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Abstract
Existing algorithms for online conformal
prediction—guaranteeing marginal coverage
in adversarial settings—are variants of online
gradient descent (OGD), but their analyses of
worst-case coverage do not follow from the regret
guarantee of OGD. What is the relationship
between no-regret learning and online conformal
prediction? We observe that although standard
regret guarantees imply marginal coverage in
i.i.d. settings, this connection fails as soon as
we either move to adversarial environments
or ask for group conditional coverage. On
the other hand, we show a tight connection
between threshold calibrated coverage and
swap-regret in adversarial settings, which extends
to group-conditional (multi-valid) coverage.
We also show that algorithms in the follow the
regularized leader family of no regret learning
algorithms (which includes online gradient
descent) can be used to give group-conditional
coverage guarantees in adversarial settings for
arbitrary grouping functions. Via this connection
we analyze and conduct experiments using a
multi-group generalization of the ACI algorithm
of Gibbs & Candes (2021).

1. Introduction
In prediction problems over a label space Y , a popular
method for quantifying uncertainty is to produce predic-
tion sets C(x) ⊆ Y that contain subsets of the label space.
Given features x, the intended semantics of C(x) is that
the true label y will fall into the prediction set (i.e. will be
covered by the prediction set) with some specified prob-
ability, say 90%. A-priori producing prediction sets is
a very high dimensional problem: there are 2|Y| possi-
ble prediction sets, which becomes intractable to enumer-
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ate over for even moderately large label spaces. But a
key insight of the conformal prediction literature (see e.g.
(Angelopoulos & Bates, 2021)) is that given an arbitrary
non-conformity score f : X × Y → R≥0, there is a 1-
dimensional family of nested prediction sets defined as
Cτ (x) = {y ∈ Y : f(x, y) ≤ τ} that we can optimize over,
and — simply by adjusting τ , we can obtain marginal cover-
age at any desired rate q ∈ (0, 1). If there is a data distribu-
tion D, marginal coverage at a rate of q corresponds to the
guarantee that Pr(x,y)∼D[y ∈ Cτ (x)] = q. Stronger guar-
antees of groupwise conditional coverage and (threshold-
calibrated) “multivalid” coverage have also been recently
developed (Jung et al., 2021; Gupta et al., 2022; Bastani
et al., 2022; Jung et al., 2023; Noarov et al., 2023; Gibbs
et al., 2025), which ask for coverage to hold conditionally
on various events. These methods involve learning a thresh-
old model τ : X → R, and producing prediction sets of the
form Cτ (x) = {y : f(x, y) ≤ τ(x)}. Group conditional
coverage starts with a collection of groups g1, . . . , gk rep-
resented as indicator functions gi : X → {0, 1} (which can
be arbitrary and intersecting) and asks that E(x,y)∼D[y ∈
Cτ (x)|gi(x) = 1] = q for each group gi. Multivalid
coverage asks that the prediction sets simultaneously sat-
isfy group conditional coverage while also being thresh-
old calibrated — i.e. it further conditions on the thresh-
old value τ(x) = v (in a manner similar to calibration),
and asks that for all groups gi and all threshold values v:
E(x,y)∼D[y ∈ Cτ (x)|gi(x) = 1, τ(x) = v] = q. The algo-
rithm proposed by Jung et al. (2023) for obtaining groupwise
coverage over a set of groups learns τ(x) by minimizing
pinball loss over the class of linear combinations of group
indicator functions.

It is also possible to obtain coverage guarantees in online
adversarial settings in which there is no distribution D, but
instead an arbitrary sequence of examples (xt, yt) that ar-
rive sequentially. Here we ask for empirical coverage — the
threshold (or function) τt can now be updated over time,
and marginal coverage over T rounds corresponds to the
requirement that 1/T

∑T
t=1 1[yt ∈ Cτt(xt)] = q. Group-

wise and multivalid coverage can be similarly defined in the
sequential setting. Gibbs & Candes (2021) and Gupta et al.
(2022) independently studied coverage in online adversarial
settings and proposed quite different algorithms. Gibbs &
Candes (2021) gave a very lightweight algorithm which
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implements online gradient descent on the pinball loss, and
prove that it guarantees marginal coverage. This algorithm
chooses τt every day independently of the context xt. They
give a custom analysis of the coverage properties of their
algorithm, however, and do not derive them from the regret
guarantees of online gradient descent. Gupta et al. (2022)
(later refined by Bastani et al. (2022)) on the other hand
give a more complex algorithm modeled on techniques for
sequential calibration, and prove that it obtains multivalid
coverage with respect to an arbitrary collection of group
functions. As it promises groupwise coverage, it necessarily
chooses τt as a function of xt. This suggests a number of
interesting questions:

1. If a sequence of thresholds τt has no regret with re-
spect to the pinball loss, does this on its own guarantee
coverage? Are there circumstances in which it does?
Is there a stronger form of regret that does?

2. Can algorithms for guaranteeing groupwise regret with
respect to pinball loss (e.g. (Blum & Lykouris, 2020;
Lee et al., 2022)) similarly be used to give groupwise
or multivalid coverage guarantees?

3. Alternately, if the guarantees of Gibbs & Candes (2021)
do not follow from the regret guarantee of online gra-
dient descent, can we identify a broader class of algo-
rithms that offer these guarantees and generalize them
to offer multigroup (rather than just marginal) coverage
guarantees?

In this paper we provide answers to these questions.

1.1. Our Results

1.1.1. REGRET AND COVERAGE

First we consider the relationship between different kinds of
regret that a sequence of thresholds τt can have with respect
to the pinball loss objective, and how they correspond to
coverage guarantees.

External Regret A sequence of thresholds τ1, . . . , τT is
said to have no external regret if their average pinball loss
is no larger than that of the best fixed threshold τ∗ chosen
in hindsight. This is the kind of regret guarantee offered by
algorithms like online gradient descent and multiplicative
weights (Arora et al., 2012). We observe that in adversarial
settings, a no external regret guarantee on the thresholds τt
does not guarantee non-trivial coverage (similar observa-
tions have previously been made (Gibbs & Candes, 2021)),
but show that it does if the algorithm chooses its threshold
independently of any context xt (as ACI does) and out-
comes yt are drawn i.i.d. from an unknown distribution
D. We then turn our attention to groupwise regret guaran-
tees. A groupwise external regret guarantee promises no

external regret not just marginally over the whole sequence
of rounds {1, . . . , T}, but simultaneously on each subse-
quence S(gi) = {t : gi(xt) = 1} corresponding to rounds
on which the examples are members of group g. Algorithms
promising no groupwise regret must receive context xt at
each round before they make their prediction specifying
which groups the current example is a member of. We show
that even when the examples (xt, yt) are drawn i.i.d. from
a distribution D, contextual algorithms obtaining no exter-
nal regret (and hence any algorithm obtaining no groupwise
external regret) do not necessarily obtain any non-trivial cov-
erage bounds — because even in i.i.d. settings, the context
can correlate the prediction and the outcome.

Swap Regret We then turn our attention to swap regret,
which corresponds to a guarantee of no external regret con-
ditional on the value of the threshold played — i.e. a
no swap regret guarantee corresponds to a guarantee of
no external regret simultaneously on each subsequence
S(v) = {t : τt = v} defined by threshold values v. There
exist many efficient algorithms for guaranteeing no swap
regret for convex losses (Blum & Mansour, 2007; Foster &
Vohra, 1999; Dagan et al., 2024; Peng & Rubinstein, 2024).
There also exist efficient algorithms for obtaining group-
conditional swap regret for arbitrary polynomially sized
collections of intersecting groups (Lee et al., 2022; Noarov
et al., 2023). We show that (under mild smoothness assump-
tions on the distribution), threshold calibrated coverage is
equivalent to swap regret in the sense that any algorithm
for guaranteeing no swap regret with respect to the pinball
loss produces thresholds that guarantee threshold calibrated
coverage at the target rate, and vice versa. This tight connec-
tion carries over to group-conditional swap regret — group
conditional swap regret is equivalent to multivalid coverage
over the same group structure. This connection holds even
for algorithms that use context. This gives new algorithms
for guaranteeing group conditional multivalid coverage.

1.1.2. COVERAGE GUARANTEES BEYOND REGRET

We then turn our attention to generalizations of the “ACI”
guarantee that Gibbs & Candes (2021) prove for online gra-
dient descent on the (1 dimensional) pinball loss. Gibbs
& Candes (2021) analyze their algorithm by showing that
1) the marginal mis-coverage rate is proportional to the
magnitude of the threshold used at the final iterate, and
that 2) all iterates (and so in particular the final one) are
bounded. We generalize this result in two ways. First, given
a collection of groups G, we consider multi-dimensional
problems in which we minimize the pinball loss of a func-
tion τt(x) = ⟨θt, g(xt)⟩ defined as a |G|-dimensional linear
function of the group indicator functions (mirroring the
form of τ(x) used to obtain group conditional coverage in
batch settings in (Jung et al., 2023)). We show that if we

2



The Relationship Between No-Regret Learning and Online Conformal Prediction

optimize the pinball loss of τt(x) using any algorithm from
the “follow the regularized leader” (FTRL) family of no-
regret algorithms (Shalev-Shwartz et al., 2012) (a family
that includes online gradient descent, but also multiplicative
weights and many other no regret learning algorithms), then
the coverage rate within each group gi can be bounded as
a function of the magnitude of θTi (the coordinate of the
parameter vector corresponding to group i) and the gradient
of the regularization function used to instantiate FTRL. This
generalizes the bound proven in (Gibbs & Candes, 2021)
for 1-dimensional online gradient descent (which is an in-
stance of FTRL regularized by the Euclidean norm). We
then prove that when using |G|-dimensional online gradient
descent for groupwise coverage, it is possible to bound the
magnitude of the maximum coordinate of θT by O(

√
T )

even when the group functions need not be binary, and can
be general weighting functions gi : X → [0, 1]. This im-
plies a O(

√
T ) groupwise coverage bound. We show that

this is tight (even in 1-dimension) for real valued weighting
functions by demonstrating an Ω(

√
T ) lower bound — but

conjecture a better rate for binary-valued group indicator
functions. Finally, we perform an experimental evaluation
of this algorithm, and compare it to the online algorithm for
guaranteeing multivalid coverage given by (Bastani et al.,
2022). We show that our method converges faster to the de-
sired coverage rate. Further, though our upper-bound on the
rate of the maximum coordinate of θT grows with T , empir-
ically we see in each experiment (using binary groups) that
it grows much slower and remains very small over the full
transcript. We conjecture (but cannot prove) that for binary
groups, the norm of θT can be bounded by a much more
slowly growing function of T (or perhaps can be bounded
as a function of only k, the number of groups).

1.2. Related Work

Online conformal prediction was introduced by Gibbs &
Candes (2021), who gave the “ACI” (Adaptive Conformal
Inference) algorithm, and noted that it was an instantia-
tion of 1-dimensional online gradient descent on the pinball
loss — but that the coverage bound did not follow from the
standard regret analysis of online gradient descent. This
spurred a number of follow up works that modified or re-
fined the original ACI analysis (Gibbs & Candès, 2022;
Feldman et al., 2022; Lekeufack et al., 2024; Angelopou-
los et al., 2024; Bhatnagar et al., 2023), some of them by
making explicit connections to algorithms which guaran-
tee more refined adaptive regret bounds (Gibbs & Candès,
2022; Bhatnagar et al., 2023) — but the worst-case coverage
bounds are never derived via the regret bounds, which are
used to make auxiliary claims (such as convergence to the
true quantile of the loss in stationary or slowly changing
environments).

Our generalization of the 1-dimensional ACI bounds to

groupwise coverage bounds was independently and con-
currently discovered by Angelopoulos et al. (2025). An-
gelopoulos et al. (2025) develop their bounds as part of an
elegant and general theory of gradient equilibrium, whereas
we restrict attention to pinball loss and the online coverage
problem. We study the more general class of follow the reg-
ularized leader algorithms, whereas they restrict attention to
online gradient descent.

For some additional related work, please see Appendix B.

2. Definitions
Define a joint feature-label space (X ,Y). In uncertainty
quantification, one of our goals is to learn prediction sets
C : X → 2Y that satisfy certain probabalistic guarantees.
Specifically, for some specified coverage rate q, we would
like to produce sets that include the true label with proba-
bility q. Conformal prediction simplifies this problem by
defining a collection of nested sets parametrized by a single
variable (call it τ ) in the following manner:

Cτ (x) = {y ∈ Y : f(x, y) ≤ τ} (1)

where f : X × Y → R≥0 can be any arbitrary function,
called a non-conformity measure. Conformal methods can
be viewed as predictors that choose the “correct” values of
τ . In distributional settings, to achieve an exact coverage
guarantee of the form P(x,y)∼D[y ∈ Cτ (x)] ≈ q, this can
be done by using training data to get an estimate τ̂ of the
q-th quantile of non-conformity score values induced by D.

The q-th quantile of a distribution minimizes the expectation
of a convex function called the pinball loss, defined as:

pq(τ̂ , τ) =

{
q(τ − τ̂) if τ ≥ τ̂

(q − 1)(τ − τ̂) if τ < τ̂

The procedure used in conformal prediction can therefore
also be seen as finding an estimate τ̂ of the true value τ that
minimizes the expected pinball loss. But in the adversarial
setting, there is no longer any distribution over which to es-
timate a fixed parameter τ̂ . Instead, at each round t, we may
be given features xt (if we are in the “contextual” setting)
and use it to predict a parameter τ̂t (and correspondingly the
prediction set Cτ̂t). Then we receive the true label yt. In
the non-contextual setting we must choose τ̂t without any
xt, solely based on the history thus far. Note that yt ∈ Cτ̂t

iff τ̂t ≥ τt. Thus, we may view online conformal prediction
as a sequential prediction task, where over T rounds,

1. The adversary chooses a joint distribution over contexts
xt ∈ X and non-conformity score thresholds τt ∈
[0, 1].

2. The learner, given a realized context xt, makes a pre-
diction τ̂t of the score threshold.
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3. The learner receives a realized threshold τt.

Given a desired coverage level q, the goal is to make predic-
tions such that 1

T

∑T
t=1 1[τ̂t ≥ τt] ≈ q. Note that for

simplicity, we abstract away the true label yt and non-
conformity score ft — implicitly, τt = ft(xt, yt). We
assume that all thresholds τt are bounded in [0, 1]. In prac-
tice, non-conformity measures can be normalized to ensure
this holds.

Definition 2.1 (Transcript). A transcript ΠT =
{(xt, τt, τ̂t)}Tt=1 denotes a sequence of contexts, outcomes
and predictions in the sequential prediction setting. Let
Π∗ = (X × [0, 1]× [0, 1])∗ denote the set of all transcripts.

2.1. Coverage

Definition 2.2 (Coverage, Coverage Error). Given a tran-
script ΠT = {(xt, τt, τ̂t)}Tt=1, the coverage of ΠT is de-
fined as:

Cov(ΠT ) =
1

T

T∑
t=1

1[τ̂t ≥ τt]

For a desired coverage rate q ∈ (0, 1), we have coverage
error γ with respect to q if |Cov(ΠT )− q| ≤ γ.

One can examine coverage not just marginally over the
transcript, but also over subsequences of the transcript that
define groups within the full sequence. These groups may
be defined by context, the predicted threshold, or even the
past transcript, as long as membership can be determined at
the start of the round, as the learner makes a prediction.

Definition 2.3 (Group). A group G : Π∗ × X × [0, 1] →
[0, 1] is a mapping from a transcript, context, and threshold
to a real value indicating group-membership.

If G(Πt, x, τ) ∈ {0, 1} for all Πt ∈ Π∗, x ∈ X , τ ∈ [0, 1],
we call G a binary group. If G(Πt, x, τ1) = G(Πt, x, τ2)
for all Πt ∈ Π∗, x ∈ X and τ1, τ2 ∈ [0, 1], we call G a
prediction-independent group.

We allow group-membership to be real-valued to be able
to model scenarios involving partial or probabalistic mem-
bership in a group, but in most cases group-membership is
deterministic, and only binary groups need be used. The
value of a prediction-independent group cannot depend on
the prediction being made on that day - in Section 4, our
results for group conditional coverage hold only for such
groups.

Definition 2.4 (Groupwise Coverage, Group Size). Given a
transcript ΠT = {(xt, τt, τ̂t)}Tt=1 and a set of groups G, the
coverage of group G ∈ G over ΠT is defined as:

Cov(ΠT , G) =
1

TG

T∑
t=1

1[τ̂t ≥ τt] ·G(Πt, xt, τ̂t)

where we define the size of the group TG =∑T
t=1 G(Πt, xt, τ̂t). For a desired coverage rate q ∈ (0, 1),

we have groupwise coverage error γ with respect to q if
|Cov(ΠT , G)− q| ≤ γ for all G ∈ G.

Since our setting reduces the problem of building predic-
tion sets to one of predicting a sequence of real-valued
parameters, we may ask, in addition to achieving a coverage
guarantee, that the sequence of predictions satisfies cover-
age over groups defined by the level sets of the predicted
threshold value.
Definition 2.5 (Threshold-calibrated coverage). Given a
transcript ΠT and a desired coverage rate q ∈ (0, 1), we
have threshold-calibrated coverage with coverage error γ,
if we have groupwise coverage error γ with respect to the
collection of groups G = {Gτ : ∀τ ∈ [0, 1]}, where Gτ is a
binary group including all time-steps t for which τ̂t = τ .
Definition 2.6 (Multivalid coverage). Given a transcript ΠT ,
a set of groups G, and a desired coverage rate q ∈ (0, 1),
we have multivalid coverage with coverage error γ, if we
have groupwise coverage error γ with respect to the new
collection of groups H = {HG,τ : ∀τ ∈ [0, 1], G ∈ G},
where HG,τ (Πt, xt, τ̂t) = G(Πt, xt, τ̂t) · 1[τ̂t = τ ] for all
G ∈ G, τ ∈ [0, 1].

2.2. Regret

Definition 2.7 (Φ-regret (Greenwald & Jafari, 2003)).
Given a transcript ΠT = {(xt, τt, τ̂t)}Tt=1, an allowable ac-
tion space of predictions A, and a loss function l : A×A →
R, the regret with respect to the loss function l with respect
to a strategy modification rule ϕ : A → A is:

r(ΠT , l, ϕ) =

T∑
t=1

l(τ̂t, τt)− l(ϕ(τ̂t), τt)

For any collection of strategy modification rules Φ, we say
that ΠT has Φ-regret γ with respect to l if r(ΠT , l, ϕ) ≤ γ
for all ϕ ∈ Φ.

A transcript has external regret if it has Φ-regret with re-
spect to the set of all constant strategy modification rules
(of the form ϕ(x) = y for all x ∈ R), and it has swap re-
gret if it has Φ-regret with respect to the set of all strategy
modification rules. Existing swap-regret algorithms such
as (Blum & Mansour, 2007) achieve regret guarantees that
have a dependence on the size of the action set A. Therefore,
though the true parameter values {τt}Tt=1 are allowed to take
any value in [0, 1], we will consider a discretized prediction
space parametrized by parameter n, i.e. predicted values τ̂
can take values only in the set An = {0, 1/n, 2/n, · · · , 1},
and the set of strategy modification rules being compared
to is Φn, the collection of all strategy modification rules
ϕ : An → An. We can similarly define groupwise external
and swap regret given some collection of groups G:
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Definition 2.8 (Φ-groupwise regret). Given a transcript ΠT ,
an allowable action space of predictions A, a loss function
l : A × A → R, and a set of groups G, the regret with
respect to the loss function l and group G, with respect to a
strategy modification rule ϕ : A → A is:

r(ΠT , l, ϕ,G) =

T∑
t=1

(l(τ̂t, τt)− l(ϕ(τ̂t), τt))·G(Πt, xt, τ̂t)

For any collection of strategy modification rules Φ, we
say that ΠT has Φ-groupwise regret γ with respect to l if
r(ΠT , l, ϕ,G) ≤ γ for all ϕ ∈ Φ and G ∈ G.

Groupwise external regret corresponds to Φ-regret with re-
spect to the set of all constant strategy modification rules,
and groupwise swap regret corresponds to Φ-regret with re-
spect to the set of all strategy modification rules. There exist
efficient algorithms for obtaining diminishing groupwise
external and swap regret for any polynomial action space
and collection of groups G (Blum & Lykouris, 2020; Lee
et al., 2022; Acharya et al., 2024; Deng et al., 2024).

To move between no regret and coverage guarantees, note
that it is necessary for the threshold parameters to not be too
closely clustered together. Suppose for example we had an
empirical distribution defined by {τt}Tt=1 that put all prob-
ability mass on a single value a. Then the fixed prediction
in An closest to a would achieve no swap-regret, but would
correspond to coverage over either all rounds or no rounds,
thus being bounded away from the desired coverage rate q
for any q ∈ (0, 1). To avoid this kind of scenario, we intro-
duce a smoothness condition that guarantees the parameters
we are trying to predict are sufficiently distributed across
the support of our probability space.

Definition 2.9 ((α, ρ, r)-smoothness). A distribution D ∈
∆[0, 1] is said to be (α, ρ, r)-smooth if for every pair of
values p, q such that 0 ≤ p ≤ q ≤ 1 and |p− q| ≤ 1/r, we
have Pτ∼D[τ ∈ [p, q]] ≤ ρ, and if |p − q| >= 1/r, then
Pτ∼D[τ ∈ [p, q]] ≥ α.

3. Coverage Guarantees Through Regret
In stochastic settings without context, external regret (under
some mild smoothness conditions) is sufficient to obtain
marginal coverage. To prove this, we first draw a connection
between the expected difference in pinball loss between two
thresholds and their absolute difference, using a slightly
modified version of Proposition 5 from (Gibbs & Candès,
2022):

Lemma 3.1. Fix a distribution D, and let τ∗ be the q-th
quantile of D. Then, assuming D is an (α, ρ, r)-smooth
distribution, for any other threshold τ ′,

αr · (τ∗ − τ ′)2

2
≤ Eτ∼D[pq(τ

′, τ)− pq(τ
∗, τ)]

With this, we can move from a regret bound to a bound on
our miscoverage rate. We give a sketch of the proof here,
with the full version in the appendix.

Theorem 3.2. Fix a transcript ΠT = {(τt, τ̂t)}Tt=1 in a
setting without context (i.e. in which there are no observable
features xt) and where the sequence of labels is drawn
i.i.d. from a fixed distribution, i.e. τt ∼ D for all t ∈ [T ].
If D is (α, ρ, r)-smooth, and if ΠT has external regret γ
with respect to the pinball loss pq , then the set of predicted
thresholds has marginal coverage error:

|Cov(ΠT )− q| ≤
√

2ρ(γ + 2ϵ)

Tα
+

ϵ

T

with probability at least 1− 6 exp
(
− ϵ2

2T

)
.

Proof Sketch. We are given an upper-bound on the realized
regret with respect to pq, which with high probability is
close to the expected regret (using Azuma’s inequality). We
then bound the sum of squared differences between the
optimal threshold τ∗ (which minimizes simultaneously the
expected pinball loss and deviation of expected coverage
from q) and the predicted thresholds τ̂t using Lemma 3.1.
The smoothness condition implies thresholds that are close
together must have similar expected coverages, and another
application of Azuma’s inequality proves that this is (with
high probability) close to the realized coverage.

When we have sublinear external regret, the bound above
goes to zero as T increases. But in adversarial settings, there
is no such connection between external regret and coverage
even in the non-contextual setting.

Example 3.3. Define the transcript ΠT = {(τt, τ̂t)}Tt=1

in the non-contextual setting where the predicted threshold
τ̂t = 0.4 for odd t and 0.9 for even t, and the adversary
chooses τt = 0.5 for odd t and τt = 1 for even t. On
each day t, the loss with respect to pq (for q = 0.5) is 0.1,
and since the true thresholds distribute evenly over the set
{0.5, 1}, the best fixed threshold τ∗ in hindsight is the me-
dian 0.75 which achieves a loss of 0.25 every day. Therefore∑T

t=1 pq(τ̂t, τt)− pq(τ
∗, τt) ≤ 0, i.e this transcript has no

regret with respect to pinball loss at the level q = 0.5. How-
ever, the predicted threshold is always lower than the true
threshold, and so Cov(ΠT ) = 0.

In fact, the connection between low regret on a sequence and
achieving low miscoverage on that same sequence falls apart
even in i.i.d. settings when we move to groupwise coverage.
Theorem 3.2 is driven by the fact that in non-contextual
settings, the prediction made each day is independent of the
realized outcome drawn from D. When we introduce groups,
we move to the contextual setting. As soon as we allow the
threshold to depend on context, we find that external regret
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no longer implies coverage even in i.i.d. settings because
of the correlation that the context introduces between our
predictions and the outcomes.

Example 3.4. Define the context space X = {A,B}, and
suppose we are interested only in marginal coverage over
the group G containing all days. The distribution D over
(x, y) pairs is defined such that we randomize uniformly
over contexts (i.e. P(x = A) = P(x = B) = 0.5), and
non-conformity score function f is such that f(A, .) = 0.5,
and f(B, .) = 1. Then an algorithm A that always predicts
a threshold τ̂t = 0.4 when xt = A, and a threshold τ̂t =
0.9 when xt = B, simulates the environment described
in Example 3.3. Thus A will achieve an expected regret
of 0 (which will be arbitrarily close to the realized regret
with high probability for sufficiently large T ), but always a
realized coverage of zero.

To make further connections between regret and coverage,
we will need to move to stronger guarantees. Low regret on
subsequences for which a prediction is fixed (which are by
definition disjoint) allows us to compare the performance
of the optimal quantile on that subsequence with the fixed
prediction. Thus, given the empirical distribution over these
subsequences are smooth, we can draw an equivalence be-
tween threshold-calibrated coverage and swap-regret.

Theorem 3.5. Fix a transcript ΠT = {(xt, τt, τ̂t)}Tt=1. If
ΠT has swap regret γ with respect to the pinball loss pq , and
the empirical distribution Dτ defined by the set {τt}t:τ̂=τ is
(α, ρ, r)-smooth for each τ ∈ An, then the set of predicted
thresholds satisfies threshold-calibrated coverage at the
level q:

|Cov(ΠT , Gτ )− q| ≤ ρ

2
+

ρr

n
+

√
2γ

Tταr
+

ρ

α

(
1

r
+

2

n

)

Proof Sketch. The swap regret guarantee gives an upper-
bound on the regret of the subsequence defined by all time-
steps making a fixed prediction τ . Due to convexity of the
pinball loss function, the true minimizer of the sum of pin-
ball losses must be close to the minimizer in the discrete set
An, which in turn can be bound closely to τ using Lemma
A.1 and the regret bound. The smoothness condition im-
plies not a lot of probability weight can be placed in the
interval |M(τ)−τ |, and so the difference in coverage is also
small. Since M(τ) should achieve the desired coverage rate
q, this gives a bound on the miscoverage on the subsequence
defined by any fixed prediction τ (for all τ ∈ An).

The full proof can be found in the appendix. Note that if γ
(as a function of T ) grows sublinearly, then the final term in
the above inequality vanishes as T becomes arbitrarily large.
Several existing swap-regret algorithms (Blum & Mansour,

2007) achieve such rates. We can also move from threshold-
calibrated coverage to regret bounds. The proof is similar
in idea to Theorem 3.6, so we relegate it to the appendix.

Theorem 3.6. Fix a transcript ΠT = {(xt, τt, τ̂t)}Tt=1. If
ΠT has threshold-calibrated coverage with coverage error
γ (at desired coverage rate q), and Dτ defined by {τt}t:τ̂=τ

is (α, ρ, r)-smooth for each τ ∈ An, then the transcript
also has swap regret with respect to the loss pq , such that:

r(Πt, pq, ϕ) ≤
Tγ2ρ

α2r

for each ϕ ∈ Φ, the collection of all strategy modification
rules for action set An.

and so if 1
γ2 grows at a rate faster than T , we achieve sub-

linear regret. Applying the same analysis in the context of
groupwise swap regret (analyzing subsequences determined
by a fixed predicted threshold and group inclusion) gives us
an analagous relationship between groupwise swap regret
and multivalid guarantees.

Theorem 3.7. Fix a transcript ΠT , and a set of binary
groups G. If ΠT has groupwise swap regret γ with respect
to the pinball loss pq , and the empirical distributions DG,τ

defined by the set {τt}t:τ̂=τ,t∈G are (α, ρ, r)-smooth, then
the set of predicted thresholds satisfies multivalid coverage
at the level q such that

|Cov(ΠT , HG,τ )−q| ≤ ρ

2
+
ρr

n
+

√
2γ

TG,ταr
+

ρ

α

(
1

r
+

2

n

)
for each group HG,τ , defined as HG,τ (Πt, xt, τ̂t) =
G(Πt, xt, τ̂t) · 1[τ̂t = τ ].

Theorem 3.8. Fix a transcript ΠT , and a set of binary
groups G. If ΠT has multivalid coverage with coverage
error γ (at desired coverage rate q), and DG,τ is (α, ρ, r)-
smooth for each τ ∈ An, G ∈ G, then the transcript also
has groupwise swap regret with respect to the loss pq , such
that r(Πt, pq, ϕ,G) ≤ TGγ2ρ

α2r for each ϕ ∈ Φ, the collection
of all strategy modification rules for action set An, where
TG is the size of group G.

Algorithm 1 Follow The Regularized Leader (pinball loss)

Input: Timesteps T , regularizer R : [0, 1] → R, loss
parameter q
for t = 1, 2, · · ·T do

Receive gt from adversary
Choose θt = argminθ∈Rd

∑t−1
s=1 lt(θ, τs) +R(θ).

Predict τ̂t = ⟨θt, gt⟩
Receive τt from the adversary.
Define loss lt(θ, τt) = ⟨θ,∇θpq(⟨θt, gt⟩, τt)⟩

end for

6



The Relationship Between No-Regret Learning and Online Conformal Prediction

4. Coverage Guarantees for FTRL Algorithms
Having established that, in general, external regret guaran-
tees with respect to the pinball loss do not imply non-trivial
coverage on their own, either in adversarial settings, or in
settings with context (as relevant to groupwise coverage)
even in the i.i.d. setting, we turn our attention to a partic-
ular (but broad) class of no regret learning algorithms —
those in the “follow the regularized leader” (FTRL) family.
This class of algorithms includes multiplicative weights,
online gradient descent, and many other algorithms. At
a high level, an algorithm in the FTRL family receives a
loss function ℓ(x, y) at every iteration, parameterized by
a choice of action y by the adversary and a choice of ac-
tion x ∈ Rd by the learner. The loss is assumed to be
linear in x for all choices y of the adversary. An instantia-
tion of FTRL is given by a convex regularization function
R : Rd → R, and the action that FTRL plays at every
iteration is xt = argminx

∑t−1
s=1 ℓ(x, ys) + R(x) — the

regularized empirical risk minimizer on the empirical loss
distribution so far. Follow the regularized leader can also be
used with loss functions ℓ̂(x, y) that are convex in x. In this
case, the algorithm takes as input the linear loss function
ℓ(x, y)

.
= ⟨x,∇xℓ̂(xt, y)⟩ — defined by the gradient of the

loss function evaluated at the point xt the learner plays at
round t. This reduces to the linear case and obtains the
same regret bound (see e.g. (Shalev-Shwartz et al., 2012)).
Online gradient descent is an instance of FTRL regularized
by the Euclidean norm; multiplicative weights is an instance
of FTRL regularized by entropy; other algorithms follow
from different regularization functions.

In this section we study coverage guarantees for algorithms
in the FTRL family when actions for the learner are pa-
rameter vectors θt ∈ Rk, actions for the adversary are
nonconformity scores τt ∈ [0, 1] and the loss function is
pq(⟨θt, gt⟩, τt) — the pinball loss (at a target quantile q)
of the prediction τ̂t

.
= ⟨θt, gt⟩ with respect to τt. Here

gt ∈ [0, 1]k is the vector of group membership for the exam-
ple at round t, i.e. given k prediction-independent groups
{G1, · · · , Gk}, gt,i = Gi(Πt, xt, .). We show that in this
setting, for all algorithms in the FTRL family, the miscov-
erage rate can be bounded as a function of the magnitude
of the parameter θt and the gradient of the regularization
function R(·).
Theorem 4.1. For the parametrization of FTRL given in
Algorithm 1 with regularization function R : Rd → R, for
any target coverage rate q and any T the resulting transcript
ΠT is guaranteed to satisfy groupwise coverage for groups
Gi (i ∈ [k]) at the rate:

|Cov(ΠT , Gi)− q| ≤ ||∇R(θT+1)||∞
Ti

The proof is given in the appendix. This theorem tells

us whenever we can upper-bound ||∇R(θT+1)||∞ by any
function that grows sublinearly with T , we get a non-trivial
groupwise coverage bound. In the following section we
do this for online gradient descent, an especially simple
instantiation of FTRL. Note that both in this section and
Section 5, the analysis for coverage does not go through
regret — hence no smoothness assumptions need be made
on the empirical data distributions.

5. Group Conditional ACI
Algorithms such as ACI (“Adaptive Conformal Inference”)
(Gibbs & Candes, 2021) can be seen as special cases of the
connection between FTRL and coverage guarantees we have
shown — in particular the special case in which we ask only
for marginal coverage, and use gradient descent with step
size η, which is an instantiation of FTRL in which the regu-
larization function R(θ) = 1

2η ||θ||
2. We give the “gradient

descent” implementation of our algorithm in Algorithm 2.

Algorithm 2 Group Conditional ACI (GCACI)

Input: Timesteps T , number of groups k, coverage target
q, step-size η
Choose θ1 = 0.
for t = 1, 2, · · ·T do

Receive gt from the adversary.
Predict τ̂t = ⟨θt, gt⟩.
Receive τt from adversary.
if ⟨θt, gt⟩ < τt then
θt+1 = θt + η · q · gt (Update A)

else
θt+1 = θt − η · (1− q) · gt (Update B)

end if
end for

We can instantiate our Theorem 4.1 to bound the groupwise
miscoverage of Algorithm 2, as it is a special case of FTRL.
Lemma 5.1. Running Algorithm 2 for any number of rounds
T with a coverage target of q for any set of k group func-
tions, we achieve groupwise miscoverage bounded by the
following function of θT+1:

|Cov(ΠT , Gi)− q| ≤ ||θT+1||∞
Tiη

If we are able to upper-bound the magnitude of the last
iterate of gradient descent as a sublinear function of T ,
we can bound the deviation from desired coverage not just
marginally, but groupwise for arbitrary intersecting groups:
Lemma 5.2. When Algorithm 2 is run with step-size η ∈
(0, 1], for any collection of k group functions, any coverage
target q ∈ (0, 1), and every T , the iterate θT+1 has norm
bounded as:

||θT+1||∞ ≤ O(
√
ηT (ηk + 1))
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Figure 1: Comparison of convergence rates between GroupACI (GCACI) and MVP for group coverage. Each curve captures
the averaged miscoverage over time of a single group. From left to right, the graphs show results on the time series data, the
UCI Airfoil Data, and the Folktables data respectively. Note that group size varies within each graph.

Putting these two lemmas together gives us a groupwise
coverage bound for Algorithm 2 (GCACI):

Theorem 5.3. Fix any collection of k group functions taking
values in [0, 1] and any target coverage rate q ∈ (0, 1). If
we run Algorithm 2 for T rounds with step size η ∈ (0, 1],
we achieve groupwise miscoverage bounded by:

|Cov(ΠT , i)− q| ≤ O

(√
ηT (ηk + 1)

Tiη

)

When we set η = 1, this gives us a O(
√
Tk/Ti) groupwise

coverage error bound. This analysis is tight even for k = 1
if we allow the groups to be real valued.

Theorem 5.4. Let k = η = 1 and pick any coverage
target q ∈ (0, 1). The sequence of 1-dimensional weighting
functions gt = 1

2
√
t−1

together with thresholds τt = 1

causes Algorithm 2 to produce parameter vector θT+1 ∈
Ω(

√
T ).

We remark that this lower bound construction seems to
require real valued group functions. We conjecture that a
much better upper bound on ||θT+1||∞ is true for binary
valued group functions — growing much more slowly with
(or perhaps even independently of) T . Our experiments
support this conjecture, but we are unable to prove it.

6. Experiments
In this section we compare the performance of Algorithm
2 with that of the MVP (“multi valid predictor”) algorithm
(Bastani et al., 2022), that to our knowledge is the only
other method for obtaining non-trivial group-conditional
coverage guarantees in sequential adversarial settings. We
run experiments on the same collection of datasets used to

evaluate MVP in (Bastani et al., 2022). We compare rates of
convergence to the desired coverage over all groups. Since
the guarantees for our algorithm are more fine grained, and
are proven in terms ||θt||∞, we plot also the L∞ norm of
the parameters θt maintained by Algorithm 2 over time. To
achieve our derived O(

√
Tk/Ti) bounds we set the learning

rate η = 1 for these experiments. We also then empirically
investigate the relationship between the rate of convergence
to the target coverage rate and the learning rate, by measur-
ing the time-step1 at which the empirical group conditional
coverage for the rest of the sequence falls within ϵ of the
desired coverage rate, as a function of η. We set ϵ = 0.01
for all tests. More fine-grained details on how these experi-
ments were run are given in Appendix C.
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Figure 2: ||θt||∞ over time for all three experiments, when
running GCACI.

Time Series Data We run both algorithms on stock market
data from the WSJ daily price data, which was used to test
ACI algorithm’s (Gibbs & Candes, 2021) performance for

1Here, time-step is defined as within the subsequence defined
by a group, not the full sequence.
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Figure 3: Convergence rate of GCACI as a function of the learning rate η. Each plot measures (across different chosen
learning rates) the earliest time-step at which coverage for each group is within ϵ = 0.01 of the desired coverage for the
remainder of the transcript.

marginal coverage. As in (Bastani et al., 2022), we define
20 groups, where group i includes data from time-step t iff
t ≡ 0 (mod i), and introduce artificial noise to the data to
get variability in scores based on group membership.

Synthetic Distribution Shift (UCI Airfoil Data) We run
both MVP and GCACI on the airfoil dataset from the UCI
Machine Learning Repository (Dua & Graff, 2017). In
(Bastani et al., 2022), only marginal coverage was tested.
Here, we define groups where membership is again defined
by time-step, as in the previous section. Since the test set is
much smaller (N = 564), we define only 6 such groups.

Natural Distribution Shift (Folktables) Finally, we com-
pare performance on a covariate shift problem using 2018
Census data from the Folktables repository (Ding et al.,
2021). The data (N = 52794) is drawn from two different
states (CA & PA) to simulate an unknown distribution shift;
we use a non-conformity score defined using a quantile re-
gression model trained on a separate part of the CA data. We
compare performance across all of the nine race groups in
the dataset, groups for both sexes, as well as the full group.

6.1. Results

Figure 1 compares how quickly the two algorithms are able
to achieve the desired miscoverage rate. We see that conver-
gence is substantially faster for our algorithm — despite the
fact that both algorithms have similar O(

√
T ) guarantees

for worst-case coverage rates. MVP doesn’t even converge
fully for some smaller-sized groups. We also find that for
GCACI, the O(

√
T ) upper bound on ||θT ||∞ appears to be

very loose, at least in the setting of our evaluation. Figure
2 shows that for each experiment, it remains bounded by a
small constant, explaining our superior observed coverage
performance — because in our experiments, ||θt||∞ remains
bounded by a small constant at all iterates t, we actually
get groupwise coverage rates at O(1/T ). This supports our
conjecture that much better bounds might be possible for
binary group structure. Figure 3 plots how quickly GCACI

converges as a function of the learning rate. We see that
as expected, larger learning rates give faster convergence,
with the algorithm generally converging most quickly with
a learning rate of η = 1. This naturally trades off with the
regret guarantees of follow the regularized leader, which are
optimized in the worst case when η = 1/

√
T and vacuous

for constant η.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Hébert-Johnson, U., Kim, M., Reingold, O., and Rothblum,
G. Multicalibration: Calibration for the (computationally-
identifiable) masses. In International Conference on Ma-
chine Learning, pp. 1939–1948. PMLR, 2018.

Jung, C., Lee, C., Pai, M., Roth, A., and Vohra, R. Moment
multicalibration for uncertainty estimation. In Conference
on Learning Theory, pp. 2634–2678. PMLR, 2021.

Jung, C., Noarov, G., Ramalingam, R., and Roth, A. Batch
multivalid conformal prediction. In International Confer-
ence on Learning Representations (ICLR), 2023.

Lee, D., Noarov, G., Pai, M., and Roth, A. Online minimax
multiobjective optimization: Multicalibeating and other
applications. Advances in Neural Information Processing
Systems, 35:29051–29063, 2022.

Lekeufack, J., Angelopoulos, A. N., Bajcsy, A., Jordan,
M. I., and Malik, J. Conformal decision theory: Safe
autonomous decisions from imperfect predictions. In
2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 11668–11675. IEEE, 2024.

Noarov, G. and Roth, A. The statistical scope of multicali-
bration. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 26283–26310.
PMLR, 2023. URL https://proceedings.mlr.
press/v202/noarov23a.html.

Noarov, G., Ramalingam, R., Roth, A., and Xie, S. High-
dimensional prediction for sequential decision making.
arXiv preprint arXiv:2310.17651, 2023.

Peng, B. and Rubinstein, A. Fast swap regret minimiza-
tion and applications to approximate correlated equilibria.
In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, pp. 1223–1234, 2024.

10

http://archive.ics.uci.edu/ml
https://proceedings.mlr.press/v202/noarov23a.html
https://proceedings.mlr.press/v202/noarov23a.html


The Relationship Between No-Regret Learning and Online Conformal Prediction

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Tibshirani, R. J., Foygel Barber, R., Candes, E., and Ram-
das, A. Conformal prediction under covariate shift. Ad-
vances in Neural Information Processing Systems, 32:
2530–2540, 2019.

11



The Relationship Between No-Regret Learning and Online Conformal Prediction

A. Proofs
Lemma 3.1. Fix a distribution D, and let τ∗ be the q-th quantile of D. Then, assuming D is an (α, ρ, r)-smooth distribution,
for any other threshold τ ′,

αr · (τ∗ − τ ′)2

2
≤ Eτ∼D[pq(τ

′, τ)− pq(τ
∗, τ)]

Proof. Assume without loss of generality that τ ′ ≤ τ∗. Define the probabilities p1 = P(τ ≤ τ ′), p2 = P(τ ≥ τ∗), and
p3 = P(τ ∈ [τ ′, τ∗)), where τ ∼ D. We can compute the expectation E[pq(τ ′, τ) − pq(τ

∗, τ)] by looking at these three
cases separately. When τ ≤ τ ′, the difference in loss is (1− q)(τ ′ − τ∗). Similarly, when τ ≥ τ∗, the difference in pinball
loss is q(τ∗ − τ ′). Finally, when τ ′ ≤ τ ≤ τ∗,

pq(τ
′, τ)− pq(τ

∗, τ) = q(τ − τ ′)− (1− q)(τ∗ − τ)

= −q(τ ′ − τ∗)− (τ∗ − τ)

= (1− q)(τ ′ − τ∗) + (τ − τ ′)

This difference in loss is dependent on τ , so the conditional expectation in this case is:

E[pq(τ ′, τ)− pq(τ
∗, τ) | τ ∈ [τ ′, τ∗)] = (1− q)(τ ′ − τ∗) + E[τ − τ ′ | τ ∈ [τ ′, τ∗)]

Computing the marginal expectation using the law of total expectation,

E[pq(τ ′, τ)]− E[pq(τ∗, τ)] = p1(1− q)(τ ′ − τ∗) + p2(q)(τ
∗ − τ ′) + p3((1− q)(τ ′ − τ∗) + E[τ − τ ′ | τ ∈ [τ ′, τ∗)])

= p1(1− q)(τ ′ − τ∗) + p2(q)(τ
∗ − τ ′) + p3(1− q)(τ ′ − τ∗) + p3E[τ − τ ′ | τ ∈ [τ ′, τ∗)]

= E[(τ − τ ′)1τ ′≤τ≤τ∗ ]

with the final simplication due to p1 + p3 = q, and p2 = 1 − q, by definition of τ∗. Since D is (α, ρ, r)-smooth, we
can obtain a lower-bound on this expectation by taking a discrete sum over 1/r pieces of the interval (each of which has
probability weight at least α). There will be ⌊r(τ∗ − τ ′)⌋ such intervals, and over the i-th such interval, τ − τ ′ ≥ i−1

r , so
we get:

E[pq(τ ′, τ)]− E[pq(τ∗, τ)] ≥
αr · (τ∗ − τ ′)2

2

as desired. The proof for the τ∗ ≤ τ ′ case is nearly identical.

Theorem 3.2. Fix a transcript ΠT = {(τt, τ̂t)}Tt=1 in a setting without context (i.e. in which there are no observable
features xt) and where the sequence of labels is drawn i.i.d. from a fixed distribution, i.e. τt ∼ D for all t ∈ [T ]. If D is
(α, ρ, r)-smooth, and if ΠT has external regret γ with respect to the pinball loss pq , then the set of predicted thresholds has
marginal coverage error:

|Cov(ΠT )− q| ≤
√

2ρ(γ + 2ϵ)

Tα
+

ϵ

T

with probability at least 1− 6 exp
(
− ϵ2

2T

)
.

Proof. Define the realized loss L =
∑T

t=1 pq(τ̂t, τt) and the loss with respect to any fixed threshold a, as La =∑T
t=1 pq(a, τt). The regret guarantee tells us that

L− Lτ∗ ≤ γ

for τ∗ = minτ∈[0,1] E[Lτ ] - this is the q-th quantile of the distribution D. For 0 ≤ t ≤ T , define the sequence of random
variables Xt = E[L|Πt], adapted to the filtration {Πt : t ≥ 0}. Note that since E[Xt+1|Πt] = Xt, this sequence is a
martingale. Since X0 = E[L] and XT = L, using Azuma’s inequality gives us:

P[|L− E[L]| ≥ ϵ] ≤ 2 exp

(
− ϵ2

2T

)
12



The Relationship Between No-Regret Learning and Online Conformal Prediction

Thus we obtain a bound on the difference between expected losses:

|E[L]− E[Lτ∗ ]| ≤ γ + 2ϵ

with probability at least 1− 4 exp
(
− ϵ2

2T

)
. Using Lemma 3.1 separately for the difference in losses for each time-step,

T∑
t=1

αr · (τ∗ − τ̂t)
2

2
≤ γ + 2ϵ =⇒

T∑
t=1

(τ∗ − τt)
2 ≤ 2(γ + 2ϵ)

αr
(2)

Now, define for each round t the expected miscoverage Mt = Eτ∈D[1[τ̂t ≥ τ ]]− q. Since we know τ∗ achieves the optimal
coverage q, Mt = P(τ ∈ [τ̂t, τ

∗]) (or the interval [τ∗, τ̂t]), and due to the smoothness condition, this implies that

|τ̂t − τ∗| ≥ Mt

ρr
=⇒ (τ∗ − τ̂t)

2 ≥ M2
t

ρr

Combining with the inequality from (2), we get:

T∑
t=1

M2
t ≤ 2ρ(γ + 2ϵ)

α
=⇒

T∑
t=1

Mt ≤
√
T

√
2ρ(γ + 2ϵ)

α

=⇒ 1

T

T∑
t=1

Mt ≤
√

2ρ(γ + 2ϵ)

Tα

using Cauchy-Schwarz. Another application of Azuma’s inequality tells us that the average expected miscoverage above is
more than ϵ/T away from the realized miscoverage rate with at most probability 2 exp

(
− ϵ2

2T

)
. Taking a union bound over

both probabilities, this gives us:

|Cov(ΠT )− q| ≤
√

2ρ(γ + 2ϵ)

Tα
+

ϵ

T

with probability at least 1− 6 exp
(
− ϵ2

2T

)
.

In the stochastic case, we implicitly make the simplifying assumption that the exact q-th quantile τ∗ of the distribution
D exists. When we move to the adversarial setting, this is no longer a viable assumption, and we must also consider
discretization error. The following lemma is a discretized version of Lemma 3.1.

Lemma A.1. Given a sequence of parameter values {τi}Ti=1, define the sum of pinball losses La =
∑T

i=1 pq(a, τi) and
Lb =

∑T
i=1 pq(b, τi) respectively, where a = minτ∈An

∑T
i=1 pq(a, τi) is the minimizer of the sum of pinball losses over

the discretized set An, and b is any value in [0, 1]. If the empirical distribution D defined by {τi}Ti=1 is (α, ρ, r)-smooth,

and if Lb − La ≤ γ, then |b− a| ≤
√

2γ
Tαr + ρ

α

(
1
r + 2

n

)
.

Proof. Without loss of generality, assume that a ≤ b. For any fixed i ∈ [T ], consider the difference ∆Li = lq(b, τi) −
lq(a, τi). There are three cases to consider. If τi < min{a, b}, then:

∆Li = (1− q)(b− τi − (a− τi)) = (1− q)(b− a)

Similarly, if max{a, b} ≤ τi, then ∆Li = q(a− b). For the third case, consider when a ≤ τi < b. Then,

∆Li = (1− q)(b− τi)− q(τi − a) = q(a− b) + (b− τi)

Let N1, N2 and N3 be the number of i ∈ [t] falling into each of these three cases respectively. We first estimate N1; since
a minimizes the sum of pinball losses, it must be one of the two grid-points An closest to the value M that minimizes
the sum of pinball losses over the continuous interval [0, 1] (since the sum of pinball losses is a convex, piece-wise linear
function). By definition M must be the value that comes closest to covering q of the probability weight over D. The
amount of probability weight on M cannot exceed ρ, and |M − a| ≤ 1/n. By the smoothness condition on D we have

13
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|N1 − qT | ≤ ρT/2 + ρrT/n. This implies that |(N2 + N3) − (1 − q)T | ≤ ρT/2 + ρrT/n. Using Lb − La ≤ γ and
rewriting the difference in loss as

∑T
i=1 ∆Li,

γ ≥ N1(1− q)(b− a) + qN2(a− b) + qN3(a− b) +
∑

i:a≤τi<b

(b− τi)

= (b− a)(N1(1− q)− q(N2 +N3)) +
∑

i:a≤τi<b

(b− τi)

≥ −(b− a)

(
ρT

2
+

ρrT

n

)
+

∑
i:a≤τi<b

(b− τi)

≥ −
(
ρT

2
+

ρrT

n

)
+

∑
i:a≤τi<b

(b− τi)

where the second inequality comes from the bounds on N1 and N2 +N3. Using the smoothness condition on D, we can
lower-bound the second term by splitting the interval [a, b] into pieces of length 1/r, getting

∑
i:a≤τi<b

(b− τi) ≥ α

⌊r|b−a|⌋∑
i=1

i− 1

r
≥ Tαr(b− a)2

2

Rearranging, we get

(b− a)2 ≤ 2

Tαr

(
γ +

ρT

2
+

ρrT

n

)
=⇒ |b− a| ≤

√
2γ

Tαr
+

ρ

α

(
1

r
+

2

n

)

Theorem 3.5. Fix a transcript ΠT = {(xt, τt, τ̂t)}Tt=1. If ΠT has swap regret γ with respect to the pinball loss pq, and
the empirical distribution Dτ defined by the set {τt}t:τ̂=τ is (α, ρ, r)-smooth for each τ ∈ An, then the set of predicted
thresholds satisfies threshold-calibrated coverage at the level q:

|Cov(ΠT , Gτ )− q| ≤ ρ

2
+

ρr

n
+

√
2γ

Tταr
+

ρ

α

(
1

r
+

2

n

)
Proof. Since each predicted value τ̂t is in An, we can rewrite regret via the separate contributions over each prediction
value:

r(Πt, pq, ϕ) =
∑
τ∈An

∑
t:τ̂t=τ

pq(τ̂t, τt)− pq(ϕ(τ̂t), τt)︸ ︷︷ ︸
rτ,ϕ

Define the swap function ϕm that, for each τ ∈ An, is defined as:

ϕm(τ) = min
τ ′∈An

∑
t:τ̂=τ

pq(τ
′, τt)

as well as the loss minimizer mapping M : An → [0, 1]:

M(τ) = min
τ ′∈[0,1]

∑
t:τ̂=τ

pq(τ
′, τt)

Note that by definition, since M(τ) minimizes the sum of pinball losses, it is the q-th quantile of the empirical distribution
Dτ over the set {τt}t:τ̂=τ . Further, since the sum of pinball losses (as a function of the first argument) is a convex, piece-wise
linear function, ϕm(τ) must be one of the two closest grid-points in An to M(τ), i.e. we have |M(τ) − ϕm(τ)| ≤ 1/n.
Since rτ,ϕm

≥ 0 for each τ ∈ An, a total swap-regret of γ implies that rτ,ϕm
≤ γ for each τ . Using Lemma A.1,

|ϕm(τ)− τ | ≤

√
2γ

Tταr
+

ρ

α

(
1

r
+

2

n

)
14
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where we define Tτ =
∑

t∈[T ] 1[τ̂t = τ ]. Due to the (α, ρ, r)-smoothness condition over Dτ , the amount of probability
weight on M(τ) cannot exceed ρ, and so the number of values Nτ in {τt}t:τ̂=τ that M(τ) equals or exceeds satisfies
qTτ − ρTτ/2 ≤ Nτ ≤ qTτ + ρTτ/2. Finally, using the bound on |M(τ) − τ | along with the smoothness condition, the

number of values in the set {t : τ̂ = τ} between M(τ) and τ cannot exceed Tτ · ρr ·
(

1
n +

√
2γ

Tταr
+ ρ

α

(
1
r + 2

n

))
. Using

the upper bounds of the inequalities,∑
t:τ̂=τ

1[τt ≤ τ ] ≤ qTτ +
ρTτ

2
+

ρrTτ

n
+

√
2γ

Tταr
+

ρ

α

(
1

r
+

2

n

)
Notice that the left hand side equals Cov(ΠT , Gτ ), where Gτ is the binary group including all time-steps t for which τ̂t = τ .
Thus, performing the same steps using the lower bounds of the inequality and dividing by Tτ ,

|Cov(ΠT , Gτ )− q| ≤ ρ

2
+

ρr

n
+

√
2γ

Tταr
+

ρ

α

(
1

r
+

2

n

)

Theorem 3.6. Fix a transcript ΠT = {(xt, τt, τ̂t)}Tt=1. If ΠT has threshold-calibrated coverage with coverage error γ (at
desired coverage rate q), and Dτ defined by {τt}t:τ̂=τ is (α, ρ, r)-smooth for each τ ∈ An, then the transcript also has
swap regret with respect to the loss pq , such that:

r(Πt, pq, ϕ) ≤
Tγ2ρ

α2r

for each ϕ ∈ Φ, the collection of all strategy modification rules for action set An.

Proof. Fix a threshold τ ∈ An. Let M(τ) = mina∈[0,1] |Cov(ΠT , Gτ ) − q| where Gτ is the binary group including all
time-steps for which the predicted threshold was τ . Note that since by definition M(τ) is the q-th quantile of the empirical
distribution Dτ , it is also the value a that minimizes the sum of pinball losses

∑T
t=1 1[τ̂t = τ ] ·pq(a, τt). We assume without

loss of generality that this exact q-th quantile over Dτ exists - since any other value would get worse coverage (at the rate q),
τ achieving comparable performance to the true minimizer implies it achieves the same (or better) performance even if the
exact q-th quantile does not exist. By the coverage error guarantee,

Pτ∈Dτ (τ ∈ [M(τ), τ ]) ≤ γ

or instead [τ,M(τ)], based on their ordering. Using the smoothness condition, we have:

|τ −M(τ)| ≤ γ

αr

Thus the regret with respect to the best action in hindsight M(τ) over the subsequence where only prediction τ is made can
be bound:

rτ = max
a∈An

∑
t:τ̂t=τ

pq(τ, τt)− pq(a, τt)

≤
∑

t:τ̂t=τ

pq(τ, τt)− pq(M(τ), τt) ≤
( γ

αr

)2
ρr

Assume without loss of generality that M(τ) ≤ τ . Define the variables N1, N2 and N3 as the number of thresholds in
the set {τt}t:τ̂t=τ less than or equal to M(τ), in the interval (M(τ), τ ], and greater than τ respectively. Since M(τ) is
exactly the q-th quantile, N1 = qTτ and N2 +N3 = (1− q)Tτ , where we define Tτ =

∑T
t=1 1[τ̂t = τ ]. We can rewrite the

difference in pinball loss by dividing into these three categories, as in the proof for Lemma A.1, to get:∑
t:τ̂t=τ

pq(τ, τt)− pq(M(τ), τt) = N1(1− q)(τ −M(τ))− qN2(τ −M(τ)) + qN3(τ −M(τ)) +
∑

i:a≤τi<b,τ̂i=τ

(τ − τi)

= (τ −M(τ))(N1(1− q)− q(N2 +N3)) +
∑

i:a≤τi<b,τ̂i=τ

(τ − τi)

≤ N3(τ −M(τ)) ≤ Tτ
γρr

αr
· γ

αr
= Tτ

γ2ρ

α2r
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using the smoothness condition and the bound on |M(τ) − τ | to bound the value of N3. Thus the maximal regret with
respect to the best action (on each subsequence defined by a fixed threshold prediction) is bounded. Summing across all
τ ∈ An,

r(Πt, pq, ϕ) ≤
Tγ2ρ

α2r

Theorem 3.7. Fix a transcript ΠT , and a set of binary groups G. If ΠT has groupwise swap regret γ with respect to the
pinball loss pq, and the empirical distributions DG,τ defined by the set {τt}t:τ̂=τ,t∈G are (α, ρ, r)-smooth, then the set of
predicted thresholds satisfies multivalid coverage at the level q such that

|Cov(ΠT , HG,τ )− q| ≤ ρ

2
+

ρr

n
+

√
2γ

TG,ταr
+

ρ

α

(
1

r
+

2

n

)
for each group HG,τ , defined as HG,τ (Πt, xt, τ̂t) = G(Πt, xt, τ̂t) · 1[τ̂t = τ ].

Proof. We follow a nearly identical approach to Theorem 3.5. Fix a group G ∈ G. The groupwise regret with respect to G
can be rewritten via the separate contributions over each prediction value:

r(Πt, pq, ϕ,G) =
∑
τ∈An

∑
t:τ̂t=τ

(pq(τ̂t, τt)− pq(ϕ(τ̂t), τt)) ·G(Πt, xt, τ̂t)︸ ︷︷ ︸
rG,τ,ϕ

Defining ϕm and M as in Theorem 3.5, we get that

|M(τ)− τ | ≤ 1

n
+

√
2γ

TG,ταr
+

ρ

α

(
1

r
+

2

n

)
where we define TG,τ =

∑
t∈[T ] 1[τ̂t = τ ] ·G(Πt, xt, τ̂t). Since the amount of probability weight on M(τ) cannot exceed

ρ, we get an upper-bound on the group conditional coverage:

∑
t:τ̂=τ

1[τt ≤ τ ] ·G(Πt, xt, τ̂t) ≤ qTG,τ +
ρTG,τ

2
+

ρrTG,τ

n
+

√
2γ

TG,ταr
+

ρ

α

(
1

r
+

2

n

)
and then a similar lower-bound. So,

|Cov(ΠT , HG,τ )− q| ≤ ρ

2
+

ρr

n
+

√
2γ

TG,ταr
+

ρ

α

(
1

r
+

2

n

)
where HG,τ is the group defined such that HG,τ (Πt, xt, τ̂t) = G(Πt, xt, τ̂t) · 1[τ̂t = τ ].

Theorem 3.8. Fix a transcript ΠT , and a set of binary groups G. If ΠT has multivalid coverage with coverage error γ (at
desired coverage rate q), and DG,τ is (α, ρ, r)-smooth for each τ ∈ An, G ∈ G, then the transcript also has groupwise
swap regret with respect to the loss pq, such that r(Πt, pq, ϕ,G) ≤ TGγ2ρ

α2r for each ϕ ∈ Φ, the collection of all strategy
modification rules for action set An, where TG is the size of group G.

Proof. Fix a threshold τ ∈ An and a group G ∈ G. Using exactly the approach in the proof for Theorem 3.6, we can bound
the sum of difference in loss, over the subsequence for which group G is active and the predicted threshold was τ :∑

t:τ̂t=τ

(pq(τ, τt)− pq(M(τ), τt)) ·G(Πt, xt, τ̂t) ≤ TG,τ
γ2ρ

α2r

where TG,τ =
∑

t∈[T ] 1[τ̂t = τ ] ·G(Πt, xt, τ̂t). Summing over all τ ∈ An, we get

r(Πt, pq, ϕ,G) ≤ TGγ
2ρ

α2r
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Theorem 4.1. For the parametrization of FTRL given in Algorithm 1 with regularization function R : Rd → R, for any
target coverage rate q and any T the resulting transcript ΠT is guaranteed to satisfy groupwise coverage for groups Gi

(i ∈ [k]) at the rate:

|Cov(ΠT , Gi)− q| ≤ ||∇R(θT+1)||∞
Ti

Proof. Pinball loss is convex, and so to apply FTRL, we feed the algorithm the linear surrogate loss ℓ(θ, τt)
.
=

⟨θ,∇θpq(⟨θt, gt⟩, τt)⟩. We can compute:

ℓ(θ, τt) =

− q ⟨θ, gt⟩, if τt > ⟨θt, gt⟩,

(1− q) ⟨θ, gt⟩, if τt ≤ ⟨θt, gt⟩.

The gradient of the loss at round t with respect to θ is therefore:

∇θℓ(θ, τt) =

− q gt, if τt > ⟨θt, gt⟩,

(1− q) gt, if τt ≤ ⟨θt, gt⟩.

FTRL with regularizer R plays the action θt at round t that solves:

θt = argmin
θ

t−1∑
s=1

ℓ(θ, τs) +R(θ)

First order optimality conditions imply that:

t−1∑
s=1

∇θℓ(θt, τs) +∇R(θt) = 0

Or equivalently,

∇R(θt) =
∑

s:τs>⟨θs,gs⟩

qgs +
∑

s:τs≤⟨θs,gs⟩

(q − 1)gs

=

t−1∑
s=1

gs(q − 1[τs ≤ τ̂s])

Hence we can bound the miscoverage rate for every group i at time T can be bounded as:

|Cov(ΠT , Gi)− q| ≤ ||∇R(θT+1)||∞
Ti

Lemma 5.1. Running Algorithm 2 for any number of rounds T with a coverage target of q for any set of k group functions,
we achieve groupwise miscoverage bounded by the following function of θT+1:

|Cov(ΠT , Gi)− q| ≤ ||θT+1||∞
Tiη

Proof. Algorithm 2 is an instantiation of follow the regularized leader as analyzed in Theorem 4.1 with regularization
function R(θ) = 1

2η ||θ||
2. We can compute ∇R(θT+1) = 1

η · θT+1. Plugging this into Theorem 4.1 gives the stated
bound.

Lemma 5.2. When Algorithm 2 is run with step-size η ∈ (0, 1], for any collection of k group functions, any coverage target
q ∈ (0, 1), and every T , the iterate θT+1 has norm bounded as:

||θT+1||∞ ≤ O(
√
ηT (ηk + 1))
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Proof. First, note that since the non-conformity scores are assumed to be bounded in [0, 1], we must have for every t that
τt ∈ [0, 1]. So, if ⟨θt, gt⟩ < 0, we must also have ⟨θt, gt⟩ ≤ τt which triggers Update A. Similarly, whenever ⟨θt, gt⟩ ≥ 1,
this necessarily triggers update B. Said another way: if the update A was triggered at round t we know that ⟨θt, gt⟩ < 1,
whereas if update B was triggered, we know that ⟨θt, gt⟩ ≥ 0. We consider these two cases separately.

Case 1 (Update A triggered): We can compute

∥θt+1∥22 = ∥θt∥22 + η2q2∥gt∥22 + 2ηq⟨θt, gt⟩
≤ ∥θt∥22 + η2q2k + 2ηq

Case 2 (Update B triggered): Similarly,

∥θt+1∥22 = ∥θt∥22 + η2(1− q)2∥gt∥22 − 2η(1− q)⟨θt, gt⟩
≤ ∥θt∥22 + η2(1− q)2k

As initially ∥θ1∥2 = 0, we obtain:

∥θT+1∥22 ≤ T
(
η2kmax{q, 1− q}2 + 2ηq

)
≤ Tη

(
ηkmax{q, 1− q}2 + 2q

)
This immediately gives us a bound on the L∞ norm:

||θT+1||∞ ≤
√
Tη
√

ηkmax{q, 1− q}2 + 2q

Theorem 5.4. Let k = η = 1 and pick any coverage target q ∈ (0, 1). The sequence of 1-dimensional weighting functions
gt =

1
2
√
t−1

together with thresholds τt = 1 causes Algorithm 2 to produce parameter vector θT+1 ∈ Ω(
√
T ).

Proof. Assume that g1 = 0. Since τt = 1, whenever θt · gt < 1 we will trigger update A. Assume all rounds up through
round t− 1 triggered update A, in which case θt = η · q ·

∑t−1
k=1 gk < 2

√
t− 1. But because we set gt = 1

2
√
t−1

we have
that θt · gt < 1, once again triggering update A. Inductively, update A is thus triggered at every round, and so we have that
θT+1 = η · q ·

∑T
k=1 gk = Ω(

√
T ).

B. Additional Related Work
In a parallel line of work, Gupta et al. (2022) introduced the problem of online uncertainty quantification in the form of
mean, variance, and quantile estimation, using techniques deriving from the online calibration literature (Foster & Vohra,
1998). Bastani et al. (2022) gave a refinement of their quantile calibration technique to give an online conformal prediction
method that gave conditional guarantees of various sorts. Coverage bounds from algorithms of this sort follow from
quantile-calibration arguments.

(Foygel Barber et al., 2021) consider the problem of group conditional coverage in conformal prediction and propose running
separate algorithms for each group, and for examples that are in multiple groups, using the most conservative threshold
amongst each of the groupwise algorithms. (Jung et al., 2021) give the first non-conservative method for getting groupwise
coverage for intersecting groups, by adapting ideas from multicalibration (Hébert-Johnson et al., 2018) to calibrate to
moments of the score function, conditional on group membership. (Gupta et al., 2022) give algorithms for group-conditional
quantile multicalibration, and show how this can be used to give tight “multivalid” confidence intervals. (Bastani et al.,
2022) and (Jung et al., 2023) apply these ideas explicitly to conformal prediction. (Gibbs et al., 2025) give a variant of
the algorithm from (Jung et al., 2023) which gives coverage guarantees in expectation over the calibration set, rather than
PAC-style guarantees as in (Jung et al., 2023).

The characterization we give of threshold calibrated coverage by swap regret bounds on the pinball loss mirrors an
equivalence between swap regret on the squared loss and (mean) calibration (Foster & Vohra, 1998; 1999). More generally
the connection between calibration of different distributional quantities and their corresponding “elicitation functions” was
made by (Noarov & Roth, 2023).
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C. Experiments
Here we provide additional details on the set-up for each experiment. We closely follow the steps described in (Bastani
et al., 2022), which performed experiments on the same datasets to measure the performance of their algorithm MVP for
group-conditional coverage guarantees.

C.1. Time Series Data

We replicate the prediction task described first in (Gibbs & Candes, 2021), for testing the ACI algorithm’s ability to achieve
marginal coverage, which uses AMD stock market data from the WSJ daily price across years 2000-2020. The dataset gives
price points {pt}Tt=1 of the stock for T = 5283. Using this data, we compute the daily return rt, defined as rt =

pt−pt−1

pt−1
,

which correspondingly defines the daily realized volatility vt = r2t . The task is to predict this volatility. Using the predictive
model GARCH ((Bollerslev, 1986)), which makes a prediction of the volatility v̂t, the scoring function used on day t is
ft(x, y) =

|y−v̂t|
v̂t

, normalized to ensure scores are always in the range [0, 1]2. Then, as in (Bastani et al., 2022), we define
the collection of 20 groups {Gi}20i=1, where Gi includes all time-steps t for which t ≡ 0 (mod i), and introduce artificial
noise to group data in the following way - for each time-step t, we add noise N (0, σ̂r) to the return value t for each group in
Gi that t is included in, where σ̂r is the standard deviation of the original return sequence. We run both GCACI and MVP
on this data, asking for a desired group conditional coverage level of q = 0.9. In (Bastani et al., 2022), they show that MVP
achieves the desired group conditional coverage while ACI is unable to. Here, we see that GCACI not only achieves group
conditional coverage, but converges at much quicker rates than MVP.

C.2. Synthetic Distribution Shift (UCI Airfoil Data)

We run both MVP and GCACI on the airfoil dataset from the UCI Machine Learning Repository (Dua & Graff, 2017),
which consists of 1503 instances of NASA airfoil blades; the task is to predict the Scaled Sound Pressure Level (SSPL).
In (Bastani et al., 2022), they compare against the performance of the weighted split conformal prediction algorithm of
(Tibshirani et al., 2019), and test only for marginal coverage. Following their approach, we use 25% of the data to train a
linear regression model g : X → R, which defines the scoring function f(x, y) = |g(x)− y|. Another 25% of the data is
used as is, and the final 50% of the data is sampled (with replacement) using exponential tilting - each datapoint x is drawn
with probability proportional to exp(⟨x, β⟩), where we set β = (−1, 0, 0, 0, 1) as in (Tibshirani et al., 2019) and (Bastani
et al., 2022), representing synthetic covariate shift. The test set is sequenced such that the original (unshifted) data comes
first, followed by the shifted data. Then, as in the previous section, we define a set of six groups {Gi}6i=1 where membership
is again defined by time-step, i.e. Gi includes all time-steps for which t ≡ 0 (mod i). Both algorithms are run with a desired
coverage rate q = 0.9.

C.3. Natural Distribution Shift (Folktables)

Finally, we compare performance of MVP and GCACI on a distribution shift problem using 2018 Census data from the
Folktables repository (Ding et al., 2021). The task involves predicting individuals’ income. We use census data from two
different states (California & Pennsylvania) and sample 0.2 of both states to get a test set with N = 52794 data points.
The data is sequenced with all CA datapoints first, giving us unknown distribution shift from a natural source. A quantile
regression model h : X → R is trained on 50% of the remaining California data, defining the fixed scoring function
f(x, y) = |h(x)− y|. We define 12 total groups, over all nine codes for race available in the Folktables dataset, two groups
for sex, as well as the group including all data points. In (Bastani et al., 2022), four of the race groups are omitted due to
being very small fractions of the overall dataset - we include even these small-sized groups to illustrate that GCACI is able
to converge quickly even for such groups. We run both algorithms with a desired coverage rate of q = 0.9.

2Note that though the feature vector x is included generically here as an argument in the non-conformity score, the GARCH model
typically uses only past volatility data to make predictions for the next time-step in the sequence.
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