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ABSTRACT

Human vision flexibly extracts part-whole hierarchy from visual scenes. However,
how can a neural network with a fixed architecture parse an image into a part-whole
hierarchy that potentially has a different structure for each image is a difficult ques-
tion. This paper presents a new framework to represent the part-whole hierarchy
by the hierarchical neuronal synchrony: (1) Neurons are dynamically synchronized
into neuronal groups (of different timescales) to temporarily represent each object
(wholes, parts, sub-parts, etc.) as the nodes of the parse tree. (2) The coordinated
temporal relationship among neuronal groups represents the structure (edges) of
the parse tree. Further, we developed a simple two-level hybrid model inspired by
the visual cortical circuit, the Composer, which is able to dynamically achieve the
emergent coordinated synchronous states given an image. The synchrony states
are gradually created by the iterative top-down prediction / bottom-up integration
between levels and inside each level. For evaluation, four synthetic datasets and
three quantitative metrics are invented. The quantitative and qualitative results
show that the Composer is able to parse a range of scenes of different complexities
through dynamically formed neuronal synchrony. It is promising that the system-
atic framework proposed in this paper, from representation and implementation to
evaluation, sheds light on developing human-like vision in neural network models.

1 INTRODUCTION

Representing hierarchical structure is a key problem for neural networks. While there is strong
evidence in psychology that people parse a visual scene into part-whole hierarchies with many
different levels (e.g. scene level, object level, part level, sub-part level, sub-sub-part level, etc.)
(Hinton, 1979; Kahneman et al., 1992; Thompson, 1980), the representation and manipulation of
part-whole hierarchical information in fixed hardware is a profound challenge for artificial neural
networks (Hinton, 2021). On the other hand, constructing such a part-whole hierarchy enables the
neural networks to understand the visual scenes in a compositional way like human (Hinton, 2021),
and facilitates the interpretability of the network representation (Garau et al., 2022).

The part-whole hierarchy is an inclusion relationship and is conceptually organized as a parse tree
since each part object (child node) should belong to a single whole object (parent node) (Hinton,
2021). Such compositional structure of multiple simultaneously presented objects of different levels
profoundly complicates the problem of visual perception (Fig.1 b). More importantly, the structure of
the parse tree could switch among multiple reasonable forms even given a single scene and is likely
to dynamically reform itself on the fly when the scene changes. Such dynamical and multi-stable
nature challenges neural networks of fixed architecture (Hinton, 2021). Moreover, it renders simple
feedforward networks (Deng et al., 2021) and supervised learning unlikely to ultimately conquer the
problem (Greff et al., 2020).

The challenge of the problem could be decomposed into three aspects: First (Node), how to dynam-
ically group information that is distributed in neural networks to form each object representation
that potentially acts as tree nodes? Second (Levels), how to distinguish node representations into
the whole level and part level? Third (Edges), how to specify the relationship among whole-object
representation and part-object representation as the edges in the parse tree. It is notable that when
parsing different images, the three aspects should be achieved while keeping the network structure
unchanged, e.g. the number of neurons.
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To solve the problem, we seek inspirations from the brain: First (Nodes), neuronal synchrony is
exploited to dynamically group distributed information into object representation (Malsburg, 1994;
Singer, 2007) in a wide range of regions of the brain, so-called cell assemblies (Palm, 1982; Buzsáki,
2010; Camera et al., 2019; Miehl et al., 2022) (Fig.1d, colored shadows). Second (Levels), the
neocortex is spatially organized into hierarchical levels of columns (V1, V2, etc, Fig.2g), potentially
corresponding to the levels of part-whole hierarchy (Gross et al., 1972; Gross, 2002; Tsao et al.,
2006; Hinton, 2021). In other words, the level is explicitly distinguished by spatial separation (Fig.1d
different colors along the y-axis and Fig.2f,g). Third (Edges), the temporal structure of neuronal
activity (cell assemblies and neuronal oscillations) is organized into a ‘timescale hierarchy’ (Manea
et al., 2021), of different frequency bands (Buzsáki & Draguhn, 2004), along the cortical hierarchy
(Mahjoory et al., 2019). Moreover, the timescale hierarchy (from milliseconds to seconds) is related
to information of hierarchical levels (e.g. words to sentences) in the neocortex and the transient
nestedness (coordination) of different timescales indicates the presence of consciousness (Northoff
& Huang, 2017b). Therefore, the nested relationship among parts and wholes (Fig.1b) could be
represented as the nestedness among synchronized neuronal groups of hierarchical timescales in
neural networks (Fig.1d).

In this paper, we systematically study how to represent the part-whole hierarchy in neural networks
through coordinated synchrony, from representation (framework) to implementation (model) and
to evaluation (dataset and metric). We first develop a novel framework to deal with part-whole
hierarchy at the representation level, where each object is represented as synchronized neuronal
groups and the hierarchical relationship among objects is represented as the nestedness (coordination)
among neuronal groups of different timescales. Then, at the implementation level, We provide a
cortical-circuit-inspired model, called the Composer (short for COrtical-like eMergence of Part-
whOle relationShip through nEuronal synchRony) to show how the hierarchical synchrony state is
emerged given an input image. The Composer integrates spike timing dynamics into a deep learning
framework to exploit the core advances of both sides. More specifically, the Composer consists of
two levels of columns and each column contains a visible spike coding space (SCS), which is delay
coupled by a denoising autoencoder(DAE) (Vincent et al., 2008). The coordinated synchrony is
reached through iterative top-down prediction and bottom-up integration within each level and across
different levels. In order to understand the representation of the Composer, four synthetic datasets of
different complexities and three metrics to measure different aspects of the part-whole representation
are invented to explicitly evaluate the emergent neuronal activity. Quantitative results and qualitative
visualization confirm the validity of the Composer and the plausibility of the framework. Lastly, for
comparison, we show that the Composer outperforms the SOTA, the Agglomerator (Garau et al.,
2022), when the representation for the part-whole hierarchy is explicitly evaluated. The main
contributions are as follows:

(1) We developed a bio-plausible framework to deal with the part-whole hierarchy at the representation
level.

(2) We developed the Composer, integrating both deep learning (denoising autoencoder and self-
supervised learning) and neuroscience (spiking code, dendritic computation, and rhythmic dynamics)
to show how the coherent state emerges to represent the part-whole relationship.

(3) We invented four synthetic datasets and three quantitative metrics to explicitly interpret the learned
representation, which also shows that the Composer outperforms the recent state-of-the-art model.

2 FRAMEWORK AND INTUITIONS

In this section, we develop the framework of how to represent the part-whole hierarchy with synchrony
and provide intuitions to understand how the neuronal synchrony emerges, step by step.

2.1 REPRESENTATION

Firstly, neurons have receptive fields that are selective for different features of objects; Secondly,
the set of neurons responsive to features of the same object are dynamically synchronized into the
neuronal group to form the object representation (Fig.1d, y-axis and colored shadows). Third, neurons
are explicitly distinguished into columns of different levels (part/wholes, Fig.2f,g) and each column
contains neurons that represent the objects at the respective level. Columns in higher levels have
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Figure 1: (a) The visual scene of a house. (b) The mental parse tree of the visual scene. (c)(d)
Representing the parse tree as emergent neuronal synchrony. Synchronized neuronal groups are
indicated by colored shadows in (d). Colors stand for levels in both (b) and (d). Neurons are indicated
by selectivity along y-axis in (c),(d).

Figure 2: How coordinated neuronal synchrony emerges. (a) Denoising autoencoder (DAE). (b)
Legend for (c)(d). (c) Building up attractor dynamics by DAE (top and middle), which results in
stationary population activity (bottom). (d) Building-up metastable rhythmic dynamics when spiking
neurons and delay coupling show up. (e) The phase space (left) and population activity (right) of the
whole system. Attractive basin is not shown for clarity. (f) General architecture of the Composer,
which is highly inspired from the visual cortical circuit shown in (g). (h) Shared legend of (f)(g).

longer timescales so that synchrony events are much sparser(Fig.1d). Fourth, the temporal inclusion
relation (nestedness) of neuronal groups represents the inclusion relation among parts and wholes
(see nested colored shadows in Fig.1d and colored nodes in Fig.1b), so that the part-whole hierarchy
is represented as coordinated neuronal synchrony.

2.2 INTUITIONS OF THE MECHANISM

But how could the coordinated temporal structure emerge in a neural network given a visual scene?
The intuition starts from the close relationship between the denoising autoencoder and the attractor
dynamics. As shown in Fig.2a, denoising autoencoder (DAE) denoises noisy patterns. If it is
exploited to parameterize a recurrent neural network so that xt+1 = DAE(xt), noisy pattern x0 in
the neighbourhood of original pattern x will be ‘attracted’ to the original pattern by the recurrent
dynamics (Fig.2c). xt is the network state at time step t. Therefore, a large number of attractors are
explicitly embedded into the network dynamics by DAE. However, the attractor dynamics results in
stationary population activity of a single set of active neurons (Fig.2c, bottom).

To represent multiple objects, the network needs to be metastable and it is where spiking dynamics
and delay coupling show up. As shown in Fig.2d (top), if the neurons become spiking, their refractory
period will prevent persistent firing so that the attracted states become transient. The delay coupling
renders the dynamics non-Markovian and provides the essential time window for attracted states
to switch (Fig.2d middle) so that the population activity becomes non-equilibrium and oscillatory
(Fig.2d bottom). In other words, the synchronized neuronal groups to represent objects are transient
attractive states of the network dynamics in nature. The same mechanism could be exploited to build
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up neuronal groups in both part and whole levels. The subtle difference is that the whole level has
longer timescales so that its dynamics is slower than the part level.

Provided that appropriate metastable dynamics is created in both part and whole levels so that all
candidate object representations for the node of the parse tree are at hand, it is also important to
coordinate the neuronal groups of the two levels to shape the parse tree. The general picture is that
whole-level states condition the part-level states, e.g. by gating effect (Fig.2e, left, green arrow),
so that during the ‘lifetime’ of each slow whole-level neuronal group (transient attractive state),
corresponding fast part-level neuronal groups switch with smaller timescales (Fig.2e,left). On the
other side, the temporal integration of part-level activity smooths out the finer-grained details and
can in turn reinforce the whole-level states (Fig.2e, left, orange arrow). In a nutshell, vision in the
Composer is a sampling process on an imagined energy landscape, which is shaped by both DAE and
biological constraints like refractoriness, delay coupling, top-down gating, and bottom-up integration.
The overall effect is to enforce the coordinated synchrony states as the local minimums of the entire
dynamical system so that it is searched along the iterations. Once searched, hierarchical neuronal
synchrony emerges as the population activity (Fig.2e, right).

3 MODEL

Overall, the Composer consists of two levels of columns, interconnected by top-down modulation
and bottom-up integration (Fig.2f). Each column contains a visible spiking layer, named spike coding
space (SCS, Fig.3c), which is delay coupled by respective DAEs. The SCS of both levels has the
same dimensions as the image (d), corresponding to the topographical mapping in neocortex (Kaas,
1997).

The general architecture is inspired by the circuit organization in the visual cortex (Fig.2g). As shown
in Fig.2fg, layer 2/3 in the cortical column encode low-level features with sparser firings while layer
5/6 encode higher-level features with denser firings. The former is modeled as superficial spike
coding space (SCS) and the latter is modeled as the real-valued latent space of DAE. Besides, the
bottom-up integration and top-down modulation ‘inside each column’ are modeled as encoders and
decoders of the DAEs (Fig.2fg). More specifically, bottom-up integration is sensitive to spike timings,
so-called coincidence detectors (König et al., 1996), which is modeled as an integrative function I
(Fig.3f) before feeding SCS activities into DAEs. Besides, the top-down feedback modulates the
activity of pyramidal cells in layer 2/3 by acting on distal synapses (away from the soma) (Sherman
& Guillery, 1998). These dendritic computations are modeled as simplified pyramidal cells in SCSs
(Fig.3ab). In the following section, we dive into more details of the Composer step by step.

3.1 PART-LEVEL COLUMN

Pyramidal cells in the visible SCS of part column receive inputs from three sources (Fig.3b): the
input image x ∈ {0, 1}d, the inner-level feedback γ1 ∈ Rd and the inter-level feedback Γ ∈ Rd:

ρ1(t) = x · γ1 · Γ (1)
where ‘·’ is pixel-wise and ρ1 is the firing rate, which determines the firing activity s1 ∈ {0, 1}d:

P (s1 = 1) = ρ1(t) · g1(t− t̂), t ∈ [0, T ]. (2)

where g1(t − t̂) is the relative refractory function of neurons in the part level (Fig.3e) and t̂ is the
timing of the latest spike firing event of each neuron. As shown in Fig.3e, after firing a spike, the
neuron goes into an absolute refractory period of timescale τr1 and then a relative refractory period of
timescale τδ1 − τr1, where firing probability is inhibited by a factor g < 1. The inner-level feedback
γ1 in eq.1 is the denoised output of the DAE1 = G1 ◦ F1, yet with delay τd:

γ1 = DAE1((I1 ∗ s1)(t− τd)). (3)

where ∗ is the convolution operator and I1 is the integrative function for s1(t), of timescale τ1 (Fig.3f).
In a word, the spiking activity s1(t) in the visible SCS is integrated within a short time window τ1
before fed into the DAE1, and the feedback from DAE to SCS is delayed by τd.

3.2 WHOLE-LEVEL COLUMN
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Figure 3: (a)(b) Pyramidal neuron models in the visible
spike coding space of part level and whole level. ⊗ stands
for multiplication and ⊕ stands for addition on the den-
drites. (c) Detailed information flow. Note that delayed
coupling exists both within each column and between dif-
ferent columns. Levels are indicated by color. (d) The
legend for (c). (e) Relative refractory function g. (f) Inte-
gration function Ii(t) of timescale τi.

Since the whole-level column is the top
level in the current two-level Composer,
it does not receive top-down modulation
from even higher levels. Besides, the
image has a partial influence on SCS
in the whole-level column through skip
connections (Fig.3c), which is also com-
mon in the cortical circuit:

ρ2 = (λ · x+ (1− λ) ·D) · γ2 (4)

where λ < 1 is the factor of partial in-
fluence from skip connection. D is the
integrated driving input from the part-
level column. ρ2 determines the spike
firing probability by:

P (s2 = 1) = ρ2(t) · g2(t− t̂) (5)

Lastly, the delayed feedback from
DAE2 is also similar to eq.3:

γ2 = DAE2((I2 ∗ s2)(t− τd)) (6)

3.3 LINKING THE LEVELS

Up to now, we have introduced operations within each column of the Composer except for two
variables: Γ and D, which are interactions between levels:

Γ(t) = (IΓ ∗ s2)(t− τd′) and D(t) = (ID ∗ s1)(t). (7)

where τd′ is the delay timescale from whole-level to part-level. τΓ, τD in the IΓ, ID is the timescale
of integration function. It is notable that: (1) While only two levels are considered in this paper for
simplicity, the Composer can be naturally extended to account for more levels (eg. Up to five levels
are enough for human vision (Hinton, 2021)) (2) While the inter-level projection could account for a
wide range of computational goals like coordinate transformation (Hinton, 2021), in this paper, we
only focus on a minimal realization as pixel-wise gating (eq.1) and driving (eq.4) between SCSs since
we aim to demonstrate how to group information through temporal coherence to represent hierarchical
structures in neural networks. Further computational goals like coordinate transformation can be
realized in the future by parameterizing the inter-level pathway also as neural networks (Hinton,
2021).

4 EVALUATION

Figure 4: Examples in datasets (a) Ts (b) SHOPs
(c) Squares (d) Double-digit MNIST. Top, input.
Middle / Bottom, ground truth of wholes/parts.
Similar color is used for parts of the same whole.

As far as we know, most related works on the
part-whole hierarchy are evaluated on images
containing only a single object without a clear
part-whole relationship (e.g. MNIST) (Hinton
et al., 2018). Therefore, it is difficult, if not im-
possible, to distinguish the representation from
general feature extraction (Garau et al., 2022) or
object-centric attention (Sun et al., 2021), which
are much easier problems. The lack of explicit
part-whole datasets and quantitative metrics to
measure the representation hinders the develop-
ment of models capable of visual parsing. This
challenge motivates us to invent datasets and
metrics to explicitly evaluate the Composer.
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Figure 5: Different Scores measure different aspects of the part-whole hierarchy. (a) Ideal parsing
(spike raster plot of two levels, similar to Fig.1d) given the input in (b) (GT stands for ground truth in
(b)). Only a single period of the oscillatory pattern is drawn in (a) for clarity. From (c) to (f): We
perturb the ideal representation in (a) on different aspects (title on the top) and of different levels
(x-axis of bottom figures) to further show what the score measures and their sensitivity. Top, perturbed
spiking pattern; Bottom, scores as functions of the perturbation level (Orange: whole score; Blue:
part score; Green: coordination score.). Dashed vertical line indicates the perturbation level where
the spiking pattern (top) is drawn.

4.1 DATASET

We invent four synthetic part-whole datasets of different complexities (Fig.4), each containing 60000
samples. Each image consists of multiple whole objects, each of which is further composed of
well-defined parts. Whole objects are randomly located in the image. The DAE in part / whole level
columns are trained to denoise single part / whole objects (Appendix A.7).

Ts dataset (Fig.4a) consists of three letter ⊤ and three reversed letter ⊥ as whole-level objects. Each
⊤ or ⊥ is composed of a horizontal bar segment and a vertical bar segment as parts. T s dataset has
relatively large whole number, but each whole has small part number. Similar stimuli are used as
target templates in perceptual tasks like visual search in neuroscience literature (Wolfe, 2021).

Squares dataset (Fig.4c) consists of three randomly-located squares as wholes, each of which consists
of four corners. The objects in dataset have relatively more parts. Besides, it could demonstrate the
role of spatial connected-ness / closure in forming the parsing tree. Similar stimuli are used to study
illusory contour (Lee & Nguyen, 2001) in Gestalt perceptual tasks in psychology literature.

SHOPs, short for (Shoes (Fig.4b-ii), House (Fig.4b-i), OPera (Fig.4b-iii)) consists of three types of
whole objects that are further composed of more elementary rectangular and triangles. Each image
contains three randomly selected and located objects. This dataset accounts for the complexity that
parts could heavily overlap with each other to construct a whole object. Overlapped regions are not
assigned to either object at part level in the ground truth (Fig.4b, bottom).

Double-Digit MNIST (Fig.4d) mimics the more realistic scenes when dealing with double-digit
numbers. Each image contains two randomly selected and located double digits, and each double-digit
is composed of two randomly selected, closely located MNIST digits. This dataset contains objects
of higher complexity and diversity.

4.2 SCORES

The neural representation of a parse tree can be decomposed into 3 characteristics: (1) The grouping of
part-level objects (child node, blue circles in Fig.5a); (2) The grouping of whole level objects (parent
node, orange circle in Fig.5a) ; (3) The coordination among parts and wholes (Edges, green box in
Fig.5a). Since all three aspects are coherence measures of clusters in nature, we exploit Silhouette
Score (Rousseeuw, 1987) to develop the metrics: (1) Part Score (2) Whole Score and (3) Coordination
Score to measure the three aspects based on ground truth segmentation. See Appendix.A.4 for more
details. To understand how scores work, we perform perturbation studies. As shown in Fig.5c, all
scores decrease smoothly from 1 to 0, when the ideally structured pattern gradually gets globally
perturbed, finally into total random firing (e.g. Fig.1c). If only the part level is perturbed, the Whole
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Figure 6: Emergence of the part-whole hierarchy with coordinated neuronal synchrony. Exemplified
by one SHOPs sample. (a) Input image and ground truth; (b) Evolution of the Scores. (c) The
spike raster plot of three selected phases in (b): phase I (initial, green box), phase II (middle, yellow
box), phase III (final, red box). s2(t), s1(t) stand for spiking representations in SCSs of whole/part
levels. (d) zoomed in spiking pattern during the period marked by black box in (c), to visualize what
each synchronized group represents (e.g. yellow/green boxes in (c),(d)and(a)). (e) Evolution of the
top-down attention maps and the local field potential (LFP) during the three phases in (b).

Score remains constant while both the Part Score and Coordination Score are decreased from 1 to
0 (Fig.5d). Results are inversed when only the whole level is perturbed (Fig.5e). Lastly, if we only
perturb the relative order of parts and wholes, each of which is perfectly grouped as in (a). It is
shown that only the Coordination Score decreases saliently while Part / Whole Scores remain mostly
unchanged. Since the perturbed order of well-grouped spikes results in systematic wrong assignment
of clusters (Fig.5f top), the score decreases to even lower than 0 (Fig.5f bottom). Taken together, Part
Score and Whole Score evaluate the build-up of tree nodes, which is the ‘pre-requisite’ to represent
parse trees and the Coordination Score further evaluates the structure of the tree. Following the
Silhouette Score, the best score (coherence) is 1 and the worst score (incoherence) is -1. A score near
0 indicates randomness like Fig.1c.

5 EXPERIMENTS

5.1 QUALITATIVE RESULTS AND VISUALIZATION

Emergence of the parse tree in SCS. We visualize the simulation on a randomly selected sample
in the SHOPs dataset in Fig.6. As indicated by the convergence of Part Score, Whole Score and
Coordination Score (Fig.6b), the Composer gradually achieves a state of neuronal coherence that
represents the parts and wholes as synchronized neuronal groups, which is further visualized in Fig.6c
right and Fig.6d. More specifically, three two-level binary-tree (corresponding to three SHOPs objects
in Fig.6a) periodically emerges in the final phase III (Fig.6c right), one of which is marked out by one
yellow (for whole object) and two green (for part objects) boxes. The spikes of parts/wholes in Fig.6c
are reordered (on the y-axis) and colored corresponding to the ground truth of parts/wholes (Fig.6a)
for more vivid visualization, so that the same neuronal groups are arranged closely and the color of
spikes is consistent with the ground truth. For more visualization results, see Appendix A.10.7.
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Figure 7: Similar to Fig.6c right, but for other datasets: (a) Ts (b) Squares (c) Double-Digit MNIST.
Left: input image, part ground truth and whole ground truth. Right: spike raster plot in final phase III,
top for part level and bottom for whole level. Neuronal groups are circled for clarification.

Figure 8: Convergence of Scores. (a) SHOPs (b) Squares (c) Ts (d) Double-Digit MNIST.

Emergence of the DAE attention map is observed in Fig.6e: Starting from randomness (left), the
cross-level feedback Γ or inner-level feedback from the DAEs γ1/γ2 gradually converge to structured
patterns, similar to the spiking patterns (Fig.6c, right), yet of longer timescales. Therefore, the
top-down attention from DAEs and bottom-up integrations of spikes work together as a whole system
in Composer. Besides, rhythmic population activity (LFP1) emerges (Fig.6e) at the part level.

Visualization results on other datasets are shown in Fig.7. Interestingly, the emergent synchrony
structure differs across the datasets. While in the Ts dataset (consists of 6 Ts), 6 binary trees emerge
periodically, 3 quadtrees emerge in the Squares dataset (consists of 3 Squares). In Double-Digit
MNIST (consists of 2 Double-MNISTs), 2 binary trees emerge. Taken together, the Composer
successfully and flexibly represents the part-whole hierarchy of scenes of different complexities.

5.2 QUANTITATIVE ANALYSIS

Figure 9: Benchmarking

Convergence of the scores during iterations are evaluated
on 100 randomly selected samples in each dataset and are
shown in Fig.8. Interestingly, while scores consistently
converge on all datasets with low error bars, the conver-
gent process slightly differs across cases. For Squares
(Fig.8b), whole objects group much faster than part ob-
jects, similar to human vision (Lee & Nguyen, 2001). For
Ts (Fig.8c), the large object number imposes combinato-
rial burdens on the coordination, so that the Coordination
Score lags behind. For Double-Digit MNIST (Fig.8d),
Composer has more difficulties in distinguishing part-level
MNISTs, partially due to the diversity of the dataset. See
Appendix.A.10.5

Benchmarking. We compare the Composer with a re-
cently implemented SOTA, the Agglomerator (Garau et al.,
2022), which also attempts to exploit the idea of neuronal
coherence (similarity among vectors) to group neuronal representation (at different levels) into tree
nodes (islands of vectors). 1000 random samples and 5 random seeds are used to evaluate the
Composer and the Agglomerator on the four datasets. The 3 coherence-based metric is naturally
generalized to evaluate the Agglomerator. As shown in Fig.9, the Composer outperforms the Ag-

8



Under review as a conference paper at ICLR 2024

Figure 10: Ablation study on SHOPs. (a) Loss vs Scores (b) Ablation of time scale parameters.

glomerator on all datasets. Actually, the Agglomerator even failed to form the node representation as
pre-requisites. See Appendix.A.5 for more details on benchmarking.

Loss vs Scores. Since denoised feedback from DAEs is an essential mechanism in the Composer, it
is instructive to examine the relationship between the denoising performance of DAE and the parsing
scores. For this purpose, we trained 100 DAEs with the same architecture on the SHOPs dataset with
random learning rates, and then performed parsing using each of them. Fig.10a shows the relationship
between the denoising loss and parsing scores. It is observed that lower loss positively correlates with
higher scores on all metrics, indicating that there is a direct interplay between denoising and parsing.

Ablation study of timescale parameters are shown in Fig.10b, where parameters are set to zeros in
isolation. For example, g = 0 stands for the removal of the relative refractory period. Compared with
the original model, all ablated models have lower scores. Specifically, the removal of delay τd, whole-
level refractory period τr2, and cross-level feedback delay τd′ has the destructive effect, indicated by
reversed Coordination Score. Besides, changes at the part level affect Part Score more than the Whole
Score (e.g. τ1, τr1). The removal of relative refractory period g slightly degrades the coordination
and the removal of cross-level integration τD globally degrades all scores. (Appendix.A.10.4)

6 RELATED WORK

Object-centric representation is a line of research that explores how to bind distributed information
into single-level objects as reusable entities in neural networks (Greff et al., 2015; 2016; 2017; 2019;
2020; Locatello et al., 2020), some of which also exploit the idea of neuronal synchrony (Zheng et al.,
2022; Löwe et al., 2022). While single-level object representations are essential prerequisites to form
building blocks (nodes), they can’t account for hierarchical structures like part-whole hierarchy.

Graph neural network (GNN) can explicitly represent part-whole relationships as a specific type
of graph of patches. However, their architecture either is not fixed but changed with the grouped
object number (Bear et al., 2020) or needs an object detector to transform the image into node
representations (Xu et al., 2017). In contrast, we study how to implicitly represent part-whole
hierarchy with neuronal activities in neural networks of fixed architecture that directly process the
image, which is more consistent with human vision. Besides, the over-smoothing phenomenon limits
the depth of part-whole levels being represented in GNNs (Han et al., 2022).

Hierarchical latent variable models can explicitly capture the tree structure within its latent space
(Deng et al., 2021). However, current models are feedforward networks without iterative message
passing as the Composer, which limits their potential to ultimately conquer the problem.

Other visual parsers include capsule-like (Hinton et al., 2018; Garau et al., 2022), transformer-
based (Sun et al., 2021), and recursive neural programmer (Fisher & Rao, 2022), etc. The common
weaknesses of these works are the evaluations: single-object datasets without clear part-whole
relationships (e.g. MNIST) are used and the evaluation lacks metrics to measure the parsing.
Therefore, it is unlikely to distinguish the proposed part-whole representation from feature extraction
or single-level object-centric representation. In contrast, the Composer’s representation is interpreted
explicitly.
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7 CONCLUSION

We present Composer, together with the framework of representation, physical intuition, biologically
inspired implementation and explicit evaluation. Results show that Composer uses emergent neuronal
synchrony to parse a range of scenes of distinct composite structures, complexities and diversities.
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A APPENDIX

The appendix is organized as follows: We first discuss the limitation, broader impact, and potential
future work of this paper in Section.A.1 and Section.A.2. Followed by showing the code availability,
Section.A.3, where the detailed realization of the model and main results can be found. In Section.A.4
(Metric), we provide a step-by-step introduction to the evaluation method in this work. Then, we
introduce the benchmark details in Section.A.5. In Section.A.6, details of the model, especially the
organization of time-scale parameters are stressed. Following the model detail, we list the details
about the training process of DAEs in Section.A.7 and the hyper-parameters details in Section.A.8.
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We also enumerate the biological motivation and correlates of the Composer in Section.A.9 (Bio-
plausibility). Lastly, we provide more detailed discussions and additional results (Visualization)
related to the experiments in the main text, in Section.A.10.

Also, we provide a zip file containing videos visualizing the dataflow of the Composer in SI, about
(60MB)

A.1 LIMITATION AND FUTURE WORK

In this section, we highlight several limitations that could be addressed in future works.

Visible layer. In this work, the part-whole hierarchy is represented and evaluated based on the
visible space (SCS), which has a one-to-one mapping to the image’s pixel space (topographical
mapping). Such a setting makes the representation much more interpretable so that the part-whole
hierarchy could be explicitly evaluated and visualized as Fig.6, Fig.7. While topographical mapping
(a one-to-one spatial relation to the physical world) is a common feature of the cortical representation,
the representation could be more abstract. For example, instead of a binary neuron associated with
the ’existence’ of an object occupying the location, a population of binary neurons can be assigned to
each location, so that different aspects of features (associated with the object at each location) could
be accounted for by the population vector. Assigning a population of neurons with locations is similar
to the capsule idea in Capsule Network (Hinton et al., 2018) and the mini-column organization in
GLOM (Hinton, 2021). This suggests a future direction to combine the neuronal synchrony with
identical islands of neurons in the GLOM.

Besides, the object could be represented in the latent layer of the DAE instead of the visible SCS in
each column, similar to Locatello et al. (2020). Representing objects in the latent layer could enable
transforms between levels as in GLOM, by replacing pixel-wise gating in this paper into a neural
network that potentially parameterizes a coordinate transformation.

Besides, the input to the SCS of the lowest level is not restricted to be the pixel-level image but could
be the output feature map of an encoder, which is called tokenization in Agglomerator (Garau et al.,
2022). This kind of generalization has also been discussed in Hinton (2021) and also applies to our
model.

In sum, the limitation of the part-whole hierarchy as a pixel-level relationship in visible space could
potentially be generalized in three directions: (1) To allocate each location a column of spiking
neurons to form a representation space at each location. (2) replacing the simplified cross-level
interaction between visible layers as a proper neural network between latent layers and visible layers.
(3) the input to the model could be generalized to the tokenized embeddings from the upstream
encoder. Notably, all these generalizations are compatible with the model and could be explored as
future works.

Coordination transformation. As originally motivated in Hinton (1979) and restated in Hinton
(2021), part-whole hierarchy contains two challenges: (1) the dynamic emergence of the part-whole
tree structure and (2) the implementation of a part-whole coordinate transformation. The insight
behind this paper is that the first challenge is the core challenge of the problem while the latter one
could be solved by implementing the transformation as a neural network. In other words, the flexible
forming of a symbolic tree structure (capable of capturing the basic nested part-whole relationship)
within a pure neural network is the hard problem that challenges the neural network models. The
second problem, implementing a coordinate transformation, is more compatible with the neural
network: such transformation could be realized as a (feedforward) neural network.

In this work, we focus on how to represent the part-whole hierarchy within a pure neural network
model through emergent nested neuronal synchrony. The coordinate is assumed to be already aligned
between the whole and part so that the coordination transformation is reduced to the inclusion
mapping (similar to identity mapping). However, since the parsing tree is realized within a pure
neural network, the mechanism is compatible with more general coordination transformation: it could
be realized by replacing the pixel-wise conditioning with a neural network, which parameterizes the
coordinate transformation.

More layers. In this paper, we show the part-whole hierarchy of two levels: whole and part. However,
this minimal structure could be naturally extended to account for more levels, since the form of
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interaction between levels is mostly irrelevant to how many levels are there or which level it is in. All
levels could share a unified form of cross-level interaction and within-level interaction. Therefore,
by stacking the columns along the hierarchy, more levels are accounted for. As discussed in Hinton
(2021), up to five levels are sufficient to realize human-like vision.

Synthetic image. In this paper, we use synthetic images to demonstrate how to represent the part-
whole hierarchy. The benefit of using the synthetic image is that: (1) a common sense reasonable
part-whole relationship is known beforehand as ground truth, therefore it is more convenient to
explicitly evaluate the representation and test the capability. (2) The ground truth assignment of
objects (part/whole) is known, which could be utilized to evaluate the neuronal coherence. The
weak side of a ground truth is that such explicit assignment of part-whole ignores the ambiguity of
parsing the scene: the parsing could depend on many factors like prior knowledge, attention, goal,
internal state, and so on. Besides, parsing a real-world image without explicit part-whole hierarchy
might be challenging for other reasons (overlap, background, etc.). However, recent models (Hinton
et al., 2018; Sun et al., 2021; Garau et al., 2022) that claim to solve the part-whole problem actually
resemble performing hierarchical feature extractions. Such confusion is partly due to the ambiguity
of the part-whole relation, object definition and the complexity of features in the real-world images,
which makes the symbolic structure harder to distinguish. Therefore, taking the present status of the
problem1 and the challenges the problem implicates2 into account, it is desirable to focus on explicit
evaluation based on synthetic data first (so that it is easier to interpret whether the mechanism works)
and then gradually generalize the outcome to increasingly complex datasets in the future.

Learning scheme. In this work, we treat the ’sense’ of what the object should look like as prior
knowledge embedding in the parameters of DAE’s weight, which in turn determines the dynamical
property of the Composer. Indeed, such prior is needed for humans to parse a visual scene as well.
For example, given a visual scene of a house (Fig.1a in the main text), a human observer should
have already had the concept of the door, the window, and the roof in their mind, so that a house
is parsed in the way Fig1.b (main text) shows. Therefore, in this work, we consider how a parsing
structure could emerge as coordinated neuronal coherence in a pure neural network given the prior
knowledge of objects. On the one hand, some of the priors are indeed hard-wired in the brain through
a long period of evolution (related to Gelstalt psychology (Wagemans et al., 2012), like proximity,
similarity, enclosure, continuation, closure, symmetry, common fate, etc.); on the other hand, some
of the others may be gradually learned during evolution. Therefore, the learning scheme could be
improved to capture how the part-whole hierarchy could emerge during the unsupervised perception
of the multi-object world. A preliminary insight is that: the model architecture in this paper (column
organization, time scale relationship) could be regarded as inductive bias to form a hierarchically
factorized representation during the unsupervised training of the whole model as a recurrent spiking
neural network to reconstruct what it sees on average during a temporal period. More details are
discussed in Section.A.7.4

A.2 BROADER IMPACT

On the positive side, the model parses objects with neuronal coherence in the visible space composed
of spiking neurons without explicit supervision. The mechanism by principle is not limited to a
certain modality or certain object type. Thus, it may help develop human-like perception systems.
Besides, with biological relevant features (eg. delayed coupling) and phenomena (eg. synchrony),
the model may also act as a data-driven biological model to understand the perception process in the
brain.

On the negative side, since the model is not supervised, it is harder to control what it learns. The
current model is only trained on simple synthetic datasets and learns to group at the superficial pixel
level, therefore the representation is highly explainable. However, grouping in latent space on real-
world datasets requires to develop evaluation and visualization methods to make the representation in
latent space more understandable. We believe this may serve as a step toward more transparent and
interpretable predictions.

1Representing the part-whole hierarchy in a pure neural network is still an unsolved problem (?)
2In essence, the part-whole problem requires a general solution to the sub-neuro-symbolic architecture and

to realize hierarchical split of computational problem in a divide-and-conquer way. This paper explores the
temporal aspect of the solution.
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A.3 CODE AVAILABILITY

The source code for results in the paper and a video demonstrating the whole simulation process can
be found at:

https://drive.google.com/drive/folders/1GTHhpdafze6rExjD9NtV8beLfruMCMJR?usp=sharing.

Codes will also be updated to Github:

https://github.com/codingbugmonster/part whole hierarchy/ after clean-up.

A.4 METRIC

In this section, we introduce how the metrics for quantitative evaluations are defined based on the
Silhouette Score, including the Part Score, Whole Score, and Coordination Score. Since the Silhouette
Score is based on the similarity measure among samples, we first introduce how the similarity among
spike trains is measured, where the Victor-Purpura metric shows up. Then we introduce the Silhouette
Score and how it could be extended to account for varied aspects of the part-whole representation.
Finally, we discuss how the metrics can be generalized to evaluate other models with similar attempts
to group neural representation by similarity measure.

A.4.1 HOW TO MEASURE THE DISTANCE BETWEEN SPIKE TRAINS: VICTOR-PURPURA
METRIC

The Victor-Purpura metric (VP-metric) is a classical non-Euclidean metric to measure the distance
between arbitrary spike trains for evaluating the temporal coding in the visual cortex (Victor &
Purpura, 1996). Three types of operations are identified (Fig.11): 1. add a spike (cost=1); 2. delete
a spike (cost=1); 3. shift a spike for length ∆t (cost=∆t/τ ). By sequentially applying the three
operations (T (u) in Fig.11), a spike train can be transformed to the other. τ is a parameter to
control the temporal precision of the spiking code (or the temporal sensitivity of the metric). The
Victor-Purpura distance is defined as the minimal cost to transform a spike train to the other (Fig.11):

DV P (si, sj ; τ
−1) = minT (

|T |∑
u=1

cost(T (u))) (8)

T (u) ∈ {delete, add, shift} (9)

cost(delete) = cost(add) = 1 (10)

cost(shift,∆t; τ) = ∆t/τ (11)

where T (u), u = 1...|T | is a sequence of basic transformations to transform si to sj (or vice versa).
The costs of the three basic transformations are different. The most special one is the shift operation:
there is a time scale parameter to control the punishment of shifting the spike to its neighbourhood.

Figure 11: The Victor-Purpura metric

Notably, it is proved that the definition satis-
fies the three principles of a metric: positivity,
symmetry, and triangle inequality (Victor & Pur-
pura, 1996). Thus, it induces a metric space of
arbitrary spike trains, even if not embedded in
a vector space of specified dimension. Since
spike trains are non-Euclidean in nature, the VP-
metric provides a more direct measure of these
entities. The minimal cost is computed through
a dynamic programming method.
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A desirable feature of VP-metric is that the pa-
rameter τ explicitly controls the temporal sen-
sitivity of the metric and the expected temporal
precision to be considered. If the τ is chosen to
be ∞, then shifting a spike will cause no cost
(1/∞ ∼ 0). Thus the distance is exclusively

due to spike count3, therefore spiking rate is measured. If the τ is chosen to be 0, then it measures
the number of spikes that are not in absolute synchrony 4. So small τ measures the spike train
distance based on the very precise temporal synchrony structure. By varying the τ , it is plausible to
find the optimal coding scheme of the visual cortex (Victor & Purpura, 1996). In sum, τ is treated
as a timescale parameter, to control the precision of temporal coding. In this paper, the part level
is evaluated with smaller τ (part-level time scale) while whole level are evaluated with larger τ
(whole-level time scale). The coordination between the levels is evaluated with the time scale of the
whole level (the child node should stay within the time window of their parents.)

A.4.2 GENERAL COHERENCE MEASURE OF CLUSTERS: SILHOUETTE SCORE

The Silhouette coefficient (Rousseeuw, 1987) is a score to evaluate the quality of clustering
by measuring the inner-cluster coherence. Given a clustering assignment, the score is cal-
culated using average intra-cluster distance (a) and average nearest-cluster distance (b). The
score is computed as (b − a)/max(a, b). The document can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.silhouette score.html. The best score is 1 and the
worst score is -1. The values near 0 indicate overlapping clusters.

A.4.3 VICTOR-PURPURA METRIC + SILHOUETTE SCORE

How could the neuronal synchrony be measured? Given ground truth assignments of neurons (to the
parts or wholes), synchrony is measured as temporal coherence of (ground-truth assigned) neuronal
groups: the inner-group similarity and inter-group separability.

Specifically, if we take (1) each neuron as a sample, (2) the spike train of each neuron as features, (3)
the ground truth assignment as the clustering assignment, (4) the VP-metric as the distance measure,
then, the inner-cluster coherence of the clustering (Silhouette Score) is exactly the coherence measure
of neuronal synchrony. In other words, the high Silhouette Score indicates that the spike trains of
neurons of the same group are closer to each other in terms of VP-metric, which can be interpreted
as neurons of the same group synchronizing better. Therefore, the VP-induced Silhouette Score
sufficiently measures the grouping quality. The VP-induced Silhouette Score is also from -1 to 1.
The best value is 1 (perfect grouping) and values near 0 indicate overlapping clusters (purely random
firing without any temporal structure). Negative values generally indicate that a sample has been
assigned to the wrong cluster, as a different cluster is more similar (neurons synchronize to incorrect
groups).

During the whole simulation, only a segment of simulation is used for evaluating the Silhouette Score,
See Table.1.

A.4.4 SCORES TO MEASURE THE PART-WHOLE HIERARCHY

Coherence scores are all defined based on the VP-Silhouette Score and Ground Truth assignment.

Part Score is defined as the VP-Silhouette score with respect to the part-level spiking pattern and the
part-level ground truth assignment:

Part− Score = Silhouette(V P (spk1, spk1; τp), label1) (12)

where spk1 ∈ {0, 1}(N,τl) means the total spike trains in level 1 (part-level). τl is the length of
each spike train for evaluation and N is the number of neurons at part level. V P (spk1, spk1) is
the distance matrix whose elements (i,j) are the VP-distance between the i-th spike train and the

3All transforming cost comes from adding/deleting spikes
4only total synchronous spike trains have 0 distance while the slight shift of spikes has cost 1
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j-th spike train in the part level; The label1 means the ground truth assignment of neurons in level 1
(part-level). Silhouette is the Silhouette Score. τp ∼ τ1 is close to the (integration) time constant
of part-level (Table.1), controlling the temporal sensitivity of VP-metric (eq.8). Therefore, the Part
Score measures the coherence level of the part level exclusively, independent of the activity in the
whole level. Part Score indicates the quality of the grouping of tree nodes in the part level. For
example, Part− Score = 1 indicates that neurons are synchronized perfectly into separated groups
corresponding to the part objects. On the other hand, Part− Score = 0 indicates that the neurons
fire randomly and no temporal structure emerges. In rare cases, Part− Score < 0 indicates that (on
average) neurons with different assignments are synchronized and neurons with the same assignments
are not synchronized.

Whole Score are similarly defined as:

Whole− Score = Silhouette(V P (spk2, spk2; τw), label2) (13)

where spk2 ∈ {0, 1}(N,τl) means the total spike trains of level 2 (whole-level). V P (spk2, spk2) is
the distance matrix whose elements (i,j) are the VP-distance between the i-th spike train and the j-th
spike train in the whole level; The label2 means the ground truth assignment of neurons in level 2
(whole-level). τw ∼ τ2 is close to the time constant of the whole-level: τw > τp (Table.1).

On the one hand, the forming of tree nodes is a necessary condition to form the entire tree, so Part
Score and Whole Score are important measures of the representation. On the other hand, since the
Part Score and Whole Score measures the grouping in part/whole level independently (Fg.5de in the
main text), they do not reveal the correlation between levels. For example, the emergent groups can
be arbitrarily permuted or translated (together) without affecting the scores (Fg.5f in the main text).
Obviously, such arbitrary operations are serious enough to destroy a well-defined tree structure (Fg.5f
in the main text).

Therefore, we provide the additional score to capture the cross-level coordination: the Coordination
Score.

Coordination Score is defined as the coherence score between part-level spiking patterns and
whole-level spiking patterns based on whole level assignments:

Coordination− Score = (4/3) · Silhouette(V P (spk1, spk2; τw), label2) (14)

where spk1, spk2 ∈ {0, 1}(N,τl) means the total spike trains of level 1 (part-level) and level 2 (whole
level) respectively. V P (spk1, spk2) is the distance matrix whose elements (i,j) are the VP-distance
between i-th spike train in the part level and j-th spike train in the whole level. (4/3) is a normalization
factor, introduced below.

Intuitively, the coordination means that synchronized neuronal groups at the part-level are coordinated
within the lifetime of whole-level neuronal groups (Fig.1 in the main text), which is also called
nestedness. Therefore, it could be formalized as the coherence measure between part-level spike
trains and whole-level spike trains: (b − a)/max(a, b). Here, a is the average distance between
part-level spike trains and whole-level spike trains that share the same whole-level assignment
(Fig.12 top, green dashed box). b is the mean distance between a whole-level spike train and the
nearest part-level neuronal group that the spike train is not a part of (the averaged distance between
sets, Fig.12 top, blue dashed box). This formulation is similar to the Silhouette, but replaces the
V P (spk1, spk1), V P (spk2, spk2) to the V P (spk1, spk2).

However, since part-level and whole-level should not be exactly the same, the derived (b −
a)/max(a, b) do not reach the 1 in best cases. To normalize the score into the range of (−1, 1), we
compute a compensatory factor. To simplify the problem, we assume that in the ideal parsing case,
both part-level and whole-level spikes are synchronized perfectly and arranged uniformly along the
time dimension (Fig.12 bottom). Assume the nearest time interval between part-level and whole-level
spikes is τ (Fig.12 bottom), then for a binary tree (Fig.12 a):

a = τ, b = (3τ + 5τ)/2 = 4τ (15)
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Figure 12: Illustration of the Coordination Score. Each colored bar stand for a population of
synchronized neurons, as in Fig.2de in main text.

Coordination− Score = (b− a)/max(a, b) = 3/4 (16)

and for quadtree:

a = (τ + τ + 3τ + 3τ)/4 = 2τ (17)

b = (5τ + 7τ + 9τ + 11τ)/4 = 8τ (18)

Coordination− Score = (b− a)/max(a, b) = 3/4 (19)

Interestingly, in both ideal cases, the Coordination Score is 3/4, as a result, we normalize the derived
Silhouette Score by a factor (3/4), which is exactly the eq.14. Here binary tree accounts for SHOPs, Ts,
and double-digit MNIST while quadtree accounts for the Squares. The validity of the normalization
is confirmed in Fig,5 in the main text, which achieves 1 in ideal cases.

Lastly, the reason why it is valid to use whole-level assignment to ground both part-level and whole-
level neurons is that we have assumed a one-to-one spatial relation between part-level visible SCS
and whole-level visible SCS (topographical mapping to the physical world), and the complete object
has a ’copy’ at each level along the hierarchy (main text). It is also a conventional assumption of the
cortex (Hinton, 2021).

A.4.5 EXPERIMENTALLY VERIFY THE SCORES: THE PERTURBATION STUDY

In order to verify the proposed scores, we conduct a perturbation study in Fig.5 in the main text. Here,
we provide more details on how the perturbation is made and more discussions about the experiment.

Given an input image and its ground truth as in Fig.5b, we firstly ’artificially’ build up the ’perfect
parsing’ spike pattern in one oscillation period (τtotal ∼ 20-time steps). More specifically, all
neuronal groups are synchronized perfectly and arranged uniformly along the time axis as in Fig.12.
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Part-level neuron groups are coordinated within the lifetime of whole-level neuronal groups (Fig.5a).
It is the ideal case, with 0 perturbation level in Fig.5cdef.

Then, for Fig.5bde, we randomly and independently perturb the timing of spikes into nearby time
points:

ti −→ ti ±∆t,∆t ⩽ τ (20)

where ti is the spike timing of i-th neuron, τ is the timescale controlling the perturbation level. If
τ = 0, perturbation is zero. If τ equals the length of the whole period τtotal, the perturbation will
lead to pure random firings like Fig.1d. As a result, we define the perturbation level in Fig.5bde
as τ/τtotal, ranging from 0% to 100%. A more detailed perturbation process is shown in Fig.13 to
Fig.15. In Fig.5c, the perturbation is applied to both part and whole level (Fig.5c top) so that all
scores smoothly decrease from 1 to near 0. In Fig.5d, the perturbation is only applied to the part
level (Fig.5d top) so that the Whole Score is not affected but both Part Score and Coordination Score
smoothly decrease from 1 to near 0. In Fig.5e, the perturbation is only applied to the part level (Fig.5e
top) so that the Part Score is not affected but both Whole Score and Coordination Score smoothly
decrease from 1 to near 0. In a word, in Fig.5d and Fig.5e, we isolatedly verify the property of Part /
Whole Score, which shows that they are capable of capturing the quality of node-level representation.
In Fig.5c, we provide more common cases where both part and whole level degrades, which shows
that three scores consistently measure the coherence of neuronal representation.

For Fig.5f, to isolatedly verify the role of Coordination Score. We build up perfect synchronized
neuronal groups as in the perfect parsing case (Fig.5a), but then perturb the timing of each ’neuronal
group’ at different levels. All spikes within the same neuronal group are perturbed with the same ∆t
and different neuronal groups are perturbed by independent ∆ts (Fig.5f top). Similarly, we define
perturbation level as τ/τtotal, where τ is the timescale controlling the perturbation. A more detailed
perturbation process is shown in Fig.16. As shown in Fig.5f, the Coordination Score decreases
smoothly while Part / Whole Scores remain almost constant. The slight decrease in Part / Whole
Scores and the slightly higher variance of the score is likely due to the perturbation scheme instead of
the property of scores: Perturbing the entire neuronal groups can potentially synchronize different
neuronal groups so that Part / Whole Scores get slightly decreased. This effect also increases the
variance. Notably, the perturbation can lead to wrong coordination: whole-level neuronal groups are
synchronized with part-level neuronal groups of different assignments. Thus, the Coordination Score
can decrease into values even lower than 0.

A.4.6 THE SHIFT: FROM SYNCHRONIZATION TO POLYCHRONIZATION

In the neural system of the brain, the synchronization matters since the coincident arrival of spike
trains could have a much larger effect on the target neuron. Therefore, it is the ’synchronization’ in
the viewpoint of the reader neuron that really matters (Buzsáki, 2010). However, due to the diverse
axonal delay (tens of milliseconds) of different neurons, coincidently arrived spikes are usually fired
at different timings, yet with fixed temporal shifts. This phenomenon is called polychonization, or
polychonized neuronal groups (PNG) (Izhikevich, 2006), which generalizes the concept of synchro-
nization and is a more natural outcome of a real-world neural system, with potentially heterogeneous
parameter settings. In other words, polychony and synchrony bear the same spirit of fixed temporal
correlation, but polychonization could tolerate a fixed temporal shift among spike timings. While in
an external observer’s viewpoint, two things are different, in the viewpoint of the readout neuron,
both can be the same thing.

In other words, if we shift all timing patterns with a fixed shift parameter, it is equivalent to the
original pattern in the sense that the temporal shift can be compensated by the fixed axonal delay
when being read out by a downstream module. Motivated by this fact, such slight fixed shifts are
compensated before computing the Coordination Score. In other words, in the Composer, whole-level
and part-level neuronal groups are allowed to have a slight fixed temporal shift (translation slightly
along the time axis). The representation is regarded as unaffected as long as the shift is a constant.
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Figure 13: Visualization of the perturbed spiking pattern at different perturbation levels (0%to100%),
corresponding to the Fig.5c. Both part-level and whole-level gradually degrades into random firings.

Table 1: Parameters of the evaluation. τp, τw is the time scale parameter for computing the VP-
distance in each case. Shift is the fixed modified time steps for computing Coordination Score and
for visualization. The segment length of spike trains for computing scores (τl) and for visualization is
also shown.

Dataset Ts Squares SHOPs Double MNIST
τp 2 2 3 2
τw 6 7 6 4
shift 10 9 6 2
segment length (score,τl) 160 75 42 32
segment length (visualization) 200 100 100 70
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Figure 14: Visualization of the perturbed spiking pattern at different perturbation levels (0%to100%),
corresponding to the Fig.5d. Part-level is degraded gradually while whole level remains unchanged.
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Figure 15: Visualization of the perturbed spiking pattern at different perturbation levels (0%to100%),
corresponding to the Fig.5e. Whole-level is degraded gradually while part level remains unchanged.
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Figure 16: Visualization of the perturbed spiking pattern at different perturbation levels (0%to100%),
corresponding to the Fig.5f. Relative coordination among neuronal groups is gradually changed while
the synchronization of each neuronal group is unchanged.
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Table 2: Scores of the Composer
Dataset Ts Squares SHOPs Double MNIST
Part Score 0.73± 0.005 0.67± 0.007 0.67± 0.008 0.17± 0.003
Whole Score 0.69± 0.001 0.87± 0.003 0.87± 0.003 0.39± 0.005
Coordination Score 0.28± 0.004 0.81± 0.003 0.82± 0.004 0.39± 0.002

Table 3: Scores of the Agglomerator
Dataset Ts Squares SHOPs Double MNIST
Part Score −0.24± 0.002 −0.35± 0.002 −0.25± 0.001 −0.18± 0.003
Whole Score −0.28± 0.002 −0.16± 0.001 −00.18± 0.002 0.00± 0.001
Coordination Score 0.40± 0.003 −0.37± 0.003 −0.36± 0.001 0.01± 0.004

A.4.7 GENERALIZE TO EVALUATE OTHER MODELS

The metric proposed in this paper is also applicable to neural models that exploit similarity or
coherence measures to group neural representations into part-whole hierarchies. GLOM (Hinton,
2021) and GLOM-inspired Agglomerator (Garau et al., 2022) is one interesting example, which is
compared as the benchmark. To measure the similarity among vectors, the Victor-Purpura metric is
not needed anymore. Therefore, it is more direct to take each vector as a sample and the different
dimensions of the vectors as the features in a clustering algorithm. In this way, three Silhouette-based
coherence measures of spike trains could be naturally generalized to account for real-valued vectors.

An interesting point is that the islands of identical vectors in GLOM are parallel to the synchronized
neuronal groups in the Composer, as long as we take each temporally unfolded spike train as the
(binary) vector in each GLOM’s column.

A.5 BENCHMARKING

A.5.1 THE SCORES OF THE COMPOSER

Here we list the scores of the Composer corresponding to Fig.9 in the main text. The value in Table.2
is the mean averaged scores on 1000 randomly selected samples and 5 random seeds are used. The
error bar is very low.

A.5.2 THE SCORES OF THE AGGLOMERATOR

Here we list the scores of the Agglomerator corresponding to Fig.9 in the main text. The value in
Table.3 is the mean averaged scores on 1000 randomly selected samples and 5 random seeds are used.
The error bar is very low.

A.5.3 INTRODUCING THE AGGLOMERATOR

The Agglomerator (Garau et al., 2022) is a GLOM (Hinton, 2021) inspired implementation to deal
with the part-whole hierarchy. The basic idea is to use similarity measures among vectors, which are
called columns, to dynamically group neuron representation into ”identical islands of vectors”. The
spatial inclusion relationship among islands is interpreted as the part-whole hierarchy. We show the
simplified architecture and representation scheme of the Agglomerator in Fig.17, in case the reader is
not familiar with the model.

More specifically, columns are organized into different levels. At each level, columns are spatially
located on a grid mesh, like the topographical mapping. Different levels have different spatial scales,
reflected by different radii of horizontal connection among columns within the levels.

To put it in a nutshell, the Agglomerator also attempts to exploit (spatial) neuronal coherence
to dynamically form the tree node at each level and to coordinate the nodes naturally by spatial
nestedness. It is the similarity of the representation/architecture that we choose Agglomerator as an
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Figure 17: Illustration of the architecture of the Agglomerator, how part-whole hierarchy should be
represented as spatially nested islands of identical vectors and how evaluation is achieved.

appropriate benchmarks and recent benchmark. However, as shown in Table.3, they failed to form the
node-level representation at all in the four explicit datasets, indicated by the Part Score and Whole
Score lower than 0. Since they do not coordinate the cross-level nodes by similarity measure among
vectors (but by spatial relationship of islands), the Coordination Score does not reveal more insight
except that representation between levels is not as coherent as in the Composer.

A.5.4 HOW COHERENCE IS MEASURED IN THE AGGLOMERATOR?

Actually, it is direct to generalize the coherence metrics to account for evaluating the identical islands:

Part− Score = Silhouette(D2(lp, lp), label1) (21)

Part− Score = Silhouette(D2(lw, lw), label2) (22)

Coordination− Score = Silhouette(D2(lp, lw), label2) (23)

where D2 is the Euclidean distance metric, lp ∈ R(w∗h,d) is the part-level column representaion. w
and h is the size of the grid mesh of columns, d is the dimension of each column. Here, the dimension
d is parallel to the time dimension in our model. If identical islands are formed, Part / Whole Scores
should reach values near 1.

A.5.5 THE ARCHITECTURE DETAIL OF THE AGGLOMERATOR

We bear the most parameters and architecture settings from the original paper. The detailed parameter
setting is shown in Table.4. An illustration of these parameters is shown in Fig.17.
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Table 4: Parameter details for benchmarking
Parameter Ts SHOPs Squares Double-Digit MNIST
K 3 3 3 3

d 48 48 48 125

T 5 5 5 5

w,h 10 15 15 8

c 1 1 1 1

max epoch 100 100 100 300

batch size 32 32 32 128

learning rate 0.05 0.05 0.05 0.05

W, H 40 60 60 80

number of
training objects 6 3 3 2

Here, K = 3 is the number of levels, where the first level (bottom) is the output of the tokenizer and
only extracted features are represented at the bottom level. Therefore, we consider the second level
as the part-level and the third (top) level as the whole-level. T is the number of iteration steps.

d is the dimension of representation at each column and w, h are the width of the grid mesh of
columns (shared among levels). n = w ∗ h is the total number of columns. c is the input channel
number, since the datasets are all binary we choose the input channel number to be 1. W,H are the
size of the image. The max epoch = 100 is also consistent with the pre-training process in the original
paper. The evaluation is conducted after 100 epochs of the contrastive pre-training.

The following section presents a detailed description of the key networks employed in Agglomerator.
The network structure of the convolution tokenizer is outlined in Table 5. Within this table, the
variable ed denotes the embedding dimension of Agglomerator, which is specifically set to 12, 12, 5,
and 12 for SHOPs, Squares, Double-Digit-MNIST, and Ts datasets, respectively. The output of the
convolution tokenizer network is subsequently rearranged and fed into the bottom-up and top-down
column networks, which exhibit the structure presented in Table 6. Here, the variable d1 in the
bottom-up column network is set to 96, 96, 250, and 96 for the four datasets accordingly; d1 in the
top-down column network is set to 48, 48, 125, and 48. d2 in the bottom-up network is set to 384, 384,
1000, and 384 respectively; d2 in the top-down network is set to 192, 192, 500, and 192. Additionally,
np signifies the number of patches (same as n = w ∗ h in Table.4) and takes the values 225, 225, 64,
and 100, respectively. Lastly, the structure of the network utilized in contrastive learning is depicted
in Table 7. In this context, pd represents the patch dimension and assumes the values 48, 48, 125, and
48 for SHOPs, Squares, Double-Digit-MNIST, and Ts datasets, correspondingly. It is worth noting
that the np values remain consistent with the settings in column networks.

Table 5: Parameter details for convolution network
Network Structure
Conv2d(1, ed // 2, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
Conv2d(ed // 2, ed // 2, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
Conv2d(ed // 2, e d, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
BatchNorm2d(ed // 2)
ReLU()
MaxPool2d(kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
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Table 6: Parameter details for column network
Network Structure
LayerNorm(np)
Conv1d(d1, d2)
GELU (for bottom-up network) or Siren (for top-down network)
LayerNorm(np)
Conv1d(d2, d1)

Table 7: Parameter details for contrastive head
Network Structure
LayerNorm(pd)
Dropout(p=0.3)
Rearrange(’b n d - b (n d)’)
LayerNorm(np * pd)
Dropout(p=0.3)
Linear(np * pd, np * pd)
LayerNorm(np * pd),
GELU()
LayerNorm(np * pd)
Dropout(p=0.3)
Linear(np * pd, 512)

A.5.6 DOWN-SCALING OF THE GROUND TRUTH

In the Agglomerator, original W ∗H images are firstly tokenized into n = w ∗ h patches, with w =
W/4 and h = H/4. These tokenized embeddings are treated as bottom-level column representations.
Due to the down-sampling effect of the tokenizer, the number of columns is smaller than the original
pixels. Further, since the Agglomerator is super-computationally expensive, scaling as O(w4),
reserving the original dimensionality of images (w = W,h = W ) is not computationally plausible.
Therefore, we impose down-sampling to the ground truth with the same reduction ratio, so that the
dimension of column embedding (w × h× d) matches the down-sampled ground truth (w × h). The
down-sampling is based on majority rule.

A.5.7 THE FAILURE OF THE AGGLOMERATOR

As shown in Table.3, the Agglomerator failed in all cases. As far as we know, in the original
paper of the Agglomerator (Garau et al., 2022), the representation is not quantitatively evaluated in
terms of the hierarchical structure but for classification accuracy and object detection. Also, in the
visualization, the representation across levels is more likely to extract features at different scales,
instead of forming an interpretable part-whole hierarchy. As far as we understand, although the
motivation and basic idea are very promising, it is questionable whether the Agglomerator is capable
of capturing hierarchical object-centric representation as a part-whole hierarchy at all. As shown
in Table.3, it is worth re-evaluating the parsing ability of the Agglomerator on images with more
’explicit’ part-whole relationships and more appropriate ’quantitative metrics’ as we do.

Another explanation is the symmetry in our dataset. In the original paper, the seeming parsing of
different parts is likely due to the different colors associated with the parts. In other words, It is
observed that the Agglomerator only groups locations of similar color into islands (like feature
extraction), instead of parsing the object based on knowledge of the object-centric representation
(e.g. same object can have different colors and different objects can share the same color). To
put it in another way, the grouping in the Agglomerator is due to the external asymmetry in the
scene, e.g. different colors. However, in our dataset, all objects have the same color (black), and the
symmetry-breaking process for grouping needs to occur internally. Therefore, the symmetry (shared
color among objects) can challenge the Agglomerator to parse the scene.
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Table 8: time constant of the Composer
Dataset Ts Squares SHOPs Double MNIST
T 3000 3000 3000 3000
τd 80 75 42 16
τδ1 36 36 20 16
τδ2 35 35 20 15
τr1 15 24 12 16
τr2 14 24 12 15
τ1 2 2 3 2
τ2 6 12 6 8
τD 18 30 10 8
τΓ 15 16 8 8
τd′ 80 75 42 16

On the other hand, failure on our synthetic dataset and metrics neither excludes its potential validity
in other cases nor excludes the possibility that it can be improved to solve the problems. Compared
with our model, the Aggglomerator’s architecture is more flexible in dealing with real-world images,
and training on larger real-world datasets can be very different from training on small-scale synthetic
datasets. Therefore, the limitation of our dataset and metric is also notable. Besides, the downsampling
of the ground truth is likely to magnify the failure of the Agglomerator since the Silhouette Score is
more sensitive to incoherence when the sample number is lower. It is partially the reason why the
score tends to be lower than 0. However, the results indeed show that SOTA models can fail when
explicitly evaluated.

To put it in a nutshell, we highlight that the problem of representing part-whole hierarchy needs to be
more explicitly evaluated to confirm the validity of the model. As far as we know, representing the
part-whole hierarchy is far from being solved and the Composer is the first model to deal with the
problem implicitly in pure neural networks with fixed architecture.

A.6 MODEL DETAILS

In this section, we provide more details about the formulation of the model. A zip file containing
videos visualizing the dataflow of the model is provided in SI (60MB).

A.6.1 INITIALIZATION OF THE DYNAMICS

.

Here, Eq.1 and eq.4 in main text are slightly extended to clarify the initialization process:

ρ1(t) = x · (γ1 · Γ1 + r1(t) · ϵ1) (24)

ρ2 = (λ · x+ (1− λ) ·D) · (γ2 + r2(t) · ϵ2) (25)

where, the term ri(t) · ϵi is only for random initialization (See Table.9). ϵi is sampled from uniform
distribution U [0, 1] and ri(t) is the temporary amplitude of the noise, which is decayed rapidly along
the simulation (decay rate ∼ 0.8, Table.9). In other words, ri(t) = ri · (0.8)−t/τd , i = 1, 2, where ri
is the initial amplitude of the noise. During simulation, the noised is delayed every τd time steps for
simplicity.

A.6.2 TIME SCALES

The time scale parameters of the model are shown in Table.8, which has appeared in eq.1 to eq.7 in
the main text. T is the entire simulation length. τd is the coupling delay of the top-down feedback
inside the column, shared for both part-level and whole level. τδ1 is the total refractory period of
part-level spiking neurons and τδ2 is that of the whole level neurons. τr1 is the absolute refractory
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period of part-level spiking neurons and τr2 is that of the whole level neurons. τ1 is the integrative
time window of the part-level column (from visible SCS to DAE) and τ2 is that of the whole level
column. τD is the integrative time window from the part-level column to the whole-level column. τΓ
is the time window of the top-down feedback from the whole-level column to the part-level column.
τd′ is the coupling delay of the cross-level top-down feedback from the whole-level column to the
part-level column. In this work, we set τd′ = τd for simplicity. Roughly speaking, we have:

τd = τd′ > τδ1 ∼ τδ2 > τr1 ∼ τr2 > τ2 ∼ τD ∼ τΓ > τ1 (26)

More specifically, part-level and whole-level columns are characterized by two timescale parameters:
τ1 < τ2, which determines the timescale (fast or slow) of the intra-column dynamics, which is
inspired by the timescale hierarchy along the cortical hierarchy (Mahjoory et al., 2019).

If we take each time step as 1 millisecond in the brain, then the refractory period τδ is around tens of
milliseconds and the absolute refractory period τr is around ten milliseconds. The coupling delay is
around 50 millisecond (Singer, 2021). The integrative time window matches that of the coincidence
detector (several millisecond (König et al., 1996)). The frequency of oscillatory activity is around ten
of milliseconds, within the Gamma band (Tallon-Baudry & Bertrand, 1999).

A.6.3 ABLATION STUDY OF THE TIMESCALE PARAMETERS

In Fig.10b in the main text, we provide the ablation study of the timescale parameters. Here we
provide more discussions.

Firstly, the coupling delay τd = τd′ is most essential for the capability of the Composer. As shown in
Fig.10, once removed, the parsing representation fails directly.

Secondly, the refractory period (τr1, τr2) has a secondary effect on the Composer, especially for the
whole-level dynamics. Besides, the integration timescales (τ1, τ2, τD) also matters significantly.

As pointed out in Fig.2e in the main text, refractory period and delay coupling are essential to change
the attractor dynamics into metastable rhythmic dynamics (equilibrium states into non-equilibrium
states). Thus, the removal of these parameters indeed degrades the system.

Thirdly, the removal of the relative refractory period slightly degrades the coordination of the
Composer. The explanation is that: Representing the part-whole hierarchy is a combinatorial problem
in nature, which needs to be iteratively searched. For example, when the object number increases
as in the Ts dataset, the possible configuration of the parse tree gets exponentially larger. However,
while hard refractory period forces the system to switch among different states (spike fires at wrong
timings), the ’hardness’ could prevent efficient self-correcting once the system gets into a wrong state
(because the hard refractory period constraints the available next firing timing). Thus, introducing a
relative refractory period can help the system jump out of the local minimum, once it ’finds’ much
better states. It is likely that for this reason, enforcing g = 0 in Fig.10 in the main text slightly
degrades the Coordination Score.

For additional results of ablation study on other datasets, See Fig.20

A.6.4 OTHER HYPER-PARAMETERS

Table.9 shows other parameters of the Composer (The parameter for the evaluation can be found in
Table.1).

A.7 TRAINING DETAILS

A.7.1 RESOURCES

Our experiments have been performed on ubuntu 16.04.12 with devices: CPU (Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.4GHz) and 4×GeForce RTX 2080 Ti. The python version is 3.6.3.
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Table 9: Other hyper-parameters of the Composer. g (eq.2) is the (inhibitory) gating effect of relative
refractory period (τdelta − τr), same for whole-level and part-level for simplicity. λ in eq.4 describes
the skip connection. noise decay, r1, r2 describes the initialization process (eq.24).

Dataset Ts Squares SHOPs Double MNIST
g 0.5 0.3 0.3 0
λ 0.3 0.4 0.4 0.4
noise decay 0.8 0.8 0.8 0.8
r1

1
40

2
3

1
9

1
8

r2
1
40

2
3

1
9

1
8

A.7.2 NETWORK ARCHITECTURE AND TRAINING HYPERPARAMETERS

The details of training neural networks are shown in Table.10. All networks are trained with stochastic
gradient descent (SGD).

A.7.3 DATASET FOR TRAINING DAE

The details of training dataset are shown in Table.11. Examples of the training data are visualized in
Fig.18.

A.7.4 LOSS FUNCTION

The DAE (either part or whole) are trained to minimize the MSE loss between the output of DAE and
original image:

loss(x) = (x−DAEi(x̃))
2, i = 1, 2 (27)

where x is the original single-object image in Section.A.7.3 or Fig.18. x̃ is the denoised version of x.
Notably, the training of DAE has an unsupervised form and does not provide any explicit information
on how to group the tree nodes or to form the parsing tree. These all emerged during the simulation
dynamics. All the training does is to provide the minimal prior about what (on average) the object
(part/whole) looks like, so that the model could make sense of the multi-object scene at all. It is
plausible that such prior also exist in the brain to help parse the scene. For example, before parsing
the house (Fig.1a in the main text), a person should have a prior about the door, window, and roof.
Such prior should also influence the outcome of the parsing process.

In this paper, we treated those senses of the object (part or whole) as prior knowledge and explored
how the parsing structure emerges on the condition of the prior knowledge. While some of the prior
may be hard-wired in the brain through evolution, others may also be learned during development.
The learning aspect of these priors is not discussed in this preliminary model, but we could provide
insight into how it could potentially be achieved: the general architecture in this work, including the
explicit separation of columns and hierarchical organization of time-scale constant, could be treated
as the inductive bias of the end-to-end training. Instead of training DAE separately, we could treat the
entire model as a recurrent spiking neural network and train the model by back-propagation through
time (BPTT) (Wu et al., 2018). The loss function is modified minimally: the MSE loss between the
multi-whole-object input and the averaged (part-level) top-down feedback (eg.γ1(t)). Due to the
hierarchical temporal structure of the model (inductive bias), it is more efficient to learn a part-whole
hierarchy representation to predict the whole image. Then, the single-object prior is possible to be
learned in a fully unsupervised manner. We leave it as a promising future work.

A.8 HYPERPARAMETERS

The (hyper) parameters of the paper are listed as:

(1) DAE related: Table.10

(2) Model related: Table.8 (time-scale constants), Table.9 (initialization)
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Table 10: Details of training DAE

Dataset encoder decoder learning
rate noise minibatch

size
epoch
num

Ts
(part)

FC(1600, 1000)
Sigmoid()

FC(1000, 1600)
Sigmoid() 1e-3 0.5 16 200

Ts
(whole)

FC(1600, 1000)
Sigmoid()

FC(1000, 1600)
Sigmoid() 1e-3 0.5 16 200

Squares
(part)

FC(3600, 400)
Sigmoid()

FC(400, 3600)
Sigmoid() 1e-3 0.8 16 200

Squares
(whole)

FC(3600, 400)
Sigmoid()

FC(400, 3600)
Sigmoid() 1e-3 0.6 16 200

SHOPs
(part)

FC(3600, 400)
Sigmoid()

FC(400, 3600)
Sigmoid() 1e-3 0.7 16 200

SHOPs
(whole)

FC(3600, 400)
Sigmoid()

FC(400, 3600)
Sigmoid() 1e-3 0.7 16 200

Double-MNIST
(part)

FC(6400, 2000)
Sigmoid()

FC(2000, 6400)
Sigmoid() 1e-3 0.5 16 200

Double-MNIST
(whole)

FC(6400, 2000)
Sigmoid()

FC(2000, 6400)
Sigmoid() 1e-3 0.5 16 200

Table 11: Training dataset details

Dataset Training size Input dimension Object
number

Ts
(part) 60000 40× 40 1

Ts
(whole) 60000 40× 40 1

Squares
(part) 60000 60× 60 1

Squares
(whole) 60000 60× 60 1

SHOPs
(part) 20000 60× 60 1

SHOPs
(whole) 20000 60× 60 1

Double-MNIST
(part) 60000 80× 80 1

Double-MNIST
(whole) 60000 80× 80 1

(3) Evaluation related: Table.1.

(4) Benchmarking related: Table.4

A.9 BIO-PLAUSIBILITY

In this section, we list and provide detailed discussion about the biological correlates of the design of
the network.
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Figure 18: Examples of the training data to train part/whole level DAE.

1. Delay-coupled oscillatory neural network: In Singer (2021), the author describes the
cerebral cortex as a delay-coupled recurrent oscillator network, which is very different
from the architecture in the deep learning field. In this work, such architecture is captured,
integrated within the deep learning framework, and acting as an essential ingredient of the
mechanism. The delay within the column enlarges the time window of the feedback loop (τd),
so that alternative cell assemblies could emerge and disappear in order. In other words, the
coupling delay makes the system non-Markovian and of infinite dimension (approximately,
(Izhikevich, 2006)), so that the coding scheme and the capability of associative memory is
much enlarged5

2. Feed-forward and feed-back pathway along the cortical hierarchy: In general, the
cortex is organized into similar columns (Douglas & Martin, 2004), which is composed
of six layers from layer I to layer VI. Cortex are spatially organized corresponding to the
spatial structure of the physical world and hierarchically organized into levels. These basic
features are captured in our model and act as essential elements for representation theory:
the representation of the part-whole hierarchy depends on such spatial and hierarchical
organization. Notably, in Markov et al. (2013), the author also specifies the organization of
the feedforward and feedback hierarchy. In detail, there are recognizable feedforward and
feedback pathways between layer II/III of higher and lower level columns. This corresponds
to the cross-level interaction between the visible layer in our model. Lastly, Markov et al.
(2013) also shows that a long-distance feedforward path from lower level to high level exists
in layer IIIb. These are realized as the skip connections from driving input to the whole level
visible layer in our model (eq.4). More generally, the feedback from higher levels contains
signals originating from both layer II/III and layer V/VI (corresponding to the latent space
in the Composer). It is left to future work to study the cross-level interaction between visible
SCS and the latent space of DAEs.

3. Time scale hierarchy: Along the cortical hierarchy, there is a gradient of timescale hierarchy
(Mahjoory et al., 2019)—’We found that the dominant peak frequency in a brain area
decreases significantly, gradually and robustly along the posterior-anterior axis, following
the global cortical hierarchy from early sensory to higher order areas’. Such time scale
hierarchy is exploited in our model as the basis for representing hierarchical inclusion
relationships among part-neuronal-groups and whole-neuronal-groups. However, since the
frequency spectra are not unlimited, the capability of the part-whole representation may be
limited by the range of the total frequency bands. Here, we treat such limitation as a shared
weakness of our model and the brain, since the temporal resolution of cross-frequency
coupling has shown to be a constraint for the capability of working memory of humans

5Each memory is realized as a trajectory instead of a single fixed point. The trajectory is the combination of
transient fixed points so that the attractive states expand combinatorially or exponentially.
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(7± 2) (Nicola & Clopath, 2019). Indeed, human also has a limited range of the hierarchy
depth to represent instantaneously (∼ 5 levels) (Hinton, 2021). At least three frequency
bands could be explored in the future: gamma band, alpha band, and theta band.

4. Topographical mapping: As mentioned above, the spatial organization of the cortical
column has a topographical correspondence to the physical world, called the topographical
mapping (Eickhoff et al., 2017). Such location-wise representation is exploited in GLOM
(Hinton, 2021) as a core basis to represent the part-whole hierarchy and is similarly essential
for our model. The topographical relationship enables the representation of objects as
grouped features distributed in a local spatial range (identical island of vectors in GLOM).
Besides, the location-wise representation also helps to clarify the inclusion relationship
between whole and part across the hierarchy, both in our model and in GLOM For example,
part neuronal groups should also be spatially aligned to their parents.

5. Top-down attention as autoencoder: Predictive coding (Rao & Ballard, 1999) was first
proposed by Dana H. Ballard and Rajesh P. N. Rao to explain the extra-classical receptive-
field effects in primary visual cortex. Then, the predictive coding theory was mapped to the
canonical circuit of cortical circuit (Bastos et al., 2012) and served as a unified theory of
brain function (Friston, 2010). In the predictive coding model, the bottom-up and top-down
feedback attention is formalized as the autoencoder architecture, and the reconstruction error
should be minimized to achieve minimal ’prediction error’ or ’surprise’. Such architecture
is exploited in our model to realize the inner-column bottom-up/top-down pathways and
reconstruction error is minimized as the objective function of training. Interestingly, such
predictive feedback is also related to the temporal synchrony in the cortex (Engel et al.,
2001).

6. Sparse code and dense code: The dual coding scheme in the cortical circuits has been
recognized when representing features: ultra-sparse coding in the superficial layer (layer
II/III) and dense coding in deeper layer (layer V/VI) (Tang et al., 2018; Wang, 2018). While
the latter encodes the statistical aspects of features, the former might additionally encodes
the relationships. In this work, the dual coding scheme is realized as the sparse spike coding
in visible space and real-valued dense vector coding in latent space, with the synchrony in
the visible space additionally encoding the relationship among objects.

7. Relative refractory period: Strictly speaking, the absolute refractory period (ARP) refers to
the phase immediately after a spike initialization (∼ 2 ms). The later phase where a spike is
harder to be triggered (though not impossible) is referred to as the relative refractory period
(RRP) (Dayan & Abbott, 2001). If we take 1-time step as 1 millisecond in real-world time,
then the absolute refractory period is around 10 milliseconds (Table.8) in the Composer,
which is much longer than the strict absolute refractory period. Therefore, the picture
should be clarified as follows: the excitability of spiking neurons after a spike increases
gradually, in the form of 1− e−t/τ . At the beginning phase, the excitability is low enough
to prevent the neuron from firing a second spike given the conventional stimulus strength,
but since the excitability increases rapidly during this phase, the relative period length is
small compared to the whole refractory period. This beginning phase where excitability
is low enough compared to the stimulus strength in our experiments but increases fast is
treated as an absolute refractory period. In contrast, during the rest period, the excitability
has recovered to the extent that neurons might generate a second spike but with a much
lower probability. Since the recovery is much slower during the second phase, the temporal
range is much longer than that of the first phase. This slow recovery phase is modeled as
the relative refractory period in this work. The total refractory period can expand from tens
of milliseconds to much longer, depending on the channel type on the axon of the neuron
(Gerstner et al., 2014). On the other hand, it is also conventional in numerical modeling
that the absolute refractory period is modeled no less than 5 ms. In sum, the time scale of
refractoriness fits the biological systems.

8. Dentritic computation of pyramidal cell: The driving signal and modulatory signal are
distinguished in the cortical circuit (Lee & Sherman, 2010), where the driving signal acts on
the proximal site of dendrites and the modulatory signal acts on the distal sites (Spruston,
2008). The two types of inputs interact in a non-linear way. Such non-linear interaction
between driving input and modulatory input is captured as the multiplication between the
bottom-up integration and top-down modulation, realized as the pyramidal cell in the visible
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space (Fig.3ab in the main text). Such a gating effect inside the column is essential for the
binding of neuronal groups and the gating effect across levels is essential for the coordination
of neuronal groups.

9. Coincidence detector: Abeles (1982) argued that cortical neurons in superficial layers are
coincidence detectors, which detect sparse synchronous events within a narrow time window.
In our model, the time constant of the integrative time window is small (τ1 ∼ 2ms, τ2 ∼
5ms). As a result, the inner-level bottom-up integration of spiking activity in the superficial
(visible) layer is modeled as coincidence detectors. Such a narrow time window enables
two things: (1) stochastic spikes fired at extremely adjacent time steps should be detected as
a single event; (2) the temporal resolution of the synchronous event is kept within a small
time-scale (∼ τ1, τ2). Both are important to form a high-quality parse tree. Interestingly, a
similar concept has also been developed in GLOM (Hinton, 2021), named as ’coincidence
filtering’.

10. Meta-stability of cortical network: ’...Single-trial analyses of ensemble activity in alert
animals demonstrate that cortical circuit dynamics evolve through temporal sequences of
metastable states. Metastability has been studied for its potential role in sensory coding,
memory, and decision-making. Yet, very little is known about the network mechanisms
responsible for its genesis...’ (Mazzucato et al., 2015). In this work, we build such a system
of metastable states by integrating the spiking neural network (SNN) and artificial neural
network (DAE as ANN) and further demonstrates its computational role in vision.

11. Neuronal assembly as code words: ’A widely discussed hypothesis in neuroscience is that
transiently active ensembles of neurons, known as ”cell assemblies,” underlie numerous
operations of the brain, from encoding memories to reasoning. However, the mechanisms
responsible for the formation and disbanding of cell assemblies and the temporal evolution
of cell assembly sequences are not well understood...I suggest that the hierarchical organi-
zation of cell assemblies may be regarded as a neural syntax...’ (Buzsáki, 2010). Besides,
assemblies are shown to be able to realize arbitrary computation function (Papadimitriou
et al., 2019). In this work, we show how assembly transiently formed and disbanded, and
be organized into a sequence at each level, and hierarchically organized to express the
neural syntax. More generally, various features, even of a continuous nature are represented
as neuronal assemblies in the brain (population binary code), this provides the basis to
enable the model to deal with continuous features (RGB color) with its coding scheme
(Stockman, 2019). The reservoir of neuronal assemblies could be more efficiently realized
in neuromorphic devices (Pei et al., 2019). From the viewpoint of the Miehl et al. (2022),
our model generate the assemblies by DAE-induced symmetry-breaking.

12. Temporal binding theory and feature integration theory: Temporal binding theory (Engel
& Singer, 2001) and feature integration theory (Wolfe, 2020) are two mainstream theories to
solve the binding problem: how distributed information is bound together to form the whole.
The former is based on time coding and neuronal synchrony while the latter is based on
top-down attention searching on a spatial map. The temporal synchrony, temporal coding,
top-down attention, and spatial map are all captured in this model. Thus it is promising to
explore whether it could serve as a canonical model to unify the two theories.

13. Temporal-spatial theory of consciousness: ’We postulate four different neuronal mech-
anisms accounting for the different dimensions of consciousness: (i) “temporospatial
nestedness” of the spontaneous activity accounts for the level/state of consciousness as the
neural predisposition of consciousness (NPC); (ii) “temporospatial alignment” of the pre-
stimulus activity accounts for the content/form of consciousness as the neural prerequisite
of consciousness (preNCC); (iii) “temporo-spatial expansion” of early stimulus-induced ac-
tivity accounts for phenomenal consciousness as neural correlates of consciousness (NCC);
(iv) “temporo-spatial globalization” of late stimulus-induced activity accounts for the cog-
nitive features of consciousness as the neural consequence of consciousness (NCCcon).’
(Northoff & Huang, 2017a). In this work, the nested temporospatial nestedness emerges and
indicates the perceptual awareness (eg. recognizing the part-whole relationship), and the
temporospatial alignment clarifies the content/form of the scene.

14. Gamma oscillation and perceptual awareness: ’...One theory suggests that rhythmic
synchronization of neural discharges in the gamma band (around 40 Hz) may provide the
necessary spatial and temporal links that bind together the processing in different brain
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areas to build a coherent percept. In this article we propose that this mechanism could also
be used more generally for the construction of object representations that are driven by
sensory input or internal, top-down processes...’ (Tallon-Baudry & Bertrand, 1999). In this
work, the spiking activity in the visible layer approximately oscillates at the gamma band
(tens of milliseconds if each time-step is regarded as 1 millisecond.) The gamma oscillation
dynamically groups neurons into object representations (the representation theory in the
main text).

15. Preconfigured brain: In a recent ’inside-out’ framework to view the brain, in Gyorgy
Buzaki’s words, he says—’...This is the organization I call the preformed or preconfigured
brain: a preexisting dictionary of nonsense words combined with internally generated
syntactical rules. The neuronal syntax with its hierarchically organized rhythms determines
the lengths of neuronal messages and shapes their combinations. Thus, brain syntax preexists
prior to meaningful content...“Preconfigured” usually means experience-independent. The
backbone of brain connectivity and its emerging dynamics are genetically defined. In a
broader sense, the term “preconfigured” or “preexisting” is also often used to refer to a
brain with an existing knowledge base, ....In the preconfigured brain model, learning is
a matching process, in which preexisting neuronal patterns, initially nonsensical to the
organism, acquire meaning with the help of experience...’ (Buzsáki, 2019). Thus, the
well-trained DAE in this paper could be treated as an essential preconfigured structure due
to genetic codes or the life-long calibration of the sensory-action loop. Plasticity may only
provide a secondary role to increase the precision of the ’good-enough’ model (Buzsáki,
2019).

16. Plasticity: One of the designs that may depart from biology is that the connection weights
are trained based on a gradient-based method instead of a correlation-based method, like
Hebbian rule or spike timing plasticity (Gerstner et al., 2014). However, this could be
explained from two points of view. First, as argued above, the well-trained DAE could
be regarded as the preconfigured structure which is gradually searched from evolution
(amount to stochastic gradient-based search). Second, since the DAE structure in this
model is relatively simple, the training objective (minimizing reconstruction error, the
difference between input and feedback) could be interpreted as increasing the correlation
between sensory neurons and modulatory neurons, so that the gradient-based training equals
correlation-based plasticity. Indeed, Melchior & Wiskott (2019) shows that gradient-based
learning and Hebbian plasticity can be unified. Further, we could imagine that there is a
two-stage learning algorithm, like the wake-sleep cycle: during the day, the system infers
entities based on learned weight, during the night, the learned objects replay and the system
efficiently updates the weight by association, which corresponds to the training phase of the
DAE. Similar treatment has also been discussed in GLOM (Hinton, 2021).

17. Inner-layer recurrent connection: Another design feature that may depart from the
biological brain is that the spiking visible layer itself is not recurrent in our model. However,
this could also be explained from at least two points of view. First, the feedforward
and recurrent connection usually have different functional roles in the cortical circuit,
and have different levels of domination. For example, layer IV in the visual cortex are
mainly feedforward and the recurrent effect are relatively weak. As a result, the inner-layer
recurrence of visible spiking neurons are treated as secondary compared to the recurrence
of inner-level top-down feedback or inter-level top-down feedback. So that it is temporally
ignored. Further, the localized inner-level recurrence may play a secondary role (different
from that of top-down feedback) to speed up the convergence by forming a grid frame (by
local connection) to encode the prior of the proximity property of objects. Secondly, the
entire column could be recognized as a single layer, with DAE parameterizing the recurrent
connection weight among spiking neurons. And the general mechanism still works. In other
words, there is no restriction to view the two-level system as a column or a layer. In either
case, the models maintain their bio-plausibility.

18. Polychronization refers to the generalization of absolute synchronization into structured
asynchrony. As argued in Izhikevich (2006), due to the heterogeneity and conduction delay
of the neural system, polychrony is more plausible than absolute synchrony. While the
externally observed spike firing time is asynchronous, the arriving time of asynchronous
spikes to downstream readout neurons is (internally) synchronous. In other words, the shift
in spiking time is balanced out by the shift in conduction delay. According to Buzsáki (2010),
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the more rigorous definition of cell assemblies should be based on internal observation
(downstream readout neurons) instead of external observation (human observer). Therefore,
polychronous representation is in essence also synchronous representation. This is the
biological basis why we ignore the slight fixed shift in our model.

A.10 DETAILS ON EXPERIMENTS AND ADDTIONAL RESULTS.

A.10.1 THE PERTURBATION STUDY

The detailed discussion on Fig.5 in the main text (the perturbation study) is provided in Section.A.4.5.

A.10.2 THE BENCHMARKING

The detailed discussion on Fig.9 in the main text (the benchmarking) is provided in Section.A.5.

A.10.3 LOSS VS SCORE

In Fig.10a, we conduct ablation studies to the DAE module in order to find out the relation between
the parsing score and the total training loss of part-level and whole-level DAEs. We randomly selected
100 learning rates from (10−3, 1) and for each selected learning rate we trained one part-level DAE
and one whole-level DAE. So there are 100 part-level DAEs and 100 whole-level DAEs for each
dataset (100 DAE pairs of different denoising capabilities). Then we evaluate the parsing score of
the Composer equipped with each of the 100 DAE pairs. Specifically, the x-axis in Fig.10a is the
summed loss of both DAE1 and DAE2 that are trained with the same randomly selected learning
rate. During the evaluation, exceptional data points where loss gets unreasonably large due to sick
learning rate are removed.

Lastly, we find that the overall relationship between the DAEs and Scores is consistent across datasets
and not closely dependent on which DAE is used for comparison. For example, we show more results
in Fig.19. The relationship is consistent across different cases. For this reason, we show one of the
results (Fig.19)a in the main text without losing generality.

Taken together, the positive relationship between lower denoising loss and higher scores indicates
that there are direct interplays between the DAE and the parsing ability of the Composer.

A.10.4 ABLATION STUDY OF TIMESCALE PARAMETERS

The detailed discussion on Fig.10b in the main text (ablation study of timescale parameters) is
provided in Section.A.6.3. The ablation studies on all datasets are shown in Fig.20.

In the followings, we provide details on other experiments.

A.10.5 CONVERGENCE

In Fig.8, we show the convergence of scores along the iteration. 100 randomly selected samples are
used,and the score are evaluated every 100 time steps (so 3000/100=30 data point in total for each
score).

Convergence on the SHOPs dataset achieves the best overall results. However, the potential overlap
of part-level objects when composing the whole-level object imposes additional challenges on
recognizing the part-level objects, indicated by the relatively lower Part Score in Fig.8a.

Convergence on the Squares dataset is very interesting. On the one hand, the Whole Score takes the
lead all the time, indicating that global information is firstly recognized by the Composer, which is
very similar to human vision (Lee & Nguyen, 2001) and is also consistent with Gestalt psychology.
On the other hand, the Part Score and Coordination Score undergo an initial descending period before
going up. Here, we explain this phenomenon: Compared with the very starting phase, where spikes
are randomly and densely fired, the emergence of whole-level squares around 500 ∼ 1000 time steps
provide new conditions on the part level. While this has benefits in the long run, it could degrade
the representation in the short run, because the Composer needs to rethink its representation and
make modifications. For example, the part-level firing becomes sparser, and there are more incorrect
synchronizations. This may degrade the part-level grouping and coordination. In other words, the fact
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Figure 19: Loss vs Score. More results. (a)(b)(c) results on SHOPs dataset; (d)(e)(f) results on Ts
dataset. (a)(d) Relations between scores and total loss of part / whole level DAE (loss1 + loss2);
(b)(e) Relations between scores and total loss of part-level DAE (loss1); (c)(f) Relations between
scores and loss of whole-level DAE (loss2); All results are consistent.
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Figure 20: Ablation study on all datasets same as Fig.10b in main text.
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that each whole object is composed of four parts complicates the self-correcting / searching process,
after the whole-level objects are recognized. Fortunately, after a short period of self-correcting, the
Scores go up again and gradually converge to expected synchrony as in other cases.

Convergence on the Ts dataset is very challenging due to the object number is much larger. On the
one hand, the Composer needs to distinguish 6 wholes and 12 parts. On the other hand, 6 whole
objects and 12 part objects impose 612 potential combinations of part-whole relationships (each part
can choose to belong to one of the six wholes). Therefore, it takes time to search for / sample the
optimal configuration. Even if the parts/wholes are grouped by synchrony, there is a high possibility
that the parts and wholes are not well coordinated. Since the neural computation in the brain can
also be regarded as sampling (Buesing et al., 2011), these challenges may also cause problems in
perception like the binding problem (Engel & Singer, 2001; Von der Malsburg, 1999). Therefore, on
the Ts dataset, the Coordination Score lags behind the other scores.

Convergence on Double-Digit MNIST is also challenging for the Composer because the objects
are of much higher diversity. Therefore, it is harder for the Composer to clearly distinguish the
objects and to form well-synchronized neuronal groups. Therefore, the Part Score is lower than other
scores and the variance is higher than in other cases. However, it is surprising that the Composer still
achieves good parsing, indicated by the convergent Coordination Score, even though objects are less
recognizable.

A.10.6 VISUALIZATION

In Fig.6 in the main text, we visualize the spiking pattern, attention map, and local field potential along
the convergent process. To better visualize the neuronal group, we reorder the index of neurons on the
y-axis (Fig.6c) so that neurons encoding the same object are close on the y-axis. Besides, in order to
distinguish different neuronal groups, we color the spikes fired by neurons based on the ground truth
assignment of the neurons, so that the color of the neuronal groups indicates what object the neuronal
group represents. In other words, the represented object can be directly read by comparing the color
of the neuronal group and ground truth. This fact can be verified by comparing the circled neuronal
group in Fig.6c, the circled zoomed-in spike pattern in Fig.6d, and the circled object in the ground
truth (Fig.6a). It is clear that the synchronized neuronal group gradually emerges from randomness
along the simulation. Each synchronized neuronal group represents the parts/wholes of the object.
Neuronal groups at different levels are coordinated properly according to the part-whole relationship.

In Fig.6e, it is also observed that different types of top-down attention also emerge into structured
patterns. To keep consistent with Fig.6c, the neuron indexes are also reordered and the attention map
is also colored based on the ground truth. The depth of the color reflects the value of the attention
map. The structured pattern has the same order as the spiking pattern, yet of long timescales. This
indicates that attention plays a role in modulating the spike timing in SCS. However, such modulation
is not single-way, but a iterative interplay between bottom-up integration and top-down modulation.
Therefore, both DAE and SCS play essential roles in solving the parsing problem.

In Fig.6, we also shows the emergence of the oscilatory LFP at the part level, which is the summed
top-down feedback: LFP1(t) =

∑N
i=1 γ1i(t), where i is the neuron index in the part level.

A.10.7 MORE VISUALIZATIONS

In Fig.7, we briefly show the visualization results on other datasets. Here we provide more detailed
visualization results on the four datasets Fig.24 to Fig.28. Two cases are provided for each dataset,
including one normal case and one fail case.

We also provide a zip file containing videos to visualize temporal evolution of neuronal activities in
SI, about 60MB.
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Figure 21: Visualization on SHOPs dataset, same as Fig.6 in main text, but for a different sample.

Figure 22: Visualization on SHOPs dataset, same as Fig.6 in main text. The fail case, when objects
sickly overlap
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Figure 23: Visualization on Squares dataset, same as Fig.6 in main text. Squares are not overlap.

Figure 24: Visualization on Squares dataset, same as Fig.6 in main text. Two Squares heavily
overlap.
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Figure 25: Visualization on Ts dataset, same as Fig.6 in main text. colored circled indicates the
coordinated neuronal groups. Same color indicates the part-whole relationship.

Figure 26: Visualization on Ts dataset, same as Fig.6 in main text. Coordination is not clear as
fig.25.
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Figure 27: Visualization on Double-Digit-MNIST dataset, same as Fig.6 in main text.

Figure 28: Visualization on Double-Digit-MNIST dataset, same as Fig.6 in main text. Digits are
crowded.
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Figure 29: Top, the input image with salt&pepper noise as background noise (p=0.1); Bottom, the
spiking pattern of part level (bottom) and whole level (middle). It can be seen that while the noise is
visible in the input, the representation in SCS (middle and bottom) is not as noisy.

A.11 FIGURES FOR REBUTTLE

Q. With noisy background. The result when there are background or more objects and parts than fit
into different phases.

A. As shown in Figure.29, the model works pretty well when there are background noise or many
irrelevant objects. Actually, the performance of the model should not be affected by the irrelevant
information, because there are selective attention mechanisms (by DAE) to filter those, and focus on
a number of objects of interests. Besides, ’fit’ is not very accurate here, because the rhythms and
synchrony are emergent ”reference frame” that group features into objects, instead of predefined
slots, where the number of objects need to fit the slot number.

Q. Parameter sensitivity test. ”....if the latter case, how sensitive are the results to specific values
of the parameters. While the ablation study is nice, setting the various values to zero is somewhat
dramatic and uninformative, and I’m rather wondering how precise the parameter values must be, e.g.,
τr, for the network to work.....Is there no parameter tuning? how does the “whole”-level population
naturally fire with longer periods (e.g., Fig7b?)? Or is it very sensitive to specific parameter values
(e.g., delay and refractory timescales), and if so, are the findings of the study generalizable to either
learning something about the brain or improving practical ML algorithms?”

A. As shown in Fig.30, the score is relatively robust with the perturbation of the parameters, as long
as the parameter is within the suitable range described by eq.26 in Appendix. Due to the limited time
and computing resources during rebuttle, we can only provide the complete sensitivity results on
SHOPs dataset for illustration.

A.11.1 COPIED FIGURES RELATED TO ABLATION STUDIES

Here, We collect the Figures and discussions in Appendix that related to the ablation study, so as to
be more available to the reviewer.

Ablation of spiking modules

In Fig.10b in the main text (same as Fig.31top), we provide the ablation study of the timescale
parameters. Here we provide more discussions. The ablation studies on all datasets are shown in
Fig.31.

Firstly, the coupling delay τd = τd′ is most essential for the capability of the Composer. As shown in
Fig.31, once removed, the parsing representation fails directly.

Secondly, the refractory period (τr1, τr2) has a secondary effect on the Composer, especially for the
whole-level dynamics. Besides, the integration timescales (τ1, τ2, τD) also matters significantly.
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Figure 30: The sensitivity test on SHOPs dataset. Black-dashed line indicates the value used in
the main text. The value of parameters are perturbed to show how parsing degrades w.r.t parameter
change. (a) The delay parameter of DAE feedback, same for part / whole level; (b) entire refractory
period for part-level; (c) entire refractory period for whole level; (d)absolute refractory for part level;
(e) absolute refractory for whole level; (f) the inhibitory effect of the relative refractory function; (g)
the integration time window for part-level spiking neurons; (h) the integration window for whole-level
spiking neurons; (i) the factor of the partial influence from skip connection; (j) the integration time
window from part-level to whole level; (k) the integration time window from whole-level to part
level; (l) the length of (spike train) segment used for evaluating the parsing quality.
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As pointed out in Fig.2e in the main text, refractory period and delay coupling are essential to change
the attractor dynamics into metastable rhythmic dynamics (equilibrium states into non-equilibrium
states). Thus, the removal of these parameters indeed degrades the system.

Thirdly, the removal of the relative refractory period slightly degrades the coordination of the
Composer. The explanation is that: Representing the part-whole hierarchy is a combinatorial problem
in nature, which needs to be iteratively searched. For example, when the object number increases
as in the Ts dataset, the possible configuration of the parse tree gets exponentially larger. However,
while hard refractory period forces the system to switch among different states (spike fires at wrong
timings), the ’hardness’ could prevent efficient self-correcting once the system gets into a wrong state
(because the hard refractory period constraints the available next firing timing). Thus, introducing a
relative refractory period can help the system jump out of the local minimum, once it ’finds’ much
better states. It is likely that for this reason, enforcing g = 0 in Fig.31 in the main text slightly
degrades the Coordination Score.

Ablation of DAE modules

In Fig.32, we conduct ablation studies to the DAE modules, both part-level and whole levels, in order
to find out the relation between the parsing score and the quality of DAEs.

We randomly selected 100 learning rates from (10−3, 1) and for each selected learning rate we trained
one part-level DAE and one whole-level DAE. So there are 100 part-level DAEs and 100 whole-level
DAEs for each dataset (100 DAE pairs of different denoising capabilities). Then we evaluate the
parsing score of the Composer equipped with each of the 100 DAE pairs.

As shown in Fig.32, the positive relationship between lower denoising loss and higher scores indicates
that there are direct interplays between the DAE and the parsing ability of the Composer.
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Figure 31: copied from Figure 20 in Appendix. Ablation study on all datasets same as Fig.10b in
main text.
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Figure 32: copied from Figure 19 in Appendix. Loss vs Score. More results. (a)(b)(c) results on
SHOPs dataset; (d)(e)(f) results on Ts dataset. (a)(d) Relations between scores and total loss of
part / whole level DAE (loss1 + loss2); (b)(e) Relations between scores and total loss of part-level
DAE (loss1); (c)(f) Relations between scores and loss of whole-level DAE (loss2); All results are
consistent.
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