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Abstract
In this paper, we introduce MAAD, a novel,
sample-efficient on-policy algorithm for Imita-
tion Learning from Observations. MAAD uti-
lizes a surrogate reward signal, which can be
derived from various sources such as adversar-
ial games, trajectory matching objectives, or op-
timal transport criteria. To compensate for the
non-availability of expert actions, we rely on an
inverse dynamics model that infers plausible ac-
tions distribution given the expert’s state-state
transitions; we regularize the imitator’s policy
by aligning it to the inferred action distribution.
MAAD leads to significantly improved sample
efficiency and stability. We demonstrate its effec-
tiveness in a number of MuJoCo environments,
both int the OpenAI Gym and the DeepMind Con-
trol Suite. We show that it requires considerable
fewer interactions to achieve expert performance,
outperforming current state-of-the-art on-policy
methods. Remarkably, MAAD often stands out
as the sole method capable of attaining expert per-
formance levels, underscoring its simplicity and
efficacy.

1. Introduction
Reinforcement learning (RL) trains agents to perform tasks
by learning from rewards.Crafting a reward function that ac-
curately reflects the intended task remains challenging (Sil-
ver et al., 2017; Ouyang et al., 2022). An alternative strategy
involves teaching agents through demonstration, known as
Imitation Learning (IL), where the goal is for the agent to
closely replicate expert demonstrations, usually given as
sequences of state-action pairs. While IL circumvents the
complexity of designing reward functions, it requires access
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Figure 1: Median Normalized Return, over different en-
vironments, of various instantiations of our method (solid
lines) versus baselines (dashed curves). Methods marked
with † have access to expert actions representing the best
possible performance, all others do not. More details on the
construction of the figure in Section C.3.

to expert actions, precluding its use in scenarios where ac-
tions are not observable, such as in motion capture data or
video recordings.

Imitation learning from observations (ILO), as opposed to
imitation learning from demonstrations (ILD), focuses on
learning from states alone, allowing agents to imitate expert
behavior without accessing their actions. This approach
is more versatile, addressing the limitations of IL in many
practical contexts, and has gained significant interest for its
broader applicability in fields like autonomous driving. To
facilitate imitation learning without direct action informa-
tion, one strategy modifies algorithms to operate over state-
state transitions rather than state-action pairs. This adapta-
tion, as explored by (Torabi et al., 2019), leverages state-
state transitions to distinguish between expert and agent. A
different strand of research focuses on inferring missing ac-
tions through inverse models of the environment, facilitating
the application of traditional IL methods (Hanna & Stone,
2017; Nair et al., 2017; Pavse et al., 2019; Al-Hafez et al.,
2023).
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Recent studies in ILD (Fujimoto & Gu, 2021; Jena et al.,
2020; Yin et al., 2022; Haldar et al., 2022) have shown
that integrating online IL techniques with offline Behavioral
Cloning (BC) (Pomerleau, 1991; Bain & Sammut, 1995)
improves sample efficiency by leveraging the strengths of
both. Online IL methods learn through environmental inter-
actions, whereas BC operates offline, making the interaction
cost dependent solely on the online IL component. Another
angle to improve sample efficiency is to adopt an online
yet off-policy training strategy (Blondé & Kalousis, 2018;
Kostrikov et al., 2020). In this context, (Zhu et al., 2021)
propose combining an off-policy algorithm with a BC regu-
larizer, employing an inverse model to address the absence
of actions. However, off-policy approaches bring challenges
such as extrapolation error and distributional shift (Fujimoto
et al., 2018a; Fu et al., 2019; Levine et al., 2020). Instead,
we propose an on-policy method for sample-efficient train-
ing in ILO that is both easy and stable to train.

Our approach combines a model-free base that dynamically
infers rewards from environmental interactions, allowing for
the use of different reward inference methods such as adver-
sarial imitation, trajectory matching, and optimal transport,
with a model-based regularizer that incorporates an inverse
model of the environment. The inverse modeling task esti-
mates the posterior distribution of actions that are plausible
within the simulator’s physics, based on state transitions.
The regularizer constrains the policy to align its actions
closely with the action posterior distribution given by the
inverse model as this is applied on expert demonstrations.
This forms a secondary objective of action matching, which
is similar to a BC objective.

We refer to our method as Mimicking Better by Matching
the Approximate Action Distribution (MAAD). By guiding
the policy towards selecting actions that comply with the
physics intricately encoded within the simulator, we provide
the agent with richer supervisory information throughout the
training process. This results in significant sample efficiency
gains; our policies train much faster than all competitive
baselines, and they even train in settings where most of
the other baselines fail. We demonstrate the superiority of
our method on a spectrum of complex continuous control
tasks developed with the MuJoCo physics engine (Todorov
et al., 2012). We tackle the ones distributed in OpenAI Gym
(Brockman et al., 2016) and in the DeepMind Control Suite
(Tunyasuvunakool et al., 2020).

2. Related Work
Interest in Imitation Learning from Observations has grown
in recent years, as it enables imitation from a variety of
sources where actions are not explicit. Recent advancements
have expanded the range of possibilities for reward approx-
imation, such as adversarial methods, trajectory matching

techniques, and optimal transport theory. In this work, we
explore how to combine these with a behavior cloning-like
regularizer that typically requires access to actions.

One strand of works for reward approximation adopts
adversarial-based approaches and learn a discriminative
function (discriminating between expert and agent data)
that serves as a surrogate for the reward function. GAIL,
(Ho & Ermon, 2016), is probably the most prominent ex-
ample of adversarial-based methods for the ILD setting,
relying on state-action pairs to discriminate between the
expert and the agent. GAIfO, (Torabi et al., 2019), adapts
GAIL to the ILO context by using state transitions instead
of state-action pairs. Yang et al. (2019) have shown that
GAIL and GAIfO are connected by the inverse dynamics
disagreement; a divergence measure between the inverse
dynamics models of the expert and the agent. Additionally,
there have been efforts to adapt the GAIL framework to an
off-policy setting, as seen in works by (Blondé & Kalousis,
2018) and (Kostrikov et al., 2018).

Another simple, but sometimes surprisingly effective, ap-
proach to reward approximation infers rewards based on tra-
jectory matching distances; such works basically compute
euclidean distances between the expert and agent sequences
and use these as rewards (Englert et al., 2013; Peng et al.,
2018). Finally, another approach to inferring surrogate re-
wards relies on Optimal Transport (OT). Optimal transport
methods establish distribution alignments (joint distribu-
tions) that optimize some cost function when marginalized
over the joint distribution. They are used in imitation learn-
ing to guide the agent’s distribution towards the expert’s
distribution. For instance, SIL (Papagiannis & Li, 2020)
uses Sinkhorn (Cuturi, 2013), PWIL (Dadashi et al., 2021)
employs greedy Wasserstein, GDTW-IL is based on Gromov
Dynamic Time Warping (Cohen et al., 2022), and GWIL
(Fickinger et al., 2021) incorporates Gromov-Wasserstein
(Peyré et al., 2016). Both trajectory matching and opti-
mal transport approaches can also be easily deployed to
the ILD or the ILO setting by operating over state-action,
state-state or state-only sequences.

Adversarial- and optimal transport-based methods for im-
itation learning from demonstrations have been coupled
with (regularized by) behavioral cloning, resulting in sig-
nificant sample efficiency improvements compared to non-
regularized baselines. GAIL-BC, (Jena et al., 2020), and
ROT, (Haldar et al., 2022), regularize GAIL and SIL with
behavioral cloning, respectively. Additional IL approaches
that improve sample efficiency through BC include (Fuji-
moto & Gu, 2021; Yin et al., 2022). However, extending
these sample efficiency gains to the ILO setting poses chal-
lenges due to the absence of actions.

Within the ILO setting a number of works take an alternative
approach to address the non-availability of actions; instead
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of operating over state-state transitions they seek to infer
the non-available actions. They do so by learning an inverse
dynamics model, use it to infer the actions and continue with
the application of standard ILD methods (Torabi et al., 2018;
Hanna & Stone, 2017; Nair et al., 2017; Pavse et al., 2019;
Al-Hafez et al., 2023; Radosavovic et al., 2020). Addition-
ally, it can also be used to pretrain a policy (Brandfonbrener
et al., 2023). The availability of an inverse dynamics model
that can account for the non-available actions opens the door
for bringing the sample efficiency properties of behavioral
cloning within the ILO context. (Zhu et al., 2021) follow
such a path combining an off-policy imitation learning algo-
rithm (Kostrikov et al., 2018) with a BC-like regularizer and
demonstrate sample efficiency gains. Similarly, Hybrid-RL
(Guo et al., 2019) merges standard RL with a BC-like reg-
ularizer; however, it assumes access to the expert’s reward
function, which limits its broader applicability.

Our work brings the sample efficiency gains of behavioral-
cloning regularization to on-policy imitation learning from
observations by using inverse dynamics models to regularize
the agent’s policy; we demonstrate its applicability with a di-
verse range of reward surrogate learning methods and show
that it learns to imitate even in settings where competing
methods simply fail.

3. Background
Markov Decision Process (MDP) We will consider
agents in a γ-discounted infinite horizon Markov decision
process (MDP) M = ⟨S,A, T , ρ0, r, γ⟩, where S and A
are the state and action space respectively, T : S×A×S →
R≥0 is the transition distribution, ρ0 : S → R≥0 is the ini-
tial state distribution, r : S ×A → R is the reward function
and γ is the discount factor.

Demonstrations and Observations In the ILD set-
ting, we have an expert πe which generates trajecto-
ries. A trajectory, τ , is a sequence of state-action pairs,
τ = {(s0, a0), (s1, a1), . . . , (sT , aT )}, collected during
one episode. We have access to a set of demonstrations
DE = {τi}, τi ∼ πe on which we train our imitation policy.
In contrast, in the ILO setting, we do not have access to
actions. Here, a trajectory ζ is a sequence of state-state tran-
sitions, ζ = {(s0, s1), (s1, s2), . . . , (sT−1, sT )}. As such,
in this work, we train our imitation policy on the set of
observations DE = {ζi}, ζi ∼ πe.

Behavior Cloning BC, (Pomerleau, 1991; Bain & Sam-
mut, 1995), tackles imitation learning using supervised
learning. The policy is trained to maximize the likelihood
of the expert’s actions: LBC = −Es,a∼DE [log(πθ(a|s))].
BC being basically a supervised learning method, it does
not have an exploration mechanism. This makes the pol-

icy subject to compounding errors (Ross et al., 2010) and
suboptimal asymptotic performance. BC also assumes the
presence of expert state-action pairs in the demonstration set
DE. To address the ILO setting in which we do not have ac-
tions, (Torabi et al., 2018) learn an inverse dynamics model,
p(a|s, s′), which they use to infer actions and they follow
with a standard BC application. They train the inverse dy-
namics model on a dataset of (s, a, s′) triplets collected with
a random policy. Such an inverse model provides access to
actions that are physically plausible with the given (s, s′)
transitions; these actions will typically be a superset of the
actions that the expert would have chosen.

Occupancy Measure The occupancy measure (OM) can
be thought of as the distribution of states that are encoun-
tered in a Markov Decision Process (MDP) under a given
policy π (Ho & Ermon, 2016). The state OM, the most
basic type of OM, is the discounted sum of the station-
ary state probability density, calculated over time for a
given policy ρπ(s) =

∑∞
t=0 γ

tP (st = s|π). We can
use the state OM to define additional occupancy measures
that are applicable to different supports within an MDP.
These measures include the state-action occupancy mea-
sure ρπ(s, a) = ρπ(s)π(a|s), the state-state transition oc-
cupancy measure ρπ(s, s′) =

∫
A ρπ(s, ā)T (s′|s, ā)dā, and

the density function of the inverse dynamics model under
the policy π, ρπ(a|s, s′) which is defined as follows:

ρπ(a|s, s′) :=
T (s′|s, a)π(a|s)∫

A T (s′|s, ā)π(ā|s)dā
(1)

where T (s′|s, a) is the probability to transition to the next
state s′, given by the environment.

Generative Adversarial Imitation Learning GAIL, (Ho
& Ermon, 2016), minimizes the Jensen–Shannon divergence
between the agent ρπ(s, a) and the expert ρπE(s, a) oc-
cupancy measures. The learned policy is thus given by
argminπ DJS(ρπ(s, a)||ρπE(s, a)). In practice, this min-
imization is achieved by training a discriminator and a
policy in an adversarial manner where the discrimina-
tor provides a proxy reward to an on-policy reinforce-
ment learning algorithm, such as PPO (Schulman et al.,
2017), that trains the policy. (Torabi et al., 2019) pro-
pose to replace the state-action occupancy measure with
the state transition OM, thus the learned policy is given
by argminπ DJS(ρπ(s, s

′)||ρπE(s, s
′)), and thus eliminates

the need for actions.

Trajectory Matching and Optimal Transport for Imita-
tion Learning Trajectory matching involves aligning the
agent’s trajectory (ξπθi ) with the expert’s trajectory (ζEi ) to
learn desired behaviors. This process typically employs a
similarity measure to quantify how closely the agent’s states
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follow those of the expert. One common approach is using a
cost function, such as Euclidean or cosine distance, to eval-
uate the difference at each point between ξπθi and ζEi . The
goal is to minimize this cost, guiding the agent towards repli-
cating the expert’s trajectory as closely as possible. More
recently, optimal transport (OT)-based techniques have been
proposed in imitation learning (Dadashi et al., 2021; Papa-
giannis & Li, 2020; Cohen et al., 2022; Haldar et al., 2022).
These methods focus on assessing the proximity between
expert trajectories (ζEi ) and agent trajectories (ξπθi ) by eval-
uating the optimal transfer of probability mass from ξπθi to
ζEi . The surrogate reward for an observation is calculated
as r(st) = −

∑T
t′=1 Ct,t′µ

∗
t,t′ , where Ct,t′ is a cost matrix

Ct,t′ = c(st, s
e
t′), determining the cost of aligning a state

from the agent’s trajectory s with a state from the expert’s
trajectory se. The term µ∗ represents the optimal alignment
between these trajectories.

4. Model
We will now introduce MAAD for Matching Approximate
Action Distributions. As is typical in imitation learning,
we aim to establish a policy πθ that will closely mimic the
expert’s policy πe. In imitation learning from observations,
this can be achieved by minimizing the discrepancy between
the expert’s and agent’s state occupancy measures. This can
be viewed as an alignment of the probability distributions
over states that the expert and agent visit during their respec-
tive interactions with the environment. This corresponds to
the following objective function:

Lpolicy = D(ρπ(s, s
′)||ρπE(s, s

′)) (2)

In the context of imitation learning from demonstrations
where the actions carried out by the expert are available,
approaches such as (Fujimoto & Gu, 2021; Jena et al., 2020;
Yin et al., 2022; Haldar et al., 2022) have shown that regular-
izing the imitator policy with a behavioral cloning objective
significantly improves the convergence rate. Driven by this
recurring result, we seek to also benefit from these advan-
tages in the ILO setting by constraining our policy with
such an auxiliary objective. Assuming for a moment that
expert actions were available, we can define the following
behavioral cloning loss term:

LBC = −Es,a∼τ,τ∼πe [log(πθ(a|s))] (3)

which provides additional supervision to the learned policy
by urging it to assign high probability to the actions that the
expert selected in the demonstration dataset. We can thus
extend the objective function in Eq. 2 with this loss term,
resulting in the following regularized objective:

L = Lpolicy + λLBC (4)

The equation Eq. 4 is a generalization of existing BC-
regularized IL algorithms. For instance, by substituting the

state-state occupancy measure in Eq. 2 with a state-action
occupancy measure, we obtain the GAIL-BC algorithm
(Jena et al., 2020). On the other hand, if Lpolicy is based
on TD3 (Fujimoto et al., 2018b), the resulting approach is
TD3-BC (Fujimoto & Gu, 2021). Furthermore, if we in-
troduce an OT-based trajectory matching approach for the
state occupancy measure, we obtain the ROT algorithm1

(Haldar et al., 2022). As is obvious, this is applicable only
to the ILD setting since the expectation in Eq. 3 is taken
with respect to actions (and states) sampled from the expert.

If we are to use a loss term similar to the one in Eq. 3
to provide additional supervision, then we need a way to
define what would be meaningful actions to select given that
we do not have such information available from the expert
data. The approach we take here is to learn the posterior
distribution of actions that are physically plausible, under
the used simulator, given a state-state transition, i.e. we
want to approximate the true posterior p(a|s, s′). What
we have here is basically an instance of what is known as
simulation-based inference (Cranmer et al., 2020), and in
particular amortized posterior inference (Papamakarios &
Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019).

Learning the posterior distribution means actually solving
the inverse dynamics problem of determining which are the
actions that could have produced the observed (s, s′) transi-
tion. We should stress here that these are not necessarily the
actions that the expert would have chosen, they are rather
a superset of the possible expert actions, since they are all
plausible actions under the (s, s′) transition. However, even
though they are potentially a superset of the expert actions,
they nevertheless provide considerable supervisory informa-
tion since they will guide the expert to select actions that are
physically plausible. Such guidance is particularly valuable
since the gradients that we get from the Eq. 3 loss are much
more informative than the ones that we get from the pol-
icy gradient optimization, since it is a supervised learning
problem.

4.1. Inverse Dynamics Model (IDM)

Very often in inverse problems there is not a single inverse
solution but rather a set of solutions and the respective pos-
terior distribution has a multi-modal structure (Ardizzone
et al., 2019). We thus choose to give the more general for-
mulation to model the posterior distribution as a mixture
density network (MDN) (Bishop, 1994) which by design
models multi-modality; the learned posterior distribution is
given by:

pα,ψ(a|s, s′) =
K−1∑
k=0

αk(s, s
′)ψk(a|s, s′) (5)

1ROT has BC pretraining phase, which we omit here.
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which is a mixture of K distributions ψk(a|s, s′) where
αk(s, s

′) is the probability of picking the k-th component of
the mixture for the state transition (s, s′). We use Gaussians
as the mixture components. The number of components
K is a hyperparameter, which depends on the environment.
Despite having experimented with values of K > 1 in pre-
liminary sweeps, we found that for the considered suites
of environments, K = 1 was already yielding satisfactory
results. This indicates that for both suites, leveraging the
potential multimodality of inverse models was not instru-
mental, further strengthening the simplicity and robustness
of the method.

To train the IDM model, we need to collect (s, a, s′) triplets;
a naive approach would be to collect such triplets using
one or more random policies, but this would explore only a
very small part of the joint space. Instead, we interleave the
IDM training with the policy training. We take advantage
of the interactions with the environment that take place as
a result of learning online and push the collected triplets to
a replay buffer R. We train the inverse model pα,ψ on the
data from the replay buffer until convergence, update the
policy and repeat the process. We warm-start the inverse
model from the one obtained in the previous step. Note that
the replay buffer will contain the 105 most recent samples
from different policies, starting from a random policy to the
currently established policy. The inverse model is learned
over all these data points. Even though these data points are
obtained from different policies, the learned inverse model
will be valid for all of them since it reflects the underlying
physics implemented in the simulator, which are indepen-
dent of the policy. We use the negative log-likelihood as the
training objective for the inverse model:

Linv = −E(s,a,s′)∼R[log(pα,ψ(a|s, s′))] (6)

4.2. Controlling the Policy Learning with the Inverse
Dynamics Model

Our model has two basic components, a policy learning
component which minimizes the loss given in Eq. 2 and an
inverse model learning component which will be learned
using the loss in Eq. 6. We will use the inverse model to fur-
ther guide the policy learning with the help of a behavioral
cloning loss similar to Eq. 3.

The policy learning component is basically an RL algo-
rithm which minimizes Eq. 2 by learning the policy πθ
using Proximal Policy Optimization (PPO) (Schulman et al.,
2017) where the surrogate rewards can come from differ-
ent sources. In this paper, we will explore three different
approaches for generating surrogate rewards. Firstly, we in-
stantiate MAAD-AIL. This method obtains rewards through
an adversarial training mechanism, similar to GAIfO (Torabi
et al., 2019), where the agent’s goal is to mimic the ex-
pert’s behavior closely enough to fool a discriminator

trained to distinguish between them. This implies train-
ing an additional model, namely the discriminator. We
train the discriminator Dϕ using the cross-entropy loss
on (s, s′) transitions sampled from the policy and the ex-
pert. The reward proxy that we use to train the policy is
r(s, s′) = − log(1 − D(s, s′)). Secondly, we explore the
trajectory matching through MAAD-TM. In this approach,
the agent’s and expert’s trajectories are considered to be
aligned and of the same length, and the reward is calculated
based on the Euclidean distance between the agent’s cur-
rent state and the corresponding expert state at each step.
This method is geared towards closely following the expert’s
trajectory step by step. This method is naive and does not ac-
count for misalignment in the trajectories. It is therefore the
fastest to compute because it relies on a simple distance that
does not involve an extra model nor require an extra algo-
rithm to be run. Lastly, we investigate an Optimal Transport
(OT) based method, MAAD-OT. Here, rewards are obtained
using the Sinkhorn algorithm (Cuturi, 2013), similar to what
was proposed in SIL (Papagiannis & Li, 2020) and ROT
(Haldar et al., 2022), with a cost matrix established on the
cosine distance between states. This method is focused on
minimizing the overall cost of transforming the agent’s state
distribution to that of the expert, thereby assessing the sim-
ilarity of entire trajectories. Note, the Sinkhorn algorithm
needs to be run for each trajectory, and is expensive to run.

MAAD-AIL MAAD-
TM

MAAD-OT

r(st, st+1) = r(st) = r(st) =

− log(1−D(st, st+1)) ∥st − set∥ −
∑T

t′=1 Ct,t′µ
∗
t,t′

Table 1: Comparison of MAAD-AIL, MAAD-TM, and
MAAD-OT reward formulations

The second component of our loss quantifies the similar-
ity between the actions produced by the policy over expert
states and the IDM predictions, using expert state-state tran-
sitions. The inverse model is represented by the learned
posterior distribution pα,ψ(a|s, s′). Given the policy and
the inverse model, it becomes imperative to select a suit-
able behavioral cloning loss. An option to consider is a
likelihood-based loss similar to that described in Equation
3. However, in this context, instead of sampling state-action
pairs from the expert, we would sample (s, s′) transitions.
These transitions are then utilized to sample plausible ac-
tions from the learned inverse model, aiming to maximize
the likelihood of these sampled actions under the policy.

−E(s,s′)∼ζ,ζ∼πeEa∼pα,ψ(a|s,s′) log πθ(a|s)

Another alternative is to minimize the (forward) KL diver-
gence of the inverse model and the learned policy, i.e.

Lreg = E(s,s′)∼ζ,ζ∼πeDKL(pα,ψ(a|s, s′)||πθ(a|s)) (7)
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the two approaches are equivalent up to an entropy term of
the inverse model.

The forward KL induces a mode covering behavior. In our
setting, this divergence will punish the policy for not as-
signing weight to actions that have non-zero density under
the inverse model. Conversely, the reverse KL will pun-
ish the policy from having a non-zero density over actions
for which the inverse model places none. In that respect,
the mode-seeking effect induced by the reverse KL diver-
gence should be the desired behavior, since it will push
the learned policy to converge to one of the modes of the
inverse model, and not fall in between the several potential
modes discovered by the learned multi-modal inverse model.
Considering our focus on sample efficiency, and given that
preliminary experiments showed a k = 1 to be sufficient,
we chose to use the forward KL divergence to constrain
the learned policy, similar to the approach in (Zhu et al.,
2021). The forward KL divergence converges faster to the
target distribution, i.e., the inverse model, thereby present-
ing a considerable advantage. Conversely, the reverse KL
divergence necessitates extensive exploration to establish a
reasonable policy, which is challenging during early training
stages. Thus, the objective that we use to train the policy is:

L =D(ρπ(s, s
′)||ρπE(s, s

′))︸ ︷︷ ︸
Lpolicy

+ E(s,s′)∼ζ,ζ∼πeDKL(pα,ψ(a|s, s′)||πθ(a|s))︸ ︷︷ ︸
Lreg

(8)

There are no gradients flowing back to the inverse model
from the Lreg loss term. We give the complete training
procedure in Algorithm 1.

4.3. Discussion on Inverse Dynamics Disagreement

Yang et al. (2019) quantified the disparity between the learn-
ing objectives used within adversarial imitation learning
from observations and demonstrations. They demonstrated
that this disparity is quantified by the Inverse Dynamics
Disagreement (IDD), which measures the disagreement be-
tween the inverse dynamics models of the expert and the
learning agent.

DKL (ρπ(a|s, s′)||ρπE(a|s, s′))︸ ︷︷ ︸
IDD

=

DKL (ρπ(s, a)||ρπE(s, a))︸ ︷︷ ︸
ILD

−DKL (ρπ(s, s
′)||ρπE(s, s

′))︸ ︷︷ ︸
ILO

(9)

Thus, minimizing the ILD objective can be seen as jointly
minimizing the learning objective of ILO and the IDD be-
tween the inverse dynamics models of the expert and the
learning agent. Obviously, we have no way to access the

Algorithm 1 Mimicking Better by Matching the Approxi-
mate Action Distribution (MAAD)

Require: Expert observations DE = {ζEi } where ζi =
{(sE0 , sE1 ), (sE1 , sE2 ), ...}, policy πθ, (discriminator Dϕ),
inverse dynamics model pα,ψ(a|s, s′), a replay buffer R
and maximum number of iterations M
Initialize replay buffer R
Initialize network parameters θ, (ϕ), α, ψ
for 1 to M do

Collect agent rollouts DA = {ξπθi }, ξi ∼ πθ, ξi =
{(s0, a0, r0, s1), (s1, a1, r1, s2), ...}, with ri from Ta-
ble 1
Add DA to the replay buffer R
repeat

Sample uniformly a minibatch B of state-action-
state triplets from R, (s, a, s′) ∼ R
Update the inverse dynamics model pα,ψ(a|s, s′)

until Inverse dynamics model pα,ψ converges
Update policy πθ using L from Eq. 8
(Update the discriminator Dϕ)

end for

inverse model of the expert, e.g. by learning a proxy of it,
since we do not observe the expert’s actions.

Our regularizer, as defined in Eq. 7, minimizes the KL di-
vergence between the inverse dynamics model of the envi-
ronment, ρ(a|s, s′), and the learned policy, πθ(a|s), within
the support of the state-state transitions observed from the
expert. This KL divergence is an upper bound of the KL
divergence between the IDMs of the environment and that
of the agent, ρπ(a|s, s′), (refer to Appendix Section A.1 for
the proof), i.e:

DKL (ρ(a|s, s′)||ρπ(a|s, s′)) ≤
DKL (ρ(a|s, s′)||πθ(a|s)) + Const

(10)

Thus, at optimality of Eq. 7, the inverse models of the en-
vironment and that of the learned agent align and we have
ρ(a|s, s′) = ρπ(a|s, s′). This correspondence leads the
IDD gap to be equal to the KL divergence between the
environment’s and the expert’s inverse models:

DKL (ρπ(a|s, s′)||ρπE(a|s, s′)) =
DKL (ρ(a|s, s′)||ρπE(a|s, s′))

(11)

We cannot manipulate any components on the right-hand
side; the environment’s inverse model is governed by the
simulator’s physics and the expert’s inverse model is dic-
tated by the expert’s behavior, over which we have no con-
trol. The environment’s inverse model provides all conceiv-
able actions that could lead to a given state-state transition
under the simulator’s physics. Conversely, the expert’s in-
verse model is more selective, i.e. has smaller support, as
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it assigns non-zero probability only to actions the expert
would have chosen for a specific state-state transition.

While ideally, we would want to minimize the IDD be-
tween the learned agent’s and the expert’s inverse models,
the lack of access to the expert’s actions leaves us with
no expert-specific choices. We chose to guide the agent
towards actions that are physically plausible by deploying
our regularizer. This guidance offers valuable supervision,
compensating for the low-quality reward signal provided by
the discriminator during early stages of adversarial training.
Importantly, the training of the environment’s inverse model
is a supervised process, which is considerably less complex
and faster to converge than adversarial training.

5. Experiments
To evaluate MAAD, we have conducted experiments on
complex control tasks from the MuJoCo suite of environ-
ments (Todorov et al., 2012). We have used 6 locomotion
tasks from DeepMind Control Suite and 5 from OpenAI
Gym. The two suites differ on various aspects, such as their
initial state distributions and termination criteria, posing
their specific challenges to the learning algorithms, more
details in Section B.1. We collected expert trajectories from
a policy trained using PPO (Schulman et al., 2017) on each
MuJoCo task. Then we used the collected trajectories to
train several imitation learning baseline models and com-
pare them against different flavors of our model. In the base-
line models, we included not only ILO methods but also
some ILD ones which have access to expert actions, these
later ones should be seen as the best possible achievable
performance if actions were observed. More details about
environments, hyperparameters and training data and imple-
mentation can be found in Section B in appendix, and our
code is openly available:https://github.com/jacr13/MAAD.

5.1. MAAD variants and Baselines

We evaluate three instantiations of MAAD, which differ on
how surrogate rewards are obtained. We compare each one
of them against its non-regularizer variant, where the KL reg-
ularizer is switched off. The first instantiation, MAAD-AIL,
obtains surrogate rewards by adversarial imitation learn-
ing; we compare it against two variants of GAIL (Ho &
Ermon, 2016): GAIfO (Torabi et al., 2019), which oper-
ates on observations and is essentially the non-regularized
variant of MAAD-AIL, and GAIL-BC, which has access to
expert actions. The second instantiation, MAAD-TM, ob-
tains rewards relying on a trajectory matching approach; we
employ the Euclidean distance metric for trajectory compar-
isons. We denote its non-regularized variant by TMO, for
trajectory matching from observations. The third instantia-
tion, MAAD-OT, is based on rewards sourced from optimal
transport techniques. Specifically, it uses the Sinkhorn algo-

rithm with a cosine distance-based cost matrix, akin to the
frameworks of SIL and ROT. We denote its non-regularized
variant by OTO, i.e. optimal transport from observations.

In addition to the non-regularized MAAD baselines, we
also include a behavioral cloning baseline (BC) (Pomerleau,
1991; Bain & Sammut, 1995), which employs a supervised
learning approach to learn the policy and requires action
access. Although it is a fast training method since it does
not require interactions with the environment, its asymptotic
performance is suboptimal unless a substantial amount of
expert data is available. We have also experimented with
BCO (Torabi et al., 2018), the ILO variant of BC, which
was consistently inferior to BC. Consequently, we decided
not to include it in our reported results.

5.2. Results

We focus our comparative analysis of the different methods
on sample efficiency, i.e. the number of environmental
interactions required to achieve expert performance. We
provide results for the DMC suite in Fig. 2a and for the
OpenAI Gym in Fig. 2b. The MAAD variants consistently
surpassed their non-regularized counterparts, underscoring
the importance of guidance and their aptitude in learning in
the absence of expert actions. In the appendix Section C, we
present detailed results, including a table summarizing the
final performance and plots comparing the performance of
the different models using either environment interactions
or time.

The performance of the different MAAD variants varied
based on evaluation suite, with some excelling in certain
environments. In the DMC suite (Fig. 2a), the TM and OT
variants of MAAD had very similar convergence rates, out-
performing their non-regularized counterparts (TMO and
OTO) as well as the MAAD-AIL variant, the latter in most
but not all environments. Notably, the non-regularized vari-
ants, OTO and TMO, failed to converge within the allocated
interaction budget, highlighting the critical role of guiding
the policy even when using plausible actions as a substitute
for actual expert actions. Among the AIL-based approaches,
only GAIL-BC and MAAD-AIL achieved convergence to
expert performance levels, GAIfO consistently underper-
formed. GAIL-BC systematically outperformed MAAD-
AIL; however, it was comparable or slightly slower than
MAAD-OT and MAAD-TM. It is noteworthy that in walker-
based environments, specifically in run and walk tasks, only
GAIL-BC and MAAD-AIL managed to converge to expert
performance within the allotted budget. All TM- and OT-
based methods struggled to learn in these environments. In
Section D, we compare learned and expert actions, high-
lighting the challenges in walker-based environments.

In the OpenAI Gym suite (Fig. 2b), the scenario differs
somewhat. While the non-regularized variants, OTO and
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(a) DMC Suite

(b) OpenAI Gym

Figure 2: Performance comparison between our proposed version of MAAD and the baselines (some of the baselines,
highlighted here with †, have access to expert actions, Section 5.1 for more information). We average the results over three
random seeds and show the mean and the range of one standard deviation.

TMO, follow a similar pattern to those in the DMC suite, i.e.
they do not converge within the allocated number of interac-
tions, now their regularized versions also face challenges in
converging. For instance, MAAD-TM only converges in the
Ant-v3 environment. MAAD-OT does achieve expert per-
formance, but its rate of convergence is slower than that of
the adversarial versions. In this suite, walker-based environ-
ments also appear to be particularly challenging for the OT
and TM variants, as none of them managed to converge. Re-
garding the AIL variants, all three were capable of matching
expert performance, with GAIL-BC and MAAD-AIL consis-
tently outperforming GAIfO, demonstrating up to four times
greater sample efficiency. A somewhat unexpected outcome
was that MAAD-AIL also slightly outperformed GAIL-BC,
given GAIL-BC’s access to expert actions. One possible ex-
planation for that is that the inverse model on which MAAD
relies to regularize the policy provides a broader range of,
plausible, actions to choose from, offering more flexibility,
compared to what happens in GAIL-BC where the regular-
izer guides the policy to exactly match the expert actions.
Such a flexibility can be important in particular at the be-
ginning of training, as matching expert actions precisely
might be more challenging. Overall, MAAD-AIL is the
method that achieves expert performance in both suites and
all environments, except for the dog-run task in the DMC
suite.

MAAD outperformed all the ILO baselines across various
control tasks by exhibiting systematically faster convergence
to expert performance, or in other terms, greater sample ef-

ficiency. Notably, for a good number of environments, a
number of ILO-baselines did not even start converging. Its
ability to learn effectively without expert actions makes it a
powerful tool for tackling imitation learning from observa-
tions problems in real-world scenarios where expert states
are hard and expensive to label accurately with action.

6. Conclusion
We presented Mimicking Better by Matching the Approxi-
mate Action Distribution (MAAD), a novel framework for
imitation learning from observations.

The novelty of our approach lies in the integration of an
inverse dynamics model in the on-policy imitation learn-
ing from observations setting. The inverse model provides
access to the posterior distribution of physically plausible
actions for a given state-state transition and serves as an aux-
iliary guide for the policy, providing the latter with meaning-
ful action suggestions despite the absence of expert actions.

Our model combines the strengths of on-policy algorithms
with behavioral cloning, effectively utilizing the benefits of
both to speed-up learning. We integrate these components
into a unified objective function that encourages the pol-
icy to mimic the expert’s state occupancy measure while
also aligning with physically plausible actions as these are
provided by the learned inverse model.

We empirically validated MAAD on a number of challeng-
ing tasks, demonstrating superior sample efficiency against
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all tested baselines. Notably, our method is able to achieve
expert performance in settings in which some of the base-
lines do not even start training, and even matches the perfor-
mance of baselines with access to expert actions.
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A. Proofs
A.1. Connecting Policy and Environment’s IDM through KL Divergence

In this section, we present the proof that our regularizer, as defined in Eq. 7, targets the minimization of the KL divergence
between the inverse dynamics model of the environment, denoted as ρ(a|s, s′), and the learned policy, πθ, over the support
of the observed state-state transitions of the expert. More specifically, we show that this KL divergence is an upper bound on
the divergence between the environment’s inverse dynamics model (IDM) and the agent’s IDM, represented as ρπ(a|s, s′).
Therefore, we establish that:

DKL (ρ(a|s, s′)||ρπ(a|s, s′)) ≤ DKL (ρ(a|s, s′)||πθ(a|s)) + Const (12)

Proof.

DKL (ρ(a|s, s′)||ρπ(a|s, s′))

=

∫
S×A×S

ρ(s, a, s′) log
ρ(a|s, s′)
ρπ(a|s, s′)

dsdads′

=

∫
S×A×S

ρ(s, a, s′) log
ρ(a|s, s′)

T (s′|s, a)πθ∫
A T (s′|s, ā)πθ(ā|s)dā︸ ︷︷ ︸

By def. Eq. 1

dsdads′

=

∫
S×A×S

ρ(s, a, s′) log
ρ(a|s, s′)

∫
A T (s′|s, ā)πθ(ā|s)dā
πθT (s′|s, a)

dsdads′

=

∫
S×A×S

ρ(s, a, s′) log
ρ(a|s, s′)

πθ
dsdads′ +

∫
S×A×S

ρ(s, a, s′) log

∫
A T (s′|s, ā)πθ(ā|s)dā

T (s′|s, a)
dsdads′

≤ DKL (ρ(a|s, s′)||πθ) + sup
ρπ

(∫
S×A×S

ρ(s, a, s′) log

∫
A T (s′|s, ā)πθ(ā|s)dā

T (s′|s, a)
dsdads′

)
= DKL (ρ(a|s, s′)||πθ) + Const

The second term in the inequality, sup(.), is not subject to optimization with respect to the parameterized policy. Therefore, it
can be regarded as a constant and we need only minimize the first term of the derived upper bound, i.e. DKL (ρ(a|s, s′)||πθ).
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B. Specifications
In this section, we give an account of the MuJoCo environments used in our experiments, the relevant aspects of our model’s
implementation and the chosen hyperparameters.

B.1. Environments

We explored two suites, each with its own specificities. While OpenAI Gym employs a narrow initial state distribution,
unnormalized rewards, and a termination signal when the agent falls, the DeepMind Control (dmc) suite utilizes a more
challenging starting distribution, normalized rewards (i.e., each reward is in the range [0,1]), and a time limit termination of
1000 steps. Each of these suites presents distinct challenges to the learning process. OpenAI Gym’s simpler initial conditions
and early termination policy tend to simplify training by limiting the exploration space. However, it employs non-normalized
rewards, which may be more difficult to interpret. On the other hand, the DMC suite starts with a much larger initial state
space and only terminates after the agent has performed 1000 timesteps in the environment. This significantly increases the
complexity of exploration due to the greater number of possibilities. It utilizes normalized rewards, which tend to be easier
for algorithms to learn from.

Table 2 provides a description of the state and action spaces of MuJoCo environments, along with the number and length of
expert trajectories used to train our models. We use OpenAI Gym and the DMC suite as standard APIs to communicate
with MuJoCo. For the OpenAI Gym environments, the versions associated with the name correspond to the version of the
environment used in the Gym library.

It is important to note that AIL-based methods utilize only a subset of these trajectories. Following the approach in the
original GAIL implementation (Ho & Ermon, 2016), we employ a subsampling rate of 20. This means that we retain only
50 state-action pairs (or state-state pairs, depending on whether the model requires actions or the next state) per trajectory.
As a result, the number of expert samples used is effectively reduced from from 16000 to 800. In contrast, all other models
utilize the full set of expert trajectories.

Environment S A Expert Trajectories
# × Length

OpenAI Gym
Hopper-v3 R11 R3 16 × 1000
HalfCheetah-v3 R17 R6 16 × 1000
Walker2d-v3 R17 R6 16 × 1000
Ant-v3 R111 R8 16 × 1000
Humanoid-v3 R376 R17 16 × 1000

DMC Suite
Cheetah-Run R17 R6 16 × 1000
Walker-Walk R24 R6 16 × 1000
Walker-Run R24 R6 16 × 1000
Quadruped-Run R78 R12 16 × 1000
Quadruped-Walk R78 R12 16 × 1000
Dog-Run R223 R38 16 × 1000

Table 2: Description of MuJoCo environments and respective experts

B.2. Implementation Details

We implemented all the algorithms investigated and reported in PyTorch, maintaining a similar structure and keeping the
same hyperparameters as much as possible. We used PPO (Schulman et al., 2017) as the underlying reinforcement learning
algorithm.

All the online models, which require interactions with the environment, utilize 4 parallel workers for data collection and
policy updates. These models share their computed gradients before optimization and receive the average gradients from all
workers for policy updating. Moreover, we ran every experiment on the same set of 3 random seeds: 0, 1, 2.
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In imitation learning, access to expert trajectories is essential. We obtained these trajectories by training a policy using PPO
(with the same architecture as the evaluated models) until convergence. At convergence, we generated 16 trajectories using
this policy. These generated trajectories were saved and used to train all of our imitation learning models.

As noted in Section B.1, the adversarial imitation approaches use a subsample of the trajectories (50 samples per trajectory).
This subsampling is achieved by randomly sampling state-action (or state-state) pairs from each expert trajectory. In contrast,
all other methods, including Behavioral Cloning (BC), trajectory matching, and optimal transport-based approaches, have
access to the entire expert trajectories.

For all the algorithms tested, the policy network consists of a two-layer MLP with 128 or 256 hidden units. The policy
networks predicts only the mean of the action distribution as a function of the state, while the learned action variance is
state-independent. The value and discriminator networks (when needed) adopt the same architecture as the policy. The
inverse dynamics model also learns the variance independent of the state, which means it is set as parameters independent of
the input.

Table 3 povide further details about the parameters used for the different algorithms.

B.3. Hyperparameters

Table 3 provides a comprehensive list of the hyperparameters used for each of the evaluated algorithms in Section 5.

Parameter Value
Shared Batch size 64

Rollout length 2048
Discount γ 0.99
π architecture {MLP [128,128], MLP [256,256]}
π Learning rate 10−4

π updates {3,6,9}
GAIL λentropy 0

PPO ϵ {0.1, 0.2}
GAE λ 0.95

Activation tanh
Clip norm 0.5

Gradient penalty 10
AIL-based D architecture MLP [128,128]

D Learning rate 10−4

D updates 1
OT-based Reward Scale Factor 20

Sinkhorn # iterations 100
Sinkhorn ϵ 0.01

IDM R size 105

IDM architecture MLP [128]2

IDM Learning Rate 10−4

IDM K 1
BC Epochs 200

GAIL-BC† λreg {1, 10}
MAAD-* λreg {1, 10}

Table 3: Hyperparameters used for different algorithms, parameters in {} were submited to a sweep.

2In our implementation, we don’t train an MLP for the variance. Instead, it is set as parameters of the network, independent of the
input.
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C. Detailed Results
In Table 4 and Table 5, we detail the performance achieved with the learned policies. For each policy, we calculate the mean
and the standard deviation across 50 generated trajectories. To facilitate visualization and comparison, we have highlighted
all values that fall within 10% of the expert’s performance by rendering them in bold.

Model Hopper-v3 HalfCheetah-v3 Walker2d-v3 Ant-v3 Humanoid-v3

Expert 3749 ± 31 11802 ± 172 7597 ± 64 6269 ± 132 7588 ± 34

GAIL-BC† 3832 ± 6 12038 ± 790 7993 ± 26 6612 ± 625 7821 ± 6
GAIfO 3842 ± 12 11403 ± 2136 7709 ± 660 6310 ± 1372 7776 ± 9
TMO 19 ± 0 -58 ± 85 1 ± 1 -185 ± 414 190 ± 54
OTO 41 ± 1 243 ± 223 22 ± 8 -337 ± 607 120 ± 37

MAAD-AIL 3822 ± 36 10506 ± 874 7537 ± 435 6655 ± 95 7557 ± 346
MAAD-TM 1544 ± 897 2331 ± 1089 360 ± 257 6205 ± 1448 480 ± 88
MAAD-OT 3713 ± 188 7552 ± 1154 211 ± 86 6333 ± 1142 7652 ± 321

Table 4: Learned policy performance for OpenAI Gym tasks. We report the mean and the standard deviation across 50
generated trajectories (some of the baselines, highlighted here with †, have access to expert actions, Section 5.1 for more
information).

Model Cheetah-Run Walker-Walk Walker-Run Quadruped-Run Quadruped-Walk Dog-Run

Expert 663 ± 121 932 ± 21 606 ± 34 748 ± 25 888 ± 63 382 ± 105

GAIL-BC† 692 ± 59 906 ± 139 592 ± 104 757 ± 34 885 ± 67 99 ± 60
GAIfO 91 ± 19 77 ± 24 37 ± 18 112 ± 159 100 ± 159 17 ± 4
TMO 98 ± 34 60 ± 31 38 ± 14 88 ± 157 125 ± 176 13 ± 3
OTO 62 ± 21 74 ± 29 36 ± 14 95 ± 116 97 ± 136 17 ± 5

MAAD-AIL 704 ± 39 823 ± 230 569 ± 154 745 ± 37 875 ± 72 99 ± 36
MAAD-TM 629 ± 179 133 ± 95 50 ± 20 755 ± 57 879 ± 73 408 ± 76
MAAD-OT 646 ± 145 63 ± 42 46 ± 23 744 ± 90 875 ± 76 398 ± 96

Table 5: Learned policy performance for DMC Suite tasks. We report the mean and the standard deviation across 50
generated trajectories (some of the baselines, highlighted here with †, have access to expert actions, Section 5.1 for more
information).
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C.1. Interactions-based Comparison

(a) DMC Suite

(b) OpenAI Gym

Figure 3: Interactions-based performance comparison of the different methods. Methods marked with †, have access to
expert actions, Section 5.1 for more information). We average the results over three random seeds and show the mean and
the range of one standard deviation.
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C.2. Time-based Comparison

(a) DMC Suite

(b) OpenAI Gym

Figure 4: Computational time-based performance comparison of the different methods. Methods marked with †, have access
to expert actions, Section 5.1 for more information). We average the results over three random seeds and show the mean and
the range of one standard deviation.
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C.3. Median Normalized Return Comparison

(a) DMC Suite

(b) OpenAI Gym

Figure 5: Median Normalized Return, over different environments, of various instantiations of our method (solid lines)
versus baselines (dashed curves). This plot is derived by quantalising the training curves present in Fig. 3, using a fixed
number of quantiles, here 5000, with median computation per algorithm across the different environments of each suite
tested. Methods marked with † have access to expert actions representing the best possible performance, all others do not.
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D. Comparative Analysis of Learned and Expert Actions

Env Algo R2(πθ(a|sE), aE) R2(IDM(a|sEt , sEt+1), a
E)

Ant-v3 MAAD-AIL 0.8998 ± 6.87e-03 0.9492 ± 7.20e-03
MAAD-TM 0.9350 ± 4.76e-03 0.9621 ± 4.64e-03
MAAD-OT 0.9255 ± 1.05e-02 0.9530 ± 9.89e-03

HalfCheetah-v3 MAAD-AIL 0.9952 ± 2.82e-04 0.9991 ± 1.78e-04
MAAD-TM 0.8719 ± 5.23e-02 0.8762 ± 5.29e-02
MAAD-OT 0.9916 ± 1.62e-03 0.9956 ± 1.65e-03

Walker2d-v3 MAAD-AIL 0.8297 ± 2.62e-02 0.8575 ± 2.62e-02
MAAD-TM 0.0192 ± 2.34e-01 0.0238 ± 2.35e-01
MAAD-OT -0.5949 ± 3.30e-01 -0.5816 ± 3.31e-01

Hopper-v3 MAAD-AIL 0.7943 ± 1.13e-01 0.8072 ± 1.06e-01
MAAD-TM 0.5033 ± 1.66e-01 0.5196 ± 1.64e-01
MAAD-OT 0.9223 ± 2.53e-02 0.9269 ± 2.59e-02

Humanoid-v3 MAAD-AIL 0.9614 ± 3.01e-03 0.9956 ± 8.67e-05
MAAD-TM 0.9233 ± 4.92e-03 0.9944 ± 1.07e-03
MAAD-OT 0.9782 ± 2.04e-03 0.9958 ± 2.26e-05

Cheetah-Run MAAD-AIL 0.9500 ± 4.00e-03 0.9920 ± 4.18e-03
MAAD-TM 0.9809 ± 1.39e-03 0.9898 ± 1.44e-03
MAAD-OT 0.9823 ± 4.26e-03 0.9913 ± 3.80e-03

Dog-Run MAAD-AIL 0.9517 ± 1.32e-03 0.9966 ± 3.01e-03
MAAD-TM 0.9700 ± 2.17e-04 0.9985 ± 1.61e-05
MAAD-OT 0.9730 ± 1.12e-03 0.9984 ± 3.86e-05

Walker-Walk MAAD-AIL 0.6387 ± 3.70e-03 0.7145 ± 1.13e-02
MAAD-TM -0.1460 ± 2.34e-01 -0.1461 ± 2.34e-01
MAAD-OT -0.1965 ± 2.96e-01 -0.1955 ± 3.12e-01

Walker-Run MAAD-AIL 0.7835 ± 2.52e-02 0.8025 ± 2.44e-02
MAAD-TM -0.1207 ± 1.69e-01 -0.1209 ± 1.69e-01
MAAD-OT -0.1794 ± 1.93e-01 -0.1796 ± 1.92e-01

Quadruped-Run MAAD-AIL 0.8200 ± 4.31e-04 0.9995 ± 8.24e-06
MAAD-TM 0.8947 ± 2.82e-03 0.9978 ± 7.60e-04
MAAD-OT 0.8901 ± 1.90e-03 0.9972 ± 4.89e-04

Quadruped-Walk MAAD-AIL 0.9261 ± 2.94e-03 0.9994 ± 7.14e-05
MAAD-TM 0.9787 ± 1.55e-03 0.9994 ± 2.38e-06
MAAD-OT 0.9582 ± 5.39e-04 0.9994 ± 1.04e-05

Table 6: Comparison of R-squared Scores for Policy and Inverse Dynamics Model Against Expert Actions Across Different
Environments and Algorithms

Even though we operate within the Imitation Learning from Observations (ILO) framework, where trained models do not
have direct access to expert actions, we possess these actions since we trained the experts. We would like to understand
better how the actions that MAAD trained policies select, as well as these that the inverse model selects, relate to the expert’s
actions. As already discussed in Section 4.3, the inverse model learns the distribution of plausible actions, if this is done
well, the expert’s action will have a distribution that has a support that is a subset of the support of the plausible actions’
distribution. To understand the relations described above, we computed the R-squared score between the actions produced
by our learned policies and the true expert actions, as well as between the learned IDM and the expert actions. Values below
an R-squared score of 0.5 were highlighted in red. The majority of our models achieved an R-squared score close to one, i.e.
most often there is a high to very high agreement between the learning policy, the inverse model, and the expert’s choices.
Again, we want to stress that one should not interpret that, in the general case, as the inverse model eventually learning the
expert; we rather believe that for the majority of the environments that we consider here the set of plausible actions is rather
constrained, after all we have seen that the unimodality assumption (k = 1 for IDM Section 4.1) works best in most of the
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environments; thus the expert actions can only fall within this rather constrained unimodal set of plausible actions. Under
such conditions, it is expected that the actions learned by both the policy and the inverse model would align closely with
those of the expert.

A notable exception to this high agreement pattern are the walker-based environments, where we observed the poorest
performance, in some cases resulting even in negative R-squared values. One possible explanation is that these environments
are not strictly unimodal, leading to difficulties in action learning. This is something that we want to investigate further by
focusing on more challenging environments which feature a less constrained set of plausible actions.
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