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Abstract1

An important characteristic of temporal graphs is how the directed arrow of2

time influences their causal topology, i.e. which nodes can possibly influence3

each other causally via time-respecting paths. The resulting patterns are often4

neglected by temporal graph neural networks (TGNNs). To formally analyze the5

expressive power of TGNNs, we lack a generalization of graph isomorphism to6

temporal graphs that fully captures their causal topology. Addressing this gap,7

we introduce consistent event graph isomorphism, which utilizes a time-unfolded8

representation of time-respecting paths in temporal graphs. We compare this9

definition with existing notions of temporal graph isomorphisms. We highlight10

the advantages of our approach and develop a temporal generalization of the11

Weisfeiler-Leman algorithm to heuristically distinguish non-isomorphic temporal12

graphs. Building on this foundation, we derive a novel message passing scheme13

for TGNNs that operates on the event graph representation of temporal graphs.14

An experimental evaluation with synthetic and real-world temporal graphs shows15

that our approach performs well in a temporal graph classification experiment.16

1 Introduction17

Graph neural networks (GNNs) have become a cornerstone of deep learning in relational data. They18

have recently been generalized to temporal GNNs (TGNNs) that capture patterns in time series19

data on temporal graphs, where edges carry timestamps. Different TGNN architectures have been20

proposed, each designed to capture different temporal patterns. [1]. An important characteristic21

of temporal graphs is how the directed arrow of time influences their causal topology, i.e., which22

nodes can possibly influence each other causally via time-respecting paths. Hence, considering the23

the temporal ordering of events is an important prerequisite for causality-aware machine learning in24

temporal graph data.25

Numerous works, e.g. in network science, studied how the temporal ordering of edges in temporal26

graphs influences connectivity, dynamical processes like spreading or diffusion, node centralities,27

cluster patterns, or controllability [2–7]. These patterns are often neglected by TGNNs, which can28

limit their performance in high-resolution time series data on temporal graphs. To formally analyze29

this issue, in line with works on the expressivity of (static) GNNs [8, 9], we lack a generalization30

of graph isomorphism to temporal graphs that captures how their causal topology is shaped by the31

arrow of time. Addressing this gap, the contributions of our work are:32

• We propose a new temporal generalization of graph isomorphism called time-respecting path33

isomorphism, which focuses on the preservation of time-respecting paths in temporal graphs.34

• We show that time-respecting path isomorphism is equivalent to static graph isomorphism on35

the augmented event graph, an auxiliary graph that (i) captures time-respecting paths in a static36

line graph expansion of the temporal graph, and (ii) is augmented by nodes in the original graph.37

• We use our insights to derive a novel message passing scheme for augmented event graphs,38

which generates representations that allow to distinguish non-isomorphic temporal graphs. We39

show that this has the same expressive power as the WL test on the augmented event graph.40
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2 Related Work41

Prior work on temporal graph neural networks (TGNNs) can broadly be divided into snapshot-42

based models, which operate on sequences of static graphs, and event-based models, which directly43

process streams of timestamped edges [1]. While powerful architectures have been proposed in44

both categories (e.g. ROLAND, TGN, TGAT) [10–12], none of these methods explicitly model45

patterns that are due to how the arrow of time influences time-respecting paths in temporal graphs.46

This limitation has been studied in network science, where the temporal ordering of edges has been47

shown to affect spreading processes , clustering patterns, centralities and diffiusion. [2–4, 13] In48

graph learning, related work has explored message passing in higher order de Bruijn graphs or49

the transformatin to line-graphs together with a graph kernel based on the Weisfeiler-Leman (WL)50

algorithm. [14–16] On the theoretical side, the expressive power of message passing GNNS is known51

to be limited by the WL graph isomorphism test [8, 9] and several extensions have been proposed to52

go beyond this limit using, for example, the k-dimensional WL test [17]. However, the temporal53

setting is less explored. One of the reasons is that there is no universally agreed-upon definition54

of temporal graph isomorphism. Existing notions of temporal isomorphism [18–20] either treat55

snapshots independently or require exact preservation of timestamps, but none of those definitions56

precisely capture causal reachability.57

Complementing this research, our work introduces a time-respecting path isomorphism, which58

precisely preserves the causal topology. We show its equivalence to static isomorphism on augmented59

event graphs, which enables a direct extension of WL and message passing to temporal graphs.60

3 Preliminaries61

A directed, labeled (static) graph G = (V,E, ℓV , ℓE) consists of a set V of nodes, a set E ⊆ V × V62

of directed edges, a node labeling ℓV : V → LV and an edge labeling ℓE : E → LE , with countable63

sets LV and LE . In unlabeled graphs, we omit ℓV or ℓE accordingly. For a node v, we denote64

its incoming neighbors by NI(v) = {u | (u, v) ∈ E} and its outgoing neighbors by NO(v) =65

{u | (v, u) ∈ E}. Finally, we define the set of paths P (G) as the set of all alternating node/edge66

sequences (v0, e1, v1, e2, . . . , ek, vk) with ei = (vi−1, vi) ∈ E for i ∈ {1, . . . , k}. Note that we do67

not distinguish between walks and paths or, equivalently, do not require paths to be simple.68

Definition 1 (Graph isomorphism). For two static graphs G1 = (V1, E1, ℓ
1
V , ℓ

1
E) and G2 =69

(V2, E2, ℓ
2
V , ℓ

2
E), an isomorphism is a bijective mapping π : V1 → V2 with these properties:70

(i) Edge-preserving: (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2 ∀u, v ∈ V71

(ii) Node label-preserving: ℓV (u) = ℓV (π(u)) ∀u ∈ V72

(iii) Edge label-preserving: ℓE(u, v) = ℓE(π(u), π(v)) ∀(u, v) ∈ E73

We say that the graphs G1 and G2 are isomorphic iff such a mapping π exists.74

Definition 2 (Temporal graph). We define a (directed) temporal graph as Gτ = (V,Eτ ), where V is75

the set of nodes and Eτ ⊆ V × V × N is the set of timestamped edges, i.e., an edge (u, v; t) ∈ Eτ76

describes an interaction between u and v at time t.77

Definition 3 (Time-respecting path). A path of length k in a temporal graph Gτ = (V,Eτ ) is78

an alternating sequence of nodes and timestamped edges p = (v0, e1, v1, . . . , ek, vk) with ei =79

(vi−1, vi; ti) ∈ Eτ for i ∈ {1, . . . , k}. For a maximum time difference (or waiting time) δ ∈ N,80

we say that p is time-respecting if 1 ≤ ti − ti−1 ≤ δ for i ∈ {1, . . . , k}. We denote the set of81

time-respecting paths in Gτ as P τ (Gτ ).82

The structure of time-respecting paths can be encoded in the temporal event graph, which is a83

static graph whose nodes are the timestamped edges. Two nodes are connected by an edge if the84

corresponding timestamped edges form a time-respecting path of length two.85

Definition 4 (Temporal event graph). Let Gτ = (V,Eτ ) be a temporal graph with waiting time δ.86

The temporal event graph is given by GE = (Eτ , E) with87

E = {((u, v; t), (v, w; t′)) | (u, v; t), (v, w; t′) ∈ Eτ , 1 ≤ t′ − t ≤ δ}.

Note that the time-respecting paths of length k ≥ 2 in Gτ correspond to the paths of length k − 188

in GE , whereas the time-respecting paths of length 1 in Gτ correspond to the nodes in GE .89
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Figure 1: A temporal graph Gτ (left) and the corresponding augmented event graph Gaug (right).

4 Isomorphisms in Temporal Graphs90

To motivate our temporal generalization of graph isomorphism, we make the following observation.91

Observation 1. Let π : V1 → V2 be a bijective node mapping between two graphs G1 = (V1, E1)92

and G2 = (V2, E2). For any edge e = (u, v) ∈ E, we write π(e) = (π(u), π(v)). Then π is edge-93

preserving if and only if it is path-preserving, i.e., the following holds for all alternating node/edge94

sequences (v0, e1, v1, . . . , ek−1, vk) with k ∈ N:95

(v0, e1, v1, . . . , ek−1, vk) ∈ P (G1)⇐⇒ (π(v0), π(e1), π(v1), . . . , π(ek−1), π(vk)) ∈ P (G2).

This is due to the fact that adjacent edges transitively expand into paths. This guarantees that two96

isomorphic static graphs are topologically equivalent in terms of edges and paths. Importantly,97

this property does not directly translate to time-respecting paths in temporal graphs: two adjacent98

timestamped edges (u, v; t) and (v, w; t′) only form a time-respecting path if 1 ≤ t′ − t ≤ δ. Hence,99

a temporal generalization of graph isomorphism should preserve not only the timestamped edges,100

but also the causal topology in terms of time-respecting paths. Conversely, we are interested in an101

isomorphism definition that does not force the values of timestamps to be preserved, provided that102

the resulting time-respecting paths in two temporal graphs are identical.103

Definition 5 (Time-respecting path isomorphism). Let Gτ
1 = (V1, E

τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two104

temporal graphs. We say that Gτ
1 and Gτ

2 are time-respecting path isomorphic if there is a bijective105

node mapping πV : V1 → V2 and a bijective timestamped edge mapping πE : Eτ
1 → Eτ

2 such that106

the following holds for all alternating node/edge sequences (v0, e1, v1, . . . , ek−1, vk) with k ∈ N:107

(v0, e1, v1, . . . , ek−1, vk) ∈ P τ (Gτ
1)

⇐⇒ (πV (v0), πE(e1), πV (v1), . . . , πE(ek−1), πV (vk)) ∈ P τ (Gτ
2).

A drawback of this isomorphism definition is that it appears difficult to test, since the number of108

time-respecting paths may be exponential in the graph size. Therefore, we derive equivalent notions109

of temporal graph isomorphism that are easier to test. In order to preserve paths of length 1, which110

consist of a single timestamped edge e = (u, v; t) and are always time-respecting, we must ensure111

that πE(e) connects πV (u) to πV (v). We call this property node consistency. Node-consistent112

mappings preserve paths, but not necessarily their time-respecting property. To ensure this, we113

observe that time-respecting paths of length k ≥ 2 correspond to paths in the temporal event graph.114

We can preserve them by requiring πE to be path-preserving between the temporal event graphs.115

This can be simplified further by constructing an augmented event graph (see Fig. 1), which encodes116

the node consistency property in its topology. In this way, we reduce the problem of testing for117

time-respecting path isomorphism to the problem of testing for static graph isomorphism on the118

augmented event graphs.119

Definition 6 (Augmented event graph). Let Gτ = (V,Eτ ) be a temporal graph with event120

graph GE = (Eτ , E). The augmented event graph is the static, directed, node-labeled graph Gaug =121

(V aug, Eaug, ℓ) with122

V aug = V ∪ Eτ ,

ℓ(v) =

{
0 if v ∈ V,

1 if v ∈ Eτ ,

Eaug = E ∪ Eout ∪ Ein,

Eout = {(u, (u, v; t) | (u, v; t) ∈ Eτ},
Ein = {((u, v; t), v) | (u, v; t) ∈ Eτ}.

3
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Theorem 1. (Proof in Appendix A) Let Gτ
1 and Gτ

2 be two temporal graphs with corresponding123

augmented event graphs Gaug
1 and Gaug

2 . Then the following statements are equivalent:124

(i) Gτ
1 and Gτ

2 are time-respecting path isomorphic.125

(ii) Gaug
1 and Gaug

2 are isomorphic.126

5 Message Passing for the Augmented Event Graph127

We use the equivalency of time-respecting path isomorphism to static isomorphism on the augmented128

event graph to derive a message-passing GNN architecture for temporal graphs. Note that the129

augmented event graph is directed, even if the underlying temporal graph is undirected. Edge130

directions are crucial because they represent the arrow of time, which is why we use the directed131

GNN Dir-GNN [21]. It iteratively computes embeddings f (t)(v) for each node v at layer k. This132

is done by aggregating embeddings of its neighbors at layer k − 1, using the function
−→
f

(t)
agg for133

incoming neighbors and
←−
f

(t)
agg for outgoing neighbors. A function f

(t)
com combines these with the134

previous embedding of v to a new embedding. The combination and aggregation functions f (t)
com,
−→
f

(t)
agg135

and
←−
f

(t)
agg are learnable. The initial node embeddings are obtained by applying an injective encoding136

function to the node labels. To obtain a final representation of the entire graph, the embeddings f (k)(v)137

of all nodes v on the final layer k are combined using an injective readout function. Our proposed138

GNN architecture simply applies Dir-GNNs to the augmented event graph. By using the augmented139

event graph, this approach is specifically tailored towards detecting time-respecting path isomorphism.140

6 Experimental Evaluation141

We evaluate our TGNN on synthetic temporal graphs specifically constructed such that all classes142

share the same time-aggregated static graph, while differing only in their causal topology. This allows143

us to directly test whether our model captures patterns in time-respecting paths.144

Experiment A: Shuffled timestamps. Starting from random graphs, we generate temporal edge145

sequences and shuffle timestamps of a fraction α of edges. Increasing α destroys more causal146

dependencies without changing the time-aggregated graph. Our TGNN reliably separates original147

graphs from their shuffled counterparts, achieving near-perfect accuracy for α > 0.2 (Fig. 2, left).148

Experiment B: Cluster connectivity. We generate temporal graphs with two densely connected149

clusters and vary the likelihood of time-respecting paths between clusters using a parameter σ. For150

σ < 0 cross-cluster paths are suppressed, while for σ > 0 they are overrepresented, yet the aggregated151

graph remains unchanged. We assign graphs with σ = 0 to one class and graphs with σ ̸= 0 to the152

other. Our TGNN detects these differences with high accuracy, while accuracy peaks as |σ| increases153

(Fig. 2, middle/right).154
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Figure 2: Results of classification experiments A (left) and B (middle). Results are averaged over 100
runs (hull curve shows standard deviation). Right panel: mean classification accuracy for temporal
graphs generated with σ1 vs. σ2 (for all pairs σ1, σ2, 25 runs each).

7 Conclusion155

Our work contributes to the theoretical foundation of temporal graph learning, providing a basis for156

the development and investigation of neural message passing architectures that consider how the157

arrow of time shapes the causal topology in temporal graphs.158
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A Proof of Theorem 1244

For the proof we additionally introduce the notion of consistent event graph isomorphism.245

Definition 7 (Consistent event graph isomorphism). Let Gτ
1 = (V1, E

τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two246

temporal graphs with corresponding temporal event graphs GE
1 = (Eτ

1 , E1) and GE
2 = (Eτ

2 , E2). A247

mapping πE : Eτ
1 → Eτ

2 is a consistent event graph isomorphism if and only if248

(i) there exists a mapping πV : V1 → V2 such that249

∀(u, v; t) ∈ Eτ
1 ∃t′ : πE(u, v; t) = (πV (u), πV (v); t

′), and

(ii) πE is a graph isomorphism between GE
1 and GE

2 .250

In the following we give the proof of an extended version of Theorem 1:251

Theorem. Let Gτ
1 = (V1, E

τ
1 ) and Gτ

2 = (V2, G
τ
2) be two temporal graphs with corresponding252

augmented event graphs Gaug
1 = (V aug

1 , Eaug
1 , ℓ1) and Gaug

2 = (V aug
2 , Eaug

2 , ℓ2). Then the following253

statements are equivalent:254

(i) Gτ
1 and Gτ

2 are time-respecting path isomorphic.255

(ii) Gτ
1 and Gτ

2 are consistent event graph isomorphic.256

(iii) Gaug
1 and Gaug

2 are isomorphic.257

We begin by showing the equivalence of (i) and (ii):258

Proof. Let πV : V1 → V2 and πE : Eτ
1 → Eτ

2 be a node and edge mapping, respectively.259

Let p = (v0, e1, v1, . . . , ek−1, vk) be an alternating sequence of nodes and timestamped edges260

in Gτ
1 . We denote the corresponding sequence in Gτ

2 that is induced by πV and πE as π(p) =261
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Weisfeiler and Lemann Follow the Arrow of Time

(πV (v0), πE(e1), πV (v1), . . . , πE(ek−1), πV (vk)). We say that πV and πE are path-preserving be-262

tween Gτ
1 and Gτ

2 if for each sequence p as defined above, p is a path in Gτ
1 if and only if π(p) is a263

path in Gτ
2 . It is easy to see that πV and πE are path-preserving between Gτ

1 and Gτ
2 if and only if264

πE is node-consistent with πV .265

Assume therefore that πV and πE are path-preserving between Gτ
1 and Gτ

2 . We show that πE is a266

graph isomorphism between the temporal event graphs GE
1 and GE

2 if and only if it is time-preserving,267

i.e., a path p in Gτ
1 is time-respecting iff π(p) is time-respecting in Gτ

2 . If k = 1, this holds trivially268

because all paths of length 1 are time-respecting. If k ≥ 2, then p is time-respecting if and only269

if (e1, (e1, e2), e2, . . . , (ek−2, ek−1), ek−1) is a path in GE
1 . Hence, πE is time-preserving if and only270

if it is path-preserving between GE
1 and GE

2 . Because the event graphs are unlabeled, this is the case271

if and only if πE is a graph isomorphism by def. 1.272

Next, we show the equivalence of (ii) and (iii):273

Proof. Let π : V aug
1 → V aug

2 be an isomorphism between Gaug
1 and Gaug

2 . Because π preserves the274

node labels, it can be decomposed into bijective mappings πV : V1 → V2 and πE : Eτ
1 → Eτ

2 .275

Then πE is an isomorphism between GE
1 and GE

2 because these are subgraphs of Gaug
1 and Gaug

2 ,276

respectively. Consider an edge e = (u, v; t) ∈ Eτ
1 . By construction, Gaug

1 includes the edges (u, e) ∈277

Eout
1 and (e, v) ∈ Ein

1 . Because π is an isomorphism, it follows that (πV (u), πE(e)) ∈ Eout
2278

and (πE(e), πV (v)) ∈ Ein
2 . Then it follows by construction of Gaug

2 that πE(e) = (πV (u), πV (v); t
′)279

for some t′ ∈ N.280

Conversely, let πE : Eτ
1 → Eτ

2 be a consistent event graph isomorphism between Gτ
1 and Gτ

2 , and281

let πV : V1 → V2 be the induced node mapping such that282

∀(u, v; t) ∈ Eτ
1 ∃t′ : πE(u, v; t) = (πV (u), πV (v); t

′).

Then πE and πV can be combined into a bijective mapping π : V aug
1 → V aug

2 . We show that π is an283

isomorphism between Gaug
1 and Gaug

2 . By construction, π preserves the node labels. For every pair of284

nodes x, y ∈ V aug
1 and every set of edges E′ ∈ {E , Eout, Ein}, we show that285

(x, y) ∈ E′
1 ⇐⇒ (π(x), π(y)) ∈ E′

2.

For E′ = E , this follows from the fact that πE is an isomorphism between GE
1 and GE

2 . We show the286

case E′ = Eout (the case E′ = Ein is symmetrical): We have (u, y) ∈ Eout
1 if and only if y = (x, v; t)287

for some v ∈ V1 and t ∈ N. We have π(y) = πE(y) = (πV (x), πV (v); t
′) = (π(x), π(v); t′) for288

some t′ ∈ N. By definition of Eout, we have (π(x), π(y)) ∈ Eout
2 .289
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