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ABSTRACT

Successful deployment in uncertain, real-world environments requires that deep
learning models can be efficiently and reliably modified in order to adapt to unex-
pected issues. However, the current trend toward ever-larger models makes standard
retraining procedures an ever-more expensive burden. For this reason, there is
growing interest in model editing, which enables computationally inexpensive,
interpretable, post-hoc model modifications. While many model editing techniques
are promising, research on the properties of edited models is largely limited to
evaluation of validation accuracy. The robustness of edited models is an important
and yet mostly unexplored topic. In this paper, we employ recently developed
techniques from the field of deep learning robustness to investigate both how model
editing affects the general robustness of a model, as well as the robustness of the
specific behavior targeted by the edit. We find that edits tend to reduce general
robustness, but that the degree of degradation depends on the editing algorithm
chosen. In particular, robustness is best preserved by more constrained updates
that modify less of the model. Motivated by these observations we introduce a new
model editing algorithm, 1-layer interpolation (1-LI), which uses weight-space
interpolation to navigate the trade-off between editing task accuracy and general
robustness.

1 INTRODUCTION

Many applications require a model to be repeatedly modified after initial training to address model
deficiencies and other undesirable behavior. One such family of such methods is called model
editing. These methods aim to modify a model without the need for extensive computations or a large
collection of new training examples. Most of these methods aim to change the way a model behaves
in very specific instances, for example modifying an image model so that it correctly classifies cars
even on streets covered with snow (Santurkar et al., 2021) or updating a language model to correctly
identify the new prime minister of the United Kingdom (Mitchell et al., 2022a;b). Moreover, editing
methods often apply a tightly constrained update to network weights, for example adding a low-rank
matrix to the weights of a single layer. Section 2 (and Appendix B) contain summaries of the editing
tasks (datasets and objectives) and algorithms that we consider.

The robustness of deep learning models has become an active area of research, motivated by obser-
vations that models may be more brittle than previously recognized (Recht et al., 2019; Hendrycks
& Dietterich, 2019; Barbu et al., 2019; Hendrycks et al., 2021b;a). Given model editing’s potential
use as a tool to easily update deployed models, it is important to understand how editing affects
robustness. For example, we know that strong performance on a test set does not always imply strong
performance upon deployment where out-of-distribution (OOD) data is likely to be encountered.
Should we expect edited models to generalize? To what extent? Given that many editing methods are
quite different from traditional network optimization and fine-tuning, the answers to these questions
are not obvious and have not yet been addressed in the literature. The purpose of this paper is to stress
test model editing by evaluating how robust edited models really are. In summary, our contributions:

• We evaluate model editing techniques to understand their effect on robustness, finding that
while editing tends to reduce robustness, the magnitude of this reduction depends on the
type of editing used and layer chosen.
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Figure 1: OOD performance of edited models. Left: Editing validation accuracies of VGG16 and
ViT models on the synthetic concept-style task. Middle: Editing task OOD penalties Equation (7) of
the edited models in on the left. Right: original task OOD penalties on ImageNet-C Equation (6) of
VGG models edited using the synthetic concept-style task.1

• We introduce new approaches to editing, most notably 1-layer interpolation which results in
less robustness degradation than previous weight-space interpolation methods, in certain
layers exhibiting effective robustness (see Figure 3).

2 MODEL EDITING

Our model editing problem and data set-up are described in full detail in Appendix B. In summary,
we consider two different kinds of editing set-ups, largely borrowing from (Santurkar et al., 2021)
and (Ilharco et al., 2022). The first set-up uses a training dataset Dtrain

edit comprised of triplets (x, x′, y).
The model is either “edited” such that f(x) ≈ f(x′) (we call this output collision, and it includes the
low-rank, rewriting, and fine-tuning for output collision methods) or can be edited such that f(x) ≈ y
(called fine-tuning). Note that in fine-tuning, the editing task introduces new labels y for the model to
target, whereas for output collision the editing tasks only introduces new inputs. All editing methods
studied in this paper are defined in full in Appendix B, and summarized in Table 1.

The second editing set-up examine the related problem of adapting open-vocabulary models such as
CLIP (Radford et al., 2021) to the MNIST (Lecun et al., 1998), SVHN (Netzer et al., 2011) and KITTI
distance estimation (Geiger et al., 2013), via interpolations (Ilharco et al., 2022). We measure the the
robustness of the resulting edited models (see Section 3.1). The interest in MNIST, SVHN and KITTI
stems from the fact that for all its impressive zero-shot performance on a wide variety of datasets,
the original CLIP model struggled on these three (famously underperforming logistic regression on
raw pixels in the case of MNIST). Next, we introduce two new editing methods motivated by our
experiments on editing robustness.

Single-layer interpolation (1-LI): We apply local fine-tuning at layer l along with weight-space
interpolation. The inspiration for this approach was to combine a common feature of several editing
algorithms, namely weight updates restricted to a single layer, with the empirical benefits of weight-
space interpolation (Ilharco et al., 2022; Wortsman et al., 2022). In Section 3.1 we show that this
method often reduces degradation of model robustness.

Direct low-rank editing: The motivation for our direct low-rank editing algorithm comes from
asking how much of the effectiveness of other model editing methods stem simply from employing
low-rank weight updates, and our experimental results in Section 3.1 suggest that at least when
comparing with rewriting, the answer is that much of the effectiveness is due to rank restriction alone.
Using the framework and notation in Appendix B, we update a weight Wl with Wl + UV T , where
U, V are low-rank matrices. We provide additional details, contrast the method with those of (Bau
et al., 2020; Santurkar et al., 2021) and provide a code sample in Appendix C.

3 OOD PERFORMANCE OF EDITED MODELS

We consider two different performance measures for an edited model on OOD data: the accuracy of
an edited model on a distribution-shifted version of the original task validation set Dval

orig, as well as

1Unfortunately results for editing (resp. original task) OOD penalties of full fine-tuning for VGG (resp. ViT)
models did not return by the time of publication, so they are missing in the middle (resp. right) plots.
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the accuracy of the edited model on a distribution-shifted version of the editing task validation set
Dval

edit. These two evaluations are quite different: in the example of the vehicles-on-snow task with a
distribution shift generated by blurring images, the first performance measure requires evaluating the
edited model on blurry images from all ImageNet classes, while the second requires evaluating blurry
images of vehicles on snow. We model corrupted ImageNet images using the ImageNet-C dataset
released by (Hendrycks & Dietterich, 2019), and use the ImageNet-C code to corrupt non-ImageNet
data (see Appendix D.2). In addition, we evaluate models on ImageNet-R (Hendrycks et al., 2021a)
and ImageNet-A (Hendrycks et al., 2021b). Further dataset details can be found in Appendix D.1.

Figure 2: Linear interpolation between original and edited weights W and W ′ for edited models.
Each curve corresponds to a an editing layer, and each point on that curve corresponds to evaluation
of a model with weights (1 − α)W + αW ′ for some t ∈ [0, 1]. Left: direct rank one editing for
VGG16 models on the vehicles-on-snow dataset. Right: Full and single layer linear interpolation
between original and edited weights of CLIP models for the KITTI task.

3.1 RESULTS

Due to constraints of space we relegate a complete discussion of models, tasks and editing algorithms
to Appendix B. Our first basic finding is that all editing methods result in negative OOD penalties,
meaning the edited models tend to be less robust. Figure 1 (a) displays editing validation accuracies
of VGG and ViT models on the synthetic concept-style task, taking the maximum validation accuracy
over edited layers and averaged over all concept-style pairs considered. Figure 1 (b) displays editing
task OOD penalties for the same models and editing tasks as Figure 1 (a), where distribution shift
is modelled by applying corruptions to the synthetic concept-style validation sets. We find direct
low-rank editing underperforms in terms of editing task OOD penalty (for both models) and that
full model fine-tuning seems to break the relative trend for the two models. Figure 1 (c) displays
original task OOD penalties on corrupted ImageNet (i.e., corruptions of Dval

orig) for VGG and ViT
models edited using the synthetic concept-style task.

Figure 2 displays both ImageNet accuracy and editing task accuracy along line segments (1−α)W +
αW ′ in weight space, where W are the original model weights and W ′ are the edited weights.
For all editing methods ImageNet accuracy generally decreases as editing accuracy increases, and
moreover the resulting curves appear to be roughly concave. This was found to be the case for global
fine-tuning in (Ilharco et al., 2022), but to our knowledge has not been established for local fine-tuning
or low-rank editing. Note that performance is layer-dependent, indicating that the choice of editing
layer is task dependent. These results are a new observation of a monotone linear interpolation
(MLI) phenomenon. The first observation of MLI found empirically that training loss decreased
monotonically along line segments between randomly initialized weights and weights at the endpoint
of SGD training (Goodfellow et al., 2014). The basis for weight-space interpolation as a fine-tuning
mechanism (as in (Ilharco et al., 2022; Wortsman et al., 2022)) is another form of MLI: empirically,
as the interpolation parameter α increases, accuracy on the fine-tuning task increases monotonically
while accuracy on the original task decreases monotonically. Figure 2 shows the same behaviour
occurs when weights are updated using single layer fine-tuning or low-rank editing methods. We
believe this is new, with the following exception: one can prove that if only the final (pre-logit)
weights are updated and the pairwise loss function is convex (for example, cross entropy loss) then
MLI holds.
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Figure 3: ImageNet-R vs ImageNet (top) and task accuracy (bottom) along line segments (1−α)W +
αW ′ between original and edited weights W and W ′ of CLIP models edited on various tasks, where
different points correspond to different interpolation parameters α.

Takeaway: Weight interpolation continues to be an effective way of balancing original task accuracy
and editing task accuracy, even when editing updates weights at a single layer (as opposed to global
fine-tuning). Surprisingly, 1-LI methods outperform full fine-tuning and weight space interpolation
on some tasks and robustness evaluations.

In addition to measuring accuracies on original and editing tasks, we can measure OOD accuracy
along line segments (1 − α)W + αW ′. Figure 3 (bottom) displays ImageNet-R accuracies of
the CLIP models appearing in Figure 5, plotted with respect to editing task accuracy. Additional
results for ImageNet-C and ImageNet-A are provided in Appendix A.2. These curves are generally
monotonically decreasing, showing that the edited models are less robust to corrupted variants of the
original validation set than the original model. For all three tasks there are layers where single-layer
fine-tuning provides higher ImageNet-R (and ImageNet-C/A in Figures 6 and 7) accuracy than global
fine-tuning along some portion of the interpolation path. Considering Figures 2, 3 and 5 to 7 as a
whole, we see that while accuracy on OOD variants of ImageNet accuracy does appear to be linearly
correlated with ImageNet accuracy, as is often observed to be the case (Recht et al., 2019; Taori
et al., 2020; Miller et al., 2021; Wortsman et al., 2022), there are notable exceptions: a simple linear
correlation would predict global fine-tuning to exhibit higher ImageNet-C accuacy for all values
of α in Figure 6 (a, b), which is not the case. This deviation from linear correlation suggests that
single-layer edited models may exhibit a form of effective robustness as formalized in (Taori et al.,
2020). In Figure 3 (top), which directly plots ImageNet-R vs ImageNet accuracy, we see that this
does appear to occur in some cases. Another question is whether the finding that effective robustness
decreases over the course of global or last-layer fine-tuning (Andreassen et al., 2021) holds in the
case of local fine-tuning of early layers. Investigation of this last point would be an exciting direction
for future work.

Takeaway: Edits tend to degrade model robustness on the original task, but the magnitude of this
decrease depends strongly on the method used. In particular, methods constrained to certain layers
can retain significantly more robustness on the original task.

4 CONCLUSION

In this work we evaluate the changes to model robustness that result from editing techniques. We
find that in general, all editing techniques tend to degrade model robustness but that edits that
are constrained to update only a fraction of model parameters tend to result in a less pronounced
drop in robustness. We hope that these results can be used to better inform the choice of editing
method in real-world situations where a model is expected to encounter out-of-distribution data upon
deployment.
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(a) (b)

Figure 4: Linear interpolation between original and edited weights W and W ′ for edited VGG16
models the vehicles-on-snow dataset. Each curve corresponds to a an editing layer, and each point on
that curve corresponds to evaluation of a model with weights (1− α)W + αW ′ for some t ∈ [0, 1].
(a): local fine-tuning for output collision. (b): direct rank one editing.

Figure 5: Linear interpolation between original and edited weights W and W ′ of CLIP models edited
on various tasks. Each curve corresponds to a an editing layer (or to global fine-tuning), and each
point on that curve corresponds to evaluation of a model with weights (1− α)W + αW ′ for some
α ∈ [0, 1].

A ADDITIONAL EDITING RESULTS AND ANALYSIS

A.1 EDITING TASK PERFORMANCE

Figure 4 displays both ImageNet accuracy and vehicles-on-snow task accuracy along line segments
(1− α)W + αW ′ in weight space, where W are the original model weights and W ′ are the edited
weights. In this experiment we use VGG16 models, and two different editing methods: local fine-
tuning for output collision (Item i)) and direct low-rank editing (with rank = 1). For both editing
methods we see that ImageNet accuracy generally decreases as editing accuracy increases, and
moreover that the resulting curves appear to be roughly concave. This shows that weight space
interpolation may serve as a viable alternative to early stopping for the purpose of balancing accuracy
on the original and editing task. As noted in Section 3.1, this was found to be the case for global
fine-tuning in (Ilharco et al., 2022), but to our knowledge has not been established for local fine-tuning
or low-rank editing.

Figure 5 shows full results for a similar phenomenon occurs for a much larger CLIP open vocabulary
model (Radford et al., 2021) on a variety of editing tasks: MNIST, KITTI and SVHN. When fine-
tuning a single layer, ImageNet accuracy generally decreases as editing accuracy increases, and the
resulting curves appear to be roughly concave. On the MNIST and SVHN tasks, the curve for global
fine-tuning dominates those of single layer fine-tuning, but interestingly we see that fine-tuning a
single (later) layer can result in superior KITTI accuracy at a given ImageNet accuracy. Note also
that for SVHN, tuning later layers results in worse performance than tuning earlier layers, indicating
that the choice of editing layer is task dependent.

It is worth mentioning (Lucas et al., 2021) exhibits realistic examples of neural network training
where MLI fails, even though models train successfully — a common theme of these examples is
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that they involved long-distance travel of model weights (for example, using the Adam optimizer
(Kingma & Ba, 2017) reliably broke MLI). We suspect that a reason failures of MLI are not more
commonly observed in the context of fine-tuning and editing is the common practice of limiting the
distance travelled by weights in these situations (see for example the discussion in §4.2, 8 of (Ilharco
et al., 2022)).

A.2 OOD PERFORMANCE

Figure 6: ImageNet-C accuracy along line segments (1− α)W + αW ′ between original and edited
weights W and W ′ of CLIP models edited on various tasks, plotted with respect to the interpolation
parameter α.

In Figures 1, 3, 6 and 7 there appears to be at least one common thread: editing weight updates with
restricted capacity (as measured by the effective number of model parameters the update modifies)
can preserve more of the robustness of the original model. Indeed, in Figure 1 we see that rewriting, a
method that perturbs a single layer’s weight matrix with a low-rank matrix, incurrs a smaller (i.e. less
negative) original task OOD penalty than full model fine-tuning, which is free to modify all network
parameters. In Figure 3 (bottom) and Figure 6 we see that 1-LI, a method that by definition only
modifies weights at a single network layer, retains higher accuracy on ImageNet-C and ImageNet-R
than full model fine-tuning for many editing layers. Of course, in the case of 1-LI there are also
layers that fare worse on ImageNet-C and ImageNet-R than full model fine-tuning, illustrating that
editing weight update capacity cannot be the only factor in play.

B DESCRIPTION OF MODEL EDITING

The model editing problem can be thought of in terms of two distinct training tasks, executed in
sequence. The first is the original task, in which a neural network f is trained on a dataset Dtrain

orig
comprising input-output pairs (x, y); the goal is to achieve a good approximation f(x) ≈ y. This
is simply the standard neural network training procedure, usually achieved by minimizing a cost
function using a gradient-based optimizer, like stochastic gradient descent (SGD).

Second is the editing task, defined by a second dataset Dtrain
edit . In this work we focus on two types

of editing tasks, output collision and fine-tuning. In the case of output collision, the goal is for the
model to generate similar outputs for distinct but semantically similar inputs. More specifically, we
letDtrain

edit comprise input pairs (x, x′) and train the model such that f(x) ≈ f(x′). We focus on output
collision editing tasks because they are interpretable, effective, and extend naturally to a wide variety
of models.2 For fine-tuning tasks Dtrain

edit is a second dataset of input-output pairs (x, y) and the model
is trained to achieve a good fit f(x) ≈ y on this new data.3 Note that in fine-tuning, the editing task
introduces new labels y for the model to target, whereas for output collision the editing tasks only
introduces new inputs.

For both types of editing tasks, there is typically a validation dataset Dval
edit consisting of input-output

pairs (x, y) (note that this is true even in the output collision setting).

2Output collision tasks encompass those used by the rewriting algorithm, which extends to GANs, image
classifiers and language models as discussed in Appendix E.

3We emphasize that whereas in some other applications of fine-tuning model architecture is modified (for
example replacing a final layer to account for different labels on the new dataset) this does not occur in our
editing experiments.
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Figure 7: ImageNet-A vs ImageNet (top) and task accuracy (bottom) along line segments (1−α)W +
αW ′ between original and edited weights W and W ′ of CLIP models edited on various tasks, where
different points correspond to different interpolation parameters α.

B.1 EDIT TASKS AND DATA

In our first experiments we study image classification models trained on ImageNet (Deng et al., 2009)
object recognition as the original task. We consider two different editing tasks, both closely related to
the experiments performed in (Santurkar et al., 2021).

The first task is motivated by the observation that a particular image classifier could accurately
identify vehicles on roadways, but was noticeably less accurate when classifying vehicles on snow.
To address this shortcoming, (Santurkar et al., 2021) took datapoints (x, y) from ImageNet and used
style transfer to replace road segments in the image x with snow texture. Each modified image x′ was
paired with the original version; the result is a set of triples (x, x′, y) which can be used for an output
collision task (by dropping y) or a fine-tuning task (by dropping the original image x). Validation
is performed using a curated collection of images of vehicles on show downloaded from Flickr, the
original source of ImageNet images. We refer to this editing task as “vehicles on snow.”

Our second editing task synthesizes data using a pre-trained segmentation model and a style transfer
model. Starting with a given ImageNet datapoint (x, y), we generate a number of modified versions
x′1, x

′
2, . . . , x

′
k to pair with it as follows: First, we select a concept like “mountain.” Then we use

the segmentation model to identify regions in x matching that concept. Next we select a style, in
practice an image of a texture like “fall colors,” and use style-transfer to replace those regions in
x labelled as “mountain” with “fall colors.” Choosing k different images of “fall colors” to run
through style transfer results in the k different modified versions x′1, x

′
2, . . . , x

′
k. The pairing of a

mountains-to-fall colors modification with the original datapoint yields a triple (x, x′i, y) for each
i = 1, . . . , k, analogously to the vehicles-on-snow task. As in that case, we can obtain pairs for
output collision (resp. fine-tuning) tasks by dropping y (resp. x). Note that as in (Santurkar et al.,
2021), we select images for modification from the ImageNet validation set, then split the resulting
image pairs into training set Dtrain

edit and validation set Dval
edit for the editing task. Further details as well

as example datapoints can be found in Appendix D.2. We refer to this as the “synthetic concept-style”
editing task.

We also examine the problem of adapting open-vocabulary models such as CLIP (Radford et al.,
2021) to the MNIST (Lecun et al., 1998), SVHN (Netzer et al., 2011) and KITTI (distance estimation)
(Geiger et al., 2013). While traditionally viewed as a sort of fine-tuning or continual learning problem,
we show that it can be approached using model editing methods such as single-layer fine-tuning,
and that measuring the the robustness of the resulting edited models yields interesting results (see
Section 3.1). The interest in MNIST, SVHN and KITTI stems from the fact that for all its impressive
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zero-shot performance on a wide variety of datasets, the original CLIP model struggled on these three
(famously underperforming logistic regression on raw pixels in the case of MNIST).

B.2 METHODS

We start by introducing some notation. For ease of exposition, consider a simplified neural network
whose architecture can be described below (for discussion on the adaptations to more complicated
architectures, e.g., with residual connections, see Appendix C). Let f be a neural network defined as
the composition

Rn0
f1−→ Rn1

f2−→ · · ·
fL−1−−−→ RnL−1

fL−−→ RnL , (1)

where fl(x) = σ(Wlx), with Wl an nl × nl−1 matrix for each l = 1, . . . , L and σ a coordinate-
wise non-linearity (e.g., ReLU). For any such l, let f≤l denote the composition of the first l
layers: fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1. Similarly, let f>l denote the composition of the last L − l layers
fL ◦ fL−1 ◦ · · · ◦ fl+1.

In what follows we discuss two tools in model editing: methods for updating model weights and
methods for balancing the trade off in accuracy between the original and editing task. Most of
the references in Appendix E apply some weight update procedure together with cross validation,
however (Ilharco et al., 2022) recently obtained impressive results using global fine-tuning and
weight space linear interpolation. Further details, including notes on implementation, are deferred to
Appendix C.

Methods of updating weights: Consider an input pair (x, x′), as in an output collision editing task.
If f≤l(x) = f≤l(x

′) for any l, it trivially follows that f(x) = f(x′), as desired. This is the basic
motivation for the following weight update procedures, all of which attempt to minimize the mean
squared error between f≤l(x) and f≤l(x′) creating the situation where f≤l(x) ≈ f≤l(x′):

i) Local fine-tuning for output collision: Optimize Wl using SGD.
ii) Global fine-tuning for output collision: Optimize W1, . . . ,Wl using SGD.

iii) Rewriting (Bau et al., 2020; Santurkar et al., 2021; Meng et al., 2022a;b): Perform update
Wl ← Wl + UV T , where U, V are low-rank matrices. V is derived by viewing Wl as
a linear associative memory (Kohonen, 1972; Anderson, 1972; Kohonen, 1977) and U is
optimized using SGD.

For fine-tuning tasks where updates use pairs (x′, y) rather than (x, x′), additional methods are
available:

iv) Local fine-tuning at layer l: Optimize Wl with SGD such that f(x) ≈ y for new datapoints
(x, y).

v) Global fine-tuning from layer l forward: Optimize Wl, . . . ,WL with SGD such that f(x) ≈
y for new datapoints (x, y)

Approaches to balancing original and editing accuracy: The two dominant approaches that we
will consider are:

i) Cross validation: In this simple approach, one monitors the validation accuracy on the
original and editing validation datasets while performing optimization with respect to the
editing task. One chooses a desirable “best iteration” (i.e. early stopping) as suits the
application.

ii) Weight space linear interpolation: Surprisingly, linearly interpolating weights often inter-
polates between performance on the original and editing tasks. Specifically, given original
weights W := (Wl)

L
l=1 and edited weights W ′ := (W ′l )

L
l=1 one chooses α ∈ [0, 1] such

that (1− α)W + αW ′ balances performance between the two tasks.

We note that weight space interpolations have only been explored for full-model fine-tuning. To
our knowledge we are the first to observe that linear interpolation works when weights have been
modified using an editing method that only updates weights at a single layer (see Section 3.1).

C DETAILED DESCRIPTIONS AND REFERENCES
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method figures reference

1-layer interpolation 3, 4, 5 ours
direct low-rank editing 2(b) ours
local fine-tuning for output
collision

2(a) ours, but closely related to (Bau
et al., 2020; Santurkar et al., 2021)

global fine-tuning for output
collision

1(a-b) ours, but see also (Engstrom et al.,
2019)

local fine-tuning at layer l general knowledge (in the context of
robustness see (Lee et al., 2023))

full model fine-tuning 1(a-b), 3∗, 4∗, 5∗ general knowledge (∗ combined
with weight space interpolation (Il-
harco et al., 2022))

rewriting 1(a-c) (Bau et al., 2020; Santurkar et al.,
2021)

global fine-tuning from layer
l forward

1(a-b) general knowledge

Table 1: Editing methods studied in this paper, relevant figures and references where applicable.

FOR WEIGHT UPDATE METHODS

In this section we only provide a complete description of direct low-rank editing. The rewriting
algorithm is described in detail in (Bau et al., 2020) (see also (Santurkar et al., 2021), which adapts
rewriting to image classifiers). We take fine-tuning to be well known (or easy to locate in existing
literature), and emphasize 1-LI differs from the PAINT method of (Ilharco et al., 2022) only in the
restriction of weight updates during fine-tuning to a single layer.

Direct low-rank editing is related to two successful editing methods, rewriting and the MEND
method (Mitchell et al., 2022a), that employ low-rank perturbations to weight matrices. Beyond this
common feature of low-rank perturbations, the two methods differ in many other details: MEND
trains hypernetworks to optimize its low-rank perturbations UV T and initializes UV T by applying
a singular value decomposition to model gradients on batches of editing samples4 — this stands in
contrast to the description of rewriting appearing in Item iii) above.5

In the case of direct low-rank editing at layer l of a network f as in Equation (1), we introduce new
parameters U, V where U (resp. V ) is an nl × r (resp. r × nl−1) matrix; here r is the rank of the
edit, a hyper parameter decided in advance. Then, with all weights W1, . . . ,WL frozen, we optimize
the network weights

(W1, . . . ,Wl−1,Wl + UV T ,Wl+1, . . . ,WL) (2)

to minimize the mean squared error 1
nl
|f≤l(x) − f≤l(x′)|2 on the feature collision style editing

training set using SGD on the parameters U, V .6 A few notes:

• This method shares the low-rank feature of rewriting.
• It lacks a principled derivation through the lens of associative memories.
• It is potentially computationally less expensive: for example, rewriting requires pre-

computation of the covariance matrix Σ of the features f≤l−1(x) over datapoints in the
original training set Dtrain

orig and computing its inverse square root (to later apply a ZCA
transformation). In the case of today’s large neural networks, this feature covariance matrix

4Which are naturally low-rank, in fact with rank bounded by the batch size (see e.g. Appendix E of (Kiani
et al., 2022))

5We do not compare with MEND in this work since it has somewhat different data requirements than those
described in Appendix B.1 — in particular, an auxiliary dataset of editing examples is needed to train the
hypernetwork to edit models. Evaluating direct low-rank editing on the tasks considered in (Mitchell et al.,
2022a) would be an interesting experiment for future work.

6Note that since no earlier layers are trained, this is equivalent to minimizing the mean squared error between
σ((Wl+UV

T )f≤l−1(x)) and σ((Wl+UV
T )f≤l−1(x

′)), where the l−1st features f≤l−1(x) and f≤l−1(x
′)

are fixed throughout editing optimization.

12



can be quite large (e.g. 4096 × 4096). Direct low-rank editing requires no preliminary
numerical linear algebra. However, it is also true that a careful implementation of rewriting
can avoid a large matrix inversion by the classic trick of replacing a “matrix-inverse-vector”
operation A−1y with a call to a least squares solver for |Ax− y|2, and we have not formally
benchmarked the computational cost of direct low-rank and rewriting.

Most of the image classifiers we experiment with are CNNs, and in this case with the exception
of the last few layers we are editing 2D convolution weights, rather than the matrices appearing in
our toy model Equation (1). All editing methods other than direct low-rank and rewriting extend
essentially verbatim to the case of CNNs. For direct low-rank and rewriting, we implement the
low-rank perturbations as 1 × 1 convolutions (equivalent to multiplying channel vectors with the
same low-rank matrix at every spatial position). More precisely, let Wl be the original, unedited
convolution weight, say of shape Cl × Cl−1 ×K ×K where K is the kernel size. We then let U
and V be convolutions of shapes Cl × r × 1× 1 and Cl−1 × r × 1× 1 respectively and replace the
expression Wl + UV T used for fully connected linear layers with

Wl + U ∗ V T (3)
where ∗ denotes convolution and transpose flips the first two indices. Note that as 1× 1 convolutions
U and V T simply apply a fixed matrix over the channels of an input hidden feature at each spatial
position. In (Santurkar et al., 2021) it was noted that this improves performance of rewriting, when
compared to applying the perturbation Wl + U ∗ V T only at spatial positions contained in the
segmentation mask of the editing task (“road” in the case of vehicles on snow, or the concept being
replaced via style transfer in the case of the large scale synthetic task).

A convolution using the weights of Equation (3) can be implemented in a few lines of idomatic
PyTorch:

i m p o r t t o r c h
from t o r c h . nn i m p o r t f u n c t i o n a l a s F

# u , v a r e m a t r i c e s o f shape ( C l , r ) , ( C { l −1} , r ) r e s p e c t i v e l y
# m u l t i p l y t o g e t a r ank <= r m a t r i x :
uv = t o r c h . e insum ( ’ i , j −> i j ’ , u , v )
# r e s h a p e t o g e t a 1x1 c o n v o l u t i o n we igh t :
uv = uv . r e s h a p e ( uv . shape + ( 1 , 1 ) )
# w i s t h e o r i g i n a l c o n v o l u t i o n we igh t o f shape ( C l , C { l −1} , K, K)
# x i s an i n p u t o f shape ( C { l −1} , H, W)
o u t p u t = F . conv2d ( x , w) + F . conv2d ( x , uv )

Equation (3) only strictly-speaking makes sense when the kernel size K is odd: in that case, we can
pad the 1 × 1 convolutions U and V with zeros in the spatial tensor dimensions to obtain K ×K
convolutions, say Ũ and Ṽ such that if (k, l) denotes the index at the center of the K ×K kernel
(which depends on indexing conventions)

Ũcc′ij =

{
Ucc′ij if i = k, j = l

0 otherwise
(4)

and similarly for Ṽ . Then we can sensibly evaluate Wl + Ũ ∗ Ṽ T . In the case where K is even, if one
wants an update that truly only modifies the weights of a network (rather than appending an auxiliary
convolutional weight), there exist reasonable workarounds, for example if {k, k + 1} × {l, l + 1}
is the center of the 2× 2 grid at the center of the K ×K kernel (which again depends on indexing
conventions) one could use the weight sharing scheme

Ũcc′ij =

{
Ucc′ij if i− k ≤ 1, j − l ≤ 1

0 otherwise.
(5)

Thankfully, since the VGG and ResNet CNNs in our experiments only use odd kernel sizes we never
have to resort to such measures.

Lastly, following the discussion in §A.4 of (Santurkar et al., 2021) for ResNets we only edit convolu-
tional layers appearing at the end of residual blocks.
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D EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP

One common form of distribution shift for natural image data is corruption. We model corrupted
ImageNet images using the ImageNet-C dataset released by (Hendrycks & Dietterich, 2019), and use
the ImageNet-C code to corrupt non-ImageNet data (see Appendix D.2 for further details). ImageNet-
C contains many forms of corruption at varying severity levels; a table as well as example images
can be found in (Hendrycks & Dietterich, 2019). In addition, we evaluate models on ImageNet-R
(Hendrycks et al., 2021a) (which contains paintings and drawings of ImageNet classes) and ImageNet-
A (Hendrycks et al., 2021b) (curated by downloading images related to ImageNet labels and retaining
those incorrectly classified by a fixed ensemble of ResNet-50 models).

We use three ImageNet trained models: a VGG16 (Simonyan & Zisserman, 2015), a ResNet50 (He
et al., 2015), and a Vision Transformer (ViT) (Dosovitskiy et al., 2021). For the VGG and ResNet we
use pretrained weights available in torchvision (Marcel & Rodriguez, 2010), and for the ViT we
use weights available in timm (Wightman, 2019).

In addition, we experiment with an open-vocabulary CLIP model, using the ViT-L/14 weights
available in the code release for (Radford et al., 2021). This model was trained on a large dataset of
400 million image-text pairs scraped from the internet that is not publicly available.

Using the notation of Section 2 let Dval
orig be a validation set for the original task, (for example, the

ImageNet validation set) and let D̃val
orig be a distribution shifted variant of Dval

orig (for example obtained
by blurring images from Dval

orig). Letting forig and fedited denote the model before and after editing, we
compute the original task OOD penalty of the model edit

Acc(fedited, D̃val
orig)−Acc(forig, D̃val

orig), (6)

which is in words the raw change in accuracy on D̃val
orig caused by model editing. On the other hand if

D̃val
edit is a distribution shifted variant of the editing validation set Dval

edit, we compute the editing task
OOD penalty

Acc(fedited, D̃val
edit)−Acc(fedit,Dval

orig). (7)

In words, this is the decrease in editing validation performance caused by the distribution shift in
question.

D.2 SYNTHETIC EDITING DATASETS AND CORRUPTIONS THEREOF

We start with the segmented ImageNet validation datapoints7 and style images made available in
the code release of (Santurkar et al., 2021) — these segmented ImageNet validation datapoints are
organized according to “concepts”, i.e. segmentation labels assigned to a large region of the image
(for example “mountain”), and the style images are organized into groups (for exampe “fall colors”)
each of which contains several images. Then, for each concept-style pair (c, s we generate a dataset
of triples (x, x′, y) where (x, y) is an ImageNet validation datapoint for which the concept occupies
a large region in the segmentation map and x′ is obtained by replacing the region of the image x
segmented as the concept c with the style s, using Magenta’s “arbitrary image stylization” model
(Ghiasi et al., 2017). Images (a) and (b) of Figure 8 show an example datapoint.

The result of this pipeline is a large number of synthetic editing datasets Dedit(c, s): from 17 concepts
and 8 styles we obtain 136 editing datasets, one per concept-style pair. The concepts and styles used
are listed below.

Concepts “waterother”, “clouds”, “wallconcrete”, “boat”, “table”, “mountain”, “skyother”, “din-
ingtable”, “light”, “plantother”, “tree”, “sea”, “person”, “snow”, “tv”, “road”, “grass”.

Styles “falltrees”, “snowyground”, “woodentexture”, “furrytexture”, “blackandwhite”, “colorfulflow-
ers”, “graffiti”, “gravel”.

7These segmentations were obtained with a DeepLabV2 segmentation model (Chen et al., 2017) trained on
the COCO-Stuff dataset (Caesar et al., 2018).
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(a) (b) (c)

Figure 8: An example of an editing datapoint created using segmentation and style transfer. Image (a)
is an ImageNet validation datapoint, with label 976 (promontory, headland, head, foreland). In image
(b), the concept “mountain” has been replaced with the style “fall trees.” In image (c), the corruption
“snow” has been applied at a low severity level. Best viewed in color.

Our methodology for creating train-validation splits of such a synthetic dataset with concept c and
style s is as follows. First, a number Ntrain is specified (in all of our editing experiments on ImageNet
models it is 10), along with a “minimum training ratio” ρ (in all our experiments this is 1/2). In
addition, a number Strain is specified and the different images associated with the style s are broken
into train and validation splits (in all our experiments, Strain = 1, i.e. we include only one variant
of the style s in the train split, and the rest in the validation split). Then, we restrict attention to
ImageNet class labels y with at least Ntexttrain/ρ associated images in the full synthetic dataset with
concept c and style s. For each label y, we randomly sample8 Ntrain corresponding datapoints (x, y),
and for each of those datapoints we add the Strain triples (x, x′, y) where x′ is obtained by replacing
concept c with a training split variant of the style s to Dtrain

edit (c, s). The remaining triples (x, x′, y) are
added to Dval

edit(c, s). A few comments on this splitting strategy:

• With our choices of the Ntrain = 10, ρ = 1/2 and Strain = 1 the resulting training set size
is |Dtrain

edit (c, s)| = 10· the number of ImageNet labels with ≥ 20 images in the dataset of
segmentations provided by (Santurkar et al., 2021). This means that the training data size
varies with the concept c (but not with the style s). It also means that for every datapoint
appearing in Dval

edit(c, s) there is a datapoint of Dtrain
edit (c, s) with the same label. Hence this

editing task is in some sense easier than that of (Santurkar et al., 2021), which required
Dtrain

edit (c, s) to contain images from a single ImageNet class.
• (Santurkar et al., 2021) correctly points out that for some class labels y, replacing the

concept c with the style s makes classification (even by a human) difficult if not impossible.
They manually filter such label-concept-style combinations from their analysis. We did not
perform such a filtration. On the other hand, as mentioned above we do not restrict our
editing training sets to come from a single ImageNet class, and as such it is unlikely that
problematic label-concept-style combinations dominate our editing training sets.

• In light of the above two points, note that we do not perform any analyses of how editing per-
formance varies with editing training set size, nor any analyses of edited model performance
on specific ImageNet classes.

We add corruptions to the validation sets Dval
edit(c, s) with the scripts used to generate ImageNet-C

(Hendrycks & Dietterich, 2019). We use all 19 corruption types (including those denoted “extra” in
ibid.) and all 5 severity levels. This results in 95 corrupted variants of each validation set Dval

edit(c, s).
Image (c) in Figure 8 is an example of a corrupted concept-style-swapped image.

It must be acknowledged that in our evaluations of models edited using these synthetic datasets on
ImageNet-C, there is a form of train-test leakage: the editing training sets Dtrain

edit (c, s) contain images
from the (uncorrupted) ImageNet validation set, and our test set ImageNet-C consists of corrupted
versions of the ImageNet validation set. This leakage is undesirable to say the least. In follow-on

8Random sampling (including the random sampling of Strain training style variants) is controlled by a fixed
random seed.
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work, we would like to re-run these experiments and instead produce Dtrain
edit (c, s) from images in the

ImageNet training set, or alternatively (if it is important to model the deployment scenario where new
datapoints outside the original training set are collected) from images in ImageNetV2. Note in the
later case we would face leakage evaluating edited models on ImageNetV2.

We note, however, that the train-test leakage in our experiments was limited: in the worst case
(COCO-Stuff label “person”), an edited model was exposed to 1.04% of the ImageNet validation set,
and in the average case only 0.215%. Moreover, there are no literally identical images in the editing
training set and ImageNet-C (although there certainly are corrupted versions of training images in
ImageNet-C).

D.3 EDITING METHOD HYPERPARAMETERS

All experiments in this paper are implemented in PyTorch (Paszke et al., 2019) (the one exception
being the Magenta neural style transfer for synthetic editing dataset creation, where we use the
original TensorFlow (Abadi et al., 2015) implementation) and run on NVIDIA GPUs.

In the editing methods of Appendix B.2, wherever applicable we use PyTorch’s torch.optim.SGD
with momentum 0.9 and decay 10−4 (only applied to parameters whose names contain “weight”).
We do not update batch norm running means and variances during editing. Our reasoning is that
over the course of editing optimization those statistics will move from those of the original training
dataset towards those of the editing dataset, which could have a destructive on model performance
on the original task or corrupted variants thereof. We allow editing optimization to proceed for a
maximum of 10000 epochs, with an early stopping criterion that terminates optimization if the editing
validation accuracy drops below half of its best-so-far. The large number of maximum epochs is
chosen to account for the huge variation in optimal learning rates observed at different layers (or sets
of layers) of different models; the idea here is to gaurd against the possibility of never observing
editing learning do to using a too-small learning rate (which did occur in many preliminary test
runs). The early stopping criterion is in place to offset the high worst-case computational cost of
using 10000 epochs in every single edit — it seems to detect editing overfitting (which occurs quite
regularly on the small datasets involved) in many cases, terminating optimization well before the
maximum possible number of epochs is attained.

As mentioned above, effective9 learning rates for the editing methods considered appear to span
many orders of magnitude (based on preliminary tests, as low as 10−5 in some cases of supervised
fine-tuning of later layers and as high as 100 in some cases of direct low-rank and rewriting). Effective
learning rates depend on model, editing dataset, editing method and layer (for the editing methods
where a model layer is specified). We first use preliminary tests on a smaller set of editing datasets
including vehicles on snow and synthetic datasets for a subset of concept-style pairs, and where
relevant with a subset of possible editing layers, to determine for each model and editing method a
reasonable interval in which to search for learning rates. Then in our experiments we choose learning
rates using cross validation over a grid search in the relevant reasonable learning rate interval.

In the case direct low-rank and rewriting, editing validation accuracy can exhibit substantial noise
with respect to random initialization (of U and V in the case of direct low-rank, and of U in the case
of rewriting). For these methods we run editing optimization several (≈ 10) times with different
random initializations (within the learning rate hyperparameter search).

We record the best observed editing validation accuracy and save the corresponding best set of edited
model weights for downstream robustness evaluations.

Our implementation of rewriting is a “from scratch” rewrite: here we use quotes since we of
course heavily reference (Bau et al., 2020; Santurkar et al., 2021) and the EditingClassifiers
codebase available at https://github.com/MadryLab/EditingClassifiers. The choice to use a custom
implementation was based on multiple factors, including the goal of porting rewriting to image
classifiers not appearing in EditingClassifiers (namely Vision Transformers), and a desire to
have a relatively uniform functional interface for the various editing methods in our experiments. We
plan to open source our research code.

9Here we say “effective” since optimal would be too strong (we do not do any fine-grained cross validation).
By effective learning rate we just mean a learning rate that works, as in it decreases training loss (and hopefully
increases validation accuracy in the process).
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Unfortunately, there was a discrepancy between our version of rewriting and that in (Bau et al.,
2020; Santurkar et al., 2021): specifically, the code used in our experiments applied mean centering
the the features denoted K in (Bau et al., 2020, §3.3, eq. 14-15), thus essentially forcing KKT

to be a covariance matrix, rather than the second moment matrix as stated in ibid.10 The code at
https://github.com/davidbau/rewriting and https://github.com/MadryLab/EditingClassifiers clearly
does not apply mean-centering. We are in the process of assessing the sensitivity of the results for the
rewriting method presented above to this mean centering issue. One reason to suspect an application
of mean centering does not make a large difference is that all layers of all models edited in our
experiments are either immediately preceded by a batch normalization (or in the case of ViTs, a layer
normalization) layer, or have a normalization layer within the preceding 3 or so layers. The nearby
presence of normalization layers would potentially limit the magnitude of feature means.

For our PAINT (Ilharco et al., 2022) and our 1-LI interpolation and runs, we adapt the code and train-
ing hyperparameter defaults from https://github.com/mlfoundations/patching unless stated otherwise.

E FURTHER RELATED WORK

Model robustness and generalization: Robustness to distribution shift is an important topic in
deep learning, in large part because it addresses a key challenge in real-world model deployment.
Indeed, pioneering studies have revealed that even when models achieve superhuman performance
on a held-out test set, their performance often degrades significantly on alternative test sets that are
either mildly corrupted (Hendrycks & Dietterich, 2019) or out of distribution (Recht et al., 2019).
Many of these works introduced datasets or tasks designed to evaluate various aspects of model
robustness (Koh et al., 2021; Sagawa et al., 2022; Hendrycks & Dietterich, 2019; Hendrycks et al.,
2021a; Geirhos et al., 2018). Other work that studies robustness aspects of weight updates constrained
to modify a subset of model parameters is (Lee et al., 2023), which compares local fine-tuning of
subsets of weights occurring in small contiguous blocks of layers. Our work differs from (Lee et al.,
2023) in that we include a broader variety of parameter-constrained updates or edits, including low
rank perturbations of weights as well as weight space interpolation (where using an interpolation
parameter can be viewed as an implicit regularization keeping the updated weights closer to the initial
pretrained weights).

Editing methods: The concept of model editing was first introduced in the context of generative
adversarial networks (Bau et al., 2020). The authors developed a novel user interface in which
users could specify desired image modifications (“remove text”, “add people”); given these, specific
weights of the model were then edited to achieve the desired result. In a striking example, users
were able to generate the imaginative sight of trees growing out of the tops of cathedrals. The model
edits were implemented by idealizing a neural network layer as a linear associative memory and then,
based on that idealization, deriving a low-rank update to the layer weights. That approach has also
been employed to alter the behavior of image classifiers (Santurkar et al., 2021) and autoregressive
language models (Meng et al., 2022a;b).

In addition, a variety of alternative editing algorithms have been proposed. De Cao et al. (2021)
and Mitchell et al. (2022a) trained hyper-networks to update model weights. (Dai et al., 2022)
identified “knowledge neurons” and then surgically modified them. Mitchell et al. (2022b) augmented
a target model with an auxiliary detector trained to identify inputs relevant to the editing task, and
then diverted them to an edited model. See also (Hase et al., 2021) for analysis of beliefs stored in
language models and methods to update those beliefs. Recent work also extended model editing to
open vocabulary image-language models (e.g., CLIP), where it was demonstrated that interpolating
between the original and edited weights allows users to navigate a trade-off between performance on
the original and edited tasks (Ilharco et al., 2022).

Of particular relevance to our work are recent findings of Lee et al. (2023) that updating only a subset
of model weights can result in greater robustness to distribution shift. We consider a different set of
models and editing/fine-tuning tasks than that work, and update different subsets of weights (Lee et al.
(2023) updates ”blocks” of weights, whereas in many cases we update weights only in a single layer).

10One source of confusion was the later derivation of editing feature rank reduction in (Bau et al., 2020, §D)
which idealizes the hidden features of the original (non-editing) dataset as a mean-zero Gaussian distribution,
although it is never suggested to force them to be mean-zero in an implementation.
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F LIMITATIONS AND OPEN QUESTIONS

There are a range of important ways that the present study could have been made more comprehensive.
Large language models are an important application area of editing techniques which we were not
able to cover in this work. There is also a wide range of methods for robustness to different types of
distribution shift. Of particular interest would be those approaches that either capture or simulate
real-world distribution shift (such as (Koh et al., 2021)). Prior work on model editing has studied
aspects of the generalization capabilites of edited models on inputs related to the editing task not
considered in this work, where we chose to focus on robustness to shifts of natural image distribtions.
In particular, it would be interesting to know whether or not direct low-rank editing and 1-LI enjoy
the same benefits as rewriting in the cases where the editing training and validation set are derived
from ImageNet images with disjoint underlying sets of labels (see Figs. 3, 5 of (Santurkar et al.,
2021)) Finally, in performing our experiments, a large number of hyperparameters needed to be
chosen. While we strove to optimize all of these, it remains possible that further refinement may have
improved the performance of some of the editing methods.
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