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Abstract

This work introduces BioGraphletQA, a novel
large-scale dataset for complex biomedi-
cal Knowledge Graph Question Answering
(KGQA) and describes the underlying genera-
tion framework. Central to our approach is the
use of graphlets—small subgraphs extracted
from a KG—as anchors for generating diverse
and complex QA pairs using large language
models (LLMs). Our pipeline comprises three
stages: (1) KG preprocessing and reduction to
produce a manageable subset; (2) an extensive
prompt ablation study to identify the optimal
prompt for QA generation; and (3) a filtering
phase using an LLM to refine the dataset by
removing low-quality pairs. The final dataset
comprises 119,856 complex QA pairs, each
linked to a graphlet containing up to five nodes.
To assess quality, a domain expert annotated
53 QA pairs across five criteria, confirming
the scientific validity, complexity, and com-
pleteness of the data. All code is available
at: https://anonymous.4open.science/r/
Synthetic-KGQA-CE2F.

1 Introduction

Question answering (QA) systems have benefited
immensely from advances in large language mod-
els (LLMs), particularly Transformer-based archi-
tectures (Vaswani et al., 2017). However, de-
spite their success, LLMs struggle with factual
consistency, often generating hallucinated or in-
accurate responses (Ji et al., 2023; Huang et al.,
2025). One promising approach to mitigate these
issues is the use of Knowledge Graph Ques-
tion Answering (KGQA) datasets. Traditional
KGQA datasets, however, are either manually cu-
rated—making them costly and time-intensive (Gu
etal., 2021)—or template-based, which often limits
their diversity and generalizability (Banerjee et al.,
2023).

In the biomedical domain, the problem of hallu-
cinations can lead to dangerous outcomes such as

39 243
Number of Questions

Figure 1: Weighted sample of the KG of our dataset.
2,000 (out of 18,954) nodes were sampled. Node color
indicates the number of questions generated per node.

misdiagnoses, unsafe treatment recommendations,
and compromised patient safety. Although several
biomedical KGs exist—such as OREGANO KG
(Boudin et al., 2023), CKG (Santos et al., 2022),
MonarchKG (Putman et al., 2023), and PrimeKG
(Chandak et al., 2023)—most KGQA research has
focused on large open-domain KGs like Freebase
(Bollacker et al., 2008) and Wikidata (Vrandecié
and Krotzsch, 2014), which often lack the granular-
ity and reliability required for biomedical decision-
making. To date, only one large-scale synthetic
biomedical KGQA dataset has been developed
(Yan et al., 2024), generated using an LLM with
graphlets from PrimeKG, underscoring the need
for more robust, domain-specific QA resources.

In this work, we propose a novel multi-stage
method to generate a large-scale, high-quality, com-
plex biomedical KGQA dataset applied to the
biomedical domain. Our approach includes an abla-
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tion study to identify the best prompt for generating
the initial dataset, followed by a post-generation fil-
tering stage using an LLM to enhance dataset qual-
ity. For generation, we feed the graphlet as plain
text and give the LLM freedom to select which
nodes in the graphlet are most relevant to generate
the QA pair. This is opposed to template based
methods which force the use of all the nodes in
a pre-defined manner. The resulting dataset con-
tains 119,856 filtered QA pairs, each linked to a
graphlet from the OREGANO KG (v2.1) (Boudin
et al., 2023), with QA pairs spanning 29 different
graphlet shapes ranging from 3-5 nodes, offering a
wide variety of questions.

Our methodology is divided into three main
stages: KG cleaning, where we hydrate and re-
duce the size of the KG as well as generate the
graphlets; an initial dataset generation stage, in-
formed by the prompt ablation study; and auto-
matic filtering, which removes around half of the
generated dataset. A small sample of the number of
questions generated per node is shown in Figure 1.
Finally, we perform human evaluation, by a domain
expert, on a small sample to verify the quality of
the generated data. This work was inspired by the
following research questions.

RQ1: How to utilize KGs to effectively generate
question-answer pairs?

RQ2: How can we systematically compare and
evaluate prompts to optimize QA generation?

RQ3: How can we assess the quality and reliabil-
ity of synthetically generated QA pairs?

With this work, we make two main contributions
to the fields of QA and bioinformatics. First, we
introduce BioGraphletQA, a large-scale biomedi-
cal KGQA dataset designed to support the training
and evaluation of future KGQA systems. Second,
while we demonstrate a use case in the biomed-
ical domain, we present a data-agnostic genera-
tion pipeline that can be applied to other KGs, en-
abling the scalable construction of complex syn-
thetic KGQA datasets across diverse domains. Be-
yond its role in KGQA research, BioGraphletQA
also serves as a standalone resource for complex
biomedical QA.

2 Related Work

Recent advances in LLMs have spurred a surge
in using synthetic data generation to overcome

data scarcity and privacy challenges in IR and
QA tasks. For instance, Braga et al. (2024) pro-
pose a framework that generates synthetic answers
tailored for personalized community QA, demon-
strating that fine-tuning on this generated data can
yield performance comparable to models trained
on human-curated datasets. Similarly, Tang et al.
(2023) explores leveraging ChatGPT to generate
synthetic clinical documents, reporting substantial
improvements in downstream tasks like named en-
tity recognition and relation extraction. In addition,
GeMQuAD, introduced by Namboori et al. (2024),
employs few-shot learning with LLMs to create
multilingual QA datasets, thereby enhancing per-
formance in low-resource settings. Complementing
these efforts, Wu et al. (2024) present a synthetic
multimodal question generation approach that com-
bines the strengths of LLMs and multimodal mod-
els to produce high-quality QA pairs from diverse
document types.

KGQA datasets have evolved significantly, with
several notable benchmarks such as LC-QuAD
(Dubey et al., 2019) and ComplexQuestions (Bao
et al.,, 2016). GrailQA (Gu et al., 2021) and
GrailQA++ (Dutt et al., 2023) advanced the field
by introducing a dataset specifically designed to
evaluate generalization in KGQA systems across
different levels of compositional complexity. Jiang
and Usbeck (2022) provided a comprehensive sur-
vey of KGQA methods and datasets, highlighting
the challenges and opportunities in this domain.

Recent advances in biomedical KGQA include
PrimeKGQA (Yan et al., 2024), which contains
approximately 84,000 QA pairs generated through
few-shot prompting using graphlets extracted from
PrimeKG. This approach builds on graphlet-based
methodologies similar to those in GrailQA++ (Dutt
et al., 2023). Our work follows a similar graphlet-
based idea but extends it by introducing a more
in-depth prompt selection strategy and an addi-
tional QA filtering phase to improve quality. Simi-
larly, ConvKGYarn (Pradeep et al., 2024) generates
synthetic QA pairs by combining KG facts with
slot-filled question templates. While this enables
large-scale QA generation the reliance on prede-
fined templates can limit question diversity and
contextual depth. In contrast, our dynamic node se-
lection strategy allows the LLM to flexibly identify
relevant nodes and relations within each graphlet,
leading to more varied and contextually nuanced
QA generation.
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Figure 2: An overview of our methodology, composed of three phases: 1) Initial cleaning of the OREGANO KG,
including KG pre-processing and graphlet extraction; 2) Generation of the initial KGQA dataset, starting with a
prompt evaluation stage; 3) Automatic filtering stage using an LLM-as-a-judge, with human evaluation.

3 Methodology

In this section we present the methodology used
in this work with the aim of creating and eval-
uating a KGQA dataset where each QA pair is
linked to a graphlet representing facts from the
KG. Our methodology uses a variety of graphlet
shapes to build questions of different complexity.
An overview of our method can be seen in Figure 2.
First (3.1), we discuss and justify the choice of the
KG used in this work and describe the process of
hydrating the names for the entities in the graph,
the graph reduction techniques used, and finally
the process for graphlet extraction. Following this,
we discuss the process used to generate our dataset
(3.2), especially focusing on an ablation study to
determine the best structure for the prompt. We
then discuss the post generation filtering techniques
used to improve the quality of the dataset, as well
as the process of manual evaluation (3.3).

3.1 Knowledge Graph

To develop a robust KGQA dataset, selecting an
appropriate KG is crucial. While our approach is
adaptable across domains, the biomedical field of-
fers unique challenges and opportunities. From the
numerous existing biomedical KGs (Haas, 2024),
we sought one that balances size and complexity,
ensuring diverse node classes linked to reputable
biomedical databases for comprehensive question
generation. Based on these criteria, we selected
the OREGANO KG (v2.1) (Boudin et al., 2023),
which contains 88,937 nodes spanning 11 types'
and 824,231 edges with 19 edge types.

3.1.1 Hydration

Whilst the OREGANO dataset includes entity
names for some of its nodes, we still needed to
hydrate certain nodes, and we opted to update most

"Note that there is also a ‘code’ entity class, which we did
not utilize.

data where possible. As a result, we had to look up
various identifying terms. Each identifying term
was looked up between December 3 and 19, 2024.
Furthermore, we ensured that the licenses for all the
knowledge bases allowed us to publish the names
accordingly. The preferred order of identifiers for
each entity class is provided in Appendix B. This
led to a total of 85,655 denormalized nodes, of
which 81,240 (94.85%) are unique.2

3.1.2 Reduction

After hydrating the KG, we analyzed its node de-
gree distribution. As shown in Figure 3, a substan-
tial number of nodes have a degree of one (edge
nodes) while a small subset exhibit very high de-
grees (hub nodes). We hypothesize that the edge
nodes offer limited value since they are in general
associated with few nodes, reducing variability of
questions, and the hub nodes risk redundancy by
appearing in too many questions. According to this
hypothesis, we filter nodes with a degree greater
than 100 or less than 3. This reduction is intended
to enhance the variability of nodes in our dataset
while preserving meaningful structural complexity,
as well as reducing the size of the KG, making fur-
ther processing easier. Following this reduction, the
graph comprises 41,115 nodes and 129,992 edges,
with the updated node degree distribution shown in
Figure 3, and node type distribution illustrated in
Appendix C (Figure 10).

3.1.3 Graphlets

The final pre-processing step involves extracting
graphlets. Instead of performing a simple random
walk, we partition the KG into graphlets and use
these substructures as the foundation for generation.
Graphlets are small, connected, non-isomorphic
subgraphs that encapsulate local structural pat-
terns within a larger graph or network. In our

>Two entities were not hydratable: one disease and one
pathway
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Figure 3: The node degree distribution of the
OREGANO KG and the reduced version.

approach, we consider all 29 unique graphlet struc-
tures containing between 3 and 5 nodes (2 being
trivial). These structures are illustrated in Figure 5.
Subgraph enumeration is generally computation-
ally expensive (Ribeiro et al., 2021), making our
graph reduction techniques particularly advanta-
geous. To efficiently identify graphlets, we employ
the graph-tool library (Peixoto, 2014).

Our method involves several key steps. First, the
input data is loaded into graph-tool as an undi-
rected graph that is then preprocessed to remove
parallel edges. We count the frequency of each
graphlet shape using gt . motifs(), and apply sam-
pling following the approach of Wernicke (2006) to
target approximately 10,000 graphlet occurrences
for each shape, to control dataset size (the most
frequent graphlet appears over 1.8 trillion times).

This process results in a final dataset of 269,574
graphlets, which serves as the foundation for gener-
ating our initial QA dataset. All relevant statistics
can be seen in Table 1 in the Appendix.

3.2 Dataset Generation

With the graphlet extraction complete, we proceed
to large-scale KGQA dataset generation. A key
preliminary step is selecting an effective prompt.
In our approach, each graphlet inherently encodes
both the question and answer. The question targets
one or two Question Nodes, while Hidden Nodes fa-
cilitate reasoning to infer the Answer Node. To pro-
vide structured graph representation, we explicitly
include the graphlet’s shape (edge list) and node
names in the prompt. We omit the edge type, as let-
ting the LLM infer the relation yields better results
than providing a simple type like has_effect.

3.2.1 Prompt Ablation

When working with LLMs, minor prompt modifi-
cations can significantly affect performance (White
et al., 2023; Sclar et al., 2023). While newer, more
powerful models have somewhat mitigated this is-
sue, prompt engineering remains an important fac-
tor. To address this, we conducted an ablation study
to evaluate various prompts and identify the most
effective one for our dataset generation.

Although automated approaches, such as
gradient-based optimization (Pryzant et al., 2023;
Chen et al., 2023) and gradient-free alternatives
(Prasad et al., 2022) exist for this task, they typi-
cally rely on ground truth evaluations. Since our
dataset is fully synthetic, we could not provide
definitive ground truth examples. Instead, inspired
by the use of LLMs-as-evaluators (Li et al., 2024;
Bai et al., 2023; Gao et al., 2024) and LLM-as-
a-judge (Zheng et al., 2023), we used an LLM
(Llama-3.1-Nemotron-70B) to score the generated
instances considering a set of characteristics iden-
tified during initial prompt testing. Each charac-
teristic is encoded as a prompt, presented in Ap-
pendix D.1, and contributes with 1 point for a pos-
sible maximum score of 6:

1. Answer node present in question: Ensures
the question does not contain the answer in
an obvious way. Example: “Is X a side effect
of drug Y?” (This would be a simple yes/no
question).

2. Question contains graphlet-based terminol-
ogy or hints: Prevents the generated ques-
tions from explicitly referencing the graph
structure. A common issue was that ques-
tions mentioned “connections” between enti-
ties, which is not typical of language used by
biomedical experts. Example: “What is the
connection between X and Y?”

3. Answer contains graphlet-based terminol-
ogy: Similar to the previous feature, but fo-
cused on ensuring that answers do not explic-
itly describe connections between entities.

4. Scientifically accurate question: Ensures
that the generated question is meaningful and
logically sound from a biomedical perspec-
tive.

5. Scientifically accurate answer: Ensures that
the provided answer is scientifically valid and
free from inaccuracies.



6. Question is properly answered: Verifies that
the answer correctly addresses the question
without ambiguity or irrelevance.

For the ablation study, we adopted a modular ap-
proach to design 15 distinct prompt variations, each
combining different subsets of prompt components.
These prompts were evaluated on a dataset of 1,000
randomly selected graphlets. Inspired by Chain of
Thought (CoT) prompting (Wei et al., 2022), we
provided the model with structured instructions
designed to guide its output toward components
useful for the final answer. This is similar to CoT
prompting however rather than the model thinking
step-by-step, we give the reasoning steps it should
follow. We also tested a reflection module, which
asked the model to critique and refine its initial
responses. The 15 prompt configurations can be
grouped into five categories, as described below:

1. Baseline Prompts: Targeted at setting base-
lines.

1.1 [Baselinel: The simplest version of the
prompt with no additional instructions or
examples.

1.2 [1.1 + Simple Example]: The baseline
prompt with a simple example to guide
the model.

2. QA Instruction Prompts: Gives the model
strict instructions on how to generate QA pairs.
Every time an instruction is given, the prompt
uses an additional Instruction Markdown
to format the instructions properly.

2.1 [1.1 + Question Instruction +
Answer Instruction]: The baseline
prompt with additional structured instruc-
tions on generating questions and an-
SWers.

22 [2.1 + Simple Example]

3. Graphlet Analysis Prompts: Here we try to
force the model to analyze the graphlet.

3.1 [1.1 + Analyze Graphlet
Instruction + Final Analysis]

3.2 [3.1 + Node Types]: Asks the model
to find Question, Answer and Hidden
Nodes.

3.3 [3.2 + Simple Example]
3.4 [3.2 + QA Instructions]
3.5 [3.4 + Simple Example]

4. Reflection Prompts: Get the model to reflect
on its generated QA pair and improve it.

4.1 [1.1 + Reflection Instruction]

42 [4.1 + Complex Example]: Adds a
complex example that includes
graphlet analysis, reflection and re-
writing of the QA.

43 [4.1 + Question and Answer
Evaluation]: Adds explicit criteria.

44 [4.3 + Complex Example]
4.5 [4.4 + QA Instruction]

5. Full Prompt (All Modules): A comprehen-
sive prompt that integrates all components
into a single structured format. See Figure 4.

Before extracting features, we first ensured that
the generated QA pairs were JSON-parsable, a
critical requirement. If a prompt produced an out-
put that failed JSON parsing, it was automatically
assigned a score of zero for that specific graphlet,
as prompts which do not generate valid JSON,
should be negatively penalized. The final prompt
scores were then calculated as the average across
all tested graphlets. Our baseline prompt (Prompt
1.1) achieved a score of 3.45/6, while our best-
performing prompt, Prompt 5 (Full Prompt), scored
4.91/6. Figure 4 presents Prompt 5 along with
most of the modules used.

3.2.2 Large Scale Generation

With both the graphlets and the optimal prompt
selected, large-scale dataset generation was sub-
sequently performed. This was conducted on
the server specified in Appendix A, utilizing the
LMDeploy package. At the time of writing, LMDe-
ploy (LMDeploy Contributors, 2023) was among
the fastest library for LLM inference. Specifically,
we used an AWQ 4-bit quantized version of Llama-
Nemotron-70B3, converted for TurboMind, for all
dataset generation (specific model configuration
detailed in Appendix D). At the time of testing, this
was one of the best open-source models we could
run locally* (Adler et al., 2024; Wang et al., 2024).

The generation process took just under 10 days,
with an average throughput of 27,821 questions per
day (241 tokens per second), resulting in a total of
269,574 questions. We do not use 543 outputs since
they were not JSON-parsable. We then performed

3Nvidia-Llama-3.1 model on Hugging Face
*Model selected with LLM Arena (Chiang et al., 2024)
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context for inquiry.
b. Answer Nodes: These should not be explicitly mentioned in the question
but must be inferable from the graph structure.
c. Hidden Nodes: These act as logical intermediaries, enabling multi-hop
reasoning to reach the answer.
[ 2.Constructa question that a biomedical expert might ask, ensuring that:
o Ensure the question is phrased naturally as if it were asked in a biomedical
research or clinical context....

® oo

3. Your answer should be a scientifically valid response based on the graphlet. Ensure:
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explanation.
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Figure 4: Compressed version of Prompt 5, showcasing extracts from some of the different modules. The full
prompt and the modules can be seen in our GitHub Repository.

a Z-score analysis, eliminating all QA pairs where
either the length of the question or of the answer
were outliers (more than three standard deviations
from the mean). The acceptable range of the length
was [79, 365] characters for questions and [59,
9977 characters for answers. A total of 4,658 QA
pairs failed this Z-score test and were removed.

3.3 Post-Generation Filtering

To improve dataset quality, we applied LLM-based
filtering after the initial generation phase. Although
the prompt used for generation included a reflection
phase, several issues could still arise. For example,
some graphlets may not contain a valid QA pair
worth generating, or the generated answer may be
incomplete, requiring additional knowledge to be
fully correct. To mitigate these and other potential
issues, we applied automatic filtering to the dataset.

The filtering prompt, detailed in Appendix D.3,
first instructs the model to evaluate the connections
between the entities in the question to determine
whether the question is coherent. Next, it attempts
to answer the question and compares its response
with the previously generated answer. This eval-
uation is structured in a JSON format to ensure
that two boolean variables, valid_question and
original_answer_valid, are generated based on
the model’s reasoning. While the goal is to use
KGs for grounding and reducing hallucination, this
step assesses whether the QA pair remains valid
based on the LLM’s general biomedical knowledge,
independent of the specific graph context.

The throughput of the filtering is significantly
higher at 45,674 questions per day, taking 6 days

to evaluate all the pairs. After filtering, 119,856
QA pairs remained (45% of the dataset after post-
processing). Additionally, 17,076 outputs (6.45%)
were unparseable as JSON, a notably higher failure
rate than during the generation phase. The dis-
tribution of the graphlets accepted can be seen in
Figure 5. Exact statistics regarding this information
is present in Table 1 in Appendix F.

3.3.1 Human Evaluation

Following our automatic filtering process, we con-
ducted human annotation to assess the quality of
the dataset. The annotation was performed by the
second author, who holds relevant domain expertise
in biomedical sciences. We selected two positive
QA pairs for each template, totaling 58 QA pairs.
We utilized a 5-point Likert-based evaluation cri-
teria (Likert, 1932), with the following categories:
Scientific Validity of the Question, Scientific Valid-
ity of the Answer, Answer Relevance to the Ques-
tion, Question Complexity, Specificity of the An-
swer, Answer Completeness. We also allowed the
expert to not rate QA pairs if they lacked confi-
dence. The exact scale is present in Appendix E.

4 Results

In this section, we present an in-depth analysis of
our experimental findings, focusing on the impact
of different prompt configurations on model perfor-
mance, as well as presenting some findings about
the dataset, and finally presenting the results of the
human evaluation.
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Figure 5: Figure showing the 29 graphlet shapes with 3-5 nodes. Each graphlet has the number of graphlets initially
present (sampled to 10,000) and the acceptance ratio (QA pairs accepted / QA pairs generated).

4.1 Prompt Ablation

In analyzing the performance of different prompt
configurations, several key insights emerge, as de-
picted in Figure 6. The baseline prompt, without
any additional instructions or examples, yielded
a score of 3.45 (1.1). Adding a simple example
slightly improved the score to 3.94 (1.2). The in-
clusion of question and answer instructions did
not have any impact; however, with an example,
we note an increase to 4.39 (2.2). When explor-
ing graphlet analysis, the results varied. The base-
line achieved a score of 4.43 (3.1), but with node
type identification, the score dropped to 3.96 (3.2).
Adding a simple example to this configuration im-
proved performance to 4.37 (3.3). A similar effect
is seen with the addition of QA instructions (4.25,
3.4) and its example (4.40, 3.5).
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Figure 6: Boxplot of prompt ablation results. The top
prompt is statistically compared to the second and third
best.

Reflection-based prompt had varying perfor-
mance with scores of 3.43 for the baseline re-
flection prompt (4.1). However, adding example-
based prompts and evaluation instructions led
to a noticeable improvement, with a final score
of 4.79 (4.5), demonstrating that reflection com-
bined with evaluation can be beneficial when used

alongside examples. Finally, the most complex
configuration, achieved the highest score of 4.91
(5). This suggests that while simple configura-
tions provide some improvements, combining var-
ious types of instructions and examples yields
the best overall performance. According to the
Mann—Whitney—Wilcoxon test (Mann and Whit-
ney, 1947), the difference in performance between
Prompt 5 and 4.5 is non-significant, however we
believe the slightly more complex prompt would
perform better.

4.2 The dataset

As discussed, prompt filtering reduced the dataset
by approximately 55%, resulting in 119,856 KGQA
pairs. After filtering, we reconstructed the KG by
selecting the nodes and edges used to generate the
filtered dataset. This reconstruction yielded a KG
containing 18,954 nodes and 65,015 edges. A sam-
ple of this KG, weighted by the number of ques-
tions generated per node, is shown in Figure 1,
with, a more detailed distribution of the number
of questions per node present in Appendix F, Fig-
ure 11. From these two figures, we can conclude
that a well-distributed number of questions were
generated per node, with only 41 nodes generat-
ing more than 2,000 questions and a maximum of
9,454 questions generated from a node.

To further explore our earlier hypothesis—that
nodes with higher degree tend to generate more
questions—we present Figure 7, which compares
the ranking of nodes by the number of questions
with the ranking by degree. While a correlation can
be observed, it is not particularly strong, likely due
to the sampling method. This suggests that nodes
with high degrees generally correspond to a high
number of questions, but the inverse is less con-
sistently true. This phenomenon can be attributed
to graphlet structures; for instance, a weakly con-



nected node linked to a highly connected node may
appear in many graphlets involving the latter.
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Figure 7: A scatter plot showing the nodes ranked by
the number of questions vs nodes ranked by the degree
in the reconstructed KG.

4.3 Human Evaluation

Overall, the results of the human annotation pro-
cess are encouraging and affirm the quality of the
dataset. We evaluated a total of 53 QA pairs across
five distinct criteria, following the exclusion of five
samples due to annotator expertise gaps. The distri-
bution of annotation scores across these criteria is
shown in Figure 8. Beginning with the questions,
all were rated as scientifically valid. In terms of
complexity, the majority (88.68%) received scores
of 3 or higher. This aligns well with our aim to
generate complex biomedical questions.

Turning to the answers, the overall assessment
is similarly positive. On the dimension of scien-
tific validity, 90.57% of responses scored at least
a 3, indicating only some minor scientific inac-
curacies. Completeness was also a strong point:
92.45% of answers scoring at least 3, suggesting
they generally addressed the question with some
minor information lacking. However, specificity
emerged as a relative weakness. Ideally, answers
should receive a score of 3—indicating an appropri-
ate level of detail —but only 73.58% of responses
met this benchmark. This suggests that while most
answers were correct, some may lack the precision
necessary for high-quality biomedical communica-
tion.

Further insight comes from analyzing the min-
imum score across the three answer-related crite-
ria (scientific validity, completeness, specificity).
Here, 71.7% of QA pairs achieved a minimum

score of at least 3, indicating that the majority of
answers were acceptable. More granular statistics,
along with representative examples of annotated
QA pairs, can be found in Appendix G.

Score Distribution by Category
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Figure 8: Boxplot of Likert based human evaluation
scores across S5 categories.

5 Conclusion

In this work, we introduced BioGraphletQA, a
large-scale biomedical KGQA dataset generated
from the OREGANO KG through a structured three
phase pipeline: KG preprocessing, initial genera-
tion, and post-generation filtering. The resulting
dataset comprises 119,856 high-quality QA pairs
across 29 distinct graphlet types, with validation
from a biomedical expert confirming the accuracy
and relevance of both questions and answers. This
work was driven by several key research questions.
Our end-to-end pipeline demonstrates how com-
plex, diverse QA pairs can be systematically gen-
erated from a KG (RQ1). To simplify the KG and
enhance its utility for QA generation, we employed
node reduction techniques that also improved the
distribution of generated data. We conducted a thor-
ough prompt ablation study using LLM-as-a-Judge
to compare our module based prompts (RQ2). Fi-
nally, we evaluated the synthetic QA data through
expert review (RQ3), establishing the dataset’s high
quality and reliability. Beyond its immediate con-
tributions to KGQA, BioGraphletQA offers a novel
resource with higher question complexity than ex-
isting biomedical QA datasets, supporting more
advanced QA models. Moreover, the methods de-
veloped here are broadly applicable, providing a
scalable and adaptable framework for QA dataset
construction across domains. Overall, this work
makes contributions to both bioinformatics and the
broader QA research community.



6 Limitations

While BioGraphletQA presents a meaningful step
forward in large-scale biomedical KGQA dataset
generation, several limitations remain:

Lack of Automatic Metrics. In this work, we
prioritized human evaluation, over any kind of auto-
matic evaluation mainly due to the lack of reliable
metrics to evaluate.

LLM-Induced Biases and Hallucinations. De-
spite employing an LLM-based filtering step, the
generation process is still inherently dependent on
the initial LLM’s outputs. Hallucinations, biases,
or inaccuracies may persist in cases where the fil-
tering model fails to catch them. Moreover, while
using a different model for filtering could have
been beneficial, no superior open-source LLM was
available at the time of writing, and we decided
it is more beneficial to filter with a stonger model
rather than a different one.

Model Quality Affects Dataset Quality. The
overall quality of the generated QA pairs is bound
by the capabilities of the LLM used. As bet-
ter LLMs become available, performance in both
generation and filtering could be significantly im-
proved, leading to higher-quality datasets. Further
this work uses explicitly open source models, how-
ever with closed source models, improvements in
the data quality should be observed.

Scalability. Scaling the approach to very large
KGs may be hindered by graphlet enumeration and
sampling limitations, which is not evaluated in this
work, however with enough time and resources this
should not be a major limitation.

No Guarantee on Graphlet Utilization. The
QA generation process does not enforce the use
of all nodes in each graphlet. While this allows
for more natural and flexible question construc-
tion compared to rigid templates, it also introduces
ambiguity about the completeness of graphlet uti-
lization. Some questions may underutilize the full
graphlet context, potentially missing the opportu-
nity for deeper graph-based reasoning. This is seen
in the ‘simpler’ questions generated.

Ethical Considerations and Risks

BioGraphletQA is a synthetic dataset generated
using LL.Ms and structured knowledge from the
OREGANO biomedical knowledge graph. It is
intended exclusively for research purposes in de-
veloping and evaluating KGQA systems. The con-
tent within the dataset does not constitute medical

advice and should not be used to inform clinical
decisions or health-related practices.
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A Implementation Details

All work was conducted on a server that contained
an A6000 with 48GB of VRAM, 256GB of RAM
and an AMD EPYC 7543 (32C/64T). Due to fair
usage of the server, we limited the number of CPU
cores to 4 and the RAM of the machine to 16GB.
Further each job is limited to 2 day of runtime.
Further the execution of graphlet counting, was
conducted on a separate server, with 24 cores and
128GB of RAM (<11 hours).

B Knowledge Graph Hydration

One of the disadvantages of working with the
OREGANO dataset is the absence of textual names
for majority of the nodes in the graph. For example,
a node such as COMPOUND: 786 is only represented
by its corresponding biomedical database identi-
fiers. As a result, we had to look up these various
identifiers. Each identifier was looked up between
December 3 and 19, 2024. Furthermore, we en-
sured that the licenses for all the knowledge bases
allowed us to publish the names accordingly. The
preferred order of identifiers for each entity class
is as follows:

e Compound (32,083): Already hydrated
(5,165), PubChem Compound (24,642) (Kim
et al., 2025), DrugBank (Knox et al., 2024)
(910), NPASS (1,225) (Zeng et al., 2018),
SIDER (103) (Kuhn et al., 2016), PharmGKB
(38) (Whirl-Carrillo et al., 2021)

e Protein (14,505): UniProtkKB (13,355)
(The UniProt Consortium, 2024), NPASS
(1,150)(Zeng et al., 2018)

¢ Molecule (97): DrugBank (97) (Knox et al.,
2024)

e Activity (78): Already hydrated (78)
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* Gene (13,363): NCBI Gene (13,363) (Sayers
et al., 2021)

e Disease (8,934): OMIM (5,738) (of Ge-
netic Medicine, 2025), SNOMED CT (717)
(El-Sappagh et al., 2018), MeSH (385)(Lip-
scomb, 2000), UMLS (796) (of Medicine , US),
Orphanet (1,238)(Weinreich et al., 2008),
PharmGKB (59) (Whirl-Carrillo et al., 2021)

* Phenotype (6,854): Human Phenotype
Ontology (HPO) (6,854) (Talapova et al.,
2023)

* Pathway (2,128) : Reactome (2,127) (Milacic
et al., 2023)

» Effect (171): Already Hydrated (171)

e Side effect (5,364):
(5,364)

Already hydrated

¢ Indication (2,080):
(2,080)

Already hydrated

The distribution of the lengths of the hy-
drated names can be seen in Figure 9. Most
of the classes have relatively normal names be-
sides compound and protein. An example of
the largest compound is ‘Amyloid-beta precur-
sor protein (APP) (ABPP) (APPI) (Alzheimer
disease..”  which can be seen as a knowl-
edge base issue regarding UniprotKB. Another
example is ‘[(2S,3R,4S,5S,6R)-3-[(2S,3R4...-
tetradecahydropicene-4a-carboxylate’, which ap-
pears to be a valid compound name from Pubchem
Compound.

C Knowledge Graph Reduction

One concern we had with the reduction techniques
was changing the distribution of the entity classes,
or completely removing entity classes entirely. Be-
cause of this we present Figure 10, which shows
the distribution of the node types before and after
the reduction. This shows, that all classes still re-
main, with the reduction technique happening at
uniform sampling.

D Prompts

In this section, we present the various prompts used
throughout this work. As a reminder, we use the
Llama-Nemotron-70B model for all LLM-based
generation. All of the prompts are available in the
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Figure 9: Distribution of hydrated name lengths by node type. 2,539 compound names (7.9%) and 351 protein

names (2.4%) exceeded the limit of 150.
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Figure 10: Node type distribution of the OREGANO
KG and the reduced version.

GitHub repository, and we highly recommend us-
ing the versions provided there. These versions
contain additional markup that could not be trans-
ferred into this paper. In terms of generation config-
uration, we utilize LMDeploy, with AWQ quantiza-
tion, quantization policy of 4, and maximum new
tokens of 1,000. Other parameters are default at:
do_sample: False, top_p: 1.0, top_k: 50, min_p:
0.0, temperature: 0.8, repetition_penalty: 1.0,

D.1 Prompt Based Feature Extraction

The following prompt templates were used to as-
sess the characteristics of QA pairs generated dur-
ing prompt testing. Each prompt produces a struc-
tured JSON response for automated evaluation.

Question Mentions Graphlet Terms

I will give you a question, your job is to tell
me if the question mentions any terms that
could be related to a graphlet. Please respond
only with JSON:

{"justification": justification, "ques-
tion_mentions_graphlet_terms": True/False}
The justification should be a single string, and
"question_mentions_graphlet_terms"  must

only be a boolean.
. J

Answer Node in Question

I will give you a question and answer pair,
your job is to tell me if the answer is present
within the question. The answer should have a
specific entity not mentioned in the question, if
this does not happen return true. Similarly if
the answer is a yes/no question or a description
about the entities present in the question return
true. Please respond only with JSON:
{"justification": justification,
swer_node_in_question": True/False}
The justification should be a single string, and
"answer_node_in_question" must only be a
L boolean.

an-
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Answer Mentions Graphlet Terms

I will give you an answer to a question, your
job is to tell me if the answer mentions any
terms that could be related to a graphlet. Please
respond only with JSON:

{"justification": justification, "an-
swer_mentions_graphlet_terms": True/False}

The justification should be a single string, and
"answer_mentions_graphlet_terms" must only

L be a boolean.

&

Scientifically Accurate Question

I will give you a question, your job is to tell
me if the question is scientifically accurate and
makes sense from a biological standpoint. The
question should sound like an expert is asking
it. Further the question should not be trivial.
Please respond only with JSON:
{"justification": justification,  "scientifi-
cally_accurate_question": True/False}

The justification should be a single string, and
"scientifically_accurate_question" must only

L be a boolean.

-

Answers Question

I will give you a question/answer pair, your job
is to tell me if the answer correctly answers
the question, and the answer is complete, not
lacking in any additional knowledge. Please
respond only with JSON:
{"justification": justification,
swers_question": True/False}

The justification should be a single string, and
"answers_question" must only be a boolean.

Scientifically Accurate Answer

I will give you an answer to a question, your
job is to tell me if the answer is scientifically
accurate and makes sense from a biological
standpoint. The answer should not be one
worded, and be a relatively complete answer,
explaining justifications. Please respond only
with JSON:

{"justification": justification,  "scientifi-
cally_accurate_answer": True/False }

an-

~
&

The justification should be a single string, and
"scientifically_accurate_answer" must only be
& boolean.

G

D.2 Prompt Modules

Below are the various prompt modules used during
our ablation test.

Baseline

I will provide you with a graphlet, and your
task is to generate a biomedical question-
answer pair based on the information within
the graphlet.

To enhance the complexity of the question, aim
to incorporate as many hops as possible while

maintaining coherence.
AN

Simple Example

Example

-

Question:
What is the primary transmission route for
infections like cholera?

Answer:

The fecal-oral route is a primary transmission

pathway for infections such as cholera. Con-

taminated food or water sources facilitate the

spread of bacteria like Vibrio cholerae, lead-

ing to severe dehydration and gastrointestinal
L distress.

-

Instructions Markdown

Instructions:

Analyze Graphlet Instructions

Analyze the graphlet, identifying how nodes
are connected and how they might relate in a
biomedical context.

Node Types

- Identify three key node types in the graphlet:
1. Question Nodes: These should appear in the
question and provide the context for inquiry.
2. Answer Nodes: These should not be ex-
plicitly mentioned in the question but must be
inferable from the graph structure.

3. Hidden Nodes: These act as logical interme-
diaries, enabling multi-hop reasoning to reach
L the answer.
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Question Instruction

Construct a question that a biomedical expert
might ask, ensuring that:

- The question is phrased naturally as if it were
asked in a biomedical research or clinical con-
text. You may mention some graphlet nodes,
but do not give away the answer. The question
should require multi-step reasoning.

- The answer to the question should be in the
graph structure.

- The nodes required to answer the question
should not be in the question.

- Ensure scientific relevance, aligning with

biomedical terminology and logical reasoning.
. J

Answer Instruction

Your answer should be a scientifically valid re-
sponse based on the graphlet. Ensure:

- The response is more than a single word; pro-
vide a concise yet informative explanation.

- It should justify the answer by connecting rel-
evant biomedical concepts.

- Use precise biomedical terminology while

maintaining clarity.
\ J

Reflection Instruction

After writing the question and answer, you
should reflect on the output and improve the

QA pair. If there are no improvements to be
made, please repeat the Question/Answer.

Question Evaluation

Question Evaluation Criteria:

- Is the question unambiguous and focused?

- Does the question reflect realistic clinical or
research scenarios?

- Does the question require integration of multi-
ple concepts?

- Are terms precise, or could they mislead?

- Is the question too easy?

- Does the question sound natural, or is it too
focused on connections from the graph?

-

Answer Evaluation

Answer Evaluation Criteria:
- Are all facts correct?
- Does the answer address all parts of the ques-
tion?
- Are key connections explained?
- Does it avoid unsupported claims?
- Are claims supported by pharmacological
principles?
-

Complex Example

Example:

Analysis of Graphlet:

Graphlet contains nodes: [Cholera, Contami-
nated Water, Fecal-Oral Route, Dehydration]

- Question Node: Cholera

- Hidden Node: Contaminated Water

- Answer Node: Fecal-Oral Route

Initial QA

Question:
What is the primary transmission route for
infections like cholera?

Answer:

The fecal-oral route is a primary transmission
pathway for infections such as cholera. Con-
taminated food or water sources facilitate the
spread of bacteria like Vibrio cholerae, leading
to severe dehydration and gastrointestinal
distress.

Reflection
Final QA

Question:

L Answer:

Final Analysis:

Now, analyze the given graphlet and generate a
well-formed biomedical question-answer pair.




JSON Format for QA
Please return the final QA pair in JSON format

of:
{ ”question": Hll’ llanswerll: "nn }

D.3 Prompt Based Filtering

This prompt is designed to assess the coherence
and validity of a QA pair. It evaluates the connec-
tions between the entities in the question, generates
an answer, and compares it to the previously gen-
erated answer. The results are provided in a JSON
format, producing two boolean variables to indicate
the validity of both the question and the original
answer, based on the model’s reasoning.

Prompt Filtering

Evaluate the following question answer pair,
first analyze the question, identifying different
entities. Then evaluate the various connections
between these nodes and identify if the ques-
tion makes sense from a biomedical standpoint.

After this take the question and try to
answer it correctly, being the most scientifi-
cally correct.

Finally compare your answer to the an-
swer I provide and tell me if it is scientifically
accurate, and completely answers the question.

Present your findings in a JSON string:
"{question_reasoning: "", valid_question:
true/false, my_answer:"", answer_reasoning:"",

original_answer_valid:true/false}"

The fields original_answer_valid and
valid_questions must be boolean, the field
L must be valid JSON, no comments.

E Human evaluation Criteria

In this section we present the exact Likert scale
that was used during the human evaluation. The
annotation task was explained to the expert evalua-
tor in general terms during a one-to-one meeting,
with reference to one of the examples. There were
no explicit instructions apart from the Likert scale,
since it is self-explanatory.

Scientific Validity of the Question

* 5. Completely valid: Perfectly aligned with
current scientific understanding and uses ap-
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propriate terminology.

* 4. Very valid: Scientifically accurate with
only trivial imprecisions.

* 3. Moderately valid: Contains minor sci-
entific inaccuracies but the core question is
scientifically sound.

* 2. Slightly valid: Major scientific inaccura-
cies, though some aspects may have scientific
merit.

* 1. Not at all valid: Contains fundamental sci-
entific errors or misconceptions that make the
question meaningless or impossible to answer.

Scientific Validity of the Answer

* 5. Completely valid: Perfectly aligned with
current scientific understanding, comprehen-
sive, and appropriately nuanced.

* 4. Very valid: Scientifically accurate with
only trivial imprecisions.

¢ 3. Moderately valid: Contains minor scien-
tific inaccuracies but the core information is
correct.

* 2. Slightly valid: Major scientific inaccura-
cies mixed with some valid information.

¢ 1. Not at all valid: Contains fundamental sci-
entific errors, misinformation, or contradicts
established knowledge.

Question Complexity

* 5. Very complex: Requires synthesis of spe-
cialized knowledge across multiple biomedi-
cal domains or involves cutting-edge research.

* 4. Complex: Requires advanced knowledge
and analysis of biomedical mechanisms or
relationships.

* 3. Moderate: Requires integration of multi-
ple biomedical concepts.

* 2. Simple: Requires basic understanding of
biomedical concepts.

* 1. Very simple: Basic factual question requir-
ing simple recall of common knowledge.



Specificity of Answer

* 5. Highly specific: Provides exceptional de-
tail and precision, including quantitative data
when appropriate.

* 4. Very specific: Detailed and precise.

e 3. Appropriately specific: Right level of
detail for the question.

e 2. Somewhat general: Provides some

specifics but lacks precision.

* 1. Too general: Overly broad and lacks spe-
cific details.

Answer Completeness

* 5. Fully complete: Fully and comprehen-
sively covers every aspect of the question,
leaving no gaps.

4. Very complete: Addresses nearly all as-
pects of the question with appropriate depth
and context.

3. Moderately complete: Covers most criti-
cal elements but lacks some details or support-
ing points.

2. Partially complete: Addresses some key
elements but omits several important aspects.

1. Severely incomplete: Wrong or addresses
only a minimal fraction of what was asked.

Not Qualified to Evaluate

¢ | cannot evaluate this case with confidence.

F Dataset statistics

Here, we present additional statistics for complete-
ness. Table 1 provides a comprehensive overview
of the generation and filtering process for the
dataset. Specifically, it details: the total number
of each graphlet shape, the downsampling ratio
applied to each shape, the resulting number of
downsampled graphlets (approximately 10,000),
the number of samples generated after z-score filter-
ing, the number of accepted samples after filtering,
and the final acceptance ratio.

Regarding the number of questions generated
per node, Figure 11 provides a more detailed view,
showing the distribution capped at 2,000 questions
per node. In total, 41 nodes exceed this cap, with
the maximum reaching 9,454 questions. While it
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is not ideal for certain nodes to appear in such a
disproportionately high number of questions, this
imbalance stems from the sampling methods used
during graphlet selection, which we believe accu-
rately reflect the true underlying distribution.

Distribution of Number of Questions

—— Best Fit Line

I
Ll HHHHHH\ [ HH

500 750 1000 1250 1500 1750
Questions Generated per Node

0 250

2000

Figure 11: Histogram showing the number of questions
generated per mode, limited at 2,000 questions generate
per node.

G Human Evaluation Results

The human evaluation results were briefly sum-
marized in the main paper, but here we provide a
more detailed analysis. Overall, the evaluations
were positive. As previously mentioned, all ques-
tions received perfect scores for Scientific Validity,
indicating that the questions are meaningful and
accurate, even if some are relatively simple.

We do not place strong emphasis on Question
Complexity, as it is primarily used to gauge the
overall range of difficulty. We are satisfied that the
questions span a desirable range—from 3 (Moder-
ate), involving the integration of multiple biomedi-
cal concepts, to 4 (Complex), requiring advanced
knowledge of biomedical mechanisms or relation-
ships. The presence of some simpler questions is
not a concern, as it contributes to the diversity of
the dataset and is largely unavoidable given our
generation methods. Evaluating question complex-
ity in a more systematic way is left for future work.
For now, our focus remains on the scientific quality
and correctness of the content.

As mentioned in the paper, 71.7% of samples
achieved a minimum score of 3 across the three
answer-related criteria, as shown in Figure 12. This
increases to 94.4% when considering the average
score across the three criteria. However, we be-
lieve this average-based metric is not a fully accu-
rate representation—if a sample fails on any one
criterion, it should not be considered fully valid.



Table 1: Summary statistics of graphlet generation and filtering. The table reports the total counts of each graphlet
shape, downsampling ratios, final counts after downsampling ( 10,000 per shape), counts after z-score filtering,

accepted counts, and acceptance ratios.

ID Total | Downsampling Generated | Acceptance

\ Ratio Count \ Total Ratio
1 2,980,635 | 3.35 x 1072 9,954 9,913 | 4,544 458 %
2 3,702 | 1.00 x 107%° 3702 3,690 | 1,744 473 %
3 50,513,861 | 1.98 x 10~* 9,826 9,783 | 4,149 424 %
4 41,964,954 | 2.38 x 107* 10,108 10,021 | 4,475 44.7 %
5 3,609,661 | 2.77x 1072 10,165 10,103 | 5,325 527 %
6 71,664 | 1.40 x 107! 9,913 9,810 | 4,485 457 %
7 13,537 | 7.39 x 107! 9,939 9,870 | 4,365 44.2 %
8 11,794 | 8.48 x 10~ 10,038 9,948 | 5212 524 %
9  1,080,297,928 | 9.26 x 10~° 9,988 9,817 | 3,485 355%
10 1,810,874,588 | 5.52 x 107© 9,952 9,806 | 3,679 37.5%
11 584,613,716 | 1.71 x 10~° 10,126 9,939 | 4,390 442 %
12 922,997 | 1.08 x 1072 10,078 9,874 | 4,144 42.0%
13 772,905 | 1.29 x 1072 10,100 9,885 | 3,897 394 %
14 871,384 | 1.15 x 1072 9,946 9,723 | 4275 44.0%
15 46,904 | 2.13x107Y 10,001 9,823 | 3,628 369 %
16 166,337,860 | 6.01 x 10~° 9,946 9,841 | 5,087 51.7%
17 239,193 | 4.18 x 1072 10,143 9,949 | 4,459 448 %
18 6,267 | 1.00 x 1017°° 6,267 6,103 | 2,725 44.7 %
19 225464 | 4.44 x 1072 10,088 9,878 | 3,606 36.5%
20 74,698,349 | 1.34 x 1074 9,894 9,781 | 5,496 56.2 %
21 55278 | 1.81 x 107! 9,878 9,629 | 3,281 34.1%
22 79,900 | 1.25x 107! 10,013 9,846 | 4,533 46.0%
23 65,548 | 1.53x 107! 10,031 9,621 | 4,629 48.1 %
24 11,395 | 8.78 x 107! 9,976 9,741 | 4,149 42.6 %
25 31,145 | 3.21 x 107! 9,989 9,781 | 3,759 384 %
26 5,617 | 1.00 x 107°° 5,617 5,292 | 3,036 574 %
27 3,810 | 1.00 x 10t°° 33810 3,690 | 1,647 44.6 %
28 18,217 | 5.49 x 107! 10,067 9,577 | 5,593 584 %
29 44,022 | 2.27x10"Y 10,019 9,639 | 6,059 62.9 %

Therefore, we present the more conservative and
fairer minimum-score-based metric as our primary
evaluation benchmark. Finally we also show some
samples with their corresponding human annota-

tion in Figure 13.
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Figure 12: Distribution of minimum and rounded average scores from the human evaluation, based on three
answer-related criteria: Answer Completeness, Specificity, and Scientific Validity. The figure also shows the reverse
cumulative percentage of scores, indicating the proportion of answers with scores greater than or equal to each bin.

In individuals with heroin dependence, what
neurotransmitter-converting enzyme might be
indirectly influenced by a substance that also

interacts with the opioid receptor kappa 1,
potentially impacting the addictive behavior?

Dopamine beta-hydroxylase is the enzyme that might be indirectly influenced. Here’s the connection: Heroin dependence
(0) is associated with the opioid receptor kappa 1 (3), which can also be affected by Ethanol (1). Ethanol (1) is connected
to dopamine beta-hydroxylase (4), an enzyme responsible for converting dopamine to norepinephrine. The modulation of
this enzyme could influence neurotransmitter balances, potentially impacting behaviors related to heroin dependence.
Notably, a compound (2) - methyl (3S,4R)-3-benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane-4-carboxylate - interacts with
opioid receptor kappa 1 (3) and is associated with heroin dependence (0), further suggesting a complex interplay of
substances and enzymes in the context of addiction.

5 - Question Validty

5 - Answer Validty

4 - Question Complexity

5 - Answer Specificity

5 - Answer Completeness

A patient is being treated with Peginesatide for
anemia. Considering the drug's mechanism
and potential cross-reactivity, what other
medication, used for a different condition,
might pose a risk of adverse interaction if co-
administered?

Lipegdfilgrastim, a granulocyte colony-stimulating factor (G-CSF) analog used to reduce the incidence of infection, in cases
of strong myelosuppressive chemotherapy-induced neutropenia, might pose a risk of adverse interaction if co-
administered with Peginesatide. This is because both drugs, being recombinant human proteins, could theoretically lead
to cross-reactivity or affect each other's pharmacokinetics, especially in patients with compromised immune systems.
Pegvaliase, another recombinant enzyme, shares a connection with both in the drug interaction network, hinting at a
potential for complex pharmacological interactions.

2 - Answer Validty

4 - Question Complexity

2 - Answer Specificity

Considering the symptom profiles of various
infectious diseases, what symptom, commonly
associated with infections like those caused by

Legionella pneumophilia, might also be
observed in a patient with Rift Valley Fever
who presents with reduced consciousness,
given the overlapping clinical manifestations

among certain infections?

Arthralgia is a plausible symptom. Although direct connections between Rift Valley Fever (RVF) and arthralgia are not
straightforward, the overlap in symptomatology with other infections (e.g., Legionella pneumophilia, which is known to
cause arthralgia) and the shared severe manifestation of reduced consciousness in RVF, suggests that patients with RVF
could also exhibit arthralgia, highlighting the complexity of differential diagnosis in infectious diseases.

5 - Question Validty

3 - Answer Validty
3 - Question Complexity
3 - Answer Specificity

5 - Answer Completeness

Considering the comorbidity of Chronic
Obstructive Pulmonary Disease (COPD) and
Heart Failure, what receptor type could be a

therapeutic target to alleviate symptoms of
both conditions, given the common use of
diuretics in heart failure management?

The adrenoceptor beta 2 is a plausible target. In COPD, beta-2 adrenoceptors facilitate bronchodilation. In Heart Failure,
while the primary connection is through diuretic therapy reducing fluid overload, medications targeting beta-2
adrenoceptors could offer a dual benefit by improving respiratory function in COPD and, through systemic physiological
effects, supporting heart failure management, albeit with careful consideration of potential interactions with diuretics.

5 - Question Validty

5 - Answer Validty

3 - Question Complexity

2 - Answer Specificity

3 - Answer Completeness

In patients undergoing anticoagulant therapy
with Edoxaban, what is the likely enzymatic
precursor involved in the coagulation cascade
that is indirectly affected by this treatment,
given its mechanism of action on Activated
factor Xa heavy chain?

Factor IX. Edoxaban, a direct oral anticoagulant, exerts its effect by inhibiting Activated factor Xa heavy chain. In the
coagulation cascade, Activated factor Xa is a downstream product of the intrinsic pathway, where Factor IX (as part of the
tenase complex with Factor VIII) plays a crucial role in activating Factor X. Thus, by inhibiting Activated factor Xa,
Edoxaban indirectly affects the efficiency of the coagulation process initiated by Factor IX. This mechanism is pivotal in
preventing thromboembolic events without significantly increasing the risk of bleeding, as seen with some other
anticoagulants.

5 - Question Validty

2 - Answer Validty

2 - Question Complexity

2 - Answer Specificity

1 - Answer Completeness

Figure 13: 5 QA pairs, with their associated human evaluation. Samples selected by hand to show the difference
between low scores and high score from the human evaluation.
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