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Abstract

An important characteristic of temporal graphs is how the directed arrow of
time influences their causal topology, i.e. which nodes can possibly influence
each other causally via time-respecting paths. The resulting patterns are often
neglected by temporal graph neural networks (TGNNs). To formally analyze the
expressive power of TGNNs, we lack a generalization of graph isomorphism to
temporal graphs that fully captures their causal topology. Addressing this gap,
we introduce consistent event graph isomorphism, which utilizes a time-unfolded
representation of time-respecting paths in temporal graphs. We compare this
definition with existing notions of temporal graph isomorphisms. We highlight
the advantages of our approach and develop a temporal generalization of the
Weisfeiler-Leman algorithm to heuristically distinguish non-isomorphic temporal
graphs. Building on this foundation, we derive a novel message passing scheme
for TGNNS that operates on the event graph representation of temporal graphs.
An experimental evaluation with synthetic and real-world temporal graphs shows
that our approach performs well in a temporal graph classification experiment.

1 Introduction

Graph neural networks (GNNs) have become a cornerstone of deep learning in relational data. They
have recently been generalized to temporal GNNs (TGNNs) that capture patterns in time series
data on temporal graphs, where edges carry timestamps. Different TGNN architectures have been
proposed, each designed to capture different temporal patterns. [1]. An important characteristic
of temporal graphs is how the directed arrow of time influences their causal topology, i.e., which
nodes can possibly influence each other causally via time-respecting paths. Hence, considering the
the temporal ordering of events is an important prerequisite for causality-aware machine learning in
temporal graph data.

Numerous works, e.g. in network science, studied how the temporal ordering of edges in temporal
graphs influences connectivity, dynamical processes like spreading or diffusion, node centralities,
cluster patterns, or controllability [2-7]. These patterns are often neglected by TGNNs, which can
limit their performance in high-resolution time series data on temporal graphs. To formally analyze
this issue, in line with works on the expressivity of (static) GNNs [8, 9], we lack a generalization
of graph isomorphism to temporal graphs that captures how their causal topology is shaped by the
arrow of time. Addressing this gap, the contributions of our work are:

* We propose a new temporal generalization of graph isomorphism called time-respecting path
isomorphism, which focuses on the preservation of time-respecting paths in temporal graphs.

* We show that time-respecting path isomorphism is equivalent to static graph isomorphism on
the augmented event graph, an auxiliary graph that (i) captures time-respecting paths in a static
line graph expansion of the temporal graph, and (ii) is augmented by nodes in the original graph.

* We use our insights to derive a novel message passing scheme for augmented event graphs,
which generates representations that allow to distinguish non-isomorphic temporal graphs. We
show that this has the same expressive power as the WL test on the augmented event graph.

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Extended Abstract Track). Do not distribute.



N

1

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61

62
63
64
65
66
67
68

69
70

71
72
73

74

75
76
77

78
79
80
81
82

83
84
85

86
87

88
89

Weisfeiler and Lemann Follow the Arrow of Time

2 Related Work

Prior work on temporal graph neural networks (TGNNs) can broadly be divided into snapshot-
based models, which operate on sequences of static graphs, and event-based models, which directly
process streams of timestamped edges [1]. While powerful architectures have been proposed in
both categories (e.g. ROLAND, TGN, TGAT) [10-12], none of these methods explicitly model
patterns that are due to how the arrow of time influences time-respecting paths in temporal graphs.
This limitation has been studied in network science, where the temporal ordering of edges has been
shown to affect spreading processes , clustering patterns, centralities and diffiusion. [2—4, 13] In
graph learning, related work has explored message passing in higher order de Bruijn graphs or
the transformatin to line-graphs together with a graph kernel based on the Weisfeiler-Leman (WL)
algorithm. [14—16] On the theoretical side, the expressive power of message passing GNNS is known
to be limited by the WL graph isomorphism test [8, 9] and several extensions have been proposed to
go beyond this limit using, for example, the k-dimensional WL test [17]. However, the temporal
setting is less explored. One of the reasons is that there is no universally agreed-upon definition
of temporal graph isomorphism. Existing notions of temporal isomorphism [18-20] either treat
snapshots independently or require exact preservation of timestamps, but none of those definitions
precisely capture causal reachability.

Complementing this research, our work introduces a time-respecting path isomorphism, which
precisely preserves the causal topology. We show its equivalence to static isomorphism on augmented
event graphs, which enables a direct extension of WL and message passing to temporal graphs.

3 Preliminaries

A directed, labeled (static) graph G = (V, E, ¢y, ) consists of aset V of nodes, aset E CV x V
of directed edges, a node labeling {v, : V' — Ly and an edge labeling {r: E — L g, with countable
sets L and Lg. In unlabeled graphs, we omit ¢y or g accordingly. For a node v, we denote
its incoming neighbors by N;(v) = {u | (u,v) € E} and its outgoing neighbors by Np(v) =
{u | (v,u) € E}. Finally, we define the set of paths P(G) as the set of all alternating node/edge
sequences (vg, €1,v1, €2, . . ., €k, V) With e; = (v;_1,v;) € E fori € {1,...,k}. Note that we do
not distinguish between walks and paths or, equivalently, do not require paths to be simple.

Definition 1 (Graph isomorphism). For two static graphs G1 = (V1,E1,04,,0%) and Gy =
(Va, B, 02, (%), an isomorphism is a bijective mapping w: Vi — Va with these properties:

(i) Edge-preserving: (u,v) € By <= (n(u),n(v))€Ey Vu,veV
(ii) Node label-preserving: (v (u) =y (m(u)) YueV
(iii) Edge label-preserving: (g(u,v) = Lg(mw(u), 7(v)) V(u,v) € E

We say that the graphs G and G4 are isomorphic iff such a mapping  exists.

Definition 2 (Temporal graph). We define a (directed) temporal graph as GT = (V, E™), where V is
the set of nodes and E™ C'V x V x N is the set of timestamped edges, i.e., an edge (u,v;t) € ET
describes an interaction between u and v at time t.

Definition 3 (Time-respecting path). A path of length k in a temporal graph G = (V,E7) is
an alternating sequence of nodes and timestamped edges p = (vg, e1,v1, ..., ek, V) with e; =
(vi—1,vi3t;) € E7 fori € {1,...,k}. For a maximum time difference (or waiting time) § € N,
we say that p is time-respecting if 1 < ¢; —t;—1 < § fori € {1,...,k}. We denote the set of
time-respecting paths in G™ as PT(G7).

The structure of time-respecting paths can be encoded in the temporal event graph, which is a
static graph whose nodes are the timestamped edges. Two nodes are connected by an edge if the
corresponding timestamped edges form a time-respecting path of length two.

Definition 4 (Temporal event graph). Let G = (V, E7) be a temporal graph with waiting time ¢.
The temporal event graph is given by G¢ = (E7, &) with

E ={((u,v;t), (v,w; t") | (u,v;t), (v,w;t') € BE7,1 <t —t <5}

Note that the time-respecting paths of length £ > 2 in G correspond to the paths of length £ — 1
in G€, whereas the time-respecting paths of length 1 in G™ correspond to the nodes in G€.
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Figure 1: A temporal graph G7 (left) and the corresponding augmented event graph G*"# (right).

4 Isomorphisms in Temporal Graphs

To motivate our temporal generalization of graph isomorphism, we make the following observation.

Observation 1. Ler w: Vi — V5 be a bijective node mapping between two graphs G, = (V1, Ey)
and Gy = (Va, Es). For any edge e = (u,v) € E, we write w(e) = (m(u), w(v)). Then w is edge-
preserving if and only if it is path-preserving, i.e., the following holds for all alternating node/edge
sequences (vg,€1,01,...,€k_1,V) with k € N:

(1)0,61,’()1, . .,ek,l,vk) S P(Gl) — (7T(’U0),7T(61)77T(Ul), .. .,W(ek,l),w(vk)) S P(Gg)

This is due to the fact that adjacent edges transitively expand into paths. This guarantees that two
isomorphic static graphs are topologically equivalent in terms of edges and paths. Importantly,
this property does not directly translate to time-respecting paths in temporal graphs: two adjacent
timestamped edges (u, v;t) and (v, w;t’) only form a time-respecting path if 1 < ¢’ — ¢ < §. Hence,
a temporal generalization of graph isomorphism should preserve not only the timestamped edges,
but also the causal topology in terms of time-respecting paths. Conversely, we are interested in an
isomorphism definition that does not force the values of timestamps to be preserved, provided that
the resulting time-respecting paths in two temporal graphs are identical.

Definition 5 (Time-respecting path isomorphism). Let G = (V1, ET) and G, = (Va, EJ) be two
temporal graphs. We say that G7 and G7 are time-respecting path isomorphic if there is a bijective
node mapping Ty : V1 — Vo and a bijective timestamped edge mapping ng: E] — EJ such that
the following holds for all alternating node/edge sequences (vy, e1,v1, ..., €,_1,Vx) with k € N:

(’Uanllev .. ~,€k_1,’l)k) c PT(G‘{)
— (mv(vo),me(er),mv(v1),...,TE(ex—1),7v(vr)) € PT(GY).

A drawback of this isomorphism definition is that it appears difficult to test, since the number of
time-respecting paths may be exponential in the graph size. Therefore, we derive equivalent notions
of temporal graph isomorphism that are easier to test. In order to preserve paths of length 1, which
consist of a single timestamped edge e = (u, v;t) and are always time-respecting, we must ensure
that 7 (e) connects 7y (u) to my (v). We call this property node consistency. Node-consistent
mappings preserve paths, but not necessarily their time-respecting property. To ensure this, we
observe that time-respecting paths of length k£ > 2 correspond to paths in the temporal event graph.
We can preserve them by requiring 7 to be path-preserving between the temporal event graphs.

This can be simplified further by constructing an augmented event graph (see Fig. 1), which encodes
the node consistency property in its topology. In this way, we reduce the problem of testing for
time-respecting path isomorphism to the problem of testing for static graph isomorphism on the
augmented event graphs.

Definition 6 (Augmented event graph). Let GT = (V,E7) be a temporal graph with event
graph G¢ = (E7,&). The augmented event graph is the static, directed, node-labeled graph G¢ =
(Vaus Eaus ) with

vas — vy ET, Es — £ Eout U Ein’
t(v) = {0 ifvev, E™ = {(u, (u,v5t) | (u,v3t) € ET},
1 ifvekET, E™ = {((u,v;t),v) | (u,v;t) € E™}.
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Theorem 1. (Proof in Appendix A) Let G7 and G5 be two temporal graphs with corresponding
augmented event graphs G1{** and G"*. Then the following statements are equivalent:

(i) G7 and G7 are time-respecting path isomorphic.
(ii) G and G5 are isomorphic.

5 Message Passing for the Augmented Event Graph

We use the equivalency of time-respecting path isomorphism to static isomorphism on the augmented
event graph to derive a message-passing GNN architecture for temporal graphs. Note that the
augmented event graph is directed, even if the underlying temporal graph is undirected. Edge
directions are crucial because they represent the arrow of time, which is why we use the directed
GNN Dir-GNN [21]. It iteratively computes embeddings f(*)(v) for each node v at layer k. This

is done by aggregating embeddings of its neighbors at layer £ — 1, using the function 75& for

<_
incoming neighbors and f §Qg for outgoing neighbors. A function fc((fr)n combines these with the

previous embedding of v to a new embedding. The combination and aggregation functions fc((fr)n, §§2b,

%
and f gQg are learnable. The initial node embeddings are obtained by applying an injective encoding

function to the node labels. To obtain a final representation of the entire graph, the embeddings f(*) (v)
of all nodes v on the final layer k are combined using an injective readout function. Our proposed
GNN architecture simply applies Dir-GNNss to the augmented event graph. By using the augmented
event graph, this approach is specifically tailored towards detecting time-respecting path isomorphism.

6 Experimental Evaluation

We evaluate our TGNN on synthetic temporal graphs specifically constructed such that all classes
share the same time-aggregated static graph, while differing only in their causal topology. This allows
us to directly test whether our model captures patterns in time-respecting paths.

Experiment A: Shuffled timestamps. Starting from random graphs, we generate temporal edge
sequences and shuffle timestamps of a fraction « of edges. Increasing a destroys more causal
dependencies without changing the time-aggregated graph. Our TGNN reliably separates original
graphs from their shuffled counterparts, achieving near-perfect accuracy for o > 0.2 (Fig. 2, left).

Experiment B: Cluster connectivity. We generate temporal graphs with two densely connected
clusters and vary the likelihood of time-respecting paths between clusters using a parameter o. For
o < 0 cross-cluster paths are suppressed, while for o > 0 they are overrepresented, yet the aggregated
graph remains unchanged. We assign graphs with 0 = 0 to one class and graphs with o # 0 to the
other. Our TGNN detects these differences with high accuracy, while accuracy peaks as |o| increases
(Fig. 2, middle/right).
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Figure 2: Results of classification experiments A (left) and B (middle). Results are averaged over 100
runs (hull curve shows standard deviation). Right panel: mean classification accuracy for temporal
graphs generated with o vs. o2 (for all pairs oy, 02, 25 runs each).

7 Conclusion

Our work contributes to the theoretical foundation of temporal graph learning, providing a basis for
the development and investigation of neural message passing architectures that consider how the
arrow of time shapes the causal topology in temporal graphs.
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A Proof of Theorem 1

For the proof we additionally introduce the notion of consistent event graph isomorphism.
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temporal graphs with corresponding temporal event graphs G{ = (E7,&1) and G5 = (EJ,&5). A
mapping g : E] — EJ is a consistent event graph isomorphism if and only if

(i) there exists a mapping Ty : Vi — Vo such that
V(u,vit) € BT 3t': mp(u,vit) = (mv (u), mv (v);t'), and
(ii) 7 is a graph isomorphism between G§ and GS.

In the following we give the proof of an extended version of Theorem 1:
Theorem. Ler GT = (V1, El) and G3 = (Va,GY) be two temporal graphs with corresponding
augmented event graphs G1** = (V{"¢ E{*¢ (1) and G5 = (V3“8 E5"¢ L5). Then the following
statements are equivalent:

(i) GT and G are time-respecting path isomorphic.

(ii) G7 and G7 are consistent event graph isomorphic.
(iii) G1* and G5 are isomorphic.

We begin by showing the equivalence of (i) and (ii):
Proof. Let my: Vi — Vs and mg: Ef — EJ be a node and edge mapping, respectively.

Let p = (vg,e€1,v1,...,€x—1,V) be an alternating sequence of nodes and timestamped edges
in G7. We denote the corresponding sequence in G7 that is induced by 7y and 7g as 7(p) =
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(v (vo), mr(e1), my (v1),...,7g(ex—1), v (v)). We say that my and 7 are path-preserving be-
tween G7 and G7 if for each sequence p as defined above, p is a path in G7 if and only if 7(p) is a
path in G3. It is easy to see that 7y and 7y are path-preserving between G7 and G7 if and only if
7 is node-consistent with 7.

Assume therefore that 7y and 7 are path-preserving between G7 and G3. We show that 7 is a
graph isomorphism between the temporal event graphs G¢ and G¥ if and only if it is time-preserving,
i.e., a path p in G7 is time-respecting iff 7(p) is time-respecting in G7. If k = 1, this holds trivially
because all paths of length 1 are time-respecting. If & > 2, then p is time-respecting if and only
if (e, (e1,€2),€2,..., (ex_2,er_1),ex_1) is a path in G§. Hence, 7y is time-preserving if and only
if it is path-preserving between G and G5. Because the event graphs are unlabeled, this is the case
if and only if 7 is a graph isomorphism by def. 1. O

Next, we show the equivalence of (ii) and (iii):

Proof. Let : Vi — V;" be an isomorphism between G7** and G5 ©. Because 7 preserves the
node labels, it can be decomposed into bijective mappings 7y : V3 — Vs and wg: E] — EJ.
Then 7 is an isomorphism between G§ and G§ because these are subgraphs of G*¢ and G5,
respectively. Consider an edge e = (u,v;t) € ET. By construction, G}"® includes the edges (u, €) €
E{" and (e,v) € E". Because 7 is an isomorphism, it follows that (my (u), mg(e)) € ES™
and (mg(e), Ty (v)) € EX. Then it follows by construction of G5 © that mg(e) = (mv (u), v (v); ')
for some ¢’ € N.

Conversely, let 7 : E] — EJ be a consistent event graph isomorphism between G and G5, and
let Ty : Vi — V5 be the induced node mapping such that

Y(u,v;t) € E] 3 wp(u,v;t) = (7y(u), 7y (v); ).

Then 7 and 7y can be combined into a bijective mapping 7: V;"'® — V;"¢. We show that  is an
isomorphism between G"¢ and G5'¢. By construction, 7 preserves the node labels. For every pair of
nodes z,y € V" and every set of edges E’ € {€, E°", E™}, we show that

(z,y) € By = (7(2)7(y)) € By

For E/ = &, this follows from the fact that 7 is an isomorphism between G§ and G%§. We show the
case B/ = E° (the case £’ = E'™ is symmetrical): We have (u,y) € ES" if and only if y = (z,v;t)
for some v € Vj and t € N. We have n(y) = ng(y) = (my(z), 7y (v);t') = (w(x), w(v);t") for
some ' € N. By definition of E°", we have (7 (z),n(y)) € E™. O
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