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ABSTRACT

Human annotator simulation (HAS) serves as a cost-effective substitute for human
evaluation such as data annotation and system assessment. Human perception and
behaviour during human evaluation exhibit inherent variability due to diverse cog-
nitive processes and subjective interpretations, which should be taken into account
in modelling to better mimic the way people perceive and interact with the world.
This paper introduces a novel meta-learning framework that treats HAS as a zero-
shot density estimation problem, which incorporates human variability and allows
for the efficient generation of human-like annotations for unlabelled test inputs.
Under this framework, we propose two new model classes, conditional integer
flows and conditional softmax flows, to account for ordinal and categorical an-
notations, respectively. The proposed method is evaluated on three real-world
human evaluation tasks and shows superior capability and efficiency to predict
the aggregated behaviours of human annotators, match the distribution of human
annotations, and simulate the inter-annotator disagreements.

1 INTRODUCTION

Human evaluation is fundamental to machine learning research, guiding processes such as data anno-
tation and model assessment, which for instance include perceptual quality evaluation of synthesized
speech, text, and image (Ma et al., 2015; Patton et al., 2016; wei Fu et al., 2018; Talebi & Milanfar,
2018; Lo et al., 2019; Borade & Netak, 2020; Ramesh & Sanampudi, 2022), annotation generation
for weak supervision (Ratner et al., 2016; Wu et al., 2022a), and model optimization based on hu-
man preference (Schatzmann et al., 2007; Asri et al., 2016; Gür et al., 2018; Ruiz et al., 2019; Shi
et al., 2019; Lin et al., 2021). Collecting human annotations or evaluations often requires substantial
resources and may expose human annotators to distressing and harmful content in sensitive tasks
(e.g., toxic speech detection, suicidal risk prediction, and depression detection). This inspires the
exploration of human annotator simulation (HAS) as a scalable and cost-effective alternative, which
facilitates large-scale dataset evaluation, benchmarking, and system comparisons.

Variability is a unique aspect of real-world human evaluation, since individual variations in cogni-
tive biases, cultural backgrounds, and personal experiences (Hirschberg et al., 2003; Wiebe et al.,
2004; Haselton et al., 2015) can lead to variability in human interpretation (Lotfian & Busso, 2019;
Mathew et al., 2021; Maniati et al., 2022). HAS aims to incorporate the variability present in hu-
man evaluation rather than solely relying on majority opinions, which mitigates potential biases and
over-representation in scenarios where dominant opinions could potentially overshadow minority
viewpoints (Dixon et al., 2018; Hutchinson et al., 2020), thus promoting fairness and inclusivity.

In this work, we investigate HAS for the automatic generation of human-like annotations that take
into account the variability in human evaluation. A novel meta-learning framework that treats HAS
as a zero-shot density estimation problem is introduced, which allows for the efficient generation of
human-like annotations for unlabelled test inputs. Under this framework, two new model classes,
conditional integer flows and conditional softmax flows, are proposed to account for ordinal and
categorical annotations respectively, which are common types of annotations in human evaluation
tasks. The proposed method shows superior capability and efficiency to predict the aggregated
behaviours of human annotators, match the distribution of human annotations, and simulate the
level of inter-annotator agreement on three real-world human evaluation tasks: emotion recognition,
toxic speech detection, and speech quality assessment.
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2 HUMAN ANNOTATOR SIMULATION (HAS)

2.1 THE VARIABILITY IN HUMAN EVALUATION IS VALUABLE

Each individual’s perception of the world is unique and influenced by their physical state and cogni-
tive biases, which leads to diverse and subjective interpretations (see Appendix A for more detail).
Such subjectivity can be manifest in various tasks such as emotion recognition (Hirschberg et al.,
2003; Mihalcea & Liu, 2006), perceptual quality assessment (Wiebe et al., 2004; Seshadrinathan
et al., 2010; Zen & Vanderdonckt, 2016), and user experience evaluation (Zen & Vanderdonckt,
2016). It has been argued that achieving a deterministic “ground truth” in subjective tasks like hu-
man evaluation is not feasible, nor essential (Alm, 2011; Wu et al., 2022b). Therefore, we advocate
for methodologies that focus on modelling annotators’ subjective interpretations, rather than seek to
reduce the variability in annotations: instead of only predicting the majority opinion, it is important
to account for the human perception variability when designing a human annotator simulator. The
following are three examples that demonstrate the importance of modelling variability in HAS:

Revealing data ambiguity. Incorporating the variability in human perception empowers HAS to
reveal potential ambiguity or complexity in data, providing valuable insights for further analysis.

Mitigating bias and over-representation. Incorporating the variability in human judgements pre-
vents HAS from being biased towards a certain perspective and ignoring minority viewpoints, lead-
ing to a more inclusive representation of opinions where all viewpoints are given due consideration.

Improving model alignment. Optimization based on human feedback has led to superior perfor-
mance on tasks such as text generation (Christiano et al., 2017; Ouyang et al., 2022; Rafailov et al.,
2023), which aligns the behaviour of language models with human preferences. HAS could be
helpful in this task, as it is an efficient and cost-effective alternative to generating human feedback.

2.2 PROBLEM FORMULATION AND RELATED WORK

HAS involves modelling a dataset D = {(xi,η
(1)
i , · · · ,η(Mi)

i )}Ni=1 from human evaluation, where
each data point is a tuple of an input xi and its corresponding labels η

(1)
i , · · · ,η(Mi)

i provided by
Mi independent human annotators. Note that different inputs may be labelled by different sets of
annotators. HAS aims to model the conditional annotation distribution p(η|x) in order to simulate
human-like annotations η(1)

∗ , · · · ,η(M∗)
∗ for any unseen input x∗ in a way that reflects how it would

be labelled by human annotators. Prior work mainly investigated two approaches to this problem.

The first approach uses a single proxy variable ηi (e.g., majority vote or average score) to sum-
marize all annotations for each input xi (Kim et al., 2013; Djuric et al., 2015; Patton et al., 2016;
Poria et al., 2017). This creates a proxy dataset D′ = {(xi,ηi)}Ni=1 and converts HAS into a su-
pervised learning problem, which is usually solved by fitting a discriminative model to estimate the
conditional distribution for the proxy variable. This approach assumes that each input xi has only
one ground-truth label ηi, and thus the conditional distribution only quantifies the uncertainty due
to noisy observation and lack of training examples. Clearly, modelling a single proxy variable as
in this approach fails to take into account the subjectivity and diversity in human behaviour and
perception and thus will result in an underestimate of variability in the simulated annotations. Other
work incorporated the variance of human annotations into the proxy variable (Deng et al., 2012;
Prabhakaran et al., 2012; Plank et al., 2014; Dang et al., 2017; Han et al., 2017; Leng et al., 2021).
However, all these approaches still focus on obtaining the “correct” label (e.g., aiming for improved
prediction accuracy) and minimizing the discrepancy among annotators (e.g., reducing “noise” in
annotations) rather than embracing inter-annotator disagreements.

The second approach explicitly models the behaviour of different annotators using different individ-
ual models in an ensemble or different heads in a single model (Fayek et al., 2016; Chou & Lee,
2019; Davani et al., 2022). However, this approach is computationally feasible only when the num-
ber of annotators is relatively small and when a sufficient quantity of annotation is available for each
annotator, which can then not be applied to large crowd-sourced datasets, such as Lotfian & Busso
(2019); Mathew et al. (2021); Maniati et al. (2022), which are common in real-world applications.
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Figure 1: Diagram for the proposed zero-shot human annotator simulation framework.

3 HUMAN ANNOTATOR SIMULATION VIA ZERO-SHOT DENSITY ESTIMATION

3.1 A META-LEARNING FRAMEWORK FOR ZERO-SHOT HUMAN ANNOTATOR SIMULATION

We propose a novel meta-learning framework for HAS to address the issues in prior work, where
the collection of all human annotations for each input xi is viewed as a dataset Di = {η(m)

i }Mi
m=1.

This framework transforms HAS into a density estimation problem for the human annotation of
each input xi given samples from Di. We propose to meta-learn a density estimator across all
datasets Dmeta = {Di}Ni=1, in order to leverage knowledge about the agreements and disagreements
among different human annotators across different examples. This formulates a zero-shot density
estimation problem, since there is no human annotation available for test-time adaptation except for
a “descriptor” (i.e., the test input) x∗. In other words, the meta-learned density estimator should
allow efficient sampling of human-like annotations and their likelihoods evaluations for any unseen
input x∗ without access to any samples for the ground-truth human annotations of x∗.

In this work, the meta-learning framework is realized using a latent variable model1:

pθ(y|x) =
∫

p(y|v)pϕ(v|z)pΛ(z|x)dvdz, (1)

where the conditional prior pΛ(z|x) learns to summarize useful information about x and encode the
possible disagreements over x among different human annotators, which is helpful for the likelihood
pϕ(y|z) =

∫
p(y|v)pϕ(v|z)dv to simulate human-like annotations.

Figure 1 illustrates the proposed framework workflow. Specifically, the conditional prior is modelled
by a conditional factorized Gaussian distribution pΛ(z|x) = N (z|µΛ(x),diag(σ

2
Λ(x))) whose

mean µΛ(x) and variance σ2
Λ(x) are parameterized by a neural network with parameters Λ. The

intermediate variable v is obtained by a deterministic invertible transformation pϕ(v|z) = δ(v −
fϕ(z)), where fϕ(z) is parameterized by an invertible neural network with parameters ϕ, and δ(·)
is the multivariate Dirac delta function. This results in a conditional normalizing flow (CNF):

pθ(v|x) =
∫

δ(v − fϕ(z))pΛ(z|x)dz = pΛ
(
f−1
ϕ (v)

∣∣∣x) ∣∣∣∣∣det
(
∂f−1

ϕ (v)

∂v

)∣∣∣∣∣ , (2)

where det(·) denotes the determinant operator, ∂f−1
ϕ (v)/∂v denotes the Jacobin matrix of f−1

ϕ (v),
and θ := {ϕ,Λ} denotes all parameters in this base CNF. This modelling choice has the advantage
of having tractable marginal likelihood as in Eqn. (2) while not restricting the intermediate variable
v to a specific type of distribution as in previous methods, e.g., Gaussian (Han et al., 2017) and
Student-t (Wu et al., 2023) distributions, thus offering enhanced tractability, flexibility and gener-
ality. In addition, samples can be efficiently drawn from this model by first drawing z ∼ pΛ(z|x)
from the conditional prior and then computing the deterministic flow transformation v = fϕ(z).

Finally, the output variable y is obtained by augmenting the intermediate variable v using the trans-
formation p(y|v), in order to accommodate different types of annotation. For continuous annota-
tions, the identity transformation p(y|v) = δ(y − v) is used, which exactly recovers the base CNF
model. However, real-world human evaluation tasks often involve discrete annotations that are ei-
ther ordinal or categorical. In the following sections, two new model classes with meta-learning
objectives are introduced to accommodate these annotation types.

1For clarity, we use different notations for human annotations η and model outputs y.
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3.2 META-LEARNING CONDITIONAL INTEGER FLOWS FOR ORDINAL ANNOTATIONS

Modelling. Discrete ordinal annotations are often used in K-point rating systems, where the ratings
are integer-valued with a clear ordering. We propose a new class of models called conditional integer
flows (I-CNFs), which augment the base CNFs by quantizing the continuous intermediate variable v
to its nearest integer by using a rounding transformation p(y|v) = I(y − 1/2 < v ≤ y + 1/2), where
I(·) is the indicator function. Let o be an ordinal variable that represents the ordinal human rating
for an input x. The marginal likelihood of I-CNF is given by

pθ(o = y|x) =
∫ ∞

−∞
I(y − 1/2 < v ≤ y + 1/2)pθ(v|x)dv =

∫ y+1/2

y−1/2

pθ(v|x)dv, (3)

where pθ(v|x) is the marginal likelihood of the base CNF defined in Eqn. (2). Since the marginal
likelihood of I-CNF given in Eqn. (3) is analytically intractable due to the rounding transformation,
we propose to approximate it using numerical integration. In practice, the rectangular rule is found
to work well in terms of both performance and efficiency in this setting, where the density of pθ(v|x)
within the interval v ∈ (y − 1/2, y + 1/2] is approximated by the midpoint density value:∫ y+1/2

y−1/2

pθ(v|x)dv ≈
((

y +
1

2

)
−
(
y − 1

2

))
· pθ

(
(y − 1/2) + (y + 1/2)

2

∣∣∣∣x) = pθ(y|x). (4)

This means that Eqn. (2) can be used as a proxy to evaluate the likelihood of I-CNF.

Meta-learning. Using the numerical approximation given in Eqn. (4), the loss L(θ;Di,xi) for I-
CNF on a single dataset Di can be defined as the average negative log marginal likelihood of Eqn. (2)
evaluated on the human annotations Di = {η(m)

i }Mi
m=1 given the corresponding input xi:

L(θ;Di,xi) = − 1

Mi

Mi∑
m=1

(
log pΛ

(
f−1
ϕ (η

(m)
i )

∣∣∣xi

)
+ log

∣∣∣∣∣det
(
∂f−1

ϕ (η
(m)
i )

∂η
(m)
i

)∣∣∣∣∣
)
. (5)

Following the episodic training scheme (Vinyals et al., 2016; Snell et al., 2017; Chen et al., 2023),
we treat density estimation on each dataset as a learning problem and randomly sample a subset of
such learning problems to train on at each step during meta-training. This results in a meta-learning
objective across all datasets Dmeta:

Lmeta(θ;Dmeta, {xi}Ni=1) = EDi∼p(D)[L(θ;Di,xi)], (6)

where p(D) denotes the uniform distribution over the datasets in Dmeta. Intuitively, this objective
maps all human annotation to the latent space of their corresponding input by the inverse flow
transformation z

(m)
i = f−1

ϕ (η
(m)
i ) during meta-training, which helps the model to build a diverse

latent representation that captures the variability in human annotations across different inputs. At
test time, the I-CNF can simulate human-like annotations for an unseen, unlabelled input x∗ by first
drawing v

(m)
∗ ∼ pθ(v|x∗) from the base CNF then applying the rounding function y

(m)
∗ = ⌊v(m)

∗ ⌋,
for m = 1, · · · ,M∗, where M∗ denotes the number of annotations to be simulated.

3.3 META-LEARNING CONDITIONAL SOFTMAX FLOWS FOR CATEGORICAL ANNOTATIONS

Modelling. To account for non-ordinal categorical annotations (e.g., emotion categories), we pro-
pose a new class of models called conditional softmax flows (S-CNFs), which augments the base
CNFs by applying the softmax function p(y|v) = δ (y − softmax(v)) to transform the continuous
intermediate variable v into categorical probabilities y. Let c be a categorical variable with prob-
ability P(c = k|y) = yk (k = 1, · · · ,K) that represents the categorical human annotation for an
input x, with P(c = k|v) =

∫
ykδ (y − softmax(v)) dy = softmax(v)k. The marginal likelihood

of S-CNF is given by

Pθ(c = k|x) =
∫

P(c = k|v)pθ(v|x)dv =

∫
softmax(v)kpθ(v|x)dv, (7)

where pθ(v|x) is the marginal likelihood of the base CNF defined in Eqn. (2). Since the marginal
likelihood of the S-CNF given in Eqn. (7) is analytically intractable due to the softmax transfor-
mation, we propose to approximate it using variational inference (Wainwright et al., 2008) with a
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learnable mean-field Gaussian variational posterior qΩ(v|y) = N (v|µΩ(y),diag(σ
2
Ω(y))), which

can be seen as a probabilistic inverse of the softmax transformation p(y|v). Applying Jensen’s in-
equality to the log marginal likelihood of the S-CNF in Eqn. (7), a tractable evidence lower bound
(ELBO) is obtained:

log Pθ(c = k|x) ≥ EqΩ(v|y) [log P(c = k|v) + log pθ(v|x)− log qΩ(v|y)] . (8)

It is worth noting that the softmax flow likelihood P(c = k|v) = softmax(v)k places non-zero prob-
ability mass for every category k = 1, · · · ,K, which is different from argmax flow (Hoogeboom
et al., 2021) whose likelihood only places probability mass for a single category. From a modelling
perspective, softmax flow has a better capacity to represent the variability and uncertainty in human
annotations. From an optimization perspective, the ELBO for softmax flow is always well-defined,
whereas the ELBO for argmax flow is not defined when the model output does not match the human
annotation, for which the reason lies in the fact that the log-likelihood would be log(0) in this case,
which requires additional thresholding tricks to fix (Hoogeboom et al., 2021).

Meta-learning. Using the variational approximation defined in Eqn. (8), the loss L(θ,Ω;Di,xi)
for S-CNF on a single dataset Di can be defined as the average negative ELBO evaluated on the
human annotations Di = {η(m)

i }Mi
m=1 given the corresponding input xi:

L(θ,Ω;Di,xi) = − 1

Mi

Mi∑
m=1

EqΩ(v|η(m)
i )

[
K∑

k=1

η
(m)
i,k log P(ci = k|v) + log pθ(v|xi)− log qΩ(v|η(m)

i )

]
,

(9)
where the expectation over the variational posterior is approximated by Monte Carlo simula-
tion with the reparameterization trick (Kingma & Welling, 2014). As in Section 3.2, we fol-
low the episodic training scheme with a meta-learning objective L(θ,Ω;Dmeta, {xi}Ni=1) =
EDi∼p(D)[L(θ,Ω;Di,xi)] for meta-training and use a similar flow sampling scheme but apply the
softmax function y

(m)
∗ = softmax(v

(m)
∗ ) to the samples v(m)

∗ from the base CNF at test time. Note
that each sample of S-CNF is a categorical distribution with probabilities y(m)

∗ .

4 EVALUATION METRICS

Several metrics are adopted to measure the empirical performance of HAS in terms of mean/majority
prediction, distribution matching, and human variability simulation.

Mean/majority prediction. For ordinal annotations, the root mean squared error is used to evaluate

the quality of the mean prediction for all test inputs: RMSEȳ =
√

1
N

∑N
i=1(ȳi − η̄i)2, where ȳi =

1
M∗

∑M∗
m=1 y

(m)
i and η̄i =

1
Mi

∑Mi

m=1 η
(m)
i . For categorical annotations, the classification accuracy

(Acc) for the majority vote is evaluated for all test inputs that have majority human annotations.

Distribution matching. The negative log likelihood (NLL) is used to evaluate how well the model
estimates the human annotation distribution: NLLall = − 1

N

∑N
i=1

(
1
Mi

∑Mi

m=1 log pθ(η
(m)
i |xi)

)
.

Inter-annotator disagreement simulation. Apart from evaluating the goodness of fit, addi-
tional metrics are adopted to explicitly measure how well the model simulates the variability
and disagreements in human annotations: 1) the root mean squared error of the standard de-

viations of the annotations for all test inputs: RMSEs =
√

1
N

∑N
i=1 (σi − si)

2, where σi =√
1
Mi

∑Mi

m=1(η
(m)
i − η̄i)2 and si =

√
1

M∗

∑M∗
m=1(y

(m)
i − ȳi)2 for ordinal annotations, and σi =

1
K

∑K
k=1

√
1
Mi

∑Mi

m=1(η
(m)
i,k − η̄i,k)2 and si =

1
K

∑K
k=1

√
1

M∗

∑M∗
m=1(y

(m)
i,k − ȳi,k)2 for categori-

cal annotations, and 2) the absolute error of the average standard deviations of the annotations for
all test inputs: E(s̄) = |σ̄ − s̄|, where σ̄ =

∑N
i=1 σi and s̄ =

∑N
i=1 si. For categorical annotations,

Fleiss’s kappa (κ) (Fleiss, 1971) is additionally adopted to measure the inter-annotator disagree-
ments, where κ is a real number between −1 and +1, with −1 indicating no observed agreement
and +1 indicating perfect agreement. The absolute error between the kappas of human annotations
(κ) and simulated annotations (κ̂) for all test inputs is reported: E(κ̂) = |κ̂ − κ|. For ordinal an-
notations, intraclass correlation coefficient (ICC) (Shrout & Fleiss, 1979) is adopted which ranges
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Table 1: Test performance on the emotion category annotation task. CVAE collapses to one category
for all inputs.

Acc (↑) NLLall (↓) RMSEs (↓) E(s̄) (↓) E(κ̂) (↓)
MCDP 0.582±0.003 1.423±0.012 0.294±0.001 0.193±0.000 0.467±0.005

Ensemble 0.603±0.002 1.458±0.004 0.271±0.003 0.160±0.004 0.344±0.017
BBB 0.565±0.010 1.459±0.011 0.289±0.005 0.187±0.008 0.511±0.034
DPN 0.581±0.006 1.518±0.002 0.296±0.001 0.193±0.001 0.104±0.016

CVAE 0.275±0.000 1.661±0.000 0.333±0.000 0.244±0.000 —
A-CNF 0.583±0.002 1.430±0.006 0.239±0.001 0.097±0.002 0.382±0.015
S-CNF 0.591±0.002 1.403±0.011 0.218±0.000 0.020±0.002 0.068±0.021

from 0 to 1. The absolute error E(ICC) between the ICC(1,k) of human annotations and simulated
annotations (κ̂) is reported.

5 EXPERIMENTS

Setup. The proposed meta-learned zero-shot density estimation method for HAS from Section 3 is
evaluated by three representative real-world human evaluation tasks for speech and natural language
processing: emotion category annotation, toxic speech detection, and speech quality assessment.
The results are reported using evaluation metrics defined in Section 4 and several representative ex-
amples are visualized, which demonstrate the superior capability of the proposed method to capture
the aggregated behaviours of human annotators, match the distribution of human annotations, and
simulate the variability and disagreement of human perception and interpretation.

Baselines. The proposed I-CNF and S-CNF are compared to baselines of various types such as
ensemble methods, Bayesian methods, and conditional generative models. This includes deep en-
semble (Ensemble) (Lakshminarayanan et al., 2017), Monte-Carlo dropout (MCDP) (Gal & Ghahra-
mani, 2016), Bayes-by-backprop (BBB) (Blundell et al., 2015), conditional variational autoencoder
(CVAE) (Kingma & Welling, 2014), conditional argmax flow (A-CNF) (Hoogeboom et al., 2021),
Dirichlet prior network (DPN) (Malinin & Gales, 2018), Gaussian process (GP) (Williams & Ras-
mussen, 2006), and evidential deep learning (EDL) (Amini et al., 2020). We fit them to all available
human annotations for all utterances in the training set, tune hyperparameters on the validation set,
and report performance on the test set. M∗ = 100 samples are used to compute evaluation metrics
at test time. The Ensemble only consists of 10 systems due to its expensive computational cost.

Backbone architecture. The same neural network feature encoder is used in all compared methods
to extract features from inputs, which follows an upstream-downstream paradigm. The upstream
model, also called a foundation model (Bommasani et al., 2021), is pre-trained on a large amount of
unlabelled data to learn universal representations. WavLM (Chen et al., 2022) and RoBERTa (Liu
et al., 2019) are used as the pre-trained upstream models for speech and text inputs, respectively.
The downstream model consists of two Transformer encoder blocks followed by two fully connected
(FC) layers, which are fine-tuned to target specific applications.

5.1 EMOTION CATEGORY ANNOTATION

Task. Emotion recognition aims to identify human emotion, which is beneficial for healthcare,
education and customization purposes. Human emotion is inherently ambiguous and the perception
of emotion is highly subjective, which often results in disagreements among human annotators.
Most emotion recognition datasets employ multiple annotators to label each utterance. However,
prior work typically uses the majority vote as the ground-truth target (Busso et al., 2008; Lotfian
& Busso, 2019; Poria et al., 2019), which ignores minority viewpoints and thus fails to represent
the true human annotation distributions. Our proposed method can enhance the fairness of emotion
category annotation as it better handles different opinions among human annotators.

Dataset. MSP-Podcast (Lotfian & Busso, 2019) is one of the largest publicly available datasets in
speech emotion recognition, which contains natural English speech from podcast recordings anno-
tated using crowd-sourcing. The experiment uses Release 1.6 of this dataset, which contains more
than 50,000 utterances from more than 1,000 speakers consisting of more than 80 hours of speech.
The standard splits of training (34,280 segments), validation (5,958 segments) and test (10,124 seg-
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Figure 2: Visualization of simulated annotations on the emotion category annotation task for case
study. The y-axis corresponds to the probability mass. Each sample is a categorical distribution. The
probability mass values of different categories in each categorical distribution are connected for the
purpose of better visualization. CVAE is omitted because it collapses to one category for all inputs.

ments) are used. Emotion labels are grouped into five categories: angry, sad, happy, neutral, and
other. Each utterance is labelled by at least 5 human annotators, and there are 6.7 annotations per
utterance on average. It is worth noting that 16.5% of the utterances in this dataset do not have a
majority emotion class, showing strong disagreement among human annotators.

Performance. Table 1 reports the test results for all compared methods. Ensemble achieves the best
majority prediction accuracy (Acc) at the cost of training 10 independent systems. The proposed S-
CNF achieves the second-best majority prediction accuracy with only a tenth of the computational
cost of Ensemble during training. More importantly, S-CNF is the best at matching the distributions
of human annotations (in terms of NLLall) and simulating inter-annotator disagreements (measured
by RMSEs, E(s̄) and E(κ̂)) among all compared methods.

Case study. To better illustrate the properties of the annotations simulated by different methods,
The simulated distributions against the ground-truth distributions for three representative examples
are visualized in Figure 2 (more case study examples can be found in Appendix H). Overall, the
mean of the samples generated by S-CNF aligns the best with the average human label, indicating
its superior performance in estimating the aggregated behaviours of human annotators. Interestingly,
the samples generated by S-CNF are the most diverse among all compared methods, which manage
to simulate the variability of the behaviours of different individual human annotators. In sharp
contrast, the samples generated by all the other methods highly concentrate around their sample
means. The visualized result for each example is analyzed below:

(a) Human annotators reach a consensus in this case. The majority of samples generated by
S-CNF exhibit prominent peaks aligned with the ground-truth emotion class “neutral”. In
contrast, many samples generated by A-CNF peak at other emotion classes.

(b) Human opinions diverge in this case. The majority of samples generated by S-CNF are
sharp categorical distributions peaking at one of the two majority emotion classes “happy”
and “neutral”. Additionally, a few samples generated by S-CNF peak at the emotion class
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“angry”, which manages to simulate the minority viewpoint held by some annotators. Very
few human annotators attribute this utterance to the emotion classes “sad” and “other”, and
S-CNF likewise produces scarce samples peaking at these classes.

(c) Five human annotators give distinct emotion labels in this case, resulting in a tie in the
label means. The tie comes from annotators’ diverse individual perceptions of the emotion
rather than consensus on its ambiguity. S-CNF is the only model that can simulate both the
diverse behaviours of different individual annotators and the aggregated behaviour of all
annotators since the individual samples are sharp categorical distributions peaking at one
of the five emotion classes and the mean of the samples aligns well with the label mean.

5.2 TOXIC SPEECH DETECTION

Task. Toxic speech detection aims to filter out harmful and offensive language in written or spo-
ken communications, such as insults, threats and harassment, which can lead to emotional distress,
cyberbullying, and hostile online environments. Developing effective toxic detection methods is
crucial for creating safer and more respectful online environments and promoting positive interac-
tions and healthy communications among users. Our proposed method incorporates interpretations
from different human annotators, leading to a comprehensive understanding of hate speech, which is
a good substitute for human annotators to reduce their exposure to distressing and harmful content.

Dataset. The HateXplain dataset (Mathew et al., 2021) is used in this experiment, which contains
over 20,000 text posts from Twitter and Gab. These posts are labelled using crowd-sourcing with
the commonly used 3-category annotation: hate, offensive, normal. Each post is annotated by three
annotators. Cases where all the three annotators choose a different class (919 out of 20,148 posts)
were originally excluded from the standard split of the dataset. We incorporate these cases into our
training, validation, and test sets in an 8:1:1 ratio to better reflect the inter-annotator disagreements,
resulting in 16,118 posts for training, 2,014 for validation, and 2,016 for testing in total.

Performance. Table 2 reports the test results for all compared methods, which shows a similar trend
to that found in emotion category annotation experiment in Section 5.1. The Ensemble achieves the
best majority prediction accuracy at the cost of training 10 independent systems. Our proposed S-
CNF achieves the second best majority prediction accuracy while being much more computationally
efficient and has the best performance in distribution matching and inter-annotator disagreement
simulation. A case study with visualization can be found in Appendix I, which also exhibits similar
trends to those for the emotion category annotation experiment in Section 5.1.

5.3 SPEECH QUALITY ASSESSMENT

Task. Speech quality assessment plays an important role in the development of speech processing
systems such as text-to-speech (TTS) synthesis. Speech quality is a complex, subjective psychoa-
coustic outcome of human perception. The mean opinion score (MOS) is a commonly used metric
to evaluate the speech quality in TTS, which is obtained by having human listeners rate the per-
ceived quality of the synthesized speech on a numerical scale typically ranging from 1 to 5, where a
higher score indicates better-perceived speech quality, then averaging the scores across all listeners.
However, estimating only the MOS (i.e., the average score) and ignoring the individual scores fails
to take into account the subjective nature of individual preferences, perceptions and biases. Our pro-
posed method is a cost-effective alternative to the time-consuming and expensive human assessment
of speech quality which models the subjectivity that different human listeners may have.

Table 2: Test performance on the toxic speech detection task. CVAE collapses to one category for
all inputs.

Acc (↑) NLLall (↓) RMSEs (↓) E(s̄) (↓) E(κ̂) (↓)
MCDP 0.656±0.009 0.951±0.032 0.300±0.002 0.129±0.003 0.143±0.008

Ensemble 0.682±0.002 0.909±0.012 0.289±0.001 0.100±0.003 0.064±0.006
BBB 0.670±0.001 0.949±0.021 0.300±0.009 0.127±0.022 0.207±0.051
DPN 0.581±0.006 1.158±0.002 0.296±0.001 0.193±0.001 0.104±0.016

CVAE 0.406±0.000 1.150±0.000 0.345±0.000 0.208±0.000 —
A-CNF 0.628±0.003 0.892±0.011 0.297±0.001 0.087±0.008 0.198±0.027
S-CNF 0.673±0.002 0.837±0.008 0.263±0.001 0.002±0.001 0.026±0.012
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Table 3: Test performance on the speech quality assessment task.

RMSEȳ (↓) NLLall (↓) RMSEs (↓) E(s̄) (↓) E(ICC) (↓)
GP 0.359±0.001 1.693±0.000 0.472±0.000 0.412±0.000 0.433±0.000

EDL 0.449±0.023 1.636±0.001 0.375±0.022 0.356±0.025 0.107±0.029
MCDP 0.390±0.013 1.787±0.008 0.783±0.035 0.742±0.031 0.495±0.010

Ensemble 0.410±0.008 1.858±0.000 0.740±0.007 0.704±0.006 0.136±0.028
BBB 0.613±0.011 1.934±0.015 0.944±0.017 0.918±0.017 0.480±0.003

CVAE 0.419±0.013 1.703±0.022 0.598±0.033 0.561±0.035 0.214±0.028
I-CNF 0.392±0.016 1.609±0.003 0.251±0.007 0.123±0.013 0.079±0.015
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Figure 3: Visualization of simulated annotations on the speech quality assessment task for case
study. The length of the bar in each colour represents the density of the corresponding score.

Dataset. The SOMOS dataset (Maniati et al., 2022) is used in this experiment, which consists of
20,000 synthetic utterances generated from 200 TTS systems and is annotated using crowd-sourcing.
Each audio segment is evaluated by at least 17 unique annotators out of 987 participated human an-
notators, and there are 17.9 annotations per segment on average. The human annotators were asked
to evaluate the naturalness of each audio sample on a 5-point Likert scale from 1 (very unnatural) to
5 (completely natural). The standard split provided by the dataset is used, which contains 141,100
training segments, 3,000 validation segments and 3,000 test segments.

Performance. Table 3 reports the test results for all compared methods. Again, our proposed I-CNF
obtains the best performance for distribution match and inter-annotator disagreement simulation
while achieving the second-best performance for MOS prediction.

Case study. To better illustrate the properties of the annotations simulated by different methods,
simulated distributions are visualized against the ground-truth distributions for three representative
examples in Figure 3. It can be seen that the proposed I-CNF is the only method which gives an
accurate distribution match and perfect inter-annotator disagreement simulation in all three cases.
In contrast, all the other methods tend to either produce annotations centered around the mean score
or collapse to one score (typically 3 or 4). More case study examples can be found in Appendix J.

6 CONCLUSION

This paper studied human annotator simulation (HAS), a cost-effective alternative to generating
human-like annotation for automatic data labelling and model evaluation. To incorporate the vari-
ability of human evaluations, a novel framework was introduced which treats HAS as a zero-shot
density estimation problem. This overcame the drawbacks of prior work and enabled efficient an-
notation simulation for unlabelled test inputs. Under this framework, a meta-learning objective was
derived for two new model classes, conditional integer flows and conditional softmax flows, to ac-
count for ordinal and categorical annotations, respectively. The proposed method consistently and
significantly outperformed a wide range of methods on three real-world human evaluation tasks,
achieving the best performance for human annotation distribution matching and inter-annotator dis-
agreement simulation. It is hoped that our proposed method could help mitigate unfair biases and
over-representation in HAS and reduce the exposure of human annotators to potentially harmful
content, thus promoting ethical AI practices.
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ETHICS STATEMENT

In this work, all human annotations used for training were taken from existing publicly available
corpora, and no new human annotations were collected.

It is hoped that this work could play a part in promoting ethical AI practice. Firstly, it has been shown
that the proposed HAS system can capture the inherent variability in human judgements and help
mitigate biases and the issue of over-representation, thus producing a more inclusive representation
of human opinions. The proposed HAS system also has the potential to minimize human annotators’
exposure to offensive and/or hateful content in some evaluation tasks such as HateXplain.

REPRODUCIBILITY STATEMENT

The datasets used in the experiments are all publicly available. The source code associated with the
proposed method is submitted as supplementary materials.
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APPENDICES

A THE SOURCES OF VARIABILITY IN HUMAN EVALUATION

Human perception refers to the process by which individuals interpret and make sense of the sen-
sory information they receive from the environment. It involves the integration of sensory data,
cognitive processes, emotions, and previous experiences. Subjective perception emphasizes that
each individual’s perception of the world is unique and influenced by their internal mental states,
beliefs, attitudes, and past experiences. As a result, people can interpret and react to the same stimuli
differently, leading to diverse and subjective perceptions.

Each person’s sensory organs, such as eyes and ears, may have slight variations in sensitivity and
acuity, leading to different perceptions of the same stimuli. Cognitive biases, the inherent mental
shortcuts or tendencies that influence how humans perceive and process information, can lead to dif-
ference in judgement and decision-making. People’s past experiences, cultural norms, and upbring-
ing also shape their perceptions. Different cultural backgrounds can lead to distinct interpretations
of the same event, leading to diverse reaction. The variability in humans can manifest in various
tasks such as colour perception, emotion recognition, art appreciation, and feedback preferences.

Embracing and understanding the variability of human perception is vital for various research fields
such as psychology, neuroscience, human-computer interaction, and so on, and has practical im-
plications in designing human-centered systems and promoting empathy and diversity. It helps
create products and interfaces that cater to diverse user needs and preferences in fields like human-
computer interaction and user experience design. Being aware of the variability of perception is
crucial in ethical decision-making. It help ensures that different perspectives and cultural sensitivi-
ties are considered, which helps identify and address potential biases that might disproportionately
affect certain groups or lead to unfair outcomes.

B DERIVATIONS

Detailed derivations for the training objectives on a single dataset Di = {η(1)
i , · · · ,η(M)

i } with xi

are presented in this section. For the simplicity of notations, the subscription i in our derivations will
be omitted without ambiguity where possible. The meta-learning objectives presented in the paper
are obtained by averaging such single-task objectives across tasks.

B.1 OBJECTIVE FUNCTION FOR THE BASE CNF AND I-CNF

Denote the empirical human annotation distribution as pm(y|x) = δ
(
y − η(m)

)
, m = 1, · · · ,M

and model output distribution as pθ(y|x). The average KL divergence between them over all M
human annotations for this input x is given by:

L(θ;D,x) =
1

M

M∑
m=1

KL (pm(y|x) ∥ pθ(y|x))

=
1

M

M∑
m=1

∫
pm(y|x) log pm(y|x)

pθ(y|x)
dy

= − 1

M

M∑
m=1

∫
pm(y|x) log pθ(y|x)dy + const

= − 1

M

M∑
m=1

log pθ(η
(m)|x) + const

(10)

Minimizing this KL objective is equivalent to maximizing the average log likelihood log pθ(η
(m)|x)

over all human annotations as presented in the paper. With numerical approximation, the training
objective for I-CNF shares the same formula as that for the base CNF.
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B.2 OBJECTIVE FUNCTION OF S-CNF

For categorical annotations, each label η(m) represents the probabilities of all categories in the
categorical human annotation distribution: η(m) = [η

(m)
1 , · · · ,η(m)

K ], where η
(m)
k = Pm(c = k|x).

Denote the model output distribution as Pθ(c|x). The average KL divergence between them over all
M human annotations for this input x is given by:

Lexact(θ;D,x) =
1

M

M∑
m=1

KL (Pm(c|x) ∥ Pθ(c|x))

=
1

M

M∑
m=1

K∑
k=1

Pm(c = k|x) log Pm(c = k|x)
Pθ(c = k|x)

= − 1

M

M∑
m=1

K∑
k=1

Pm(c = k|x) log Pθ(c = k|x) + const

= − 1

M

M∑
m=1

K∑
k=1

η
(m)
k log Pθ(c = k|x) + const,

(11)

where the marginal likelihood is lower bounded using variational inference:

log Pθ(c = k|x) = log

∫
P(c = k|v)pθ(v|x)dv

= log

∫
qΩ(v|η)

P(c = k|v)pθ(v|x)
qΩ(v|η)

dv

≥
∫

qΩ(v|η) log
P(c = k|v)pθ(v|x)

qΩ(v|η)
dv

= EqΩ(v|η) [log P(c = k|v) + log pθ(v|x)− log qΩ(v|η)] .

(12)

Therefore, the final negative ELBO objective is obtained by

Lexact = − 1

M

M∑
m=1

K∑
k=1

η
(m)
k log Pθ(c = k|x)

≤ − 1

M

M∑
m=1

K∑
k=1

η
(m)
k EqΩ(v|η(m))

[
log P(c = k|v) + log pθ(v|x)− log qΩ(v|η(m))

]
= − 1

M

M∑
m=1

EqΩ(v|η(m))

[
K∑

k=1

η
(m)
k log P(c = k|v) + log pθ(v|x)− log qΩ(v|η(m))

]
= L(θ,Λ;D,x),

(13)
where

log P(c = k|v) = logsoftmax(v)k, (14)

log pθ(v|x) = pΛ

(
f−1
θ (v)|x

) ∣∣∣∣det(∂f−1
θ (v)

∂v

)∣∣∣∣ , (15)

log qΩ(v|η(m)) = N (v|µΩ(η
(m)),diag(σ2

Ω(η
(m)))). (16)
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B.3 THE NEGATIVE LOG LIKELIHOOD (NLLALL
i ) FOR CATEGORICAL ANNOTATIONS

The marginal likelihood of S-CNF is intractable, which can be approximated using Monte-Carlo
simulation:

Pθ(c = k|x) =
∫

P(c = k|v)pθ(v|x)dv

= Epθ(v|x) [P(c = k|v)]

≈ 1

Q

Q∑
j=1

P(c = k|vj), {vj}Qj=1 ∼iid pθ(v|x)

=
1

Q

Q∑
j=1

softmax(vj)k, {vj}Qj=1 ∼iid pθ(v|x)

= ȳk,

(17)

where ȳ = 1
Q

∑Q
j=1 softmax(vj) =

1
Q

∑Q
j=1 yj which is the average of the simulated categorical

distributions. Let η̄ = 1
M

∑M
m=1 η

(m) be the average label.

Then, the NLLall
i for a single input xi is given by

NLLall
i = − 1

M

M∑
m=1

K∑
k=1

η
(m)
i,k log Pθ(c = k|xi)

≈ − 1

M

M∑
m=1

K∑
k=1

η
(m)
i,k log ȳi,k

= −
K∑

k=1

η̄i,k log ȳi,k,

(18)

which is the cross entropy between the averaged label and averaged sample.

C EMOTION LABEL PROCESSING FOR MSP-PODCAST

In MSP-Podcast, each annotator can choose from ten emotion classes to label the primary emotion
of an utterance: Angry, Sad, Happy, Surprise, Fear, Disgust, Contempt, Neutral, Other. Although
only one option is allowed, they can say other and define their own emotion class which can be more
than one. During label processing, the original other class is split into sub-classes depending on the
manual defined label and merged with the pre-defined labels. The grouping details are shown as
follows: (i) Angry includes angry, disgust, contempt, annoyed; (ii) Sad includes sad, frustrated, dis-
appointed, depressed, concerned; (iii) Happy includes happy, excited, amused; (iv) Neutral includes
neutral; (v) Other includes all other emotion subclasses not listed above.

D MODEL STRUCTURE DETAILS

The structure of proposed I-CNF and S-CNF are illustrated in Figure 4 and Figure 5 respectively.
The procedure of sampling from and optimizing S-CNF are summarized in Algorithm 1 and 2.
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Figure 4: Illustration for I-CNF training and simulation workflow.
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Figure 5: Illustration for S-CNF training and simulation workflow.

Algorithm 1 Sampling from S-CNF

Input: x
Output: Categorical probability y
Compute µΛ(x),σ

2
Λ(x) = gΛ(x)

Sample z ∼ N (µΛ(x),diag(σ
2
Λ(x))

Compute v = fθ (z)
Compute y = softmax(v)

Algorithm 2 Optimizing S-CNF

Input: x,D = {η(1), · · · ,η(M)}
Output: ELBO LELBO on dataset D
for m = 1, · · · ,M do

Compute µΩ(η
(m)),σ2

Ω(η
(m)) = hΩ(η

(m))
for j = 1, · · · , Q do

Sample vj ∼ qΩ(v|η(m))

Compute L(m)
j = −

∑K
k=1 η

(m)
k log P(c =

k|vj) + log pθ(vj |x)− log qΩ(vj |η(m))
end for
Compute LELBO

m = 1
Q

∑Q
j=1 L

(m)
j

end for
Compute LELBO = 1

M

∑M
m=1 LELBO

m

A neural-network-based encoder gΛ is built to model µΛ(x),σ
2
Λ(x) given input x where Λ is

the model parameters. gΛ follows an upstream-downstream paradigm. The upstream model is pre-
trained on large amount of unlabelled data to learn universal representations. The downstream model
uses the learned representation from the upstream model for specific applications. In this paper, the
downstream model consists of two Transformer encoder blocks followed by two FC layers. The
output layer contains two heads to predict the mean and standard deviation of the latent distribution
pΛ(z|x).
For tasks involving speech as input (i.e., emotion class labelling, speech quality prediction),
WavLM (Chen et al., 2022) is used as the upstream model. WavLM is a speech foundation model
pre-trained by self-supervised learning that takes raw waveform as input. The waveform is encoded

18



Under review as a conference paper at ICLR 2024

Table 4: Dimension of the model structure (number of layers * layer dimension)

Task input modality gΛ-upstream gΛ-downstream fθ hΩ

Emotion class labelling speech WavLM base+ 2*128 3*64 1*64
Toxic speech detection text RoBERTa base 2*128 3*64 1*64

Speech quality assessment speech WavLM base+ 2*128 3*16 /

by a CNN encoder followed by multiple Transformer encoders. The BASE+ version2 of the model
is used in this work which has 12 Transformer encoder blocks with 768-dimensional hidden states
and 8 attention heads. The parameters of the pretrained WavLM are frozen and the weighted sum of
the outputs of the 12 Transformer encoder blocks is used as the speech embeddings feeding into the
downstream model.

RoBERTa (Liu et al., 2019) is used as upstream model to encode text input for toxic speech detec-
tion, which is a robustly optimized model of BERT (Devlin et al., 2019). RoBERTa is a Transformer-
based language model pretrained on a large corpus of English data with the masked language mod-
elling objective. The BASE version3 was used in the work which has 12 Transformer layers, 768
hidden units, 12 attention heads, and 125 million parameters.

The downstream model consists of two Transformer encoder layers with hidden dimension of 128
and four attention head. The invertible flow model fθ uses real NVP block Dinh et al. (2017).
The variational encoder for S-CNF hΩ contains a FC layer and two output heads for the mean and
standard deviation of the variational distribution qΩ(v|y). More details can be found in Table 4.

E DETAILED CONFIGURATION OF ALL COMPARED METHODS

Ensemble consists of 10 systems initialized and trained using different random seeds. MCDP uses
dropout rate of 0.4. A standard Gaussian prior is used for BBB. A modified version of EDL is
used (Wu et al., 2023) which is trained by maximising the per-observation-based marginal likelihood
with a modified regularization term. Ensemble, MCDP, BBB, EDL use the same model structure as
gΛ apart from removing the output head for predicting variance of latent distribution. A modified
version of DPN(Wu et al., 2022b) is used which is trained by interpolating per-observation-based
marginal likelihood with KL divergence. The coefficient of KL term is set to 5.0 for emotion class
labelling and 2.0 for toxic speech detection. Features extracted from the upstream model are used
as input to GP which uses a radial basis function kernel and is trained by maximising the per-
observation-based marginal likelihood. CVAE has the same gΛ structure as S-CNF for modelling
p(z|x), and two 64-d FC layers are used for encoder and decoder. A-CNF has identical model
structure as S-CNF.

The system was implemented using PyTorch with the SpeechBrain (Ravanelli et al., 2021) and
normflows (Stimper et al., 2023) toolkit. The Adadelta optimizer was used with an initial learning
rate of 1.2 for emotion class labelling and 0.05 for speech quality assessment. The The NewBob
learning rate scheduler was used with annealing factor 0.8 and patience 1. The system was trained
for 30 epochs and the model with the best validation performance was used for testing. The number
of ELBO samples was set to 20.

F ANALYSIS OF STANDARD DEVIATION OF SIMULATED SAMPLES

It has been observed in Section 5.1 that flow models tend to have a larger difference between RMSEs

and E(s̄). This section provides detailed analysis to this observation. Let N be the number of test
utterances. Three std-related metrics are computed: (i) RMSE between std of predictions and human

labels: RMSEs =
√

1
N

∑N
i=1 (si − σi)

2; (ii) Mean absolute error between std of predictions and std

of human labels: MAEs = 1
N

∑N
i=1 |si−σi|; (iii) Absolute error between average std of predictions

and average std of human labels E(s̄) = |s̄i − σ̄i|. Results are shown in Table 5. The flow model

2https://huggingface.co/microsoft/wavlm-base-plus
3https://huggingface.co/roberta-base
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Table 5: Analysis of standard deviation of simulated samples

Emotion recognition Toxic detection Speech quality
RMSEs MAEs E(s̄) RMSEs MAEs E(s̄) RMSEs MAEs E(s̄)

MCDP 0.305 0.233 0.206 0.297 0.242 0.122 0.809 0.762 0.762
Ensemble 0.277 0.222 0.166 0.290 0.220 0.105 0.747 0.703 0.703

BBB 0.284 0.226 0.178 0.279 0.229 0.115 0.952 0.917 0.917
CVAE 0.333 0.244 0.244 0.345 0.208 0.208 0.574 0.535 0.534
EDL / / 0.381 0.368 0.368
GP / / 0.472 0.419 0.412

DPN 0.297 0.236 0.191 0.299 0.220 0.178 /
A-CNF 0.223 0.209 0.046 0.274 0.232 0.062 /
S/I-CNF 0.218 0.198 0.015 0.263 0.206 0.002 0.229 0.184 0.067
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(a) Std for emotion class labelling.
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Figure 6: Standard deviation of simulated samples.

tends to have larger discrepancy between MAEs and E(s̄). According to the triangular inequality:

E(s̄) =

∣∣∣∣∣ 1N
N∑
i=1

si −
1

N

N∑
i=1

σi

∣∣∣∣∣ =
∣∣∣∣∣ 1N

N∑
i=1

(si − σi)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|si − σi| = MAEs (19)

which show that E(s̄) is a lower bound of MAEs. The equality condition is satisfied when all samples
are uniformly either greater than or less than the compared value. Therefore, a larger discrepancy
between these two values indicates that the standard deviation of some samples exceeds that of the
labels, while for others, it is lower. A smaller discrepancy indicates that the standard deviation
of samples tend to be consistently larger of smaller than that of the labels. In Figure 6, 100 test
utterances are randomly selected and the std of samples generated by different models are plotted,
which supports the above conclusion. The proposed S-CNF and I-CNF has the best performance for
matching the diversity of human annotations.

G ADJUSTING DIVERSITY OF CNFS BY PRIOR TEMPERING

One advantage of CNF is that its sample diversity can be easily controlled on demand without re-
training by tempering the standard deviation of pΛ(z|x) at test time. Figure 7 explores the effect
of prior tempering on the performance. More details are shown in Table 6. Overall, the trend is
clear that the simulated annotations become more diverse as the temperature increases. The default
temperature value 1 used during training (i.e., no tempering) achieves the best trade-off among ma-
jority prediction accuracy (Acc), distribution matching (NLLall), and inter-annotator disagreement
simulation (in terms of E(s̄) and E(κ̂)). In addition, as compared in Table 7, prior tempering in CNF
is more efficient and covers a wider range of dynamics than adjusting the dropout rate in MCDP.
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Figure 7: The effect of prior tempering on the performance of S-CNF and I-CNF. The x-axis corre-
sponds to the prior temperature.

Table 6: Adjusting the diversity of CNFs by prior tempering.

Emotion class labelling
T Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.8 0.594 1.395 0.221 0.200 0.044 0.307 0.053
0.9 0.594 1.390 0.219 0.216 0.029 0.259 0.005
1.0 0.593 1.389 0.218 0.229 0.015 0.222 0.032
1.1 0.592 1.389 0.218 0.241 0.004 0.191 0.063
1.2 0.590 1.391 0.219 0.251 0.007 0.166 0.088

Toxic speech detection
T Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.8 0.671 0.851 0.272 0.125 0.065 0.721 0.115
0.9 0.675 0.842 0.265 0.157 0.033 0.650 0.044
1.0 0.673 0.837 0.263 0.188 0.002 0.580 0.026
1.1 0.671 0.836 0.264 0.216 0.026 0.512 0.094
1.2 0.669 0.837 0.267 0.242 0.052 0.450 0.156

Speech quality assessment
T RMSEȳ NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.8 0.377 1.671 0.274 0.963 0.179 / /
0.9 0.380 1.624 0.218 1.083 0.059 / /
1.0 0.384 1.611 0.223 1.201 0.059 / /
1.1 0.388 1.619 0.281 1.322 0.180 / /
1.2 0.393 1.640 0.371 1.440 0.299 / /
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Table 7: Adjusting the diversity of MCDP models by dropout rate

Emotion class labelling
dp Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)
0.1 0.583 1.463 0.303 0.040 0.205 0.791 0.537
0.2 0.589 1.426 0.303 0.040 0.204 0.773 0.519
0.3 0.590 1.415 0.300 0.045 0.199 0.761 0.507
0.4 0.585 1.405 0.296 0.051 0.194 0.723 0.469
0.5 0.589 1.409 0.294 0.053 0.191 0.715 0.461

Toxic speech detection
dp Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)
0.1 0.661 0.925 0.314 0.049 0.158 0.831 0.225
0.2 0.666 0.916 0.308 0.061 0.147 0.800 0.194
0.3 0.654 0.968 0.299 0.081 0.127 0.750 0.144
0.4 0.662 0.943 0.297 0.085 0.122 0.731 0.125
0.5 0.662 0.896 0.296 0.088 0.120 0.720 0.114

Speech quality assessment
dp RMSEȳ NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)
0.1 0.385 1.828 0.982 0.180 0.961 / /
0.2 0.412 1.824 0.928 0.236 0.905 / /
0.3 0.408 1.797 0.871 0.294 0.847 / /
0.4 0.367 1.805 0.938 0.227 0.915 / /
0.5 0.356 1.780 0.889 0.278 0.864 / /
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H ADDITIONAL VISUALIZATION FOR EMOTION CLASS LABELLING

This section shows additional visualized examples for emotion class labelling when human anno-
tators reach a consensus (Figure 8 (a)(b)), diverge (Figure 8 (c)(d)), and give distinct labels (Fig-
ure 8 (e)). The proposed S-CNF can better simulate the aggregated behaviour as well as the vari-
ability of human annotations in all cases.
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Figure 8: Additional visualized examples for emotion class labelling. The y-axis corresponds to the
probability mass. Each sample is a categorical distribution. The probability mass values of differ-
ent categories in each categorical distribution are connected for the purpose of better visualization.
CVAE is omitted because it collapses to one category for all inputs.
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I ADDITIONAL VISUALIZATION FOR TOXIC SPEECH DETECTION

This section shows visualized examples for toxic speech detection when all three human annotators
provide the same label (Figure 9 (a)(b)), one of them gives a different label (Figure 9 (c)(d)), and
all three annoators give distinct labels (Figure 9 (e)). The proposed S-CNF can better simulate the
aggregated behaviour as well as the variability of human annotations in all cases.
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Figure 9: Additional visualized examples for toxic speech detection. The y-axis corresponds to the
probability mass. Each sample is a categorical distribution. The probability mass values of differ-
ent categories in each categorical distribution are connected for the purpose of better visualization.
CVAE is omitted because it collapses to one category for all inputs.
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J ADDITIONAL VISUALIZATION FOR SPEECH QUALITY EVALUATION

This section presents several additional visualized cases for speech quality evaluation. Generated
samples (before rounding) are plotted in the sub-figures on the left. For clearer visualization, the
samples are spread along y axis according to density to avoid overlapping. As can be seen, sam-
ples generated by the proposed I-CNF method (in blue) can better simulate the diversity of human
annotations (in pink).
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Figure 10: Additional visualized examples for speech quality assessment. For the visualization
purpose, the points that have same x values are spread along y axis according to density to avoid
overlapping.

K EXPERIMENT ON EMOTION ATTRIBUTE ANNOTATION

Apart from categorical labels such as “happy”, “sad”, “angry”, an emotional state can also be de-
fined by continuous emotion attributes (Schlosberg, 1954; Nicolaou et al., 2011). The commonly
used emotion attributes include valence (negative vs positive), arousal (calm vs excited), domi-
nance (weak vs dominant) (Russell & Mehrabian, 1977; Russell, 1980; Grimm et al., 2007). In
MSP-Podcast, annotators label the attributes on a 7-point Likert scale. This section provides experi-
ments of simulating the emotion attributes annotation by the proposed I-CNF on MSP-Podcast. The
ICC(1,k) of human annotations for the emotion attributes in MSP-Podcast is 0.702. As shown in Ta-
ble 8, the proposed I-CNF method outperforms the baselines in modelling the annotation distribution
and annotator variability.
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Table 8: Test performance on the emotion attribute annotation task.

RMSEȳ NLLall RMSEs E(s̄) E(ICC)

GP 0.667±0.000 2.928±0.000 0.408±0.000 0.415±0.000 0.169±0.000
EDL 0.755±0.002 1.911±0.005 0.465±0.039 0.504±0.037 0.172±0.017

MCDP 0.887±0.007 5.545±0.026 0.610±0.005 0.474±0.006 0.087±0.014
Ensemble 0.923±0.017 6.280±0.084 0.836±0.017 0.718±0.019 0.057±0.003

BBB 0.720±0.014 5.332±0.034 0.643±0.001 0.516±0.001 0.241±0.003
CVAE 0.704±0.004 4.906±0.005 0.502±0.003 0.324±0.003 0.192±0.003
I-CNF 0.665±0.006 1.707±0.030 0.296±0.019 0.132±0.002 0.032±0.012

Table 9: Computational time cost of emotion class annotation and toxic speech detection. Due to
training complexity, the number of annotations it simulate M is set to 10 for ensemble while 100 for
all other methods.

Emotion category annotation Toxic speech detection
Training (sec) Inference (sec) Training (sec) Inference (sec)

MCDP 7.20±0.10E+03 1.82±0.01E+04 2.42±0.02E+02 5.99±0.02E+02
Ensemble 1.46±0.00E+05 1.67±0.01E+03 2.39±0.01E+03 4.00±0.04E+01

BBB 7.55±0.01E+03 1.79±0.01E+04 3.22±0.01E+02 5.79±0.01E+02
DPN 6.80±0.01E+03 2.90±0.01E+02 1.92±0.01E+02 2.67±0.02E+01

A-CNF 7.04±0.02E+03 2.31±0.07E+02 3.14±0.04E+02 1.40±0.11E+01
S-CNF 6.99±0.00E+03 2.12±0.02E+02 2.63±0.02E+02 1.37±0.09E+01

L COMPUTATIONAL TIME COST

The computational time cost of all of the methods that have been compared for the four tasks studied
in the paper are shown in Table 9 and Table 10. Denote M as the number of annotations to be sim-
ulated. The ensemble model with M members involves training and testing M individual models,
which costs M× training time and M× inference time. MCDP and BBB require M forward passes
during inference to generate M samples and therefore cost M× inference time. All other methods
require a single forward pass. In contrast to neural-network-based methods of complexity O(n2),
the training and inference of GP involves matrix inversion of complexity O(n3).

Table 10: Computational time cost of speech quality assessment and emotion attribute annotation.
Due to training complexity, the number of annotations it simulate M is set to 10 for ensemble while
100 for all other methods.

Speech quality assessment Emotion attribute annotation
Training (sec) Inference (sec) train(sec) inference(sec)

GP 3.88±0.01E+03 6.27±0.07E+01 1.00±0.00E+04 2.61±0.03E+02
EDL 2.92±0.01E+03 5.17±0.19E+01 7.69±0.03E+03 1.91±0.00E+02

MCDP 1.37±0.32E+03 3.64±1.29E+03 3.89±0.01E+03 1.76±0.03E+04
Ensemble 1.39±0.00E+04 5.10±0.05E+02 3.91±0.01E+04 1.67±0.00E+03

BBB 1.51±0.00E+03 5.33±0.02E+03 4.25±0.01E+03 1.81±0.01E+04
CVAE 1.41±0.00E+03 5.27±0.06E+01 4.13±0.00E+03 2.26±0.05E+02
I-CNF 1.34±0.07E+03 5.10±0.02E+01 3.98±0.08E+03 1.76±0.00E+02

M DETAILED EXPLANATION OF “ZERO-SHOT DENSITY ESTIMATION”

This section provides detailed explanation of the zero-shot density estimation framework including
how it differs from noisy label filtering, how it differs from standard supervised learning framework,
and why it is “zero-shot”.

26



Under review as a conference paper at ICLR 2024

M.1 HOW DOES HAS DIFFER FROM NOISY LABEL FILTERING?

Noisy label filtering (Gu et al., 2022; Berthon et al., 2021) is a related but different task. Both tasks
involve inconsistent labels while the source of inconsistency is different. When filtering noisy labels,
it is assumed that there is a ground truth and we want to remove misleading labels. For HAS, the
inconsistency stems from subjective perception of humans. No particular perception is incorrect nor
wrong and there’s no single “ground truth” (i.e., how expressive the synthesised speech is? What’s
the correct score for an ICLR paper review?). The difference is valuable as it reflects different
human interpretations of the same event. Therefore, we propose modelling annotators’ subjective
interpretations rather than seeking to reduce the variability in annotations by enforcing a single
correct answer.

M.2 HOW DOES HAS DIFFER FROM STANDARD SUPERVISED LEARNING TASKS?

The proposed distribution estimation framework is different from standard supervised learning tasks
since no “ground truth” is available for training. The objective is to learn the underlying distribution
given observations (annotations) while the true distribution is unknown.

Extending the notations in the paper, we denote an event as di, which consists of a descriptor (i.e.,
an utterance) xi and Mi associated observations (i.e., human annotations) {Di = η

(m)
i }Mi

m=1. For a
test event d∗, the test descriptor and observations are denoted as x∗ and D∗. The target to estimate
is the distribution of D∗, denoted as p∗.

The first type of approach mentioned in Section 2.2 hand-crafts proxy variables hi based on each
Di, treats the proxy variables as the ground truth, and learns the proxy in a supervised way with
paired {xi, hi}. During testing, given a descriptor x∗, it outputs the prediction of proxy h∗ which
may not capture the underlying distribution p∗. That’s why supervised learning is not suitable for
such tasks.

M.3 WHY S-CNF AND I-CNF ARE ZERO-SHOT DENSITY ESTIMATION APPROACHES?

By “zero-shot density estimation”, we mean that our meta-learned human annotation simulator can
be used to estimate the distribution for a given event d∗ without requiring observations D∗.

The traditional methods to learn subjective distributions, i.e., MCMC with people (Sanborn & Grif-
fiths, 2007) and Gibbs sampling with people (Harrison et al., 2020), require human annotators to be
involved in the process in a dynamic setting. Given an event of interest d∗, these methods present
the descriptor x∗ to human participants who are asked to provide sequence of decisions D∗ follow-
ing a Markov Chain Monte Carlo acceptance rule. The distribution p∗ is then estimated based on
D∗. In other words, observations D∗ are necessary in order to estimate each subjective probability
distribution and there is no obvious way to transfer information between different Markov chains.
Therefore, these methods cannot be applied to simulate annotation distribution for unlabelled data.

An advantage of the proposed method is that only the descriptor x∗ is needed to simulate the distri-
bution of event d∗ and no D∗ is needed which is often unavailable in real-world settings. That is the
meaning of “zero-shot” in this density estimation framework. Each event is framed as a dataset in
the proposed meta-learning framework. The proposed approach meta-learns a conditional density
estimator across all datasets Dmeta = {Di}Ni=1. It leverages knowledge about the agreements and
disagreements among different human annotators across different examples for estimating the label
distribution of each input rather than designing the proxy solely based on Di. In other words, given
{xi, Di}Ni=1, the model is trained to learn how to learn the underlying distribution of Di given xi.
During testing, given the test descriptor x∗, the model estimates p∗ which can be easily sampled
from.
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