
Published in Transactions on Machine Learning Research (07/2025)

Elucidating the Design Choice of Probability Paths in Flow
Matching for Forecasting

Soon Hoe Lim shlim@kth.se
Department of Mathematics, KTH Royal Institute of Technology
Nordita, KTH Royal Institute of Technology and Stockholm University

Yijin Wang yijin.wang@berkeley.edu
International Computer Science Institute

Annan Yu ay262@cornell.edu
Center for Applied Mathematics, Cornell University

Emma Hart emmahart@lbl.gov
Department of Mathematics, Emory University

Michael W. Mahoney mmahoney@stat.berkeley.edu
Department of Statistics, University of California at Berkeley
International Computer Science Institute
Lawrence Berkeley National Laboratory

Xiaoye S. Li xsli@lbl.gov
Lawrence Berkeley National Laboratory

N. Benjamin Erichson erichson@icsi.berkeley.edu
International Computer Science Institute
Lawrence Berkeley National Laboratory

Reviewed on OpenReview: https: // openreview. net/ forum? id= JApMDLwbLR

Abstract

Flow matching has recently emerged as a powerful paradigm for generative modeling and
has been extended to probabilistic time series forecasting. However, the impact of the
specific choice of probability path model on forecasting performance, particularly for high-
dimensional spatio-temporal dynamics, remains under-explored. In this work, we demonstrate
that forecasting spatio-temporal data with flow matching is highly sensitive to the selection
of the probability path model. Motivated by this insight, we propose a novel probability path
model designed to improve forecasting performance. Our empirical results across various
dynamical system benchmarks show that our model achieves faster convergence during
training and improved predictive performance compared to existing probability path models.
Importantly, our approach is efficient during inference, requiring only a few sampling steps.
This makes our proposed model practical for real-world applications and opens new avenues
for probabilistic forecasting.

1 Introduction

Generative modeling has achieved remarkable success in recent years, especially for generating high-dimensional
objects by learning mappings from simple, easily-sampled reference distributions, π0, to complex target
distributions, π1. In particular, diffusion models have pushed the capabilities of generating realistic samples
across various data modalities, including images (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022),

1

https://openreview.net/forum?id=JApMDLwbLR

Published in Transactions on Machine Learning Research (07/2025)

videos (Ho et al., 2022; Blattmann et al., 2023; Gupta et al., 2023), and spatio-temporal scientific data like
climate and weather patterns (Pathak et al., 2024; Kohl et al., 2024). Despite their impressive performance,
diffusion models often come with high computational costs during training and inference. Additionally, they
typically assume a Gaussian reference distribution, which may not be optimal for all data types and can limit
modeling flexibility.

One promising alternative is flow matching, where the mappings are learned via a stochastic process that
transforms π0 into π1 through an ordinary differential equation (ODE), approximating its marginal vector
flow (Lipman et al., 2022; Albergo et al., 2023; Liu et al., 2022; Tong et al., 2023b; Pooladian et al., 2023;
Lipman et al., 2024). While score-based models (Song & Ermon, 2019; Song et al., 2020a;b; Ho et al., 2020)
are specific instances of flow matching, with Gaussian transition densities, the general framework allows
for a broader class of interpolating paths. This flexibility can lead to deterministic sampling schemes that
are faster and require fewer steps (Zhang & Chen, 2022). Recent work has demonstrated the remarkable
capabilities of flow matching models for generating high-dimensional images (Esser et al., 2024) and discrete
data (Gat et al., 2024).

Building on this, flow matching in latent space has recently been applied to forecasting spatio-temporal
data (Davtyan et al., 2023) (predicting future frames in videos). This approach leverages latent representations
to capture the complex dynamics inherent in temporal data. However, spatio-temporal forecasting, especially
for videos and dynamical systems data, presents unique challenges. A video prediction model capable of
generalizing to new, unseen scenarios must implicitly “understand” the scene: detecting and classifying
objects, learning how they move and interact, estimating their 3D shapes and positions, and modeling the
physical laws governing the environment (Battaglia et al., 2016). Similarly, accurate weather forecasting
requires capturing intricate physical processes and interactions across multiple scales (Dueben & Bauer, 2018;
Schultz et al., 2021).

We observe that, in the context of spatio-temporal forecasting, the performance of flow matching is highly
sensitive to the choice of the probability path model, an important topic which has not been widely explored
within a unified framework. Different probability paths can significantly impact the accuracy and convergence
of forecasting models, particularly when dealing with complex dynamical systems characterized by partial
differential equations (PDEs) and chaotic behaviors. Motivated by this, we propose a novel probability path
model tailored for probabilistic forecasting of dynamical systems, with a particular focus on PDE datasets
relevant to scientific applications. Our model leverages the continuous dynamics intrinsic to spatio-temporal
data by interpolating between consecutive sequential samples. This approach ensures better alignment with
the constructed flow, leading to improved predictive performance, more stable training, and greater inference
efficiency. Existing probability path models often fail to fully capture the continuous nature of spatio-temporal
data, resulting in a misalignment with flow-based methods and suboptimal outcomes. Our proposed model
addresses these limitations directly.

Building on previous approaches, we provide a theoretical framework and efficient algorithms tailored to
probabilistic forecasting of high-dimensional spatio-temporal dynamics using flow matching in latent space.
Within this framework, we demonstrate that our probability path model outperforms existing models across
several forecasting tasks involving PDEs, achieving faster convergence during training and requiring fewer
sampling steps during inference. These advances enhance the practicality of flow matching approaches
for real-world applications, particularly in scenarios where computational resources and time are critical
constraints. Our main contributions are the following.

• Theoretical Framework and Efficient Algorithms: We present a theoretical framework and
efficient algorithms for applying flow matching in latent space to the probabilistic forecasting of
dynamical systems (see Algorithms 1-2), extending the approach of (Lipman et al., 2022) and
(Davtyan et al., 2023). Our approach is specifically tailored for time series data, enabling effective
modeling of complex temporal dependencies inherent in dynamical systems.

• Novel Probability Path Model: Using dynamical optimal transport and the Schrödinger’s bridge
perspective (see Theorem 3.2), we motivate and propose a new probability path model (see Section
3.3) specifically designed for modeling dynamical systems data. We provide theoretical insights to
show that the variance of the vector field (VF) generating our proposed path can be lower than

2

Published in Transactions on Machine Learning Research (07/2025)

that of the optimal transport (OT) VF proposed by (Lipman et al., 2022) for sufficiently correlated
spatio-temporal samples (see Theorem 3.3). We further provide intuitions to understand why our
model leads to smoother training loss curve and faster convergence compared to other models.

• Empirical Validation: We provide extensive empirical results to demonstrate that our proposed
probability path model can outperform other models on several forecasting tasks involving PDEs
(see Section 5). Our results demonstrate that the proposed probability path model outperforms
existing flow matching models, achieving faster convergence during training and improved predictive
performance across several evaluation metrics, while requiring fewer sampling steps.

2 Flow Matching for Probabilistic Forecasting

In this section, we first introduce the objective of probabilistic forecasting, and then we discuss how flow
matching can be used for learning conditional distributions in latent space.

Probabilistic forecasting framework. Suppose that we are given a training set of n trajectories, with
each trajectory of length m, Sn = {(x1:m)(i)}i=1,...,n, where (x1:m)(i) = ((x1)(i), . . . , (xm)(i)), (with the
(xl)(i) ∈ Rd), coming from an underlying continuous-time dynamical system. For simplicity, we denote the
trajectories as x1:m = (x1, . . . , xm) unless there is a need to specify the corresponding n. The trajectories are
observed at arbitrary time points t1:m = (t1, . . . , tm) such that xi := x(ti) ∈ Rd and (x(t))t∈[t1,tm] are the
observed states of the ground truth system. In practice, we may have access to only few trajectories, i.e., n is
small or even n = 1, and the trajectories themselves may be observed at different time stamps.

The goal of probabilistic forecasting is to predict the distribution of the upcoming l elements given the
first k elements, where m = l + k, i.e.: q(xk+1, . . . , xk+l|x1, . . . , xk) =

∏l
i=1 q(xk+i|x1, . . . , xk+i−1). We

propose to model each one-step predictive conditional distribution via a probability density path. Instead of
using score-based diffusion models to specify the path, we choose flow matching, a simpler method to train
generative models. With flow matching, we directly work with probability paths, and we can simply avoid
reasoning about (forward) diffusion processes altogether. Moreover, we shall work in a latent space.

Flow matching in latent space. Let zτ = E(xτ) for τ = 1, . . . ,m, where E denotes a pre-trained encoder
that maps from the data space to a lower dimensional latent space. Working in the latent space, our goal is
to approximate the ground truth distribution q(zτ |x1, . . . , xτ−1) by the parametric distribution p(zτ |zτ−1),
which can then be decoded as xτ = D(zτ). The latent dynamics can be modeled by an ODE:

Żt = ut(Zt), (1)

where ut is the (velocity) VF describing the instantenous rate of change of the state at time t. Learning the
dynamics of the system is equivalent to approximating the VF ut. This can be done by regressing a neural
network using the mean squared error (MSE) loss.

Following the idea of flow matching, we infer the dynamics of the system generating z from the collection of
latent observables by learning a time-dependent VF vt : [0, 1] × Rd → Rd, t ∈ [0, 1], such that the ODE

ϕ̇t(Z) = vt(ϕt(Z)), ϕ0(Z) = Z, (2)

defines a time-dependent diffeomorphic map (called a flow), ϕt(Z) : [0, 1] × Rd → Rd, that pushes a reference
distribution p0(Z) towards the distribution p1(Z) ≈ q(Z) along some probability density path pt(Z) and
the corresponding VF ut(Z). In other words, pt = [ϕt]∗p0, where [·]∗ denotes the push-forward operation.
Here, q is the ground truth distribution, p denotes a probability density path, i.e., p : [0, 1] × Rd → R>0,
and

∫
pt(Z)dZ = 1. We also write Zt = ϕ(Z); and thus the ODE can be written as Żt = vt(Zt), Z0 = Z.

Typically the reference distribution p0 is chosen to be the standard Gaussian (Lipman et al., 2022; Liu et al.,
2022).

In other words, the main goal of flow matching is to learn a deterministic coupling between p and q by
learning a VF vt such that the solution to the ODE (2) satisfies Z0 ∼ p and Z1 ∼ q. When Z = (Zt)t∈[0,1]
solves Eq. (2) for a given function vt, we say that Z is a flow with the VF vt. If we have such a VF, then
(Z0, Z1) is a coupling of (p, q). If we can sample from p, then we can generate approximate samples from

3

Published in Transactions on Machine Learning Research (07/2025)

the coupling by sampling Z0 ∼ p and numerically integrating Eq. (2). This can be viewed as a continuous
normalizing flow (Chen et al., 2018).

If one were given a pre-defined probability path pt(Z) and the corresponding VF ut(Z) that generates the
path, then one could parametrize vt(Z) with a neural network vθ

t (Z), with θ the learnable parameter, and
solve the least square regression by minimizing the flow matching loss:

min
θ

Lfm(θ) := Et,pt(Z) ω(t)∥vθ
t (Z) − ut(Z)∥2, (3)

where t ∈ U [0, 1], Z ∼ pt(Z) and ω(t) > 0 is a weighting function. The weighting function weights the
importance of the L2 loss at different times t (noise level), balancing the importance of high frequency and
low frequency components. Following the standard framework (Lipman et al., 2022), we take ω(t) = 1. Note
that we choose to include ω(t) in Eq. (3) for generality as different choice of weighting function corresponds
to different parametrization of the network output (see (Anonymous, 2025) for more details).

However, we do not have prior knowledge for choosing pt and ut, and there are many choices that can satisfy
p1 ≈ q. Moreover, we do not have access to a closed form ut that generates the desired pt. We shall follow
the approach of (Lipman et al., 2022) and construct a target probability path by mixing simpler conditional
probability paths. This probability path is the marginal probability path:

pt(Z) =
∫
pt(Z|Z̃)q(Z̃)dZ̃, (4)

obtained by marginalizing the conditional probability density paths pt(Z|Z̃) over observed latent trajectories
Z̃, with p0(Z|Z̃) = p(Z) and p1(Z|Z̃) = N (Z|Z̃, ϵ2I) for a small ϵ > 0. Doing so gives us a marginal
probability p1 which is a mixture distribution that closely approximates q. Then, assuming that pt(Z) > 0
for all Z and t, we can also define a marginal VF as:

ut(Z) =
∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)

pt(Z) dZ̃, (5)

where ut(Z|Z̃) is a conditional VF (conditioned on the latent trajectory Z̃). It turns out that this way of
mixing the conditional VFs leads to the correct VF for generating the marginal probability path (4). We can
then break down the intractable marginal VF into simpler conditional VFs which depends on a single sample.

To deal with the intractable integrals in Eq. (4)-(5) which complicates computation of an unbiased estimator
of Lfm, we shall minimize the conditional loss proposed by (Lipman et al., 2022):

min
θ

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃) ω(t)∥vθ
t (Z) − ut(Z|Z̃)∥2, (6)

where t ∈ U [0, 1], Z̃ ∼ q(Z̃), Z ∼ pt(Z|Z̃), and ut(Z|Z̃) is the VF defined per sample Z̃ that generates the
conditional probability path pt(Z|Z̃). Importantly, one can show that the solution of (6) is guaranteed to
converge to the same result in (3); see Theorem D.1 in App. D. Therefore, the conditional flow matching
loss can match the pre-defined target probability path, constructing the flow that pushes p0 towards p1.
Since both the probability path and VF are defined per sample, we can sample unbiased estimates of the
conditional loss efficiently, particularly so with suitable choices of conditional probability paths and VFs.

3 Probability Path Models for Probabilistic Forecasting

In this section, we describe the family of probability paths that we consider for flow matching, and we propose
an improved model tailored for probabilistic forecasting of spatio-temporal data.

3.1 Common Probability Path Models

The family of Gaussian conditional probability paths gives us tractable choices to work with since the relevant
quantities in Eq. (6) and thus the conditional flow can be defined explicitly. Therefore, we will work with

4

Published in Transactions on Machine Learning Research (07/2025)

Table 1: Choices of probability density paths that we study in this paper. For VE-diffusion, σt is increasing
in t, σ0 = 0. For VP-diffusion, β = noise scale.

Model at bt c2
t

VE-diff. (Song et al., 2020b; Lipman et al., 2022) 1 0 σ2
1−t

VP-diff. (Song et al., 2020b; Lipman et al., 2022) e− 1
2 T (1−t) 0 1 − e−T (1−t), T (t) =

∫ t

0 β(s)ds
OT-VF (Liu et al., 2022) t 0 (1 − (1 − ϵmin)t)2, ϵmin ≥ 0
SI (Chen et al., 2024) 1 − t t or t2 ϵ2t(1 − t)2, ϵ > 0
Ours 1 − t t σ2

min + σ2t(1 − t), σmin, σ ≥ 0

Gaussian probability paths. Moreover, we are going to solve (6) over the dataset of all transition pairs
Dpair = {(zτ−1, zτ)}τ=2,...,m, and use a pair of points for Z̃, setting Z̃ = (Z0, Z1) ∈ Dpair. In particular, we
consider the following class of models for the probability paths:

pt(Z|Z̃ := (Z0, Z1)) = N (Z|atZ0 + btZ1, c
2
t I), (7)

where at, bt and ct are differentiable time-dependent functions on [0, 1], and I denotes the identity.

Table 1 provides five different choices of probability paths, including our proposed choice, that we study
here. The optimal transport (OT) VF model was initially proposed by (Lipman et al., 2022), and setting
ϵmin = 0 gives us the rectified flow model of (Liu et al., 2022), which proposed connecting data and noise on
a straight line. The stochastic interpolant (SI) model in Table 1 is the one considered by (Chen et al., 2024).
The VE- and VP-diffusion conditional VFs (derived with Theorem D.2) coincide with the VFs governing the
Probability Flow ODE for the VE and VP diffusion paths proposed in (Song et al., 2020b). It has been shown
that combining diffusion conditional VFs with the flow matching objective leads to a training alternative that
is more stable and robust when compared to existing score matching approaches (Lipman et al., 2022).

As remarked in (Lipman et al., 2022), there are many choices of VFs that generate a given probability path.
We shall use the simplest VF that generates flow whose map is affine linear. Let pt(Z|Z̃) be the Gaussian
probability path defined in Eq. (7) and consider the flow map ψt defined as ψt(Z) := atZ0 + btZ1 + ctZ with
ct > 0. Then the unique VF that defines ψt is (see Theorem D.2 and the proof in App. D):

ut(Z|Z̃) = c′
t

ct
(Z − (atZ0 + btZ1)) + a′

tZ0 + b′
tZ1, (8)

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

In view of this, minimizing the conditional loss becomes:

min
θ

Lcfm(θ) := Et,zτ ,zτ−1,Z ω(t)
∥∥∥∥vθ

t (Z) − c′
t

ct
(Z − (atz

τ + btz
τ−1)) − a′

tz
τ − b′

tz
τ−1

∥∥∥∥2
, (9)

where t ∼ U [0, 1], Z ∼ pt(Z|zτ , zτ−1) and z ∼ q(z). We refer to this as the Flow Matching loss parametrization
and shall work with this parametrization. There are other parametrizations: most popular ones are the Score
Matching loss, Score Flow loss and DDPM loss. See App. C for a comparison of different loss parametrizations
and App. B for connections to SDE based generative models.

In practice, it may be beneficial to learn the vector field vθ
t using additional context information, in which

case (9) becomes:

min
θ

Lcfm(θ) := Et,zτ ,zτ−1,Z,C ω(t)
∥∥∥∥vθ

t (Z|C) − c′
t

ct
(Z − (atz

τ + btz
τ−1)) − a′

tz
τ − b′

tz
τ−1

∥∥∥∥2
, (10)

where C represents the context information. The choice of C is task-dependent. For spatio-temporal tasks,
we adopt the sparse conditioning scheme of Davtyan et al. (2023), choosing C to be past frames as follows.
Given a sampled frame zτ , we sample another index c uniformly from {1, · · · , τ − 2} and use zc, which
we call context frame, together with the previous frame zτ−1, as the two conditioning frames. Thus, in
this case C = (zτ−1, zc, τ − c) (see Algorithm 1). While conditioning on as many past frames as possible

5

Published in Transactions on Machine Learning Research (07/2025)

is desirable to improve prediction accuracy, sparse conditioning is sufficient to achieve favorable trade-off
between computational efficiency and accuracy (Davtyan et al., 2023). Datasets with more challenging
dynamics may require the use of more context frames.

3.2 Optimal Probability Paths

We consider the problem of selecting the optimal probability paths within the class of the Gaussian probability
paths. We shall make use of the Schrödinger bridge (Léonard, 2013; Chen et al., 2021b) perspective, and
seek to find the optimal stochastic processes that evolve a given measure into another, subject to marginal
constraints and based on a prior belief. This optimal process describes a novel probability path model that
we propose for probabilistic forecasting of spatio-temporal data.

To be more precise, let ν, ν′ be two given probability measures and let Q be the path measure of an arbitrary
stochastic process. The Schrödinger bridge (SB) is the solution to the following constrained minimization
problem over all path measures P (which are absolutely continuous with respect to Q) of stochastic processes
on the finite time interval [0, 1]:

min
P0=ν, P1=ν′

DKL(P∥Q), (11)

where DKL denotes the Kullback–Leibler divergence and Pt denotes the time marginal of P at time t. Typically
ν and ν′ are the (empirical) marginal distributions of an unknown continuous-time dynamics observed at the
initial and terminal times, and Q is the path measure of a prior (or reference) process that represents our
belief of the dynamics before observing the data. The solution P∗ to the problem can then be interpreted
as the optimal dynamics that conforms to the prior belief Q while respecting the data marginals P∗

0 = ν,
P∗

1 = ν′. In other words, the SB is the (path measure of the) finite-time diffusion which admits as initial
and terminal distributions the two distributions of interest and is the closest in KL divergence to (the path
measure of) a reference diffusion. Recent work (Shi et al., 2024; Pooladian & Niles-Weed, 2024) focuses on
developing improved algorithms to solve SB problems for general classes of reference diffusions. SBs have
also been used to formulate generative models by interpolating distributions on a finite time interval (Wang
et al., 2021; De Bortoli et al., 2021; Chen et al., 2021a; Peluchetti, 2023; Tong et al., 2023a; Liu et al., 2023;
Gottwald & Reich, 2024).

We will consider Gaussian prior processes for Q. The Gaussian probability paths that we consider can
be formulated via the differential equation: dZt = (ȧtZ0 + ḃtZ1 + ċtξ)dt, where ξ ∼ N (0, I). Note that
E[Żt|Z0, Z1] = ȧtZ0 + ḃtZ1 =: αt. We shall take Q to be the path measure of the linear SDE with drift αt:

dYt = αtdt+ ωdWt, t ∈ [0, 1], (12)

where ω > 0 is a regularity parameter and Wt is the standard Wiener process. While many choices for
Q exists, the rationale behind our choice is that the Gaussian process Yt admits a minimal representation
Yt = E[Zt|Z0, Z1]+ωWt that incorporates Brownian motion as a reference noise to characterize the stochasticity
surrounding the conditional estimation of Zt. Importantly, such choice allows interpretation of the SBs as
generalized dynamical optimal transport (DOT) (Chewi et al., 2024) between two (not necessarily Gaussian)
measures. In particular, adapting Theorem 1 in (Bunne et al., 2023) to our setting, we have:
Proposition 3.1. Consider the SB problem with Yt as the reference process:

min
P0=ν, P1=ν′

DKL(P∥Y), (13)

where Y is the path measure induced by (Yt)t∈[0,1]. Then, (13) is equivalent to inf(ρt,vt) E
[∫ 1

0 C(ρt, vt) dt
]
,

with
C(ρt, vt) := ∥vt∥2

2ω2 + ω2

8 ∥∇ log ρt∥2 − 1
2 ⟨αt,∇ log ρt⟩, (14)

where the infimum is taken over all pairs (ρt, vt) such that ρ0 = ν, ρ1 = ν′, ρt absolutely continuous, and
satisfies ∂tρt = −∇ · ((vt + αt)ρt).

The DOT problem (14) can be seen as a generalized version of DOT with quadratic cost (minimizing a
"kinetic energy"); see Eq. (4.41a)-(4.41c) in (Lipman et al., 2024). The GDOT (14) not only minimizes the

6

Published in Transactions on Machine Learning Research (07/2025)

quadratic cost, but also minimizes the Fisher information and maximizes the expected alignment of the score
function with the drift αt.

In our case, given a pair (Z0, Z1) of data points, we are interested in constructing SBs where the marginal
constraints are Gaussians centered around Z0 and Z1, which we denote as ξ0 := N (Z0, σ

2
minI) and ξ1 :=

N (Z1, σ
2
minI) respectively, for some given σmin ≥ 0. These are the Gaussian SBs:

min
P0=ξ0, P1=ξ1

DKL(P∥Y). (15)

It turns out that the solution of these Gaussian SBs admits a closed-form expression (Bunne et al., 2023).
Theorem 3.2. The solution P∗ to the Gaussian SB (15) is the path measure of a Markov Gaussian process
with the marginal variable Xt ∼ N (µt, σ

2
t I), where

µt = (1 − t+ at − a0 − t(a1 − a0))Z0 + (t+ bt − b0 − t(b1 − b0))Z1, (16)
σ2

t = σ2
min + σ2t(1 − t), (17)

with σ2 =
√

4σ4
min + ω4 − 2σ2

min > 0.

See App. D.3 for the proof. In particular, imposing the boundary constraints a0 = b1 = 1, a1 = b0 = 0 on the
functions at and bt, we have µt = atZ0 + btZ1 in Theorem 3.2. Note that σ2

t is independent of at and bt.

3.3 A Novel Probability Path Model

Our proposed probability path model is a stochastic extension of the straight-line trajectory connecting
consecutive latent samples (Z0, Z1), i.e., µt = (1 − t)Z0 + tZ1. This choice of at and bt can be motivated by
the following optimality principle. Given a pair of data points (Z0, Z1) ∈ Rd × Rd, the linear interpolation
path µt arises naturally as the solution to the following variational problem:

min
µ:[0,1]→Rd

∫ 1

0
∥µ̇t∥2dt subject to µ0 = Z0, µ1 = Z1. (18)

This is a classical energy minimization problem, where the goal is to find the smoothest curve connecting
the endpoints Z0 and Z1. It can be solved using the Euler-Lagrange equations under the given boundary
conditions. This formulation corresponds to minimizing the kinetic energy of the curve among all smooth
interpolations between Z0 and Z1. The solution, which is constant-velocity motion along the straight line,
has a natural physical interpretation: it is the least effort way to move from Z0 to Z1 in Euclidean space.

More generally, when the boundary conditions are probability distributions (e.g., Gaussians centered at Z0
and Z1), this linear interpolation corresponds to the displacement interpolation in the 2-Wasserstein space.
In the case where the marginals are Gaussian and the cost function is quadratic, the interpolating path of
distributions is also Gaussian with linearly interpolated means, minimizing an upper bound on the expected
kinetic energy among all stochastic paths with prescribed marginals at t = 0 and t = 1; see Section 4.7 in
(Lipman et al., 2024) for more details. Alternative interpolants are possible, but the linear form admits
analytical tractability and natural interpretation in terms of velocity fields induced by diffusion processes.
Importantly, this leads to trajectories that are generally easier to sample with ODE solvers, leading to ODE
simulations with smaller errors (Liu et al., 2022).

For the stochastic extension, we build on the deterministic backbone and relax the boundary constraints to
Gaussians centered around Z0 and Z1. We shall look for the "most likely" probability paths connecting the
boundary distributions as follows. First, we consider the noise perturbed paths Zt = µt + ωWt, where Wt is
the standard Wiener process, as our reference process. Then, we take the solution to the Schrödinger bridge
(15) with respect to the reference process as our proposed probability path model.

More precisely, in view of Theorem 3.2, we propose to choose at = 1 − t, bt = t, c2
t = σ2

min + σ2t(1 − t), in
which case we have the probability path described by:

pt(Z|Z̃) = N (Z|tZ1 + (1 − t)Z0, (σ2
min + σ2t(1 − t))I), (19)

7

Published in Transactions on Machine Learning Research (07/2025)

which transports a Gaussian distribution centered around Z0 with variance σ2
min at t = 0 to a Gaussian

distribution centered around Z1 at t = 1 with variance σ2
min. Here σmin, σ ≥ 0 are tunable parameters. In

the case when σmin = 0, it describes a Brownian bridge that interpolates between Z0 and Z1 (Gasbarra et al.,
2007). To ensure numerical stability when sampling t ∼ U [0, 1], it is beneficial to use a small σmin > 0. Note
that σ2 is a scale factor determining the magnitude of fluctuations around the path interpolating between
Z0 and Z1. The variance c2

t is minimum with the value of σ2
min at the endpoints t = 0 and t = 1, and the

maximum variance is σ2
min + σ2/4 which occurs in the middle of the path at t = 1/2.

The variance schedule is designed to balance exploration and stability. Low variance at the start ensures
stable initialization, preventing the trajectory from deviating too far from the initial distribution. High
variance in the middle allows the model to explore diverse paths in the latent space, avoiding mode collapse
and enhancing diversity in the generated trajectories. Low variance at the end sharpens the trajectory,
ensuring accurate reconstruction of the desired output. This strategy is inspired by findings in diffusion
models that utilize a forward noising process and a backward denoising process (Ho et al., 2020; Song et al.,
2020b), where such variance patterns have been shown to effectively manage the trade-off between exploration
and refinement.

The corresponding VF that defines the flow is then given by (applying Theorem D.2):

ut(Z|Z̃) = Z1 − Z0 + σ2

2
1 − 2t

σ2
min + σ2t(1 − t)ϵ, (20)

where ϵ := Z − (tZ1 + (1 − t)Z0). Under reasonable assumptions, the variance of this VF is lower than the
variance of the OT-VF of (Lipman et al., 2022) with ϵmin := 0 (rectified flow). Here the variance is taken
with respect to the randomness in the samples zτ and the Gaussian samples drawn during gradient descent
updates.

More precisely, denote the VF that corresponds to our model as ut and the VF that corresponds to the
rectified flow model as ũt. For a given τ , they generate the probability path Zt = tzτ + (1 − t)zτ−1 + ctξ and
Z̃t = tzτ−1 + (1 − t)η respectively, where ξ, η ∼ N (0, I), ct =

√
σ2

min + σ2t(1 − t) and t ∈ [0, 1]. Applying
Eq. (8), we have:

ut(Zt|zτ−1, zτ) = zτ − zτ−1 + c′
tξ, (21)

ũt(Z̃t|zτ−1) = zτ−1 − η. (22)

Theorem 3.3. Suppose that (zτ)τ=1,...,m, with the zτ ∈ Rd, is a discrete-time stochastic process with
nonzero correlation in time and let t ∈ [0, 1] be given. If Cov(zτ−1, zτ) ≥ 1

2

((
σ4

4σ2
min

− 1
)
I + V ar(zτ)

)
, then

V ar(ũt(Z̃t|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ)).

See App. D.4 for a proof and related discussions. Theorem 3.3 implies that if the consecutive latent variables
zτ , zτ−1 are sufficiently correlated and σ is chosen small enough relative to σmin, then the variance of the VF
that corresponds to our probability path model is lower than that corresponds to the rectified flow model.

4 An Efficient Probabilistic Forecasting Algorithm

In this section, we present efficient algorithms for training and inferencing the flow matching model.

Recently (Davtyan et al., 2023) proposed an efficient algorithm for latent flow matching for the task of video
prediction, using the probability path generated by the OT-VF of (Lipman et al., 2022). To enable efficient
training, we shall follow (Davtyan et al., 2023) and leverage the iterative nature of sampling from the learned
flow and use a single random conditioning element from the past at each iteration. However, our method
differs from (Davtyan et al., 2023) as we use different probability paths and target VFs.

Training. Recall that Z̃ = (Z0, Z1) denote training samples from Dpair = {(zτ−1, zτ)}τ=2,...,m. In other
words, we set Z1 to be the target element and Z0 to be the reference element chosen to be the previous
element before the target element. In this way, our target probability path model maps a distribution centered

8

Published in Transactions on Machine Learning Research (07/2025)

around a previous state to the distribution of the current states, which is more natural from the point of
view of probabilistic forecasting whose goal is to obtain an ensemble of forecasts. Note that this differs from
the approach of Davtyan et al. (2023), where Z̃ = Z1 (i.e., they do not use a reference element to define
their probability path, whereas we use a pair of elements (Z0, Z1)). Algorithm 1 summarizes the training
procedure of our method.

Both the autoencoder and the VF neural network can also be jointly trained in an end-to-end manner, but
our empirical results show that separating the training can lead to improved performance. Moreover, doing
so allows us to better assess the impact of using different probability paths.

Algorithm 1 Flow matching for spatio-temporal data
Input: Dataset of sequences D, number of iterations M
for i in range(1, M) do

Sample a sequence x from the dataset D
Encode it with a pre-trained encoder to obtain z
Choose a random target element zτ , τ ∈ {3, . . . |z|}, from z
Sample a step t ∼ U [0, 1]
Sample a noisy observation Z ∼ pt(Z | zτ , zτ−1), where pt is given by Eq. (7)
Compute ut(Z | zτ , zτ−1) according to (20)
Sample a condition frame zc, c ∈ {1, . . . τ − 2}
Update the parameters θ via gradient descent

∇θ∥vθ
t (Z | zτ−1, zc, τ − c) − ut(Z | zτ , zτ−1)∥2

end for
Return: A learned VF, vθ∗

t

Inference. We use an ODE sampler during inference to generate forecasts. The ODE sampler is described
as follows. Let (Y τ

i)i=1,...,N−1 denote the generation process, where N − 1 is the number of integration steps
and the superscript τ denotes the time index for which the generation/forecast is intended for. Given the
previous elements (x1, . . . , xT −1) of a time series sample, in order to generate the next element (i.e., the T -th
element), we start with sampling the initial condition Y T

0 from N (zT −1, σ2
samI) for some small σsam ≥ 0,

where zT −1 = E(xT −1). This is in contrast to the procedure of (Davtyan et al., 2023), which simply uses a
mean-zero Gaussian sample instead. We then use an ODE solver to integrate the learned VF along the time
interval [0, 1] to obtain Y T

N−1. We use D(Y T
N−1) as an estimate of xT , and forecasting is done autoregressively.

Algorithm 2 summarizes this procedure when the sampling is done using the forward Euler scheme. Note that
we can also use computationally more expensive numerical schemes such as the Runge-Kutta (RK) schemes.

Algorithm 2 One-step ahead forecasting with forward Euler
Input: A sequence (x1, . . . , xT −1) containing the previous elements, number of integration steps N − 1,
grid s0 = 0 < s1 < · · · < sN−1 = 1, a learnt VF vθ∗

s for s ∈ [0, 1]
Set ∆sn = sn+1 − sn for n = 0, . . . , N − 2
Sample Y T

0 ∼ N (E(xT −1), σ2
samI), σsam ≥ 0

for n in range(0, N − 1) do
Sample c ∼ U(2, . . . , T − 1)
yT −c = E(xT −c)
Y T

n+1 = Y T
n + ∆snv

θ∗

sn
(Y T

n |Y T
0 , y

T −c, T − c)
end for
Return: An estimate of xT , x̂T = D(Y T

N−1)

9

Published in Transactions on Machine Learning Research (07/2025)

5 Empirical Results

In this section, we present our main empirical results to elucidate the design choice of probability paths
within the flow matching framework (comparison with other generative modeling frameworks is not our focus
here). We focus on PDE dynamics forecasting tasks here (additional details and results can be found in
App. E-F). We test the performance of our probability path model, i.e., Eq. (19) with at = 1 − t, bt = t and
ct =

√
σ2

min + σ2t(1 − t) on these tasks. We pick σmin = 0.001, and treat σ and σsam as tunable parameters.
We compare our proposed model with four other models of probability paths:

• RIVER (Davtyan et al., 2023): RIVER uses the OT-VF model in Table 1, i.e., at = 0, bt = t,
ct = 1 − (1 − ϵmin)t, choosing ϵmin = 10−7.

• VE-diffusion in Table 1: We use σt = σmin

√(
σmax

σmin

)2t

− 1 with σmin = 0.01, σmax = 0.1, and sample t
uniformly from [0, 1 − ϵ] with ϵ = 10−5, following (Song et al., 2020b).

• VP-diffusion in Table 1: We use β(s) = βmin + s(βmax − βmin) where βmin = 0.1, βmax = 20 and t is
sampled from U [0, 1 − ϵ] with ϵ = 10−5, following (Song et al., 2020b). Thus, T (s) = sβmin + 1

2s
2(βmax −

βmin).
• The stochastic interpolant (SI) path in Table 1: We consider the path proposed by (Chen et al.,

2024) and use the suggested choice of at = 1 − t, bt = t2 and ct = ϵ(1 − t)
√
t (see Eq. (2) in (Chen et al.,

2024) and note that V ar((1 − t)Wt) = (1 − t)2t for the standard Wiener process Wt). We also consider
the choice with bt = t instead. We choose ϵ = 0.01 for both choices. This is a path that is similar to ours,
but with the variance c2

t chosen such that the maximum occurs at t = 1/
√

3 instead of at the middle of
the path at t = 1/2. We shall see that different forms of variance can lead to vastly different performance
in the considered tasks.

Evaluation metrics. We evaluate the models using the following metrics. First, we use the standard
mean squared error (MSE) and the relative Frobenius norm error (RFNE) to measure the difference between
predicted and true snapshots. Second, we compute metrics such as the peak signal-to-noise ratio (PSNR), and
the structural similarity index measure (SSIM) to further quantify the quality and similarity of the generated
snapshots (Wang et al., 2004). Third, we use the Pearson correlation coefficient to assess the correlation
between predicted and true snapshots.

Training details. We use an autoencoder (AE) to embed the training data into a low-dimensional latent
space, which enables the model to capture the most relevant features of the data while reducing dimensionality
(Azencot et al., 2020); see App. F for further discussion of the motivation. We then train a flow matching
model in this latent space. Training generative models in latent space has also been considered by (Vahdat
et al., 2021) for score matching models and by (Dao et al., 2023) for flow matching models. To train the
AE, we minimize a loss function that consists of reconstruction error, in terms of MSE, between the input
data and its reconstructed version from the latent space. The choice of the AE architecture is tailored to the
complexity of the dataset (see App. F for details).

5.1 Probabilistic Forecasting of Dynamical Systems

We evaluate the performance of our proposed probability path model on challenging dynamical systems
to demonstrate its effectiveness in forecasting complex continuous dynamics. Specifically, we consider the
following tasks (for details see App. F.2):

• Fluid Flow Past a Cylinder (FPC): This task involves forecasting the vorticity of a fluid flowing
past a cylinder. The model conditions on the first 5 frames and predicts the subsequent 20 frames at a
resolution of 64 × 64 with 1 channel representing vorticity.

• Shallow-Water Equation (SWE): This dataset models the dynamics of shallow-water equa-
tions (Takamoto et al., 2022), capturing essential aspects of geophysical fluid flows. We use the first
5 frames for conditioning and predict the next 15 frames at a resolution of 128 × 128 with 1 channel
representing horizontal flow velocity.

10

Published in Transactions on Machine Learning Research (07/2025)

• Diffusion-Reaction Equation (DRE): This dataset models the dynamics of a 2D diffusion-reaction
equation (Takamoto et al., 2022). We use the first 5 frames for conditioning and predict 15 future frames
at a 128 × 128 with 2 channels representing velocity in the x and y directions.

• Incompressible Navier-Stokes Equation (NSE): As a more challenging benchmark, we consider
forecasting the dynamics of a 2D incompressible Navier-Stokes equation (Takamoto et al., 2022). We use
the first 5 frames for conditioning and predict the next 20 frames at a resolution of 512 × 512 with 2
channels representing velocity in the x and y directions.

Table 2 summarizes the performance of our model compared to other probability path models across all tasks.
It can be seen that our probability path model achieves the lowest test MSE and RFNE across all tasks,
indicating more accurate forecasts. Moreover, the higher PSNR and SSIM scores indicate that our model
better preserves spatial structures in the predictions. Despite the similarity of our proposed model with the
stochastic interpolant of (Chen et al., 2024), in that both models use consecutive samples to define the path,
our model outperforms the stochastic interpolant model, suggesting that choosing the maximum variance to
occur at the middle of the path is a better choice. Importantly, our model is highly efficient during inference
time since it requires very few sampling steps; this is significantly lower compared to other models.

Figure 1 shows the Pearson correlation coefficients of the predicted snapshots over time for all models. Our
model’s predictions shows a slower decay of correlation coefficients compared to other models, indicating
better temporal consistency and long-term predictive capability. Correlation coefficients about 95% indicate
performance on par with physics-based numerical simulators.

Table 2: Results for forecasting dynamical systems using different probability path models for flow matching.
Results are averaged over 5 generations obtained with 9 sampling steps (N = 10) using RK4. For our model,
we use σmin = 0.001 and σsam = 0 for all the considered tasks.

Task Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)

Flow past Cylinder

RIVER 1.86e-03 4.48e-02 44.30 0.99
VE-diffusion 2.29e-01 4.74e-01 27.36 0.55
VP-diffusion 3.58e-03 6.09e-02 42.37 0.98
SI (bt = t2) 3.40e-03 6.10e-02 41.81 0.98
SI (bt = t) 1.19e-02 9.96e-02 39.64 0.99
Ours (σ = 0.01) 3.79e-04 2.30e-02 48.88 1.00

Shallow-Water

RIVER 9.18e-04 1.49e-01 34.92 0.92
VE-diffusion 1.32e-02 5.66e-01 28.10 0.55
VP-diffusion 1.39e-03 1.81e-01 34.07 0.87
SI (bt = t2) 1.05e-03 1.53e-01 35.59 0.89
SI (bt = t) 6.74e-04 1.29e-01 36.08 0.93
Ours (σ = 0.1) 6.60e-04 1.28e-01 36.10 0.93

Diffusion-Reaction

RIVER 2.87e-03 2.28e-01 38.12 0.82
VE-diffusion 1.04e-01 1.71 32.98 0.36
VP-diffusion 2.02e-02 7.03e-01 34.98 0.52
SI (bt = t2) 6.17e-02 8.62e-01 45.68 0.76
SI (bt = t) 3.72e-04 1.18e-01 34.24 0.89
Ours (σ = 0) 3.56e-04 1.16e-01 34.34 0.90

Navier-Stokes

RIVER 2.84e-02 8.67e-01 30.75 0.63
VE-diffusion 1.58e-01 2.31 26.90 0.33
VP-diffusion 2.09e-01 2.48 27.96 0.30
SI (bt = t2) 1.27e-03 2.66e-01 30.73 0.90
SI (bt = t) 1.13e-03 2.54e-01 30.66 0.93
Ours (σ = 0.1) 1.13e-03 2.53e-01 30.66 0.93

Figure 2 compares the training loss curves of our model with others for the FPC and the SWE task. Our
method leads to faster convergence during training and smoother loss curves. This suggests that our model
requires fewer iterations to generate high-quality samples when compared to other models. We find that there
is no significant difference in training time between the models when trained for the same number of epochs.

11

Published in Transactions on Machine Learning Research (07/2025)

0 5 10 15 20
0.99

0.992

0.994

0.996

0.998

1

RIVER

VE

VP

Stoch Interp

Ours

co
rr

el
at

io
n

Simple Fluid Flow

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Shallow-Water Equation

0 5 10 15
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

co
rr

el
at

io
n

Reaction-Diffusion Equation

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

Prediction Steps

Navier-Stokes Equation

Figure 1: Pearson correlation coefficient to assess the correlation between predicted and true snapshots at
various prediction steps for different probability path models. Our probability path model shows the best
performance on all three tasks. Note that the first 5 snapshots are the conditioning snapshots.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-4

10-2

100

102

RIVER

VE

VP

Stoch Interp

Ours

Lo
ss

Epoch

Simple Fluid Flow

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-2

10
0

10
2

Lo
ss

Epoch

Shallow-Water Equation

Figure 2: Training loss for different models of probability path for the fluid flow past a cylinder task. Our
model leads to fastest convergence and smoothest loss curve among all models.

5.2 Discussion

Our empirical results showed that our proposed model consistently outperformed other models across several
forecasting tasks involving different PDEs. Our model shows improved training efficiency, with faster
convergence reducing the computational resources and time required for model training. Moreover, our
model is efficient during inference time since it only requires a few sampling steps, making it practical for
real-world applications where computational efficiency is crucial. Additionally, the model maintained better
temporal consistency, as indicated by a slower decay of Pearson correlation coefficients over longer prediction
horizons. These findings validate the effectiveness of our approach in modeling complex dynamical systems.
Our focus in this paper is on near- to mid-term forecasting (15–20 steps), which is a standard set-up in
spatio-temporal video and PDE benchmarks. While our framework is compatible with longer rollouts in
principle, scaling to significantly longer horizons remains a long-standing challenge, as for most forecasting
tasks, due to compounding errors and distributional drift, especially in high-dimensional dynamics. This is
an important direction for future work.

12

Published in Transactions on Machine Learning Research (07/2025)

Our ablation study (see App. E.2) further validated the advantages of our proposed probability path model.
We found that larger σ values not only contributed to smoother training loss curves but also enhanced
the overall stability and efficiency of the model. Moreover, we saw that σsam = 0 can be fixed without
compromising accuracy. We also provide studies to understand the effect of using context frames and the
choice of σmin on test performance in App. E.2. In particular, in Table 5 we see noticeable improvement in
test performance using σmin > 0, showing the advantages of going beyond the commonly used Brownian
bridge model (see (Tong et al., 2023b;a)). Importantly, the fact that our model achieved improved performance
even with the simplest sampler (Euler scheme) and a minimal number of sampling steps (as few as one for
the FPC task; see Figure 4) validates its practical applicability, especially in scenarios where computational
resources and time are limited.

Lastly, we provide an expanded discussion to position the proposed probability path relative to the stochastic
interpolant (SI) path. While the SI path offers simplicity and analytical tractability, it lacks principled
guidance for choosing bt, which is an important design choice. Our proposed probability path is grounded in
the dynamical SB framework, which, in our formulation, models the most likely stochastic evolution between
two Gaussian distributions centered around time-adjacent samples (with a minimal variance σ2

min) under
prior dynamics. From this perspective, the path is not simply a heuristic interpolation and the choice of bt = t
is justified, whereas the inclusion of a non-zero σ2

min is important in the context of probabilistic forecasting.
Note that when σmin = 0, our proposed model simplifies to the SI model with bt = t. A key implication of
this viewpoint is that the variance structure of the path plays a crucial role: it reflects the uncertainty in
matching the two endpoints under the prior dynamics. Our proposed path introduces a variance profile that
is symmetric and peaks at the midpoint t = 1/2, better reflecting the intrinsic uncertainty in interpolating
between endpoints. In contrast, the preferred SI path suggested in (Chen et al., 2024) (with bt = t2) has an
asymmetric variance peak at t = 1/

√
3, which may misalign with the data geometry. Empirically, we see that

our probability path model mostly outperforms the SI models across the considered tasks (see Table 2). As
expected, when σmin is very close to zero, the test performance of our model is only marginally better than
that of the SI model with bt = t for most tasks. As discussed earlier (see also App. E.2), using bigger values
of σmin > 0 can not only improve test performance but also help improve training stability.

6 Conclusion

In this work, we investigated the use of flow matching in latent space for probabilistic forecasting of spatio-
temporal dynamics, providing a theoretical framework and efficient algorithms. We demystified the critical
role of the probability path design in this setting and proposed an improved probability path model. Our
model is theoretically motivated via the SB and dynamical optimal transport perspective. It leverages the
inherent continuity and correlation in the spatio-temporal data, leading to more stable training and faster
convergence. Our empirical evaluations on several PDE forecasting tasks demonstrated that our model
performs favorably when compared to existing models. While we focus on the flow matching approach, we
leave comprehensive comparisons with more computationally demanding approaches, such as score matching
(Song et al., 2020b) and bridge matching (De Bortoli et al., 2021), to future work.

Our findings position flow matching as a promising alternative to diffusion-based generative models in PDE
forecasting. While diffusion models have shown strong performance, they are typically not simulation-free
and require many iterative sampling steps. They rely on simulating reverse SDEs or ODEs, often using
25-100+ steps for generation. Therefore, they can be computationally costly and difficult to tune for high-
dimensional spatio-temporal systems. In contrast, flow matching enables training wihout simulating stochastic
processes, by directly learning a continuous vector field aligned with a designed probability path and few-step
sampling, offering improved inference efficiency. Our results show that careful design of the probability
path, especially those tailored to continuous-time dynamics, can significantly improve training stability and
forecast performance. These insights suggest that flow-based methods not only offer theoretical elegance via
connections to optimal transport and Schrödinger bridges, but also hold practical advantages for scalable and
controllable forecasting in complex dynamical systems.

13

Published in Transactions on Machine Learning Research (07/2025)

Acknowledgments

The computations were enabled by resources provided by the National Academic Infrastructure for Super-
computing in Sweden (NAISS), partially funded by the Swedish Research Council through grant agreement
no. 2022-06725 (NAISS 2024/5-269).

SHL would like to acknowledge support from the Wallenberg Initiative on Networks and Quantum Information
(WINQ) and the Swedish Research Council (VR/2021-03648). AY was supported by the SciAI Center, funded
by the Office of Naval Research under Grant Number N00014-23-1-2729. EH was supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of
Energy Computational Science Graduate Fellowship under Award Number DE-SC0024386. NBE would like
to acknowledge LBL’s LDRD initiative for providing partial support. XSL was supported in part by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research’s Applied
Mathematics SciML program under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National
Laboratory.

References
Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework

for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting with
structured state space models, 2023.

Anonymous. Diffusion models and Gaussian flow matching: Two sides of the same coin. In ICLR Blogposts
2025, 2025.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael W Mahoney. Forecasting sequential data
using consistent Koopman autoencoders. In International Conference on Machine Learning, pp. 475–485.
PMLR, 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for
learning about objects, relations and physics. Advances in Neural Information Processing Systems, 29,
2016.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing recurrent
networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8624–8628.
IEEE, 2013.

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann. Modeling
temporal data as continuous functions with stochastic process diffusion, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video
diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time Series Analysis: Forecasting
and Control. John Wiley & Sons, 2015.

Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause. The Schrödinger bridge between
Gaussian measures has a closed form. In International Conference on Artificial Intelligence and Statistics,
pp. 5802–5833. PMLR, 2023.

Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed diffusion model
for spatiotemporal forecasting, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 31, 2018.

14

Published in Transactions on Machine Learning Research (07/2025)

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of Schrödinger bridge
using forward-backward sdes theory. arXiv preprint arXiv:2110.11291, 2021a.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric Vanden-
Eijnden. Probabilistic forecasting with stochastic interpolants and Föllmer processes. arXiv preprint
arXiv:2403.13724, 2024.

Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. Stochastic control liaisons: Richard Sinkhorn meets
Gaspard Monge on a Schrodinger bridge. SIAM Review, 63(2):249–313, 2021b.

Sinho Chewi, Jonathan Niles-Weed, and Philippe Rigollet. Statistical optimal transport. arXiv preprint
arXiv:2407.18163, 2024.

Tim Colonius and Kunihiko Taira. A fast immersed boundary method using a nullspace approach and
multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197
(25-28):2131–2146, 2008.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned flow
matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23263–23274,
2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger bridge with
applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34:
17695–17709, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-damped
Langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.

Peter D Dueben and Peter Bauer. Challenges and design choices for global weather and climate models based
on machine learning. Geoscientific Model Development, 11(10):3999–4009, 2018.

N Benjamin Erichson, Lionel Mathelin, J Nathan Kutz, and Steven L Brunton. Randomized dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 18(4):1867–1891, 2019.

N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton, Michael W Mahoney, and J Nathan
Kutz. Shallow neural networks for fluid flow reconstruction with limited sensors. Proceedings of the Royal
Society A, 476(2238):20200097, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference on Machine Learning, 2024.

Lawrence C Evans. Partial Differential Equations, volume 19. American Mathematical Society, 2022.

Dario Gasbarra, Tommi Sottinen, and Esko Valkeila. Gaussian bridges. In Stochastic Analysis and Applications:
The Abel Symposium 2005, pp. 361–382. Springer, 2007.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and Yaron
Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Georg A Gottwald and Sebastian Reich. Localized Schrödinger bridge sampler. arXiv preprint
arXiv:2409.07968, 2024.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang, and José
Lezama. Photorealistic video generation with diffusion models. arXiv preprint arXiv:2312.06662, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

15

Published in Transactions on Machine Learning Research (07/2025)

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646, 2022.

Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen. FM-TS:
Flow matching for time series generation. arXiv preprint arXiv:2411.07506, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

Diederik P Kingma and Ruiqi Gao. Understanding the diffusion objective as a weighted integral of ELBOs.
arXiv preprint arXiv:2303.00848, 2023.

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion models for
turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

Aditi S Krishnapriyan, Alejandro F Queiruga, N Benjamin Erichson, and Michael W Mahoney. Learning
continuous models for continuous physics. Communications Physics, 6(1):319, 2023.

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport.
arXiv preprint arXiv:1308.0215, 2013.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David
Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint arXiv:2412.06264,
2024.

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos A Theodorou, and Ricky TQ
Chen. Generalized Schrödinger bridge matching. arXiv preprint arXiv:2310.02233, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Kai Lv, Liang Yuan, and Xiaoyu Ni. Learning autoencoder diffusion models of pedestrian group relationships
for multimodal trajectory prediction. IEEE Transactions on Instrumentation and Measurement, 73:1–12,
2024. doi: 10.1109/TIM.2024.3375973.

Dongwei Lyu, Rie Nakata, Pu Ren, Michael W Mahoney, Arben Pitarka, Nori Nakata, and N Benjamin
Erichson. WaveCastNet: An AI-enabled wavefield forecasting framework for earthquake early warning.
arXiv preprint arXiv:2405.20516, 2024.

Caspar Meijer and Lydia Y Chen. The rise of diffusion models in time-series forecasting. arXiv preprint
arXiv:2401.03006, 2024.

Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza
Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, et al. Kilometer-scale convection allowing
model emulation using generative diffusion modeling. arXiv preprint arXiv:2408.10958, 2024.

Stefano Peluchetti. Diffusion bridge mixture transports, Schrödinger bridge problems and generative modeling.
Journal of Machine Learning Research, 24(374):1–51, 2023.

Aram-Alexandre Pooladian and Jonathan Niles-Weed. Plug-in estimation of Schrödinger bridges. arXiv
preprint arXiv:2408.11686, 2024.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and
Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings. arXiv preprint
arXiv:2304.14772, 2023.

16

Published in Transactions on Machine Learning Research (07/2025)

Hao Qu, Yongshun Gong, Meng Chen, Junbo Zhang, Yu Zheng, and Yilong Yin. Forecasting fine-grained
urban flows via spatio-temporal contrastive self-supervision. IEEE Transactions on Knowledge and Data
Engineering, 35(8):8008–8023, 2023. doi: 10.1109/TKDE.2022.3200734.

Alejandro Queiruga, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Stateful ODE-nets
using basis function expansions. Advances in Neural Information Processing Systems, 34:21770–21781,
2021.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting. In International Conference on Machine
Learning, pp. 8857–8868. PMLR, 2021.

Pu Ren, Rie Nakata, Maxime Lacour, Ilan Naiman, Nori Nakata, Jialin Song, Zhengfa Bi, Osman Asif Malik,
Dmitriy Morozov, Omri Azencot, et al. Learning physics for unveiling hidden earthquake ground motions
via conditional generative modeling. arXiv preprint arXiv:2407.15089, 2024.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations, volume 10. Cambridge University
Press, 2019.

Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert Leufen,
Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather prediction? Philo-
sophical Transactions of the Royal Society A, 379(2194):20200097, 2021.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional
LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information
Processing Systems, 28, 2015.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger bridge
matching. Advances in Neural Information Processing Systems, 36, 2024.

Gaurav Shrivastava and Abhinav Shrivastava. Video prediction by modeling videos as continuous multi-
dimensional processes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7236–7245, 2024.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-video
generation without text-video data. In The Eleventh International Conference on Learning Representations,
2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428, 2021.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. PDEBench: An extensive benchmark for scientific machine learning. Advances in
Neural Information Processing Systems, 35:1596–1611, 2022.

Ella Tamir, Najwa Laabid, Markus Heinonen, Vikas Garg, and Arno Solin. Conditional flow matching for time
series modelling. In ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling,
2024.

17

Published in Transactions on Machine Learning Research (07/2025)

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based diffusion
models for probabilistic time series imputation. 2021.

Jakub M Tomczak. Latent variable models. In Deep Generative Modeling, pp. 57–127. Springer, 2021.

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy
Wolf, and Yoshua Bengio. Simulation-free Schrödinger bridges via score and flow matching. arXiv preprint
arXiv:2307.03672, 2023a.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras,
Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
optimal transport. arXiv preprint arXiv:2302.00482, 2023b.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. Advances in
Neural Information Processing Systems, 34:11287–11302, 2021.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via Schrödinger
bridge. In International Conference on Machine Learning, pp. 10794–10804. PMLR, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.

Haomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Qingsong Wen, Roger Zimmermann, and Yuxuan
Liang. DiffSTG: Probabilistic spatio-temporal graph forecasting with denoising diffusion models, 2024.

Tijin Yan, Hongwei Zhang, Tong Zhou, Yufeng Zhan, and Yuanqing Xia. ScoreGrad: Multivariate probabilistic
time series forecasting with continuous energy-based generative models, 2021.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. arXiv
preprint arXiv:2204.13902, 2022.

18

Published in Transactions on Machine Learning Research (07/2025)

Appendix

This appendix is organized as follows. In App. A, we provide a detailed discussion of related work and
connect them to our studies. In App. B, we provide some remarks on the connection of flow matching models
to other generative models. In App. C, we provide commonly used loss parametrizations and compare them
with our flow matching loss. In App. D, we provide theorems and proofs to justify the discussions in Section
2-3 (see Theorem D.1-D.2 and Theorem 3.2-3.3), as well as additional discussions. In App. E, we provide
additional empirical results. In App. F, we provide the missing experimental details.

A Related Work

Modeling and forecasting dynamical systems. Traditionally dynamical systems arising in scientific
applications have been studied through mathematical models based on physical laws, such as ODEs and PDEs
(Evans, 2022). These methods often require significant domain knowledge and strong assumptions, limiting
their flexibility in data-driven scenarios where governing equations are unknown. Statistical and machine
learning (ML) methods have emerged as powerful alternatives to study these systems. Classical approaches
include autoregressive integrated moving average (ARMA) and state-space models such as Kalman filters
(Box et al., 2015), which have long been used for time series forecasting but struggle with highly nonlinear
dynamics. ML methods such as recurrent neural networks (RNNs) (Bengio et al., 2013) and variants for
spatio-temporal data (Shi et al., 2015; Lyu et al., 2024) are capable of learning complex temporal dependencies
but they are challenging to train. Neural ODEs (Chen et al., 2018; Queiruga et al., 2021) offer a structured
approach to continuous-time modeling by integrating neural networks with ODE solvers. However, these
models still face challenges with generalizing to new systems, and learning continuous physical dynamics
(Krishnapriyan et al., 2023).

Generative modeling for time series forecasting. Generative models, particularly score-based diffusion
models and flow-based approaches, have gained significant attention for learning complex data distributions
in high-dimensional spaces such as images (Song et al., 2020b; Karras et al., 2022; Esser et al., 2024), videos
(Davtyan et al., 2023; Shrivastava & Shrivastava, 2024), and dynamical systems (Pathak et al., 2024; Kohl
et al., 2024; Ren et al., 2024). In the context of time series forecasting, diffusion models like TimeGrad (Rasul
et al., 2021; Meijer & Chen, 2024) incorporate conditioning on previous time steps into both the forecasting
process and the loss function. Building upon TimeGrad, CSDI (Tashiro et al., 2021) enhances performance
in imputation tasks by replacing the RNN encoder with a transformer. ScoreGrad (Yan et al., 2021) adapts
this framework to a score-based diffusion model for multivariate probabilistic forecasting. Methods such as
DSPD and CSPD (Biloš et al., 2023), based on DDPM and SDE respectively, model dynamics as continuous
functions and introduce time-correlated noise functions. Another relevant work, SSSDS4 (Alcaraz & Strodthoff,
2023), uses state-space models (S4) to encode time series and performs diffusion over the temporal domain
instead of across multivariate components. While these models demonstrate strong performance, they often
require many sampling steps during generation. Related to our approach, (Chen et al., 2024) proposes an
SDE framework utilizing stochastic interpolants (Albergo et al., 2023) for probabilistic forecasting, but their
sampler also requires many steps during generation. Another recent work is (Tamir et al., 2024), which
introduces a flow matching framework for time series modeling within the data space; however, it concentrates
on small ODE datasets and does not address forecasting tasks. Meanwhile, (Hu et al., 2024) proposes a
model based on rectified flow with ODE-based straight line transport for efficient time series generation.

Applications of diffusion models to spatio-temporal data have primarily focused on video generation (Singer
et al., 2023). For spatio-temporal forecasting on sensor grids, graph neural networks (GNNs) are widely
employed in tasks such as traffic prediction (Qu et al., 2023; Lv et al., 2024; Wen et al., 2024) and air quality
forecasting (Wen et al., 2024). Another recent work is DYffusion (Cachay et al., 2023), which utilizes a
non-Markovian diffusion process to propagate images temporally, similar to DDIM. This method iteratively
refines initial predictions at larger time steps by conditioning them on predictions at smaller time steps.

19

Published in Transactions on Machine Learning Research (07/2025)

B Connection to SDE Based Generative Model Frameworks

In this section, we provide some remarks on the connection between flow matching models and SDE based
generative models (Song et al., 2020b).

Consider the following continuous-time Gaussian latent variable model (Tomczak, 2021): Zt = E(Xt),

Zt = AtZ0 +BtZ1 + Ltϵ, t ∈ [0, 1], (23)
Xt = D(Zt), (24)

where t is the continuous variable, X0 ∈ Rd represent data samples, Z ∈ Rp is the latent variable, ϵ ∼ N (0, I)
is independent of the random variables X0, Z0, Z1. Here At, Bt and Lt ≥ 0 are pre-specified coefficients which
are possibly matrix-valued and time-dependent, D and E denote the decoder and encoder map respectively,
and D ◦ E = I. Note that Z0 and Z1 are initial and terminal point of the path (Zt)t∈[0,1] in the latent space.

The above latent variable model can be identified (up to equivalence in law for each t) with the linear SDE of
the form:

dẐt = FtẐtdt+HtZ1dt+GtdWt, Ẑ0 = Z0, t ∈ [0, 1), (25)

where (Wt)t∈[0,1] is the standard Wiener process. By matching the moments, we obtain

Ft = ȦtA
−1
t , (26)

Ht = Ḃt − ȦtA
−1
t Bt, (27)

GtG
T
t = L̇tL

T
t + LtL̇

T
t − ȦtA

−1
t LtL

T
t − LtL

T
t A

−T
t (Ȧt)T , (28)

where the overdot denotes derivative with respect to t and AT denotes the transpose of A.

Under the above formulation, various existing generative models such as DDPM (Ho et al., 2020), VP-SDE
and VE-SDE of (Song et al., 2020b;a), the critically damped SDE of (Dockhorn et al., 2021), the flow
matching models in (Lipman et al., 2022; Tong et al., 2023b; Liu et al., 2022) and the stochastic interpolants
of (Albergo et al., 2023) can be recovered, and new models can be derived.

The following proposition establishes the connection between flow matching using our proposed probability
path model, the Gaussian latent variable model (23) and the linear SDE model (25).
Proposition B.1. For every t ∈ [0, 1], the Zt defined in Eq. (19) can be identified, up to equivalence in law,
with the Zt generated by the latent variable model (23) with At = (1−t)I, Bt = tI, Lt =

√
σ2

min + σ2t(1 − t)I.
For t ∈ [0, 1), it can also be identified with the solution Ẑt of the linear SDE (25) with Ft = −I/(1 − t),
Ht = (1 + t

1−t)I and Gt =
√
σ2 + 2σ2

min

1−t I. Moreover, limt→1 Ẑt =d Z1 + σminϵ, where ϵ ∼ N (0, I) and =d

denotes equivalence in distribution.

Proof. The identification follows from matching the moments of Zt and Ẑt, i.e., applying Eq. (26)-(28).

To prove that limt→1 Ẑt =d Z1 + σminϵ, we use the explicit solution of the SDE:

Ẑt = Φ(t, 0)Z0 +
∫ t

0
Φ(t, s)HsZ1ds+

∫ t

0
Φ(t, s)GsdWs,

where Φ(t, s) is the fundamental solution of the homogeneous equation dΦ(t, s) = FtΦ(t, s)dt with Φ(s, s) = I.
For our Ft = −I/(1 − t), we have Φ(t, s) = exp(−

∫ t

s
1

1−udu)I = (1−t
1−s)I. Substituting this and the formula

for Ht into the solution, we obtain Ẑt = (1 − t)Z0 +
∫ t

0 (1−t
1−s)(1 + s

1−s)Z1ds+
∫ t

0 (1−t
1−s)

√
σ2 + 2σ2

min

1−s IdWs.

Now, let us examine each term as t → 1. First, (1− t)Z0 → 0 as t → 1 and
∫ t

0 (1−t
1−s)(1+ s

1−s)Z1ds = tZ1 → Z1

as t → 1. It remains to deal with the stochastic integral term Mt :=
∫ t

0 (1−t
1−s)

√
σ2 + 2σ2

min

1−s dWs. Note that

20

Published in Transactions on Machine Learning Research (07/2025)

Mt is an Itô integral that has zero mean, i.e. EMt = 0, and using Itô’s formula (Särkkä & Solin, 2019),

EM2
t =

∫ t

0
((1 − t)/(1 − s))2

(
σ2 + 2σ2

min

1 − s

)
ds (29)

= (1 − t)2
[
σ2

∫ t

0

1
(1 − s)2 ds+ 2σ2

min

∫ t

0

1
(1 − s)3 ds

]
(30)

= (1 − t)2
[
σ2

(
t

1 − t

)
+ σ2

min

(
1

(1 − t)2 − 1
)]

(31)

= (1 − t)tσ2 + σ2
mint(2 − t), (32)

which tends to σ2
min as t → 1. Combining the above results, limt→1 Ẑt ∼ N (Z1, σ

2
minI).

C On Different Loss Parametrizations

In this section, we list popular choices of loss parametrization considered in the literature and connect them
to our flow matching loss. We refer to (Kingma & Gao, 2023) for a more comprehensive discussion. Recall
that the Gaussian path that we consider is: Zt = atZ0 + btZ1 + ctξ, where ξ ∼ N (0, I). In general, these loss
parametrizations take the form of:

L(θ) := Et,pt(Z|Z̃),q(Z̃) ω(t)∥mθ
t (Z) −mt(Z, Z̃)∥2, (33)

where ω(t) > 0 is a weighting function, mt(Z, Z̃) is the object (conditioned on Z̃) to be learnt and mθ
t is a

neural network model used to learn the object of interest. Depending on which object one would like to
learn/match, we have different loss parametrizations.

Flow matching. The flow matching loss that we focus in this paper is:

Lcfm(θ) := Et,pt(Z|Z̃),q(Z̃) ω(t)∥vθ
t (Z) − ut(Z|Z̃)∥2, (34)

where one aims to learn the flow generating vector field:

ut(Z|Z̃) = c′
t

ct
(Z − (atZ0 + btZ1)) + a′

tZ0 + b′
tZ1, (35)

Score matching. The score matching loss is:

Lsm(θ) := Et,pt(Z|Z̃),q(Z̃) λ(t)∥sθ
t (Z) − ∇ log pt(Z|Z̃)∥2, (36)

where λ(t) > 0 is a weighting function and one aims to learn the score function:

∇ log pt(Z|Z̃) = atZ0 + btZ1 − Z

c2
t

. (37)

If λ(t) = c2
t , then this reduces to the original score matching loss (Song & Ermon, 2019), whereas if

λ(t) = β(1 − t), this becomes the score flow loss (Song et al., 2021).

Noise matching. The noise matching loss is:

Lnm(θ) := Et,pt(Z|Z̃),q(Z̃)∥ϵ
θ
t (Z) − ϵt(Z|Z̃)∥2, (38)

where one aims to learn the noise:
ϵt(Z|Z̃) = Z − (atZ0 + btZ1)

ct
. (39)

21

Published in Transactions on Machine Learning Research (07/2025)

D Theoretical Results and Proofs

In this section, we provide theorems and proofs to justify the discussions in Section 2 and Section 3.

D.1 Connecting Flow Matching with Conditional Flow Matching

The following theorem justifies the claim that minimizing Lfm is equivalent to minimizing Lcfm.

Theorem D.1. If the conditional vector field ut(Z|Z̃) generates the conditional probability path pt(Z|Z̃),
then the marginal vector field ut in Eq. (5) generates the marginal probability path pt in Eq. (4). Moreover,
if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a constant independent of θ.

Proof. The proof is a straightforward extension of the proofs of Theorem 1-2 in (Lipman et al., 2022) from
conditioning on data samples to conditioning on latent samples and allowing an arbitrary weighting function
ω(t).

Suppose that the conditional vector field ut(Z|Z̃) generates the conditional probability path pt(Z|Z̃), we
would like to show that the marginal vector field ut in Eq. (5) generates the marginal probability path pt in
Eq. (4). To show this, it suffices to verify that pt and ut satisfy the continuity equation:

d

dt
pt(Z) + div(pt(Z)ut(Z)) = 0, (40)

where the divergence operator, div, is defined with respect to the latent variable Z = (Z1, . . . , Zd), i.e.,
div =

∑d
i=1

∂
∂Zi .

We begin by taking derivative of pt(Z) with respect to time:

d

dt
pt(Z) = d

dt

∫
pt(Z|Z̃)q(Z̃)dZ̃ (41)

=
∫

d

dt
pt(Z|Z̃)q(Z̃)dZ̃ (42)

= −
∫
div(ut(Z|Z̃)pt(Z|Z̃))q(Z̃)dZ̃ (43)

= −div
(∫

ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃
)

(44)

= −div(ut(Z)pt(Z)). (45)

In the third line, we use the fact that ut(·|Z̃) generates pt(·|Z̃). In the last line, we use Eq. (5). In the second
and forth line above, the exchange of integration and differentiation can be justified by assuming that the
integrands satisfy the regularity conditions of the Leibniz rule.

Next, we would like to show that if pt(Z) > 0 for all t, Z, then Lfm and Lcfm are equal up to a constant
independent of θ. We follow (Lipman et al., 2022) and assume that q(Z) and pt(Z|Z̃) are decreasing to
zero sufficiently fast as ∥Z∥ → 0, that ut, vt,∇θvt are bounded, so that all integrals exist and exchange of
integration order is justified via Fubini’s theorem.

Using the bilinearity of the 2-norm, we decompose the squared losses as:

∥vθ
t (Z) − ut(Z)∥2 = ∥vθ

t (Z)∥2 − 2⟨vθ
t (Z), ut(Z)⟩ + ∥ut(Z)∥2, (46)

∥vθ
t (Z) − ut(Z|Z̃)∥2 = ∥vθ

t (Z)∥2 − 2⟨vθ
t (Z), ut(Z|Z̃)⟩ + ∥ut(Z|Z̃)∥2. (47)

22

Published in Transactions on Machine Learning Research (07/2025)

Now,

Ept(Z)∥vθ
t (Z)∥2 =

∫
∥vθ

t (Z)∥2pt(Z)dZ (48)

=
∫ ∫

∥vθ
t (Z)∥2pt(Z|Z̃)q(Z̃)dZ̃dZ (49)

= Eq(Z̃),pt(Z|Z̃)∥v
θ
t (Z)∥2, (50)

where we use Eq. (4) in the second equality above and exchange the order of integration in the third equality.

Next, we compute:

Ept(Z)⟨vθ
t (Z), ut(Z)⟩ =

∫ 〈
vθ

t (Z),
∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

pt(Z)

〉
pt(Z)dZ (51)

=
∫ 〈

vθ
t (Z),

∫
ut(Z|Z̃)pt(Z|Z̃)q(Z̃)dZ̃

〉
dZ (52)

=
∫ ∫

⟨vθ
t (Z), ut(Z|Z̃)⟩pt(Z|Z̃)q(Z̃)dZ̃dZ (53)

= Eq(Z̃),pt(Z|Z̃)⟨v
θ
t (Z), ut(Z|Z̃), (54)

where we first plug in Eq. (5) and then exchange the order the integration in order to arrive at the last
equality.

Finally, noting that ut are ω(t) independent of θ (and are thus irrelevant for computing the loss gradients),
we have proved the desired result.

D.2 Identifying the Vector Field that Generates the Gaussian Paths

Similar to Theorem 3 in (Lipman et al., 2022), we have the following result, which identifies the unique vector
field that generates the Gaussian probability path.
Theorem D.2. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map
ψt defined as ψt(Z) = atZ0 + btZ1 + ctZ with ct > 0. Then the unique vector field that defines ψt is:

ut(Z|Z̃) = c′
t

ct
(Z − (atZ0 + btZ1)) + a′

tZ0 + b′
tZ1, (55)

where prime denotes derivative with respect to t, and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

Proof. Let pt(Z|Z̃) be the Gaussian probability path defined in Eq. (7) and consider the flow map ψt defined
as ψt(Z) = atZ0 + btZ1 + ctZ. We would like to show that the unique vector field that defines ψt is:

ut(Z|Z̃) = c′
t

ct
(Z − (atZ0 + btZ1)) + a′

tZ0 + b′
tZ1, (56)

and ut(Z|Z̃) generates the Gaussian path pt(Z|Z̃).

We denote wt = ut(Z|Z̃) for notational simplicity. Then,

d

dt
ψt(Z) = wt(ψt(Z)). (57)

Since ψt is invertible (as ct > 0), we let Z = ψ−1(Y) and obtain

ψ′
t(ψ−1(Y)) = wt(Y), (58)

where the prime denotes derivative with respect to t and we have used the apostrosphe notation for the
derivative to indicate that ψ′

t is evaluated at ψ−1(Y).

23

Published in Transactions on Machine Learning Research (07/2025)

Inverting ψt(Z) gives:

ψ−1
t (Y) = Y − µt(Z̃)

ct
, (59)

where µt(Z̃) := atZ0 + btZ1.

Differentiating ψt with respect to t gives ψ′
t(Z) = c′

tZ + µ′
t(Z̃).

Plugging the last two equations into Eq. (58), we obtain:

wt(Y) = c′
t

ct
(Y − µt(Z̃)) + µ′

t(Z̃) (60)

which is the result that we wanted to show.

D.3 Solution to the Gaussian Schrodinger Bridge Problem

We prove Theorem 3.2 in this subsection. First, we recall Theorem 3 from (Bunne et al., 2023). Theorem 3.2
then follows from an application of the theorem.

Let ξ0 ∼ N (µ0,Σ0) and ξ1 ∼ N (µ1,Σ1) be two given Gaussian random variables. From now on, by abusing
the notation we will also denote the measures of these Gaussians by ξ0 and ξ1 respectively.

Let σ ≥ 0 and set:

Dσ := (4Σ1/2
0 Σ1Σ1/2

0 + σ4I)1/2 (61)

Cσ := 1
2(Σ1/2

0 DσΣ−1/2
0 − σ2I). (62)

Consider the following Schrodinger bridges with Gaussian marginal constraints:

min
P0=ξ0,P1=ξ1

DKL(P∥Q), (63)

where Q is the path measure of the linear SDE:

dYt = (ctYt + αt)dt+ gtdWt := ftdt+ gtdWt. (64)

Here, ct : R+ → R, αt : R+ → Rd and gt : R+ → R+ are smooth functions, and Wt is the standard Wiener
process.

The following theorem is a simplified version of Theorem 3 in (Bunne et al., 2023).
Theorem D.3 (Theorem 3 in (Bunne et al., 2023)). The solution P∗ to the Gaussian Schrodinger bridges is
(the path measure of) a Markov Gaussian process whose marginal variable Xt ∼ N (µt,Σt), where

µt = (τt − rtτ1)µ0 + rtµ1 + ζ(t) − rtζ(1), (65)
Σt = (τt − rtτ1)2Σ0 + r2

t Σ1 + rt(τt − rtτ1)(Cσ∗ + CT
σ∗) + κ(t, t)(1 − ρt)I. (66)

In the above,

τt = exp
(∫ t

0
csds

)
, κ(t, t′) = τtτt′

∫ t

0
τ−2

s g2
sds, rt = κ(t, 1)/κ(1, 1),

σ∗ =
√
τ−1

1 κ(1, 1), ζ(t) = τt

∫ t

0
τ−1

s αsds, ρt =
∫ t

0 τ
−2
s g2

sds∫ 1
0 τ

−2
s g2

sds
.

Now we prove Theorem 3.2.

24

Published in Transactions on Machine Learning Research (07/2025)

Proof of Theorem 3.2. We shall apply Theorem D.3 to the Gaussian SB (15) by setting µ0 := Z0, µ1 = Z1,
Σ0 = Σ1 := σ2

minI, αt := ȧtZ0 + ḃtZ1, ct := 0, and gt := ω. Then, we have τt = 1, κ(t, t′) = ω2t, rt = t,
σ∗ = ω, ζ(t) =

∫ t

0 αsds =
(∫ t

0 ȧsds
)
Z0 +

(∫ t

0 ḃsds
)
Z1 = (at − a0)Z0 + (bt − b0)Z1, and ρt = t. Also,

Dσ∗ = (4σ4
min + ω4)1/2I and Cσ∗ = CT

σ∗ = 1
2 ((4σ4

min + ω4)1/2 − ω2)I.

Thus,
µt = (1 − t)Z0 + tZ1 + (at − a0)Z0 + (bt − b0)Z1 − t[(a1 − a0)Z0 + (b1 − b0)Z1] (67)

and

Σt = [((1 − t)2 + t2)σ2
min + t(1 − t)((4σ4

min + ω4)1/2 − ω2) + ω2t(1 − t)]I (68)

= σ2
min +

(√
4σ4

min + ω4 − 2σ2
min

)
· t(1 − t). (69)

Theorem 3.2 then follows from Theorem D.3 with the above formula for µt and Σt.

D.4 Comparing the Variance of Different Vector Field Models

We begin with providing intuitions for understanding our proposed probability path model. We expect that
our model improves upon the other considered models, as it takes advantage of the inherent continuity and
correlation in the spatio-temporal data. Intuitively, for time series samples whose underlying dynamics are
continuous and obey a physical law, a Gaussian sample is typically further from the time series samples, so
the distance between a Gaussian sample and a time series sample should generally be larger than the distance
between consecutive time series samples (which can be highly correlated). Therefore, using a probability
path that connects consecutive time series samples could lead to faster convergence and more stable training,
when compared to using a path that simply connects a time series sample to a Gaussian sample, since the
resulting flow model in the former case can better capture the true system dynamics with less effort.

Moreover, if the consecutive samples are sufficiently correlated, then the variance of the VF corresponding to
our proposed probability path model can be lower than the variance of the VF corresponding to the other
choices of probability paths. Precise statements capturing this are the contents of Theorem 3.3, which focuses
on comparison between our proposed model and the optimal transport VF model of (Lipman et al., 2022).

Before proving Theorem 3.3, we start with the following lemma.
Lemma D.4. Let A,B,C,D be random vectors where C and D are independent, both A and B are independent
of C and D (but A and B could be dependent). If Cov(A,B) ≥ (V ar(C) − V ar(D) + V ar(B))/2, then

V ar(A+D) ≥ V ar(A−B + C) = V ar(B −A+ C), (70)

where A ≥ B means that A−B is positive semidefinite.

Proof. We compute:

V ar(A+D) = V ar(A−B + C +B +D − C) (71)
= V ar(A−B + C) + V ar(B +D) + V ar(C) + 2Cov(A−B + C,B +D)

− 2Cov(A−B + C,C) − 2Cov(B +D,C) (72)
= V ar(A−B + C) + V ar(B +D) − V ar(C) + 2Cov(A−B + C,B)

+ 2Cov(A−B + C,D) (73)
= V ar(A−B + C) + V ar(B +D) − V ar(C) + 2Cov(A,B) − 2V ar(B) (74)
= V ar(A−B + C) − V ar(C) + V ar(D) + 2Cov(A,B) − V ar(B), (75)

where we have simply rearranged the terms in the first equality, used the formula V ar(A + B + C) =
V ar(A) + V ar(B) + V ar(C) + 2Cov(A,B) + 2Cov(A,C) + 2Cov(B,C), bilinearity of covariance, the facts
that Cov(A,A) = V ar(A) and V ar(cA) = c2A for a scalar c, as well as the assumption that both A and B
are independent of C, D in the last four equalities.

25

Published in Transactions on Machine Learning Research (07/2025)

Therefore, if −V ar(C) +V ar(D) + 2Cov(A,B) −V ar(B) ≥ 0, then we have V ar(A+D) ≥ V ar(A−B+C).

Now we prove Theorem 3.3.

Proof. Note that c′
t = σ2(1−2t)

2
√

σ2
min

+σ2t(1−t)
, V ar(c′

tξ) = (c′
t)2I and V ar(−η) = I. Therefore, using these and

applying Lemma D.4 with A := zτ−1, B := zτ , C := c′
tξ and D := −η, allow us to establish the claim that

V ar(ũt(Zt|zτ−1)) ≥ V ar(ut(Zt|zτ−1, zτ)) if

Cov(zτ−1, zτ) ≥ 1
2

(
σ4(1 − 2t)2I

4(σ2
min + σ2t(1 − t)) + V ar(zτ) − I

)
. (76)

Since the function f(t) := σ4(1−2t)2

4(σ2
min

+σ2t(1−t)) is maximized at the endpoints t = 0, 1 with the maximum value of
σ4/4σ2

min, the desired result stated in the theorem follows.

Lastly, we provide some discussions following Theorem 3.3 (using the notations there).

Discussions. Let us denote vθ
t (Z) := vθ

t (zτ , zτ−1, ξ) to show the explicit dependence of the vector field
neural net on the random samples t, zτ , zτ−1 and ξ ∼ N (0, I) drawn during each update of gradient descent
during training. During each gradient descent update, our model involves computation of

∇θLcfm(θ; t, ξ, zτ , zτ−1) = 2∇θv
θ
t (zτ , zτ−1, ξ)T · (vθ

t (zτ , zτ−1, ξ) − ut(Zt|zτ , zτ−1)) (77)
=: 2∇θv

θ
t (zτ , zτ−1, ξ)T · ∆θ

t (zτ−1, zτ , ξ), (78)

with t ∼ U [0, 1], ξ ∼ N (0, I) and the latent samples zτ , zτ−1 drawn randomly.

Similarly, for the rectified flow model let us denote ṽθ
t (Z) := vθ

t (zτ−1, η) to show the explicit dependence of
the vector field neural net on the random samples t, zτ−1 and η ∼ N (0, I) drawn during each update of
gradient descent during training. Each update of gradient descent using the rectified flow model involves
computation of

∇θL̃cfm(θ; t, η, zτ−1) = 2∇θṽ
θ
t (zτ−1, η)T · (ṽθ

t (zτ−1, η) − ũt(Z̃t|zτ−1)) (79)
=: 2∇θṽ

θ
t (zτ−1, η)T · ∆̃θ

t (zτ−1, η), (80)

with t ∼ U [0, 1], η ∼ N (0, I) and the latent sample zτ−1 drawn randomly.

Lower gradient variance results in smoother training loss curve and potentially faster convergence, so it is
useful to compare the variances of the loss gradient for the two models. However, the variances are highly
dependent on ∇θv

θ
t , ∇θṽ

θ
t and their covariance with the other random vectors appearing in Eq. (77) and

Eq. (79), making such comparison challenging without strong assumptions. Heuristically, the difference in
the variances of the loss gradient during each update for the two models is primarily determined by the
difference between V ar(∆θ

t (zτ−1, zτ , ξ)) and V ar(∆̃θ
t (zτ−1, η)) if ∇θv

θ
t and ∇θṽ

θ
t are relatively stable. In

this case, we have V ar(∆θ
t (zτ−1, zτ , ξ)) ≤ V ar(∆̃θ

t (zτ−1, η)) if we suppose the assumptions in Theorem 3.3,
V ar(ṽθ

t) ≥ V ar(vθ
t) and Cov(vθ

t , ut) ≥ Cov(ṽθ
t , ũt).

The implications of Theorem 3.3 together with the heuristics above could partially explain why our probability
path model leads to smoother loss curve and faster convergence (see Figure 2) compared to the RIVER
method of (Davtyan et al., 2023). On the other hand, the dependence of the lower bound in the theorem on
σ and σmin suggests that using values of σ that is relatively large enough might not keep the variance of the
vector field low, which could partially explain the phenomenon displayed in Figure 2, where using σ = 0.1
and σmin = 0.001 leads to large loss fluctuations.

E Additional Empirical Results

In this section, we provide additional experimental results.

26

Published in Transactions on Machine Learning Research (07/2025)

E.1 Visualization of Flow Patterns and Dynamics

Figure 3 provides visual results of the predicted snapshots by our model for each task. The visualizations
highlight our model’s ability to capture complex flow patterns and dynamics.

last con. frame time →

G
T

pr
ed

.

G
T

pr
ed

.

G
T

pr
ed

.

G
T

pr
ed

.

Figure 3: Visualization of predicted frames using our model of probability path for the considered tasks.
From top to bottom: fluid flow past a cylinder, shallow-water equation, diffusion-reaction equation, and
incompressible Navier-Stokes equation. In each case, GT indicates the ground truth frames and pred. indicates
the predicted frames.

E.2 Ablation Studies

To further assess our model, we conducted a detailed ablation study focusing on the impact of various
hyperparameters for the fluid flow (FPC) task. Specifically, we study the impact of the values of σ, the choice
of sampler, and the number of sampling steps during inference. For small σsam, we find that this parameter
has negligible impact on test performance, so we fixed σsam = 0 for all experiments in this section.

Impact of σ on training stability. Figure 5 illustrates the effect of different σ values on the training
loss curve for our method on the fluid flow past a cylinder task. We observed that larger values of σ (e.g.,
σ = 0.1) resulted in smoother loss curves and more stable convergence during training.

27

Published in Transactions on Machine Learning Research (07/2025)

Effect of σ, sampler choice, and sampling steps on test performance. Table 6 investigates how
different values of σ, the choice of sampler (Euler or RK4), and the number of sampling steps affect test
performance. It can be seen, that even with as few as one sampling step (N = 2) using the Euler scheme, our
model perform reasonably well. However, increasing the number of sampling steps or employing the more
computationally intensive RK4 sampler can help to lead to better results. From Figure 4, we see that our
model leads to the smallest test MSE for both samplers at all sampling steps. In particular, lowest MSEs can
be achieved using as few as one sampling step for both sampling schemes. Moreover, while using the RK4
sampler can lead to a lower test MSE for all models, the performance gap is much smaller for our model,
showing robustness of our model to sampling choice.

Figure 4: Test MSE vs. number of sampling steps N − 1 (we consider N = 2, 5, 10, 20, 50, 100) for the five
models with the Euler sampler (left) and the RK4 sampler (right).

Effect of context frames on test performance. Table 3 shows the test performance in terms of the
considered evaluation metrics in the case when the neural networks are trained without using the context
frames, in which case C is null in (10) and we are minimizing the loss in (9). We see that without using
the proposed context frames, the test performance of all models degrades across the evaluation metrics,
showing the benefits of using the additional context information. The degradation is particularly significant
for RIVER, VE-diffusion and VP-diffusion.

Table 3: Ablation study to assess the impact of context frames on test performance of the considered models,
given that the same pre-trained autoencoder is used. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 1.21 1.13 20.84 0.25
VE-diffusion 1.01 1.07 23.21 0.23
VP-diffusion 1.04 1.06 21.18 0.24
Stochastic interpolant 5.37e-03 7.04e-02 41.36 0.97
Ours (σ = 0.01, σsam = 0) 8.42e-04 3.18e-02 46.75 0.99

We further assess the impact of the random conditioning frames zc, considering the case when the neural
networks are trained with the reference frames but without using random conditioning frames, in which case
C = zτ−1 in (10). Table 4 shows the results. We see that in this case RIVER and VE-diffusion achieve
lower test performance across all evaluation metrics, which shows that these models indeed benefit from the
use of conditional frames. Interestingly, our model, the stochastic interpolant model and the VP-diffusion
model remain relatively robust, with comparable or even improved test performance. Despite this, our model
outperforms the other models across all evaluation metrics regardless of whether the conditioning frames are
involved. For consistency and fair comparison with RIVER, we retain the conditioning scheme by default.

28

Published in Transactions on Machine Learning Research (07/2025)

Table 4: Ablation study to assess the impact of the random conditioning frames on test performance of
the considered models, given that the same pre-trained autoencoder is used. Results are averaged over 5
generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 4.68e-03 6.19e-02 43.26 0.97
VE-diffusion 3.96e-01 6.04e-01 26.40 0.53
VP-diffusion 1.25e-03 3.67e-02 45.73 0.99
Stochastic interpolant 2.33e-03 4.90e-02 43.99 0.98
Ours (σ = 0.01, σsam = 0) 3.21e-04 2.16e-02 49.23 1.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

 = 0.10

 = 0.01

 = 0.00

Lo
ss

Epoch

Euler Discretization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

 = 0.10

 = 0.01

 = 0.00

Lo
ss

Epoch

RK4 Discretization

Figure 5: Training loss for different values of σ using our probability path model. The left subplot shows
results for the Euler sampler, and the right subplot for the RK4 sampler. We see that the loss curve is
sensitive to the choice of σ, with larger values of σ giving smoother loss curves.

Sensitivity to σmin. Table 5 shows that using σmin > 0 (while fixing the other hyperparameters) leads to
noticeable improvement in test performance of our model across the evaluation metrics. This is in line with
the observation that using σmin > 0 improves training stability, since this alleviates the singularity of the
target VF (20) at t = 0, 1. In fact, we see that using σmin > 0.001 (the default value that we use) leads to
better test results for the FPC task.

Table 5: Sensitivity analysis of our model to σmin. Results are averaged over 5 generations.

σmin Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
0.0 1.98e-03 4.41e-02 44.74 0.99
0.001 3.79e-04 2.30e-02 48.88 1.00
0.01 3.78e-04 2.26e-02 49.11 1.00
0.1 3.17e-04 2.12e-02 49.52 1.00
1.0 3.46e-04 2.17e-02 49.44 1.00

F Experimental Details

In this section, we provide the experimental details for the tasks considered in Section 5.

F.1 On the Choice of Gaussian Reference Processes

Our choice of a Gaussian reference process is not directly derived from the characteristics of a particular
spatio-temporal dataset, but rather follows a modeling convention that is widely adopted, particularly when
physical or statistical smoothness assumptions are in play. Gaussian processes are a standard modeling choice
in these domains for several reasons:

29

Published in Transactions on Machine Learning Research (07/2025)

Table 6: Ablation study for the fluid flow past a cylinder task. Results are averaged over 5 generations.

σ sampler N Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
0.0 Euler 5 7.02e-04 2.96e-02 47.15 0.99
0.01 Euler 5 3.63e-04 4.14e-03 48.89 1.00
0.1 Euler 5 2.97e-03 4.11e-02 43.99 0.98
0.0 Euler 10 7.31e-04 3.01e-02 47.02 0.99
0.01 Euler 10 3.76e-04 2.31e-02 48.76 1.00
0.1 Euler 10 2.85e-03 5.04e-02 44.12 0.98
0.0 RK4 10 3.89e-04 2.26e-02 49.19 1.00
0.01 RK4 10 3.79e-04 2.30e-02 48.88 1.00
0.1 RK4 10 6.56e-03 7.83e-02 40.68 0.97
0.0 Euler 20 7.40e-04 3.03e-02 46.98 0.99
0.01 Euler 20 3.82e-04 2.33e-02 48.71 1.00
0.1 Euler 20 2.78e-03 4.98e-02 44.19 0.98
0.0 RK4 20 3.88e-04 2.26e-02 49.19 1.00
0.01 RK4 20 6.53e-04 2.80e-02 47.63 0.99
0.1 RK4 20 6.51e-04 7.80e-02 40.70 0.97

• They arise as solutions to linear stochastic partial differential equations (e.g., the heat equation with
additive white noise), which are common in spatio-temporal physical systems.

• They offer desirable analytical properties such as closed-form marginals, smooth sample paths, and
tractable likelihoods.

• In many practical settings (e.g., climate modeling, diffusion, spatial statistics), Gaussian priors are
used because they act as regularizing priors on functions or fields that evolve over space and time.

F.2 Details on the Datasets

Fluid flow past a cylinder (FPC). We use the fluid flow past a stationary cylinder at a Reynolds number
of 100 as a simple test problem. This fluid flow is a canonical problem in fluid dynamics characterized by a
periodically shedding wake structure (Erichson et al., 2020; 2019). The flow dynamics are governed by the
two-dimensional incompressible Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u = −1
ρ

∇p+ ν∇2u,

∇ · u = 0,

where u = (u, v) is the velocity field, p is the pressure, ρ is the fluid density, and ν is the kinematic viscosity.
The vorticity field ω is obtained from the velocity field via:

ω = ∇ × u,

providing insights into the rotational characteristics of the flow.

For simulating the data, the Immersed Boundary Projection Method (IBPM) has been used (Colonius &
Taira, 2008). The flow tensor has dimensions 199 × 449 × 151, representing 151 temporal snapshots on a
449 × 199 spatial grid. We crop and spatially subsample the data which results in a 64 × 64 spatial field.

Shallow-water equation (SWE). The shallow-water equations, derived from the compressible Navier-
Stokes equations, can be used for modeling free-surface flow problems. We consider the 2D equation used in
(Takamoto et al., 2022), which is the following system of hyperbolic PDEs:

∂th+ ∇hu = 0, ∂thu + ∇
(

u2h+ 1
2grh

2
)

= −grh∇b, (81)

30

Published in Transactions on Machine Learning Research (07/2025)

where u = u, v being the velocities in the horizontal and vertical direction respectively, h describes the water
depth, and b describes a spatially varying bathymetry. hu can be interpreted as the directional momentum
components and gr describes the gravitational acceleration. The mass and momentum conservation properties
can hold across shocks in the solution and thus challenging datasets can be generated. This equation finds
application in modeling tsunamis and flooding events.

We use the dataset generated and provided by PDEBench (Takamoto et al., 2022). The data file (2D_
rdb_NA_NA.h5) can be downloaded from https://github.com/pdebench/PDEBench/tree/main/pdebench/
data_download. The data sample is a series of 101 frames at a 128 × 128 pixel resolution and come with
1 channel. The simulation considered in (Takamoto et al., 2022) is a 2D radial dam break scenario. On a
square domain Ω = [−2.5, 2.5]2, the water height is initialized as a circular bump in the center of the domain:

h(t = 0, x, y) =
{

2, for r <
√
x2 + y2,

1, for r ≥
√
x2 + y2,

with the radius r randomly sampled from U(0.3, 0.7). The dataset is simulated with a finite volume solver
using the PyClaw package. We apply standardization and then normalization to the range of [−1, 1] to
preprocess the simulated data.

Incompressible Navier-Stokes equation (NSE). The Navier-Stokes equation is the incompressible
version of the compressible Navier-Stokes equation, and it can be used to model hydromechanical systems,
turbulent dynamics and weather. We use the inhomogeenous version of the equation (which includes a vector
field forcing term u) considered by (Takamoto et al., 2022):

∇ · v = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + u, (82)

where ρ is the mass density, v is the fluid velocity, p is the gas pressure and η is shear viscosity. The initial
conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic Gaussian random fields
with truncated power-law decay τ of the power spectral density and scale σ, where τv0 = −3, σv0 = 0.15,
τu = −1, σu = 0.4. The domain is taken to be the unit square Ω = [0, 1]2 and the viscosity η = 0.01. The
equation is numerically simulated using Phiflow. Boundary conditions are taken to be Dirichlet to clamp the
field velocity to zero at the perimeter.

We use the dataset generated and provided by PDEBench (Takamoto et al., 2022). The data file
(ns_incom_inhom_2d_512-0.h5) can be downloaded from https://github.com/pdebench/PDEBench/tree/
main/pdebench/data_download. The data sample is a series of 1000 frames at a 512 × 512 pixel resolution
and come with 2 channels. We do not apply any data preprocessing procedure here.

Diffusion-reaction equation (DRE). We use the 2D extension of diffusion-reaction equation of (Takamoto
et al., 2022) which describes two non-linearly coupled variables, namely the activator u = u(t, x, y) and the
inhibitor v = v(t, x, y). The equation is given by:

∂tu = Du∂xxu+Du∂yyu+Ru, (83)
∂tv = Dv∂xxv +Dv∂yyv +Rv, (84)

where Du and Dv are the diffusion coefficient for the activator and inhibitor respectively, Ru = Ru(u, v) and
Rv = Rv(u, v) are the activator and inhibitor reaction function respectively. The domain of the simulation
includes x ∈ (−1, 1), y ∈ (−1, 1), t ∈ (0, 5]. This equation can be used for modeling biological pattern
formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation as:
Ru(u, v) = u−u3 −k−v, Rv(u, v) = u−v, where k = 5 × 10−3, and the diffusion coefficients for the activator
and inhibitor are Du = 1 × 10−3 and Dv = 5 × 10−3 respectively. The initial condition is generated as
standard Gaussian noise u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1). We take a no-flow Neumann
boundary condition: Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, and Dv∂yv = 0 for x, y ∈ (−1, 1)2.

We use a downsampled version of the dataset provided by PDEBench (Takamoto et al., 2022). The data
file (2D_diff-react_NA_NA.h5) can be downloaded from https://github.com/pdebench/PDEBench/tree/

31

2D_rdb_NA_NA.h5
2D_rdb_NA_NA.h5
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
ns_incom_inhom_2d_512-0.h5
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
2D_diff-react_NA_NA.h5
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download

Published in Transactions on Machine Learning Research (07/2025)

main/pdebench/data_download. The data sample is a series of 101 frames at a 128 × 128 pixel resolution
and come with 2 channels. The sample frames are generated using the finite volume method for spatial
discretization, and the time integration is performed using the built-in fourth order Runge-Kutta method in
the scipy package. We do not apply any data preprocessing procedure here.

F.3 Details on Pre-Training the Autoencoder

We provide details on pre-training the autoencoder here. The choice of first pre-training an autoencoder is
motivated by the computational challenges of working directly with the high-dimensional spatial resolution of
PDE datasets. Training directly in the ambient space requires substantial GPU memory and computational
resources, making it impractical for large-scale or high-resolution datasets. By leveraging a latent-space
representation, we achieve significant dimensionality reduction while preserving the essential structure
of the data, enabling efficient training and inference with standard hardware configurations. For these
datasets, latent-space modeling provides a critical balance between computational efficiency, scalability, and
performance.

We use the same architecture for the encoder and decoder for all the tasks, with the architecture parameters
chosen based on the complexity of the task.

The encoder. The encoder first applies a 2D convolution (conv_in) to the input frame, which reduces
the number of channels from in_channels to mid_channels, and processes the spatial dimensions. Then,
a series of ResidualBlock layers, which progressively process and downsample the feature map, making it
smaller in spatial dimensions but more enriched in terms of features, are applied. After the residual blocks,
the feature map undergoes an attention process via a multi-head attention layer. This layer helps the encoder
focus on important parts of the input, learning relationships between spatial positions in the image. For the
post-attention step, the feature map is further processed by residual blocks and normalized, preparing it for
the final convolution. The output of the encoder is obtained by applying a final 2D convolution (out_conv),
which maps the processed feature map to the desired number of output channels (out_channels).

The decoder. The decoder takes the encoded feature map and transforms it back into an output with similar
spatial dimensions as the input. Similar to the encoder, the decoder starts with a convolution that adjusts
the number of channels from in_channels to mid_channels. Then, an attention mechanism (similar to the
encoder) is applied to focus on important aspects of the encoded features. Next, a series of ResidualBlock
layers, combined with UpBlock layers, are used to progressively increase the spatial dimensions of the feature
map (upsampling), undoing the compression applied by the encoder. After the upsampling, the output is
normalized and passed through a final convolution (out_conv), mapping the internal feature representation
to the desired number of output channels (out_channels).

Table 7 summarizes the architecture parameters used for the considered tasks.

Table 7: Parameters chosen for the encoder (decoder) architecture.

Task Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.
in_channels 1 (1) 1 (1) 2 (2) 2 (2)
out_channels 1 (1) 1 (1) 2 (2) 2 (2)
mid_channels 64 (128) 128 (256) 128 (256) 128 (256)

Training details. We train the autoencoder using AdamW with batch size of 32, no weight decay and
β = (0.9, 0.999). We use the cosine learning rate scheduler with warmup. For the fluid flow past a cylinder
task, we train for 2000 epochs and use learning rate of 0.001. For the Navier-Stokes task, we train for 500
epochs and use learning rate of 0.0001. For the other two tasks we train for 5000 epochs and use learning
rate of 0.0005. Our implementation is in PyTorch, and all experiments are run on an NVIDIA A100-SXM4
GPU with 40 GB VRAM belonging to an internal SLURM cluster.

Impact of the autoencoder (AE) size on test performance. We consider using pre-trained AEs with
increasing number of middle channels (mid_channels) in the encoder and decoder, resulting in AEs with

32

https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download
https://github.com/pdebench/PDEBench/tree/main/pdebench/data_download

Published in Transactions on Machine Learning Research (07/2025)

374,605, 1,485,589, 5,916,709 and 23,615,557 trainable parameters respectively. Table 8 shows the effect of
the size of AE on the test performance for all models. We see that there is an optimal size of AE that leads
to the best test performance for RIVER, the stochastic interpolant model and our model. For VE-diffusion,
the best test performance is achieved with the smallest AE, suggesting that the model might overfit when AE
increases in size or suffer from optimization issues in bigger latent spaces. For VP-diffusion, the test results
are relatively insensitive to the size of the AE used.

Table 8: Ablation study to assess the impact of the size of the pre-trained autoencoder (AE) on test
performance using the fluid flow (FPC) task. The number of channels in the decoder is in parenthesis. Results
are averaged over 5 generations.

Model mid_channels Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 16 (32) 2.54e-03 5.43e-02 42.32 0.98

32 (64) 2.56e-03 4.89e-02 44.55 0.99
64 (128) 1.86e-03 4.48e-02 44.30 0.99
128 (256) 2.69e-03 5.52e-02 42.48 0.98

VE-diffusion 16 (32) 1.91e-01 3.99e-01 29.45 0.68
32 (64) 4.28e-01 6.19e-01 27.20 0.49
64 (128) 2.29e-01 4.74e-01 27.36 0.55
128 (256) 5.12e-01 7.22e-01 26.65 0.42

VP-diffusion 16 (32) 2.02e-03 5.11e-02 42.32 0.98
32 (64) 2.84e-03 5.11e-02 44.14 0.98
64 (128) 3.58e-03 6.09e-02 42.37 0.98
128 (256) 2.03e-03 4.97e-02 42.97 0.98

Stoch. interp. 16 (32) 1.44e-02 1.22e-01 36.35 0.92
32 (64) 1.09e-02 9.01e-02 41.15 0.95
64 (128) 3.40e-03 6.10e-02 41.81 0.98
128 (256) 2.41e-02 1.36e-01 38.02 0.90

Ours 16 (32) 2.49e-03 5.70e-02 41.30 0.98
(σ = 0.01, σsam = 0) 32 (64) 2.87e-04 1.93e-02 50.62 1.00

64 (128) 3.79e-04 2.30e-02 48.88 1.00
128 (256) 3.53e-04 2.24e-02 48.96 1.00

F.4 Details on Training the Flow Matching Models

Architecture. The vector field regressor is a transformer-based model designed to process latent vector fields
and predict refined outputs with spatial and temporal dependencies. It uses key parameters like depth and
mid_depth, which control the number of transformer encoder layers in the input, middle, and output stages.
The state_size and state_res parameters define the number of channels and spatial resolution of the
input data, while inner_dim sets the embedding dimension for processing. The model uses learned positional
encodings and a time projection to incorporate spatial and temporal context into the input, which can include
input_latents, reference_latents, and conditioning_latents. The input is projected into the inner
dimension and passed through a series of transformer layers, with intermediate outputs from the input blocks
concatenated with the output layers to refine predictions. Finally, the model projects the processed data back
to the original spatial resolution and channel size using BatchNorm, producing the final vector field output.

Table 9 summarizes the architecture parameters used for the considered tasks.

Training details. For all the considered tasks, we train the regressor using AdamW with batch size of 32,
learning rate of 0.00005, no weight decay and β = (0.9, 0.999). We use the cosine learning rate scheduler
with warmup. For the fluid flow past cylinder, we train for 2000 epochs, for the shallow-water equation
and diffusion-reaction task we train for 1000 epochs, and for the Navier-Stokes task we train for 100 epochs.
Our implementation is in PyTorch, and all experiments are run on a single NVIDIA A100-SXM4 GPU with
40 GB VRAM belonging to an internal SLURM cluster. For the Navier-Stokes task, due to GPU memory

33

Published in Transactions on Machine Learning Research (07/2025)

Table 9: Parameters chosen for the vector field neural network.

Parameter Fluid flow Shallow-water eq. Navier-Stokes eq. Diffusion-reaction eq.
state_size 4 4 8 4
state_res [8,8] [16, 16] [64, 64] [16, 16]
inner_dim 512 512 512 512
depth 4 4 4 4
mid_depth 5 5 5 5

constraints in the experiments, we use gradient accumulation to simulate the desired batch size while training
with a smaller per-step batch.

F.5 Details on the Evaluation Metrics

In addition to the standard mean squared error and relative Frobenius norm error (RFNE), we use the
Pearson correlation coefficient to measure the linear relationship between the forecasted frames and the target
frames. The range of this coefficient is [−1, 1], with zero implying no correlation. Correlations of −1 or
+1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases. In addition, we use peak signal-to-noise ratio (PSNR) to
evaluate the quality of signal representation against corrupting noise, and structural similarity index measure
(SSIM) (Wang et al., 2004) to assess perceptual results. The presented results are computed by averaging
over batch size and number of sample generations.

F.6 Standard Deviations for the Presented Results

Table 10-14 provide the standard deviation of the results presented in the main paper.

Table 10: Standard deviation results for the fluid flow past a cylinder task using different choices of probability
paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 1.04e-03 2.70e-02 1.46 4.92e-03
VE-diffusion 5.22e-02 3.34e-01 6.02e-01 3.14e-02
VP-diffusion 7.09e-03 3.96e-02 4.26e-01 3.30e-03
SI (bt = t2) 6.35e-05 3.53e-02 5.39e-02 4.03e-04
SI (bt = t) 1.48e-04 8.70e-02 2.97e-02 5.30e-04
Ours (σ = 0.01, σsam = 0, RK4) 4.26e-06 5.29e-03 3.61e-02 3.63e-05

34

Published in Transactions on Machine Learning Research (07/2025)

Table 11: Standard deviation for the results of ablation study for the fluid flow past a cylinder task. Results
are averaged over 5 generations.

σ sampler N Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
0.0 Euler 5 1.00e-05 1.25e-02 4.37e-02 9.76e-05
0.01 Euler 5 6.71e-06 4.14e-03 5.17e-02 4.81e-05
0.1 Euler 5 4.88e-05 4.11e-02 5.39e-02 3.91e-04
0.0 Euler 10 1.24e-05 1.29e-02 4.28e-02 8.27e-05
0.01 Euler 10 8.10e-06 4.37e-03 6.42e-02 6.21e-05
0.1 Euler 10 4.32e-05 4.02e-02 5.13e-02 3.06e-04
0.0 RK4 10 3.45e-06 7.56e-03 2.57e-02 2.46e-05
0.01 RK4 10 4.26e-06 5.29e-03 3.61e-02 3.63e-05
0.1 RK4 10 8.62e-06 5.88e-02 2.69e-02 2.61e-04
0.0 Euler 20 8.14e-06 1.31e-02 3.11e-02 5.02e-05
0.01 Euler 20 4.25e-06 4.51e-03 3.66e-02 2.77e-05
0.1 Euler 20 2.12e-05 3.96e-02 2.21e-02 1.03e-04
0.0 RK4 20 1.54e-06 7.49e-03 1.84e-02 1.26e-05
0.01 RK4 20 3.99e-06 1.29e-02 1.74e-02 2.95e-05
0.1 RK4 20 2.84e-05 5.85e-02 8.10e-03 8.33e-05

Table 12: Standard deviation results for the shallow-water equation task using different choices of probability
paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 2.28e-05 8.67e-02 8.39e-02 1.23e-03
VE-diffusion 7.29e-04 3.29e-01 2.17e-01 1.68e-02
VP-diffusion 2.55e-04 1.10e-01 3.62e-01 1.56e-02
SI (bt = t2) 2.97e-06 1.03e-01 1.86e-02 2.03e-04
SI (bt = t) 1.37e-06 7.18e-02 4.11e-03 2.12e-04
Ours (σ = 0.1, σsam = 0, RK4) 1.55e-06 7.06e-02 5.98e-03 2.11e-04

Table 13: Standard deviation results for the diffusion-reaction equation task using different choices of
probability paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 5.56e-04 2.54e-01 7.88e-01 1.37e-02
VE-diffusion 1.51e-02 1.11 5.89e-01 1.22e-02
VP-diffusion 1.55e-03 6.15e-01 1.06 7.08e-03
SI (bt = t2) 6.44e-04 1.15 8.60e-02 6.98e-04
SI (bt = t) 8.15e-07 5.01e-02 5.67e-03 8.25e-05
Ours (σ = 0, σsam = 0, RK4) 8.47e-07 4.77e-02 6.22e-03 9.53e-05

Table 14: Standard deviation results for the Navier-Stokes equation task using different choices of probability
paths for flow matching. Results are averaged over 5 generations.

Model Test MSE (↓) Test RFNE (↓) PSNR (↑) SSIM (↑)
RIVER 7.52e-04 8.31e-01 9.34e-02 3.80e-03
VE-diffusion 6.53e-04 1.21 1.19e-01 1.61e-03
VP-diffusion 3.88e-03 1.62 1.64e-01 5.74e-03
SI (bt = t2) 5.11e-06 3.27e-02 2.37e-02 3.34e-04
SI (bt = t) 4.87e-07 1.09e-02 1.98e-03 6.22e-05
Ours (σ = 0.1, σsam = 0, RK4) 4.81e-07 1.06e-02 2.30e-03 6.01e-05

35

	Introduction
	Flow Matching for Probabilistic Forecasting
	Probability Path Models for Probabilistic Forecasting
	Common Probability Path Models
	Optimal Probability Paths
	A Novel Probability Path Model

	An Efficient Probabilistic Forecasting Algorithm
	Empirical Results
	Probabilistic Forecasting of Dynamical Systems
	Discussion

	Conclusion
	Related Work
	Connection to SDE Based Generative Model Frameworks
	On Different Loss Parametrizations
	Theoretical Results and Proofs
	Connecting Flow Matching with Conditional Flow Matching
	Identifying the Vector Field that Generates the Gaussian Paths
	Solution to the Gaussian Schrodinger Bridge Problem
	Comparing the Variance of Different Vector Field Models

	Additional Empirical Results
	Visualization of Flow Patterns and Dynamics
	Ablation Studies

	Experimental Details
	On the Choice of Gaussian Reference Processes
	Details on the Datasets
	Details on Pre-Training the Autoencoder
	Details on Training the Flow Matching Models
	Details on the Evaluation Metrics
	Standard Deviations for the Presented Results

