benefits. Consequently, recent research has shifted toward expert-level prun-
ing, offering more direct gains in both acceleration and memory reduction. Existing expert-
level approaches at this level can be broadly divided into expert dropping and expert merging.
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Atomic Expert level

Expert

Atomic Expert Pruning

Internal View

Atomic Expert 1

Atomic Expert 3

Figure 1: Illustration of atomic expert-level prun-
ing, which removing the t-th column from the
Wgate and Wup matrices, and the corresponding
t-th row from the Wdown matrix.

Expert dropping methods (Lu et al., 2024;
Huang et al., 2025) completely remove ex-
perts deemed unimportant, but relying solely on
calibration to discard entire experts risks los-
ing valuable complementary expertise, conse-
quently often leading to notable performance
degradation. Expert merging methods (Li et al.,
2024; Chen et al., 2025; Huang et al., 2025)
instead aim to consolidate functionally simi-
lar experts to more effectively preserve over-
all model capacity. However, their clustering-
based similarity measures are notoriously un-
stable, and naive merging strategies (e.g., aver-
aging or frequency-based weighting) often in-
troduce destructive parameter conflicts, result-
ing in suboptimal and inefficient outcomes. To
alleviate these critical conflicts, recent decomposition-based approaches (Li et al., 2025c; Gu et al.,
2025) represent individual experts as a mixture of shared and specialized components. While this
advanced framework helps to preserve model capacity, it still requires computationally expensive
decomposition and merging operations, and unfortunately still incurs a non-negligible accuracy loss.

To identify pruning units that are more flexible than expert-level pruning, we introduce the concept
of an atomic expert, in which each expert is decomposed into smaller, indivisible units. Concretely,
each atomic expert is defined by jointly grouping the relevant columns of W up, W gate, and the
corresponding row of W down(as shown in Figure 1). The output of a full expert can be represented
as the sum of outputs from multiple atomic experts. Pruning at this granularity directly removes
atomic experts, thereby isolating pruning effects and avoiding interference with remaining compo-
nents. By eliminating atomic experts that contribute little to final predictions, inference efficiency
can be improved and deployment overhead reduced in a more straightforward and essential way.

The key challenge now lies in how to quantify the importance of each atomic expert to overall per-
formance. To tackle this problem, we propose HEAPr, a principled framework for efficient and
high-performance atomic expert pruning. Our approach is inspired by the classical Optimal Brain
Surgeon (OBS) theory (Hassibi et al., 1993; LeCun et al., 1989), which approximates the effect of
weight pruning via a Taylor expansion of the loss function and leverages second-order information
to identify parameters with minimal contribution. However, applying OBS to modern deep archi-
tectures is computationally prohibitive due to the cost of Hessian estimation, and this is why layer-
wise Hessian estimation has become widely adopted (Dong et al., 2017; Frantar & Alistarh, 2022;
Frantar et al., 2023). Despite this, the space complexity of Hessian estimation at the expert level
remains O

(
(3dmodel · dinter)

2
)

1, which is still unacceptable. Therefore, we propose two optimiza-
tions to improve Hessian matrix computation. First, by decomposing experts into atomic experts,
we demonstrate that the second-order derivatives of parameters between different atomic experts are
zero. This observation allows us to significantly reduce the space complexity of the Hessian matrix,
lowering it to O

(
(3dmodel)

2 · dinter
)
. Second, we further optimize the Hessian matrix by shifting

the pruning constraints analysis from the parameter space of atomic experts to their output space.
This shift enables us to leverage the Fisher information matrix, which is theoretically equivalent to
the expected Hessian but significantly more efficient to compute (Bishop & Nasrabadi, 2006; Singh
& Alistarh, 2020), and by combining this with a Taylor expansion of the atomic expert function,
we can accurately estimate each atomic expert’s contribution to the final loss. This further reduces
the Hessian complexity to O(d2model) for each expert, ensuring high efficiency in both computation
and storage. HEAPr is not only tractable but also highly efficient: all atomic expert importance can
be computed with just two forward passes and one backward pass on a small calibration set. We
evaluated HEAPr on seven zero-shot tasks, achieving nearly lossless compression with 20% prun-
ing on DeepSeekMoE-16B-Base, 25% pruning on Qwen1.5-MoE-A2.7B-Chat, and 40% pruning on
Qwen2-57B-A14B. Additionally, on the latest Qwen3-30B-A3B model, the average accuracy only
drops by 0.03 at a 25% compression ratio. Overall, our contributions are summarized as follows:

• We introduce a second-order approximation scheme for atomic expert pruning in MoE
models, which transforms the second-order information from expert parameters into that

1dinter is the intermediate dimension after the Wup transformation, and dmodel is the hidden size of the model.
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of atomic expert parameters, and further simplifies it to the second-order information of
atomic expert outputs. This approach reduces the space complexity of second-order infor-
mation from O

(
(3dmodel · dinter)

2
)

to O(d2model).
• Building on this efficient scheme, we propose HEAPr, a highly efficient and scalable prun-

ing algorithm that accurately estimates the importance of all atomic experts with just two
forward passes and one backward pass on a small calibration set.

• We conduct extensive experiments on DeepSeekMoE-16B-Base, Qwen1.5-MoE-A2.7B-
Chat, Qwen2-57B-A14B, and Qwen3-30B-A3B across diverse benchmarks. HEAPr out-
performs current SOTA methods and achieves nearly lossless compression at compression
ratios of 20%–25% in most models, while also reducing FLOPs by nearly 20%.

2 RELATED WORKS AND PRELIMINARY

Mixture of Experts Compression. Model compression for MoE architectures has recently at-
tracted growing attention due to the remarkable performance of MoE models. MoE-Pruner (Xie
et al., 2024) performs weights sparsification based on activation magnitude, weight magnitude, and
router importance, yet its acceleration is hardware-dependent and relies on distillation to recover
accuracy. Expert-level pruning has been more extensively explored due to its hardware-friendly
acceleration. NAEE (Lu et al., 2024) selects a subset of experts to minimize calibration error, but
this can lead to overfitting and the loss of specialized knowledge. Similarly, MoE-I2 (Yang et al.,
2024) combines expert pruning with low-rank decomposition, yet requires additional fine-tuning for
recovery. To alleviate such issues, expert merging methods aim to retain similar experts rather than
discarding them. MC-SMoE (Li et al., 2024) merges experts by clustering based on routing poli-
cies, and HC-MoE (Chen et al., 2025) does so by grouping experts with similar outputs. However,
limited expert similarity makes merging prone to parameter conflicts. EEP (Liu et al., 2024b) uses
gradient-free evolutionary search to combine expert dropping and expert merging, cutting SMoE
experts and active experts while maintaining or improving downstream performance. To further ex-
ploit redundancy, D2-MoE (Gu et al., 2025) constructs a shared expert via weighted combinations
and compresses residuals through low-rank decomposition, while Sub-MoE (Li et al., 2025a) applies
SVD to extract a shared subspace across experts, both of which require computationally expensive
decomposition and merging operations. We decompose the expert into atomic experts and propose
HEAPr, a method that measures importance by utilizing a second-order approximation to assess the
importance of atomic experts. This approach enables more flexible pruning units and provides a
efficient highly algorithm, preserving model performance while eliminating the need for retraining.

Optimal Brain Surgeon in Pruning. The OBS framework (Hassibi et al., 1993; LeCun et al.,
1989) approaches pruning as an optimization problem, aiming to minimize the increase in the loss
function when a parameter is removed. Consider a model that has already been trained and con-
verged, with parameters θ and a corresponding loss ℓ(θ). We can analyze the effect of perturbing
the parameters by analyzing the second-order Taylor expansion of the loss function around θ. Specif-
ically, the change in the loss ∆ℓ when perturbing the parameters by δθ is given by the following:

∆ℓ = ℓ(θ + δθ)− ℓ(θ) = ∇ℓ(θ)⊤δθ +
1

2
δθ⊤Hδθ +O(∥δθ∥3), (1)

where H is the Hessian matrix of second derivatives of the loss with respect to the model parameters.
Since the model has already converged to a local minimum of the loss function, the first-order term
can be removed (∇ℓ(θ) = 0), and the higher-order terms can be ignored for small perturbations.

For pruning, the constraint is θq + δθq = 0 for the target, leading to the optimization problem as:

min
δθq

1
2δθ

⊤Hδθ, s.t. δθq + θq = 0, (2)

where q denotes the index of the pruned parameter. Solving this optimization problem yields the

minimal increase in loss from pruning parameter θq , which is ∆ℓ = 1
2

θ2
q

[H−1]qq
.

Directly computing the full Hessian in deep neural networks is practically infeasible. Existing
OBS methods to adopt significant approximations. For instance, K-FAC approximation (Martens
& Grosse, 2015) provides an efficient approximation of second-order information and Hessians are

3
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computed layer-wise to guide pruning (Dong et al., 2017; Frantar & Alistarh, 2022; Frantar et al.,
2023). Previous work (Singh & Alistarh, 2020) shows that the Fisher information matrix serves as a
reliable Hessian estimate and allows for more efficient computation. Some apply OBS to structured
pruning (Yu et al., 2022), but these efforts are limited as they consider only the trace of the Hessian.

3 METHOD

3.1 ATOMIC EXPERT IN MIXTURE-OF-EXPERTS.

The MoE architecture has been widely adopted in LLMs as a replacement for the dense feed-forward
network layer, which effectively increases the model capacity while reducing the number of activated
parameters. Formally, given an input token representation x ∈ Rdmodel , the output of the MoE layer
with Nexp experts is defined as:

y =

κ∑
i=1

gi(x)Ei(x), g(x) =
(
g1(x), . . . , gκ(x)

)
= Top -κ

(
W gatex

)
∈ Rκ, (3)

where W gate ∈ RNexp×dmodel produces router scores and Top -κ(·) denotes the router function that
selects the top-κ experts. Each expert Ei(·) is a gated feed-forward block:

Ei(x) = W down
i

[
SiLU

(
W gate

i x
)
⊙

(
W up

i x
)]
, (4)

where W up
i ,W gate

i ∈ Rdinter×dmodel , W down
i ∈ Rdmodel×dinter , ⊙ denotes the Hadamard product, and

SiLU(·) is the SiLU activation. Within each expert, computations can be decomposed into atomic
experts. Let wup

i,j and wgate
i,j denote the j-th rows of W up

i and W gate
i , respectively, and let wdown

i,j

denote the j-th column of W down
i . Then the j-th atomic expert of the i-th expert is

e
(j)
i (x) = wdown

i,j

[
SiLU

(
wgate

i,j x
)
·
(
wup

i,jx
)]

∈ Rdmodel , (5)

where wup
i,j ,w

gate
i,j ∈ R1×dmodel and wdown

i,j ∈ Rdmodel×1. Consequently, each expert is a linear combi-
nation of its atomic experts:

Ei(x) =

dinter∑
j=1

e
(j)
i (x). (6)

In this framework, each expert Ei(·) can be viewed as a linear combination of its atomic experts.
This decomposition allows pruning at the atomic expert level without compromising the other atomic
expert structure, leading to both computational acceleration and deployment efficiency directly.

3.2 ATOMIC EXPERT IMPORTANCE ANALYSIS IN THE OUTPUT SPACE

Importance of Atomic Experts. As discussed in Section 2, the OBS theory provides an excellent
framework for analyzing the impact of parameter pruning on model performance. However, its
major limitation is the large Hessian matrix, even when only computed layer-wise. In the case
of MoE, directly applying OBS at the expert level is still infeasible, as it requires constructing an
exceedingly large Hessian with space complexity of O

(
(3dmodel · dinter)

2
)

per expert, leading to
prohibitive computation and storage costs. Fortunately, by decomposing the expert into smaller
atomic experts, a property is revealed: the parameters of different atomic experts are decoupled, i.e.,

∂2E(x)

∂Θ(i) ∂Θ(j)
=

∂2e(i)(x)

∂Θ(i) ∂Θ(j)
= 0, ∀i ̸= j (7)

where Θ(i) ∈ R3dmodel represents the parameters of the i-th atomic expert. This means that the
cross-Hessians between different atomic experts are zero, which provides a valuable and simplifying
property that allows us to focus exclusively on the Hessian of each individual atomic expert with
respect to its own specific parameters. Based on this observation, the second-order Taylor expansion
of the change in the loss function with respect to each expert’s parameters can be expressed as:

∆ℓ ≈ 1

2
δΘTHδΘ =

1

2

dinter∑
i=1

(δΘ(i))TH(i)δΘ(i) (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

here, Θ ∈ R3dmodel·dinter denotes the parameters of a given expert, and H is the corresponding Hessian
matrix with space complexity O

(
(3dmodel ·dinner)

2
)
. And each H(i) represents the Hessian for the i-

th atomic expert. This decomposition leads to a significant reduction in the complexity of summing
over the Hessians

∑dinter
i=1 H

(i), which is reduced to O
(
(3dmodel)

2 · dinter
)
.

However, the resulting Hessian matrix computation remains unacceptable due to its high computa-
tional and storage cost. To further alleviate the bottleneck, we introduce a second optimization that
reformulates the pruning constraint. The original parameter-space constraint (equation 2) implies
that the atomic expert’s output eP(x; ΘP + δΘP), where ΘP ∈ R3dmodel denotes the parameters of
the atomic expert to be pruned, would be zero for every possible input x. Although theoretically
sound, enforcing such a universal constraint is computationally infeasible. This motivates a more
targeted reformulation: for a specific token x), what is the minimum loss increase ∆ℓ(x) required to
force the expert’s output to zero? To make this question concrete, we impose the per-token constraint
eP(x; ΘP + δΘP) = 0, treating x as given. Since the atomic expert functions are not optimized
with respect to the parameters ΘP through gradient descent, applying a Taylor expansion of the
atomic expert functions around ΘP results in the first-order term dominating, yielding:

eP(x; ΘP + δΘP) ≈ eP(x; ΘP) + JPδΘP = 0, (9)
where JP ∈ Rdmodel×3dmodel denotes the Jacobian of eP(x; ΘP). This leads to the following problem:

min
ΘP

1

2

dinter∑
i=1

(δΘ(i))TH(i)δΘ(i) s.t. JP δΘP + eP = 0. (10)

To solve the problem in equation 10 , we consider the LLMs trained with a negative log-likelihood
loss ℓ (e.g., cross-entropy loss). In this setting, the Fisher Information Matrix F is equivalent to the
expected Hessian (Bishop & Nasrabadi, 2006), providing a computationally efficient alternative:

E [H] = F = E
[
(∇Θℓ)(∇Θℓ)

T
]
, (11)

where ℓ is the sample-wise loss. Previous work (Singh & Alistarh, 2020) has shown that for well-
converged neural networks, a few hundred representative samples are already sufficiently reliable to
estimate E [H]. Expanding the gradient of ℓ with respect to the parameters gives ∇ΘP ℓ = J⊤

P gP ,
where gP ∈ Rdmodel is the gradient of the loss with respect to the pruned atomic expert output eP .
Substituting this expression into the objective equation 10 yields the expected loss increase when
pruning the atomic expert eP , with δΘ(i) = 0 for all atomic experts not pruned:

1
2 δΘ

T
PE [HP ] δΘP ≈ 1

2 e
⊤
P E[gPg

⊤
P ] eP . (12)

This leads us to define the Importance of the atomic expert eP as

s = Ex∼D [∆ℓ] ≈ Ex∼D

[
1
2 e

⊤
P E[gPg

⊤
P ] eP

]
, (13)

where a smaller s indicates that the corresponding atomic expert has less impact on the overall
model loss and should be pruned with higher priority. The detailed derivation is provided in Ap-
pendix A.

At this point, we have shifted the analysis from the parameter space of atomic experts to their
output space, further reducing both computational and storage requirements. Next, we introduce a
remarkable property of atomic expert outputs: the outputs of atomic experts within the same expert
share identical gradients, i.e.,

∂ℓ

∂e(i)(x)
=

∂ℓ

∂E(x)
, ∀i ∈ {1, . . . , dinter}, e(i) ∈ E. (14)

This property allows us to further significantly reduce storage requirements. Instead of maintaining
separate gradient covariance matrices for each atomic expert, we only need to store a single matrix
per expert. As a result, the space complexity for computing the importance of the atomic expert
within the same expert is drastically reduced to O(d2model), enabling efficient storage management.

Global Ranking of Atomic Experts. The metric of each atomic expert’s importance has been
introduced by equation 13. Next, an important question is how to rank the importance of the atomic
experts. Consider that our importance metric evaluates experts based on their overall contribution
to the model’s change in the loss function (as shown in equation 2), it provides a natural basis for
global ranking. This allows us to effectively compare experts across layers consistently, ensuring
that pruning decisions are made based on the entire model’s behavior rather than isolated layer-wise.

5
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3.3 HEAPR ALGORITHM

Building on the above analysis, we propose HEAPr, a pruning strategy for MoE feedforward layers
that ranks the importance of atomic experts (as defined in equation 13) and removes those with
negligible contribution to the overall loss. To effectively compute the importance of atomic experts,
we leverage a small but representative calibration set D and estimate importance in two stages.

1. Shared Gradient Covariance Estimation. For a given expert Ei, the gradients of the loss with
respect to all its constituent atomic experts’ output are identical. Therefore, rather than performing
redundant computations, we execute a single backward pass to obtain the gradient for the expert’s
output, gEi

= ∂ℓ/∂Ei. This shared gradient is used to compute a gradient covariance matrix Ḡi,
for all atomic experts belonging to Ei, accumulated over the subset of tokens Ti ⊆ D routed to Ei:

Ḡi =
1

|Ti|

∑
x∈Ti

gEi
(x)gEi

(x)⊤. (15)

2. Importance Computation. Subsequently, during a forward pass, we compute the importance
for each individual atomic expert ek. Although the gradient covariance matrix Ḡi is shared among
all atomic experts within same expert Ei, the output of each atomic expert, ek(x), remains unique.
This difference in output allows us to distinguish their individual contributions. The importance of
an atomic expert ek (where ek ∈ Ei) is calculated by averaging over the tokens it processes:

s̄k = 1
|Ti|

∑
x∈Ti

1
2 ek(x)

⊤Ḡiek(x). (16)

This approach relies solely on standard forward and backward computations, making it both excep-
tionally time- and memory-efficient. The space complexity of each gradient covariance matrix is
only O(d2model), significantly alleviating the storage bottleneck. After computing the importance s̄k
across all micro-experts in the model, we perform a global ranking and prune the lowest r% of ex-
perts across all MoE layers. The complete and optimized procedure is summarized in Algorithm 1.

Algorithm 1 HEAPr: Hessian-based Efficient Atomic Expert Pruning
Require: MoE model fθ, calibration set D, pruning ratio r
Ensure: Pruned model fθ′

1: for each expert Ei do ▷ Stage 1: Gradient Covariance Estimation
2: Collect routed tokens Ti
3: Compute shared gradient gEi =

∂ℓ
∂Ei

4: Compute Ḡi =
1

|Ti|
∑

x∈Ti
gEi

(x)gEi
(x)⊤ ▷ Space complexity O(d2)

5: end for
6: for each atomic expert ek in Ei do ▷ Stage 2: Importance Computation
7: Compute s̄k = 1

|Ti|
∑

x∈Ti

1
2 ek(x)

⊤Ḡiek(x)

8: end for
9: Global rank {s̄k} and prune lowest r% across all experts

10: return Pruned model fθ′

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models and Setup. We evaluate our approach on a broad spectrum of model architectures and
scales to assess its generality and effectiveness, including DeepseekMoE-16B-Base (Dai et al.,
2024), Qwen1.5-MoE-A2.7B-Chat (Team, 2024a), Qwen2-57B-A14B (Team, 2024b), and Qwen3-
30B-A3B. All experiences are calibrated on Wikitext-2 using 128 sequences of 2048 tokens (see
Appendix B for details). Notably, our method introduces no additional tunable hyperparameters.

Baselines. For our comparisons, we evaluate six recently proposed high-performance compression
methods, including expert dropping (NAEE (Lu et al., 2024), MoE-I2 (Yang et al., 2024)), expert

6
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Table 1: Performance of HEAPr with DeepSeekMoE-16B-Base, Qwen1.5-MoE-A2.7B-chat,
Qwen2-57B-A14B and Qwen3-30B-A3B on seven zero-shot tasks, reported in terms of accuracy.
The results marked with * are obtained from the official implementation.

Ratio Method Wiki↓ PTB↓ Openb. ARC e WinoG. HellaS. ARC c PIQA MathQA Avg.↑

DeepSeekMoE-16B-Base
0% Original 6.38 9.47 0.32 0.76 0.71 0.58 0.45 0.79 0.32 0.56

20%

NAEE 9.44 15.02 0.32 0.71 0.66 0.55 0.40 0.77 0.29 0.53
MoE-I2 7.69 11.59 0.26 0.71 0.68 0.49 0.38 0.73 0.29 0.50
MoE-SVD 6.92 10.48 0.31 0.75 0.70 0.53 0.42 0.76 0.31 0.54
D2-MoE 6.84 11.10 0.30 0.74 0.69 0.55 0.41 0.76 0.31 0.54
HEAPr 6.64 10.51 0.32 0.76 0.71 0.57 0.45 0.79 0.32 0.56

40%

NAEE 8.55 14.47 0.23 0.67 0.67 0.41 0.32 0.69 0.26 0.46
MoE-I2 9.73 15.75 0.23 0.64 0.66 0.41 0.31 0.68 0.26 0.45
D2-MoE 7.93 14.07 0.26 0.69 0.65 0.45 0.36 0.72 0.28 0.49
HEAPr 6.91 11.56 0.30 0.74 0.69 0.52 0.41 0.76 0.30 0.53

Qwen1.5-MoE-A2.7B-Chat
0% Original 8.12 12.97 0.31 0.70 0.66 0.59 0.40 0.79 0.35 0.54

25%

MC-SMoE 12.76 17.45 0.25 0.65 0.65 0.53 0.37 - - -
HC-SMoE 11.62 16.39 0.27 0.66 0.63 0.55 0.35 0.76∗ 0.29∗ 0.50
Sub-MoE 9.48 14.84 0.30 0.69 0.66 0.56 0.37 - - -
HEAPr 8.14 14.76 0.32 0.69 0.67 0.56 0.38 0.76 0.35 0.53

50%

MC-SMoE 5e2 1e3 0.18 0.33 0.52 0.29 0.19 - - -
HC-SMoE 25.50 38.18 0.23 0.61 0.65 0.47 0.35 0.58∗ 0.23∗ 0.45
Sub-MoE 17.51 29.00 0.25 0.58 0.58 0.46 0.25 - - -
HEAPr 9.23 18.73 0.27 0.64 0.64 0.46 0.33 0.71 0.33 0.48

Qwen3-30B-A3B
0% Original 8.64 15.40 0.34 0.79 0.71 0.60 0.54 0.79 0.59 0.62

25%
HC-SMoE 18.86 31.11 0.22 0.64 0.61 0.40 0.35 0.59∗ 0.41∗ 0.46
Sub-MoE 13.59 23.48 0.25 0.70 0.66 0.47 0.44 - - -
HEAPr 0.33 0.77 0.70 0.55 0.49 0.78 0.50 0.59

50%
HC-SMoE 72.33 162.99 0.13 0.44 0.50 0.29 0.23 0.44∗ 0.32∗ 0.34
Sub-MoE 21.05 43.19 0.23 0.68 0.63 0.41 0.40 - - -
HEAPr 0.25 0.67 0.63 0.38 0.41 0.67 0.36 0.48

Qwen2-57B-A14B
0% Original 5.12 9.18 0.33 0.75 0.74 0.63 0.46 0.81 0.39 0.59

40%

NAEE 6.81 11.34 0.31 0.73 0.73 0.55 0.46 0.76 0.36 0.55
MoE-I2 24.90 77.05 0.26 0.70 0.46 0.71 0.41 0.75 0.30 0.51
D2-MoE 8.19 11.23 0.33 0.75 0.75 0.61 0.45 0.79 0.36 0.58
HEAPr 5.75 9.59 0.33 0.75 0.74 0.64 0.46 0.81 0.39 0.59

merging (MC-SMoE (Li et al., 2024), HC-SMoE (Chen et al., 2025)), and expert decomposition
(Sub-MoE (Li et al., 2025a), D2-MoE (Gu et al., 2025), MoE-SVD (Li et al., 2025b)). Baseline
data were collected from prior publications, prioritizing original sources, and details are provided in
Appendix B. Missing data for open-source implementations were obtained from official code.

Evaluation. We report results on seven zero-shot benchmarks using the LM-Evaluation-Harness
(version 0.4.7) (Gao et al., 2024), including HellaSwag (Zellers et al., 2019), Mathqa (Amini et al.,
2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2021), ARC-Easy and ARC-Challenge (Boratko et al., 2018). These tasks collectively
enable repeated and consistent evaluation of our method across varied domains and reasoning tasks.

4.2 MAIN RESULTS

Compression Performance. As shown in Table 1, HEAPr achieves exceptional performance
across various MoE models and compression ratios. Notably, our method delivers near-lossless com-
pression. At pruning ratios of 20% ∼ 25%, HEAPr matches the performance of the original models
on DeepSeekMoE-16B-Base and Qwen1.5-MoE-A2.7B-Chat. More impressively, on Qwen2-57B-
A14B, HEAPr maintains performance almost identical to the original model even at a high 40%
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compression ratio. In contrast, our method outperforms recent approaches such as Sub-MoE, D2-
MoE, and NAEE under the same compression ratio. Furthermore, on the latest Qwen3-30B-A3B
model, HEAPr incurs only a minimal performance loss at a 25% pruning ratio, with the average accu-
racy dropping slightly from 0.62 to just 0.59. These results strongly highlight the unique advantage
of HEAPr in pruning at the atomic expert level, enabling substantial model efficiency improvements
while maintaining and preserving core model performance effectively.

Compare to CAMERA-P. In this section, we compare HEAPr with a concurrent related work
CAMERA-P (Xu et al., 2025), which evaluates the importance of an atomic expert using the con-
cept of decoding-time energy. Specifically, the importance of the j-th atomic expert in the i-th ex-
pert is given by εi,j = (||Φi,j ||2 +α||Φi,j ||2) · ||wdown

i,j ||2, where Φi,j = SiLU
(
wgate

i,j x
)
·
(
wup

i,jx
)
.

CAMERA-P uses a heuristic approach to measure atomic expert importance based on the output
magnitudes on a calibration set. However, this method has two main drawbacks: it is local, neglect-
ing atomic experts’ impact on overall model performance and cannot be globally applied for pruning
due to varying activation magnitudes across layers. In contrast, our method HEAPr, built upon the
OBS framework, leverages the Hessian matrix to assess the impact of atomic experts on the overall
model performance. And HEAPr yields a globally consistent importance metric for atomic experts,
thereby enabling principled global pruning, as analyzed in Section 3.2. In Table 2, we compare the
performance of HEAPr and CAMERA-P on DeepSeekMoE-16B-Base. Since CAMERA-P has not
released its open-source implementation, we evaluate HEAPr using the acc norm as reported in
the original paper. At a 20% pruning ratio, HEAPr outperforms CAMERA-P by an average of 1.2
in accuracy. Even when applying the same layer-wise pruning strategy as CAMERA-P, HEAPr still
achieves an average accuracy improvement of 0.5. Notably, at a 40% pruning ratio, the performance
gap between the two methods narrows. We attribute this to the reduced redundancy at higher pruning
ratio, where the non-essential atomic experts identified by both methods become nearly identical.
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Figure 2: Performance of DeepSeekMoE-16B-Base
under varying compression ratios, with corresponding
FLOPs saving on WikiText2 data.

Performance Boundary of Pruning. Fig-
ure 2 reports the performance of HEAPr on
DeepSeekMoE-16B-Base using a random 128-
sample subset of WikiText-2 with 2048 to-
kens under different compression ratios, where
the ratio denotes the fraction of parameters re-
moved relative to the full model size. For
compression ratios below 0.4, the pruned mod-
els retain 0.93% of baseline accuracy while al-
ready achieving 0.30× FLOP savings. In this
regime, the accuracy curve remains nearly flat,
revealing substantial redundancy among micro-
experts and confirming that HEAPr can effec-
tively identify and remove them. As compres-
sion increases further, accuracy degrades grace-
fully, highlighting a clear trade-off between ef-
ficiency and performance. Even at an extreme
compression ratio of 0.9%, the model preserves about 38% its baseline accuracy while achieving
1.61× FLOP savings. These results demonstrate both the robustness of HEAPr under moderate
pruning and its effectiveness in enabling aggressive acceleration while retaining performance.

4.3 ABLATIONS

Global vs. Layer-wise Pruning. As shown in Table 2, layer-wise pruning (Camera-P, HEAPr-L)
ranks the importance of atomic experts within each MoE layer and prunes the bottom r%, whereas
global pruning (HEAPr-G) ranks the importance of all atomic experts across the entire model. Com-
pared with Camera-P, our layer-wise pruning HEAPr-L achieves superior performance, indicating
that the atomic expert importance metric, as derived from equation 13, provides a more effective
pruning criterion within individual layers. Furthermore, HEAPr-G, by leveraging global pruning
and importance scores across all layers, achieves even stronger and more consistent results, validat-
ing the global consistency of the atomic expert importance thoroughly analyzed in Section 3.2.
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Table 2: Comparison of layer-wise pruning (CAMERA-P and HEAPr) versus global pruning
(HEAPr) on DeepSeekMoE-16B-Base and Qwen1.5-MoE-A2.7B-Chat across seven zero-shot tasks,
with acc norm reported for DeepSeekMoE-16B-Base and accuracy for others.

Ratio Method Openb. ARC e WinoG. HellaS. ARC c PIQA MathQA Average

DeepSeekMoE-16B-Base

20%
CAMERA-P 44.00 71.80 70.17 75.02 45.56 78.62 31.46 59.52
HEAPr-L 44.01 72.64 70.01 75.55 47.27 79.76 30.92 60.03
HEAPr-G 44.80 73.73 71.43 76.57 47.01 79.82 31.42 60.68

40%
CAMERA-P 43.20 70.71 68.51 69.04 42.24 75.41 29.01 56.87
HEAPr-L 42.80 70.45 68.35 68.10 43.69 76.12 29.41 56.99
HEAPr-G 41.40 72.05 69.06 70.79 45.05 76.39 29.85 57.80

Qwen1.5-MoE-A2.7B-Chat

25% HEAPr-L 30.60 66.58 66.77 55.09 38.05 76.61 33.97 52,52
HEAPr-G 31.80 68.60 67.22 55.67 37.56 76.39 34.87 53.59

50% HEAPr-L 27.00 63.26 64.01 47.00 33.70 69.80 32.29 48.15
HEAPr-G 27.01 63.89 64.32 46.35 34.22 70.86 33.37 48.57

Impact of Pruning Granularity. To better demonstrate the importance of atomic expert decom-
position, we conduct an ablation study comparing pruning at the atomic expert level and expert
level. Based on equation 8, the importance score for an expert computed via equation 13 can be
expressed as the sum of the importance scores of its constituent atomic experts. As reported in Ta-
ble 3, expert-level pruning behaves similarly to Expert Dropping (Lu et al., 2024): The activated
experts unchanged after pruning does not lead to noticeable computational speedup. In contrast,
pruning at the atomic expert level reduces the dimensionality within each expert, thereby enabling
real acceleration. Empirically, atomic-level pruning consistently outperforms expert-level pruning
across multiple benchmarks, highlighting its effectiveness and necessity.

Table 3: Comparison of pruning granularities at the expert level and the atomic expert level, where
expert importance is computed by summing the importances of its atomic experts, evaluated across
seven zero-shot tasks. FLOPs rr. denotes the FLOPs reduction ratio.

Ratio Level FLOPs rr.↑ Wiki↓ Openb. ARC e WinoG. HellaS. ARC c PIQA MathQA

20% Expert 0% 6.90 31.40 75.76 71.35 57.99 44.31 78.40 30.75
Atomic Expert 8% 6.64 31.54 75.88 71.43 57.39 44.62 79.05 31.52

40% Expert 0% 8.00 30.60 73.19 63.93 51.15 42.49 77.09 28.24
Atomic Expert 30% 6.91 30.00 73.78 69.06 52.29 40.61 76.50 30.12
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Figure 3: Consistency between atomic expert normal-
ized importance score sk and the change in loss. The
figure plots the actual loss increase ∆ℓ observed upon
pruning atomic experts within 10% quantile bins (or-
dered by original expert index) against the cumulative
importance score sk.

Empirical Correlation of Loss and Atomic
Expert Importance sk. In Section 2, follow-
ing the principles of OBS theory, we define the
atomic expert importance score sk for eP based
on the expected change in model loss. The
goal of this metric is to identify atomic experts
whose removal induces the smallest increase in
the overall loss. However, because both the
OBS formulation and the output-space approxi-
mation neglect higher-order terms, an exact nu-
merical match between sk and the empirical
loss change ∆ℓ is not expected. Importantly,
pruning ultimately requires a reliable ranking
of atomic expert importance rather than an ac-
curate prediction of ∆ℓ. To evaluate the rank-
ing quality of sk, we infer the atomic experts
on the calibration set and then group them into
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10% bins according to their original indices. As shown in Table 3, the observed loss increase ∆ℓ for
each bin closely follows the cumulative trend of the corresponding normalized importance scores
sk. This result indicates that, despite the approximations involved, the proposed sk metric provides
a globally consistent and reliable ranking of atomic experts. It effectively identifies experts whose
removal causes minimal performance degradation, thereby offering a solid basis for the HEAPr al-
gorithm and supporting the accuracy of our pruning decisions.
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Figure 4: Performance of DeepSeekMoE-16B-Base
under a 20% compression ratio, using calibration data
randomly sampled from WikiText-2 and C4.

Impact of Calibration Data. Table 4 shows
the average accuracy with error bars over ran-
dom subsets of the calibration data, indicat-
ing that that the performance of our HEAPr al-
gorithm is largely unaffected by the choice of
calibration data, whether they are WikiText-2
or C4 dataset. This highlights the remarkable
robustness and generalizability of our method,
as it consistently performs well across differ-
ent calibration corpora and domains. Further-
more, the table also explores the significant im-
pact of calibration set size on pruning perfor-
mance. As the number of calibration samples
increases, the model’s performance improves
consistently, indicating that larger calibration
sets offer richer statistical coverage, which pro-
vides more reliable and informative signals for effective compression. These results strongly suggest
that our method is not only robust to variations in calibration data but also benefits from the inclusion
of additional diverse samples, further enhancing its overall effectiveness and stability.

5 CONCLUSION

In this work, we introduce HEAPr, a novel method that refines expert-level pruning in MoE models
by enabling a more flexible and fine-grained pruning strategy at the atomic expert level. Inspired
by the principles of the Optimal Brain Surgeon (OBS) theory, we evaluate the importance of atomic
experts using second-order information. By transforming the analysis from the expert parameter
space to that of atomic expert parameters, and further shifting it to the atomic expert output space,
we significantly reduce the computational and storage bottlenecks associated with the second-order
information matrix. HEAPr requires only two forward passes and one backward pass to efficiently
compute the importance of atomic experts. Extensive experiments on various modern MoE models
demonstrate that HEAPr outperforms state-of-the-art pruning methods, achieving near-lossless prun-
ing with pruning rates of 20% ∼ 25%. More importantly, our method provides a much finer-grained
perspective on MoE expert pruning, which we hope will contribute to a deeper, more comprehen-
sive understanding of MoE models. Future work will explore large-scale experiments across a wider
range of model and investigate the potential of parameter compensation methods after the pruning.

REFERENCES

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A systematic classification of knowledge, reasoning, and context within the arc dataset. arXiv
preprint arXiv:1806.00358, 2018.

I-Chun Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, and Chun-Yi Lee.
Retraining-free merging of sparse moe via hierarchical clustering. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
hslOzRxzXL.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Hao Gu, Wei Li, Lujun Li, Qiyuan Zhu, Mark Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
decompression for moe-based llms compression. arXiv preprint arXiv:2502.17298, 2025.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Wei Huang, Yue Liao, Jianhui Liu, Ruifei He, Haoru Tan, Shiming Zhang, Hongsheng Li,
Si Liu, and XIAOJUAN QI. Mixture compressor for mixture-of-experts LLMs gains more. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=hheFYjOsWO.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Lujun Li, Zhu Qiyuan, Jiacheng Wang, Wei Li, Hao Gu, Sirui Han, and Yike Guo. Sub-moe:
Efficient mixture-of-expert llms compression via subspace expert merging. arXiv preprint
arXiv:2506.23266, 2025a.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tian-
long Chen. Merge, then compress: Demystify efficient SMoe with hints from its routing
policy. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=eFWG9Cy3WK.

Wei Li, Lujun Li, Hao Gu, You-Liang Huang, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike
Guo. Moe-SVD: Structured mixture-of-experts LLMs compression via singular value decompo-
sition. In Forty-second International Conference on Machine Learning, 2025b. URL https:
//openreview.net/forum?id=acJ3vdFljk.

11

https://openreview.net/forum?id=hslOzRxzXL
https://openreview.net/forum?id=hslOzRxzXL
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=hheFYjOsWO
https://openreview.net/forum?id=hheFYjOsWO
https://openreview.net/forum?id=eFWG9Cy3WK
https://openreview.net/forum?id=acJ3vdFljk
https://openreview.net/forum?id=acJ3vdFljk


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Li, Lujun Li, You-Liang Huang, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike Guo. Struc-
tured mixture-of-experts LLMs compression via singular value decomposition, 2025c. URL
https://openreview.net/forum?id=ho7ZUS1z8A.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. arXiv preprint arXiv:2407.00945,
2024b.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800, 2024.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters”,
February 2024a. URL https://qwenlm.github.io/blog/qwen-moe/.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024b.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

Yuzhuang Xu, Xu Han, Yuanchi Zhang, Yixuan Wang, Yijun Liu, Shiyu Ji, Qingfu Zhu, and Wanx-
iang Che. Camera: Multi-matrix joint compression for moe models via micro-expert redundancy
analysis. arXiv preprint arXiv:2508.02322, 2025.

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
Yu Cheng, and Bo Yuan. Moe-i2: Compressing mixture of experts models through inter-expert
pruning and intra-expert low-rank decomposition. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pp. 10456–10466, 2024.

Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, Sehoon Kim, Michael W Mahoney, and Kurt
Keutzer. Hessian-aware pruning and optimal neural implant. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 3880–3891, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

12

https://openreview.net/forum?id=ho7ZUS1z8A
https://qwenlm.github.io/blog/qwen-moe/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX OVERVIEW

• Section A: Derivation of the importance of atomic expert.
• Section B: Detail Analysis of Main Results.
• Section C: Analysis of Runtime SpeedUp and Memory Usage.
• Section D: Compression Rate Analysis under Global Pruning.
• Section E: Use of LLM.
• Section F: Reproducibility Statement.
• Section G: Ethics statement.

A DERIVATION OF THE IMPORTANCE OF ATOMIC EXPERT

We provide a detailed derivation of the importance measure introduced in equation 13.

Consider the negative log-likelihood loss ℓ, whose per-sample gradient with respect to the parame-
ters Θ can be written as

∇Θℓ = J⊤
k gek

, (17)

where Jk ∈ Rd×P is the Jacobian of the atomic expert output ek with respect to its parameters Θ,
and gek

∈ Rd is the gradient of the loss with respect to ek. By definition, the Fisher Information
Matrix is

H̄ = F = E
[
(∇Θℓ)(∇Θℓ)

⊤]. (18)
After model convergence, the Jacobian Jk can be treated as independent (Martens & Grosse, 2015),
substituting the expression of ∇Θℓ gives

F = J⊤
k E

[
gek

g⊤
ek

]
Jk. (19)

Returning to the quadratic optimization problem in the OBS framework:

min
δΘ

1
2 δΘ

⊤F δΘ s.t. JkδΘ+ ek = 0, (20)

we define the auxiliary variable u = JkδΘ. The constraint becomes u + ek = 0, i.e., u = −ek,
and the objective reduces to

min
u

1
2 u

⊤E
[
gek

g⊤
ek

]
u s.t. u+ ek = 0. (21)

Plugging in the constraint yields the optimal cost:

∆ℓ = 1
2 e

⊤
k E

[
gek

g⊤
ek

]
ek. (22)

We therefore define the importance of the k-th atomic expert as

s = 1
2 e

⊤
k E

[
gek

g⊤
ek

]
ek (23)

which is a scalar since ek ∈ Rd and E[gek
g⊤
ek
] ∈ Rd×d. This formalizes equation 13 in the main

text: the smaller the value of s, the less impact the k-th atomic expert has on the overall model loss,
making it a better candidate for pruning.

B DETAIL ANALYSIS OF MAIN RESULTS.

Calibration Set Sampling Strategy. To construct the calibration set, we first load the entire
dataset (either WikiText-2 or C4) and concatenate all sentences into a single corpus using “\n\n” as
the separator. We then tokenize the full corpus and split the resulting token stream into consecutive
samples, each consisting of 2048 tokens. With a fixed random seed (random.seed(0)) for repro-
ducibility, we randomly select 128 such samples to form the calibration set. The 128 samples drawn
from WikiText were used to obtain all results reported in Table 1, and the impact of the calibration
set is discussed in Section 4.3.
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Details of Baseline Experiments. For DeepSeekMoE-16B-Base, the results for NAEE, MoE-I2,
and D2-MoE are taken from the paper (Gu et al., 2025), while MoE-SVD results are sourced from
its paper (Li et al., 2025b). For Qwen1.5-MoE-A2.7B-Chat, all results are from the paper (Li et al.,
2025a); any missing results with available official open-source code were reproduced by us. For
Qwen3-30B-A3B, the results for HC-SMoE and Sub-MoE are from the paper (Li et al., 2025a). For
Qwen2-57B-A14B, the results for NAEE, MoE-I2, and D2-MoE are taken from the paper (Gu et al.,
2025). Table ?? shows the calibration dataset size for various methods.

Table 4: Calibration set sizes for different methods (2048 sqlen).

Method NAEE D2-MoE Sub-MoE HEAPr

Calibration Set Size 128 512 128 128

C ANALYSIS OF RUNTIME SPEEDUP AND MEMORY USAGE

Table 5 summarizes the computational cost and performance of HEAPr compared with competitive
baseline methods (NAEE and D2-MoE) on two representative MoE models: DeepSeekMoE-16B-
base and Qwen2-57B-A14B. The table reports the number of calibration samples used for pruning,
the theoretical FLOPs (TFLOPs) required for pruning, GPU time cost, peak memory usage.

Table 5: Comparison of computational cost between HEAPr and baseline pruning methods.

Method Samples TFLOPs GPU Time Cost Memory

DeepSeekMoE-16B-base

NAEE 128 11 2 min 27GB
D2-MoE 512 227 30 min 53GB
HEAPr 128 44 6 min 44GB

Qwen2-57B-A14B

NAEE 128 32 8 min 60GB
D2-MoE 512 1205 90 min 127GB
HEAPr 128 123 20 min 91GB

D COMPRESSION RATE ANALYSIS UNDER GLOBAL PRUNING

In this section, we analyze the compression rates across different layers when applying a 25% and
50% global pruning strategy based on the global ranking of atomic experts’ importance. As shown
in Figure 5 and 6, the compression rate is initially high in the early layers, suggesting that the
experts in these layers are less important and can be pruned with minimal impact on the model’s
performance. As we move deeper into the network, the compression rate decreases, indicating that
the experts in these layers are more important to the model’s performance. Interestingly, after a
certain point, the compression rate starts to increase again in the deepest layers, suggesting that
some experts in these layers become redundant, allowing for further pruning without significant loss
of model performance. This non-monotonic behavior highlights the varying importance of experts
across layers in MoE-based models.

E USE OF LLMS

In this work, Large Language Models (LLMs) were primarily utilized for tasks such as text refine-
ment, offering writing suggestions, and improving the overall structure and clarity of the manuscript.
It is important to note that LLMs did not contribute to the ideation or development of the method-
ology section. The authors guarantee that all LLM-generated content was thoroughly reviewed and
edited to ensure its accuracy and coherence.
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Figure 5: Compression ratios across different layers under 25% global pruning for Qwen1.5-MoE-
A2.7B-Chat, DeepSeekMoE-16b-Base, and Qwen3-30B-A3B.

0 5 10 15 20
Layer Index

0.35

0.40

0.45

0.50

0.55

0.60

Co
m

pr
es

sio
n 

Ra
tio

Qwen1.5-MoE-A2.7B-Chat

0 5 10 15 20 25
Layer Index

0.35

0.40

0.45

0.50

0.55

0.60
DeepseekMoE-16b-Base

0 10 20 30 40
Layer Index

0.2

0.3

0.4

0.5

0.6

0.7
Qwen3-30B-A3B

Figure 6: Compression ratios across different layers under 50% global pruning for Qwen1.5-MoE-
A2.7B-Chat, DeepSeekMoE-16b-Base, and Qwen3-30B-A3B.

F REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made the code and checkpoints obtained in our computational
environment available at anonymous-code-B927. While we have taken every effort to ensure con-
sistency, results may exhibit slight variations due to the random selection of calibration sets, as well
as potential version differences in libraries such as transformers and LM-Evaluation-Harness. These
fluctuations are expected and considered acceptable.

G ETHICS STATEMENT

This work adheres to ethical guidelines in conducting research and reporting results. We have used
publicly available datasets and models, ensuring that our methods comply with their respective terms
of use. The research itself aims to enhance existing technologies and does not introduce any ethical
concerns. No personal or sensitive data was used in this study, and the methods employed do not
raise any known ethical issues.
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