
Controllable Financial Market Generation with
Diffusion Guided Meta Agent

Yu-Hao Huang1, Chang Xu2, Yang Liu2, Weiqing Liu2, Wu-Jun Li1, Jiang Bian2

1National Key Laboratory for Novel Software Technology,
School of Computer Science, Nanjing University

2Microsoft Research Asia
huangyh@smail.nju.edu.cn, {chanx, yangliu2, weiqing.liu}@microsoft.com,

liwujun@nju.edu.cn, jiang.bian@microsoft.com

Abstract

Generative modeling has transformed many fields like language and visual mod-
eling, while its exploit in financial market is under-explored. As the minimal
unit within a financial market is an order, order flow modeling represents the
fundamental generative financial task. However, current approaches often re-
sult in unsatisfactory fidelity in generating order flow, and their generation lacks
controllability, thereby limiting their application scenario. In this paper, we advo-
cate incorporating controllability into market generation, and propose a Diffusion
Guided meta Agent (DiGA) model. Specifically, we utilize a diffusion model to
capture dynamics of market state represented by time-evolving distribution parame-
ters about mid-price return rate and order arrival rate, and define a meta agent with
financial economic priors to generate orders from the corresponding distributions.
Extensive experimental results demonstrate that our method exhibits outstand-
ing controllability and fidelity in generation. Furthermore, we validate DiGA’s
effectiveness as generative environment for downstream financial applications.

1 Introduction

Generative modeling has transformed fields such as natural language processing [1, 2, 3], media
synthesis [4, 5, 6], science discovery [7, 8, 9, 10] and medical applications [11, 12]. Similar to word
for language and pixel for images, order is the fundamental element representing a minimal unit of
event to generate within financial market [13, 14, 15, 16, 17]. Recent works have attempted to simulate
order-level financial market with agent-based methods, either using rule-based agents [18, 19, 20]
or learned agents [21, 22, 23]. However, the fidelity and flexibility are limited. Ruled-based agents
rely on over-simplified assumptions of the market that can only represent known types of market
participants and predefined market scenario. They are not trained with real market data but are
constructed with hand-crafted rules instead, resulting in constrained simulation fidelity. Learned
agents are trained to predict next order given history order flow where the order flow may contain
over hundreds of orders in one minute. It is challenging to directly capture the long term dependency
since a trading day lasts hundreds of minutes. They stress more on local distribution of the simulated
order flow, neglecting the global dynamic. More importantly, the controllability to the generated
market, which enables researchers and practitioners to systematically explore market behaviors under
various conditions such as extreme or rare events, is absent from the literature. This underlines a
practical gap for conducting scenario-based experiments and counterfactual analysis [24, 25].

In this paper, we propose a Diffusion Guided meta Agent (DiGA) model to address the controllable
financial market generation problem. Specifically, we utilize a conditional diffusion model to capture
dynamics of market state represented by time-evolving distribution parameters about mid-price return

39th Conference on Neural Information Processing Systems (NeurIPS 2025 Workshop on GenAI in Finance).



Meta Controller 

Generated 
... ...

Diffusion

Real 

 Denoising

 

Order Generator 

Meta Agent

Exchange

Train only:

Generation flow: Meta agent:

Actor agent:

(a) Meta controller and order generator in DiGA.

Real Order Flow 
9:30:01    9.99       8          Sell 
9:30:01  10.02       6          Sell 

... ...
9:59:59  10.12      30         Buy 

10:00:00  10.11      10    Cancel 
... ...

14:59:59 10.23       8          Buy 

Mid-price return

Arrival Rate

Control Targets 

...

Low Return Low Volatility

High Volatility High Amplitude

Low Amplitude

High Return

Concat

Generated Order Flow 
9:30:01    9.99       8          Sell 
9:30:01  10.02       6          Sell 

... ...

... ...
14:59:59 10.23       8          Buy 

(b) Data flow of DiGA.

Figure 1: Overview of DiGA model. Raw order flow are proccessed into market states for the meta
controller to fit. The meta agent is guided by the meta controller to generate simulated order flow.

rate and order arrival rate, and define a meta agent with financial economic priors to samples orders
from the distributions defined by the aforementioned parameters. With DiGA, we are able to control
the generation to simulate order flow given target scenario with high fidelity.

2 Diffusion Guided Meta Agent Model

Order flow data is highly intricate and noisy, with a huge amount counting for tens of thousand
per stock daily which is computational challenging. Thus it is non-trivial modeling the distribution
of order flow that covers diverse scenarios. Moreover, linking a “macro” control target with every
“micro” order separately may not make sense due to the low signal-to-noise ratio in order flow.

Instead of fitting the distribution of raw order flow directly with a diffusion model, we design a
two-stage model that exhibits greater efficiency. The first module is a meta controller C that learns
the intraday dynamics of market states x regarding a scenario c, as the distribution q(x|c), using a
conditional diffusion model. The second module is an order generator G that contains a simulated
exchange and a meta agent. The meta agent is incorporated with financial economics prior, and
guided by the meta controller, to generate order through a stochastic process. Figure 1 provides the
overview of DiGA model.

2.1 Meta Controller

For market states x to represent intraday dynamics regarding given scenario c, they should be evolving
with time and be of close causal connection with c. We choose extracting the minutely mid-price
return rate r as well as order arrival rate λ form the real order flow data as market states x = {r,λ}.

While the number of trading minutes are fixed across trading days, it is natural to treat the stacked
market states of each trading day as a sample. Consequently, the training objective for fitting the
distribution of the market states can be expressed as minExD (pG(x) ∥ q(x)). With the training
set of market states {x ∼ q(x)}, we first generate the diffusion latent variable series with xn =√
ᾱnx0+

√
1− ᾱnϵ, where ϵ ∼ N (0, I), n is the maximum diffusion step and ᾱn is a transformation

of diffusion variance schedule {βn ∈ (0, 1)}n=1,...,N .

Following common practice [4], we implement conditional ϵ-parameterized noise predictor
ϵθ(xn, n, c) for sampling with control target c. Specifically, we adopt indicators commonly used
to describe the state of financial markets as control targets. These indicators include daily return,
amplitude, and volatility. All of these indicators can be numerically derived from the price series.
Controlling these indicators allows the generated order flow to satisfy the need for analyzing markets
under a wide range of specific scenarios that can be characterized by these indicators.

To align the control targets with the model, we introduce a target-specific feature extractor ϕ that
projects target indicators into latent representations ϕ(c). We propose two types of condition encoders
for exerting control. The first one is discrete control encoder, in which conditioning are mapped into

2



a predefined number of discrete bins, with their indexes treated as class labels, and an embedding
matrix is learned to extract the latent representation. The second type is continuous control encoder,
where a fully connected network is employed to directly map conditions into latent representations.
We train ϕ concurrently with the conditional sampler and the training objective is:

LC := EHe(O),c,ϵ∼N (0,I),n[∥ϵ− ϵθ(xn, n,ϕ(c))∥2]. (1)

For both methods, we incorporate classifier-free guidance [26] to perform control. During the training
phase, we jointly train unconditional and conditional samplers by randomly dropping out conditions.
During sampling, a linear combination of conditional and unconditional score estimates is performed:

ϵ̃θ,ϕ(xn, n, c) = (1− s)ϵθ(xn, n) + sϵθ(xn, n,ϕ(c)), (2)

where s is the conditioning scale that controls the strength of guidance. In practice, we adopt DDIM
sampling [27] for better sampling efficiency. As for the model backbone, we adopt a U-Net that is
primarily built from 1D convolution layers, while sharing parameters across diffusion time steps. We
refer the reader to the Appendix C for the details of algorithm and architecture.

2.2 Order Generator

The order generator consists of a simulated exchange, and a meta agent. The simulated exchange
replicates the double-action market protocol on which the majority of financial markets are operating.
It facilitates the agent-market interaction and providing the basis of producing realistic financial
market generations. The meta agent is the representative of all traders in the generated market, serving
as a world agent. Different from existing works that has used learned agent as world agent, our meta
agent is grounded with financial economics prior and is guided by the meta controller.

Specifically, the meta agent generated orders following a stochastic process, whose key parameters
are determined by the meta controller. For every trading minute t in the trading day, the meta agent
“wake up” by a time interval δi sampled from a exponential distribution f(δi;λt) = λte

−λtδi , where
i is the total number of executed wake-ups for this trading day and λt is given by the meta controller.

Upon each wake-up, the meta agent generate an actor agent Ai within the family of heterogeneous
agents [17], who makes decisions following the optimization of CARA utility function given the
market observations. The generated order is then recorded as oi = (ti, pi, qi, oi) ∼ p(o|rt, λt), where
ti =

∑i
j=1 δi. Generation ends at tmax when the next ti will be greater than the total time lengths

of trading hours of a trading day. The generated order flow is recorded as: Õ = {o1, . . . ,omax} ∼
p(O|x̃), where x̃ = {r,λ} is generated by the meta controller. The pseudo codes of the order
generation procedure can be found in the Algorithm 2.

3 Experiments

3.1 Evaluation on Controlling Financial Market Generation

We train DiGA with three control targets respectively: return, amplitude and volatility, all of which
are indicators that represent a vast range of market scenarios. For each indicator, we partition the
values into five bins according to uniform percentiles, each representing lower, low, mid, high and
higher cases for the scenario characterized by corresponding indicator.

Figure 2 illustrates the mid-price series of controlled generation samples for each scenario, as well as
the distribution of indicators in 200 independent generations runs for each scenario. Results show
that the sampled price curves successfully represent the desired scenario, and the distribution of the
four indicators are shifted correctly following the control target.

3.2 Evaluation on Generation Fidelity

We evaluate generation fidelity of DiGA and compare with market simulation baselines with both
rule-based agents (RFD [18], RMSC [20]) and learning-based agents (LOBGAN [22]). We test the
distribution discrepancy of several “stylized facts", which are statistics regarding asset returns and
order book, between the real and simulated markets. These statistics are among the most representative
features in the domain of the financial market micro-structure: Minutely Log Returns (MinR), Return
Auto-correlation (RetAC), Volatility Clustering (VolC) and Order Imbalance Ratio (OIR).

3



0 50 100 150 200
Time

9.8

10.0

10.2

Pr
ice

0 50 100 150 200
Time

9.8

10.0

10.2

10.4

10.6

Pr
ice

0 50 100 150 200
Time

9.6

9.8

10.0

10.2

10.4

Pr
ice

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Return

0

10

20

30

40

De
ns

ity

0.00 0.02 0.04 0.06 0.08
Amplitude

0

20

40

60

80

100

De
ns

ity

0.00060.00080.00100.00120.00140.00160.00180.0020
Volatility

0

1000

2000

3000

4000

5000

De
ns

ity

Higher Medium Lower Real Higher High Medium Low Lower

Figure 2: Aggregated price curves demos (first row) and the distribution of targeted indicators (second
row). For the first row, each curve represents the order flow of one day. For the second row, each
colored density represents the distribution of targeted indicator computed from generation results.

Figure 3 shows the results for fidelity comparison, where the distribution of statistics on real market
data is displayed as Real in golden solid line. Overall, DiGA stays the closest to Real compared with
other methods. For numerical results, please refer to Appendix E.

0.004 0.000 0.004
Minutely Log Return

0

100

200

300

400

500

600

De
ns

ity

0.8 0.0 0.8
Auto-correlation (lag=1)

0

1

2

3

0.0 0.4
Volatility Clustering (lag=1)
0

1

2

3

1 0 1
Order Imbalance Ratio

0.00

0.25

0.50

0.75

1.00

1.25

RFD RMSC LOBGAN DiGA Real

Figure 3: Comparison of stylized facts distribution across baselines. The x-axis is the stylized fact
values and the y-axis is the density.

3.3 Evaluation for High-frequency Trading Task with Reinforcement Learning

We evaluate the helpfulness of DiGA as the environment for training reinforcement learning (RL)
algorithms to perform high-frequency trading. We train an high-frequency trading agent with A2C
algorithm in the environment generated with Replay, RFU, DiGA and the unconditional version of
DiGA (DiGA-c). The agent are then tested with out-of-sample interactive replay and evaluated by
Daily return (Ret), Daily volatility (Vol), Sharpe ratio (SR) and Maximum drawdown (MDD). Results
are shown in Table 1, which demonstrate potential for applying DiGA in downstream task.

Table 1: Average out-of-sample test results (in percentage). Best results are highlighted in bold.

Environment Ret(%)(↑) Vol(↓) SR(↑) MDD(%)(↑)

Replay 0.009±0.043 0.413±0.090 0.014±0.008 −1.133±0.173

RFD 0.000±0.008 0.159±0.094 0.011±0.029 −0.803±0.327

DiGA-c 0.015±0.023 0.147±0.151 0.006±0.066 −0.715±0.464

DiGA 0.029±0.019 0.411±121 0.049±0.031 −1.313±0.156

4 Conclusion and Future Work

In this paper, we present the problem formulation of controllable financial market generation, and
propose a Diffusion Guided meta Agent (DiGA) model to address the problem. Specifically, we utilize
a diffusion model to capture dynamics of market state represented by time-evolving distribution
parameters about mid-price return rate and order arrival rate, and define a meta agent with financial
economic priors to generate orders from the corresponding distributions. Extensive experimental
results demonstrate that our method exhibits outstanding controllability and fidelity. While we focus
on generating order flow of one individual stock for each time in this work, one future work is to
consider the correlation among multiple assets for generating more realistic markets.

4



References

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Lan-
guage models are few-shot learners,” in Advances in Neural Information Processing Systems,
2020.

[2] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,”
Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[3] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani,
H. Cole-Lewis, S. Pfohl et al., “Large language models encode clinical knowledge,” Nature,
vol. 620, no. 7972, pp. 172–180, 2023.

[4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthe-
sis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[5] J. Lu, C. Clark, S. Lee, Z. Zhang, S. Khosla, R. Marten, D. Hoiem, and A. Kembhavi, “Unified-
io 2: Scaling autoregressive multimodal models with vision language audio and action,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

[6] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi, and A. Défossez, “Simple
and controllable music generation,” Advances in Neural Information Processing Systems, 2024.

[7] J. Wang, C.-Y. Hsieh, M. Wang, X. Wang, Z. Wu, D. Jiang, B. Liao, X. Zhang, B. Yang, Q. He
et al., “Multi-constraint molecular generation based on conditional transformer, knowledge
distillation and reinforcement learning,” Nature Machine Intelligence, vol. 3, no. 10, pp. 914–
922, 2021.

[8] M. A. Skinnider, F. Wang, D. Pasin, R. Greiner, L. J. Foster, P. W. Dalsgaard, and D. S. Wishart,
“A deep generative model enables automated structure elucidation of novel psychoactive sub-
stances,” Nature Machine Intelligence, vol. 3, no. 11, pp. 973–984, 2021.

[9] A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White, and P. Schwaller, “Augmenting
large language models with chemistry tools,” Nature Machine Intelligence, pp. 1–11, 2024.

[10] F. Fürrutter, G. Muñoz-Gil, and H. J. Briegel, “Quantum circuit synthesis with diffusion models,”
Nature Machine Intelligence, pp. 1–10, 2024.

[11] M. Aversa, G. Nobis, M. Hägele, K. Standvoss, M. Chirica, R. Murray-Smith, A. M. Alaa,
L. Ruff, D. Ivanova, W. Samek, F. Klauschen, B. Sanguinetti, and L. Oala, “Diffinfinite: Large
mask-image synthesis via parallel random patch diffusion in histopathology,” in Advances in
Neural Information Processing Systems, 2023.

[12] T. Tu, S. Azizi, D. Driess, M. Schaekermann, M. Amin, P.-C. Chang, A. Carroll, C. Lau,
R. Tanno, I. Ktena et al., “Towards generalist biomedical ai,” NEJM AI, vol. 1, no. 3, p.
AIoa2300138, 2024.

[13] R. Palmer, W. Brian Arthur, J. H. Holland, B. LeBaron, and P. Tayler, “Artificial economic
life: a simple model of a stockmarket,” Physica D: Nonlinear Phenomena, vol. 75, no. 1, pp.
264–274, 1994.

[14] T. Lux and M. Marchesi, “Scaling and criticality in a stochastic multi-agent model of a financial
market,” Nature, vol. 397, no. 6719, pp. 498–500, 1999.

[15] M. Raberto, S. Cincotti, S. M. Focardi, and M. Marchesi, “Agent-based simulation of a financial
market,” Physica A: Statistical Mechanics and its Applications, vol. 299, no. 1, pp. 319–327,
2001.

[16] C. Chiarella and G. Iori, “A simulation analysis of the microstructure of double auction markets,”
Quantitative finance, vol. 2, no. 5, p. 346, 2002.

[17] C. Chiarella, G. Iori, and J. Perello, “The Impact of Heterogeneous Trading Rules on the Limit
Order Book and Order Flows,” Journal of Economic Dynamics and Control, vol. 33, no. 3, pp.
525–537, 2009.

5



[18] S. Vyetrenko, D. Byrd, N. Petosa, M. Mahfouz, D. Dervovic, M. Veloso, and T. Balch, “Get
real: realism metrics for robust limit order book market simulations,” in Proceedings of the
ACM International Conference on AI in Finance, 2020.

[19] D. Byrd, M. Hybinette, and T. H. Balch, “Abides: Towards high-fidelity multi-agent market
simulation,” in Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 2020.

[20] S. Amrouni, A. Moulin, J. Vann, S. Vyetrenko, T. Balch, and M. Veloso, “Abides-gym: gym
environments for multi-agent discrete event simulation and application to financial markets,” in
Proceedings of ACM International Conference on AI in Finance, 2021.

[21] J. Li, X. Wang, Y. Lin, A. Sinha, and M. P. Wellman, “Generating realistic stock market order
streams,” in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020.

[22] A. Coletta, J. Jerome, R. Savani, and S. Vyetrenko, “Conditional generators for limit order book
environments: Explainability, challenges, and robustness,” CoRR, vol. abs/2306.12806, 2023.

[23] J. Li, Y. Liu, W. Liu, S. Fang, L. Wang, C. Xu, and J. Bian, “Mars: a financial market simulation
engine powered by generative foundation model,” in The Thirteenth International Conference
on Learning Representations, 2025.

[24] J. Guo, S. Wang, L. M. Ni, and H. Shum, “Quant 4.0: Engineering quantitative invest-
ment with automated, explainable and knowledge-driven artificial intelligence,” CoRR, vol.
abs/2301.04020, 2023.

[25] T. Mizuta, “An agent-based model for designing a financial market that works well,” in Pro-
ceedings of the IEEE Symposium Series on Computational Intelligence, 2020.

[26] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” CoRR, vol. abs/2207.12598, 2022.
[27] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in Proceedings of the

International Conference on Learning Representations1, 2021.
[28] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised

learning using nonequilibrium thermodynamics,” in Proceedings of the International Conference
on Machine Learning, 2015.

[29] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural
Information Processing Systems, 2020.

[30] R. Cont, “Empirical properties of asset returns: stylized facts and statistical issues,” Quantitative
finance, vol. 1, no. 2, p. 223, 2001.

[31] X. Wang and M. P. Wellman, “Spoofing the limit order book: An agent-based model,” in
Proceedings of the Conference on Autonomous Agents and MultiAgent Systems, 2017.

[32] A. Coletta, M. Prata, M. Conti, E. Mercanti, N. Bartolini, A. Moulin, S. Vyetrenko, and
T. Balch, “Towards realistic market simulations: a generative adversarial networks approach,”
in Proceedings of the ACM International Conference on AI in Finance, 2021.

[33] A. Coletta, A. Moulin, S. Vyetrenko, and T. Balch, “Learning to simulate realistic limit order
book markets from data as a world agent,” in Proceedings of the ACM International Conference
on AI in Finance, 2022.

[34] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based gen-
erative modeling through stochastic differential equations,” in Proceedings of the International
Conference on Learning Representations, 2021.

[35] P. Dhariwal and A. Q. Nichol, “Diffusion models beat gans on image synthesis,” in Advances in
Neural Information Processing Systems, 2021.

[36] J. Song, Q. Zhang, H. Yin, M. Mardani, M. Liu, J. Kautz, Y. Chen, and A. Vahdat, “Loss-guided
diffusion models for plug-and-play controllable generation,” in Proceedings of the International
Conference on Machine Learning, 2023.

[37] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile diffusion model
for audio synthesis,” in Proceedings of the International Conference on Learning Representa-
tions, 2021.

[38] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley, “Audi-
oLDM: Text-to-audio generation with latent diffusion models,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2023.

6



[39] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor,
T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation
models as world simulators,” 2024. [Online]. Available: https://openai.com/research/
video-generation-models-as-world-simulators

[40] Y. Guo, C. Yang, A. Rao, Z. Liang, Y. Wang, Y. Qiao, M. Agrawala, D. Lin, and B. Dai,
“Animatediff: Animate your personalized text-to-image diffusion models without specific
tuning,” International Conference on Learning Representations, 2024.

[41] M. Kollovieh, A. F. Ansari, M. Bohlke-Schneider, J. Zschiegner, H. Wang, and Y. B. Wang, “Pre-
dict, refine, synthesize: Self-guiding diffusion models for probabilistic time series forecasting,”
in Advances in Neural Information Processing Systems, 2023.

[42] A. Coletta, S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko, “On the constrained time-series
generation problem,” in Advances in Neural Information Processing Systems, 2023.

[43] X. Yuan and Y. Qiao, “Diffusion-ts: Interpretable diffusion for general time series generation,”
in International Conference on Learning Representations, 2024.

7

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


A Codes and Extended Version

Codes available in https://github.com/microsoft/TimeCraft/tree/main/DiGA.

Extended version available in https://arxiv.org/pdf/2408.12991.

B Detailed Description of Dataset and Preprocessing

We conduct the experiments on two tick-by-tick order datasets over China A-share market: A-Main
and ChiNext. Both datasets are collected from Wind1, retrieving Shenzhen Stock Exchange (SZSE)
of year 2020. Table 2 summarizes the statistics of the dataset.

Table 2: Dataset statistics for DiGA.

A-Main ChiNext

Number of date-stock pairs 316,287 122,574
Number of unique stocks 1452 854

Number of unique trading days 237 231

For each dataset, we randomly draw 5,000 samples each for validation and test, with all of the rest
samples for training.

Preprocessing includes filtering and transformation.

• Filtering We filtered out samples that contains incomplete records (i.e. trading suspended)
or invalid orders (i.e. invalid order price).

• Transformation We transform tick-by-tick data into market states represented with mid-
price return and order arrival rate.
For mid-price return, we first extract minutely mid-price series from order flow samples
of each trading day, where mid-price pt = (at,1 + bt,1)/2 is defined as the average of
best ask price bt,1 and best bid price at,1 at the end of the t-th trading minute. Then we
calculate the log differences between consecutive minutes as the mid-price return rate
rt = log(pt)− log(pt−1). Finally, r = [r1, r2, ..., rT ]. The effective T for mid-price return
is 236, excluding the call auction phase at the end of each trading day.
For order arrival rate, we first calculate the number or orders within each minutes as Nt.
With the assumption that the arrival of order follows a Poisson process, we take Nt as
the expected number of orders and the order arrival rate can be approximate by λt = Nt.
Finally, λ = [λ1, λ2, ..., λT ].
During training, the inputs are transformed by z-score normalization method with mean and
standard deviation calculated from the training split of data. When sampling, model outputs
are inverse transformed accordingly.

C Detailed Description of DDPM

C.1 Brief Review of DDPM model

A diffusion probabilistic model [28] learns to reverse the transitions of a Markov chain which is
known as the diffusion process that gradually adds noise to data, ultimately destroying the signal.

Let x0 ∈ Rd ∼ q(x0) be real data of dimension d from space X . The diffusion process generates
x1, ...,xN from the same space with the same shape as x0, using a Markov chain that adds Gaussian
noise over N time steps: q(x1, ...,xN |x0) :=

∏N
n=1 q(xn|xn−1). The transition kernel is commonly

defined as:
q(xn|xn−1) := N (xn;

√
1− βnxn, βnI), (3)

where {βn ∈ (0, 1)}n=1,...,N defines the variance schedule. Note that xn at any arbitrary time step n
can be derived in a closed form q(xn|x0) = N (xn;

√
ᾱnx0, (1− ᾱn)I), where αn := 1− βn and

1https://www.wind.com.cn/. According to the data license, we are not able to share the full original data.

8

https://github.com/microsoft/TimeCraft/tree/main/DiGA
https://arxiv.org/pdf/2408.12991


Algorithm 1: Training meta controller of DiGA
Data: Order flow O processed into market states x;
Result: Network parameters θ for meta controller
repeat

Sample x0 ∼ q(x);
Calculate target indicator c = F(x);
Randomly set c as unconditional identifier cu;
Randomly sample time step n ∼ U(1, N);
Randomly sample noise ϵ ∼ N ∼ (0, I);
Corrupt data xn =

√
ᾱnx+

√
1− ᾱnϵ;

Take gradient descent step on: ∇θ,ϕ∥ϵ− ϵ̃θ,ϕ(xn, n, c))∥;
until reach max epochs;

ᾱn :=
∏n

s=1 αs. For the reverse process, the diffusion model, parameterized by θ, yields:

pθ(x0,x1, ...,xN ) := p(xN )

N∏
n=1

pθ(xn−1|xn), (4)

where pθ(xn−1|xn) := N (xn−1;µθ(xn, n),Σθ(xn, n)) and the transitions start at p(xN ) =
N (xn;0, I).

While the usual optimization objective can be written as:

L := E[− log pθ(x0)] ≤ Eq[− log
pθ(x0, ...,xN )

q(x1, ...,xN |x0)
], (5)

a widely adopted parameterization writes:

µθ(xn, n) =
1

√
αn

(xn − βn√
1− ᾱn

ϵθ(xn, n)), (6)

which simplifies the objective to:

Lsimple := Ex0,ϵ,n[∥ϵ− ϵθ(
√
ᾱnx0 +

√
1− ᾱnϵ, n)∥2]. (7)

On sampling, xn−1 = 1√
αn

(xn− 1−αn√
1−ᾱn

ϵθ(xn, n))+σnz, where σn =
√
βn and z ∼ N (0, I) [29].

To obtain a conditional DDPM model using classifier-free guidance [26], we modify the noise
estimator to receive condition embedding ϕ(c) as input, forming ϵθ(xn, n,ϕ(c)). During training,
condition c is replaced by an unconditional identifier c0 by a probability puncond to obtain unconditional
prediction ϵθ(xn, n) = ϵθ(xn, n, c0). During sampling, a conditioning scale s is set to control the
strength of guidance, replacing the noise prediction with

ϵ̃θ,ϕ(xn, n, c)) = (1− s)ϵθ(xn, n) + sϵθ(xn, n,ϕ(c)). (8)

Both conditional and unconditional sampling can be accelerated by DDIM [27].

C.2 Algorithmic Procedure for Training Meta Controller

The pesudo code of training meta controller can be found in Algorithm 1.

C.3 Detailed Parameters of Training Meta Controller

The denoising model ϵθ used in meta controller is adapted from [29]: The input of denoising model
is shaped as (B,C, T ), where B is the batch size, C is the number of channels and T is the number
of trading minutes in a day. In our case, C = 2 and T = 236.

The denoising model is structured as a U-Net mainly with 3 down-sampling blocks, 1 middle blocks,
3 up-sampling blocks and 1 output block. Each up/down-sampling block contains 2 ResNet blocks, 1
self-attention layer and 1 up/down sample layer. Each ResNet block contains 2 convolution layers
of size 15, with SiLU activation, with residual connection and layer normalization. Each up/down
sampling layer use a factor of 2. The number of channels after each up/down sampling starts from 64

9



and is then scaled by a factor of 4. The middle block contains 2 ResNet block with a self-attention
layer in between. The output block is another ResNet block followed by an 1*1 convolution layer.
In addition, the conditioning embedding is extracted by a fully connected network with 2 layers of
dimension 64. Table 3 lists the required parameters along with the above description.

We train the diffusion model with 200 diffusion steps with AdamW optimizer. There are 256 samples
per mini-batch and the learning rate is 1e−5. For both the discrete and continuous control models,
we use a probability of 0.5 to randomly drop conditions during training. Training is operated on 1
NVIDIA Tesla V100 GPU for 10 epochs, which takes approximately 2 hours for the A-Main dataset
and 1 hour for the ChiNext dataset. We set a pseudo initial stock price at 10 for every generation run.

D Details of Generating with DiGA

D.1 Algorithmic Procedure for Generating Financial Market with DiGA.

Upon each wake-up, the meta agent generate an actor agent Ai within the family of heterogeneous
agents [17], who makes decisions following the optimization of CARA utility function given the
market observations. The order generation procedures are described as follows:

• The actor agent is initialized with random holding positions S and the corresponding
amount of cash C, as well as the random weights gf , gc, gn of its three heterogeneous
components, namely fundamental, chartist and noise. These random variables are samples
from independent exponential distributions, configured such that the expected values of the
fundamental, chartist, and noise weights follow a ratio of 10:1.5:1.

• The actor agent then produce an estimation of objective future return r̂ as the average of
fundamental, chartist and noise with weights above. Fundamental is the rt determined by the
meta controller. Chartist is the historical average return r̄ obtained from simulated exchange.
Noise is a small Gaussian perturbation rσ . Consequently, r̂ =

gfrt+gcr̄+gnrσ
gf+gc+gn

.

• With the estimate return, the actor agent estimate future price p̂t = pt exp (r̂), the actor
agent is able to obtain its specific demand function u(p) = ln (p̂t/p)

aV p by deriving from
CARA utility on future wealth [17], where a is risk averse coefficient and V is history price
volatility. The actor agent also estimate the price pl such that pl(u(pl)−S) = C is satisfied,
as the lowest order price.

• Finally, the actor agent samples its order price uniformly between its lowest price and
estimated price pi ∼ U(pl, p̂), as well as obtain order volume qi = u(pi) − S and order
type oi = sign(qi) where oi = 1 indicates buy order and oi = 0 indicates sell order.

The generated order is then recorded as oi = (ti, pi, qi, oi) ∼ p(o|rt, λt), where ti =
∑i

j=1 δi. The
pseudo codes of the algorithm can be found in Algorithm 2. We discuss the input parameters in D.2
and D.3.

D.2 Discussion on Meta Controller Sampling Parameters

When sampling with the meta controller, we apply DDIM [27] to reduce sampling steps to 20. For
obtaining best generation result, the classifier guidance scale s should be properly selected. In our
experiments, we select the best s from the range of 1, 2, 4, 6, 8 for each target scenario. The selection
is based on the discrepancy between control target and the generated scenario during training, and we
take the s that shows the lowest discrepancy.

D.3 Discussion on Meta Agent Parameters

Following the heterogeneous agent settings [17], the meta agent employs several probabilistic
parameters to ensure heterogeneity. The parameters and their usage are as follows: τ0 for estimation
horizon, α0 for risk aversion, σn for noisy return. All the parameters are for mimicking human
preference in real stock market.

Throughout our experiments, we fix τ0 = 30, α0 = 0.1, σn = 1e−4, p0 = 10 for all runs to avoid
overfitting these parameters. Nevertheless, they can be calibrated to further improve fidelity.

10



Algorithm 2: Generating market order flow with DiGA
Input: Meta controller parameter θ, control target c, conditioning scale s, max trading time T , initial price

p0, meta agent parameters λf , λc, λn, τ0, α0, σn, simulated exchange
Output: Order flow O
(Phase 1: sampling market states with meta controller)
Random sample xn ∼ N (0, I);
for n = N to 1 do

Sample z ∼ N (0, I);
ϵ̂ = ϵ̃θ,ϕ(xn, n, c)) = (1− s)ϵθ(xn, n) + sϵθ(xn, n,ϕ(c)));
xn−1 = 1√

αn
(xn − 1−αn√

1−ᾱn
ϵ̂) + σnz;

end
(Phase 2: generate order flow with meta agent)
Initialize t = 0, O = ∅, pt = p0;
repeat

Extract rt and λt from x;
Initialize asset for actor agent Ai: Si ∼ exponential(S0), Ci ∼ exponential(C0),
gf ∼ Laplace(λf ), gc ∼ Laplace(λc), gn ∼ Laplace(λn), τi = τ0

1+gf
1+gc

, αi = α0
1+gf
1+gc

;
Sample time interval δi ∼ exponential(λ), set ti = t+ δi;
Observe r̄ from exchange and sample rσ ∼ N (0, σn);
Estimate future return r̂ =

gf rt+gcr̄+gnrσ
gf+gc+gn

;
Estimate future price p̂t = pt exp (r̂);
Solve pl from pl(u(pl)− Si) = Ci, where u(p) = ln (p̂t/p)

αiV p
;

Sample price pi ∼ U(pl, p̂);
Calculate volume qi = u(pi)− Si;
Obtain order type oi = sign(qi);
Compose order oi = (ti, pi, qi, oi);
Simulated exchange update current price pt = Exchange(oi);
Update t = ti,O = O ∪ {oi};

until t > T ;

Table 3: Detailed parameters used for meta controller training.

Parameter name Parameter value

Denoising shape (2, 236)
Diffusion steps 200
Residual blocks 2

First layer hidden dimension 64
U-Net dimension multipliers (1, 4, 16)

Embedding dimensions 256
Convolution kernel size 15

Convolution padding length 7
Unconditional probability puncond 0.5

Batch size 256
Learning rate 1e-5

E Additional Experiment Description and Results

We provide detailed descriptions of the experiments and the full result table with both mean and std
across 3 independent run with different random seeds for main tables in Table 5, Table 6, Table 7.

E.1 Evaluation on Controlling Financial Market Generation

In this experiment, we evaluate DiGA’s capability for controlling market generation. For enabling
DiGA to simulate with control targets as input, we train DiGA with four indicators respectively:
return, amplitude and volatility, all of which are indicators that represent a vast range of market
scenarios. For each indicator, we first retrieve its empirical distribution from real-world order flow
dataset. Then we partition the values into five bins according to uniform percentiles, each representing
lower, low, mid, high and higher cases for the scenario characterized by corresponding indicator. We

11



train DiGA with discrete control encoder using these case types as class labels, and train DiGA with
continuous control encoder using the exact value of indicators after normalization. On testing, the
class labels are directly used as control target for DiGA with discrete control encoder, and we extract
the median value of real samples from each bin to represent corresponding scenario as the control
target for DiGA with continuous control encoder.

Table 5 shows the mean squared error (MSE) between the indicators computed from simulated
order flow and the control target, i.e. the median value of each of the five bins, for DiGA with both
discrete and continuous control encoder. The results are averaged from 3 runs with different random
seeds. “No Control” presents results from a variant of DiGA with the condition mechanism in meta
controller removed, whose generations are independent to the control target. From Table 5, DiGA
demonstrates the ability of control by keeping a relatively small error between realized indicator value
and control target, while the outcome without control is either random or repeating some particular
scenarios.

Figure 2 illustrates the mid-price series of controlled generation samples for each scenario, as well as
the distribution of indicators in 200 independent generations runs for each scenario. Results show
that the sampled price curves successfully represent the desired scenario, and the distribution of the
four indicators are shifted correctly following the control target. This demonstrates capability of
DiGA to control financial market generation.

E.2 Evaluation on Generation Fidelity

We evaluate generation fidelity of DiGA and compare the results with market simulation method
baselines with both rule-based agents and learning-based agents:

• RFD [18] is a multi-agent based market simulation configuration with random fundamental
and diverse agent types, consisting of 1 market maker, 25 momentum, 100 value and 5,000
noise agents.

• RMSC [20] is the reference market simulation configuration introduced by ABIDES-gym,
which contains all RFD agents and 1 extra percentage-of-volume (POV) agent who provide
extra liquidity to the simulated market.

• LOBGAN [22] trains a conditional Wasserstein GAN with gradient penalty to generate next
order conditioned on market history.

We focus on the distribution discrepancy of several “stylized facts", which are statistics regarding
asset returns and order book, between the real and simulated markets. These selected statistics are
among the most representative features in the domain of the financial market micro-structure:

• Minutely Log Returns (MinR) are the log difference between two consecutive prices
sampled by minutes.

• Return Auto-correlation (RetAC) is the value of linear auto-correlation function calculated
between the return array and its lagged array. Empirical studies on real market data have
discovered absence of auto-correlation while the lag is not big enough.

• Volatility Clustering (VolC) is the value of linear auto-correlation function of the squared
returns and their lag. It shows the empirical fact that volatile events tend to appear in cluster
with time.

• Order Imbalance Ratio (OIR) is proportion volume difference between best bid and best
ask. It represents the tendency for trading of market participants.

We demonstrate results sampled with the unconditional version of DiGA in the experiment. Figure 3
shows the results for fidelity comparison, where the distribution of statistics on real market data
is displayed as Real in golden solid line. Overall, DiGA stays the closest to Real compared with
other methods. We capture the differences between real and simulated market quantitatively using
Kullback-Leibler divergence (K-L). Table 6 provides the quantitative metrics, showing that DiGA
can reach the best K-L divergence among the most of the statistics. Although LOBGAN obtains
the lowest RetAC divergence because of its auto-regressive nature when generating orders, DiGA
still outperform LOBGAN on other metrics by a large margin. Overall, the results demonstrate
DiGA’s superiority on generating realistic market dynamic, achieving the state-of-the-art performance
regarding fidelity in market simulation.

12



Table 4: Comparison on computational efficiency.

Model Time(ms)/Order

RFD 0.049
RMSC 0.075
LOBGAN 1.710
DiGA 0.017

E.3 Evaluation for High-frequency Trading Task with Reinforcement Learning

We evaluate the helpfulness of DiGA as the environment for training reinforcement learning (RL)
algorithms to perform high-frequency trading.

E.3.1 Settings

We train a trading agent with simulated market as training environment using the A2C algorithm, to
optimize for a high-frequency trading task. Agents take an discrete action every 10 seconds. Possible
actions include either buy or sell at any one of the best 5 level with integer volume ranging from 1
to 10 units, as well as an option not to submit any order. The observation space is configured as the
price changes of last 20 seconds, 10-level bid-ask price-volume pairs and the account status including
the current amount of capital, position and cash of agents. Each agent is trained on simulated stock
market produced by either history replay, RFU, DiGA and a variant of DiGA that removes the
conditioning mechanism of meta controller (DiGA-c). Each train lasts for 200 episodes, where each
episode represents a full trading day with 1440 decision steps in four trading hours. Afterwards, we
test the agents with an environment replaying out-of-sample real market data for 50 episodes. Tests
are repeated three times using three non-overlap periods of out-of-sample real market data. All trains
share the same set of RL hyper-parameters for fairness.

We evaluate the performance of RL trading task with four metrics. Daily return (Ret) is the mean
return rate across episodes, for assessing profitability. Daily volatility (Vol) is the standard deviation
of daily return for assessing risk management, daily Sharpe ratio (SR) is the division of daily return
by volatility for assessing return-risk trade-off ability. Maximum drawdown (MDD) is the largest
intraday profit drop happens during testing which assesses the performance under extreme cases.

E.3.2 Results

Table 7 displays the average numerical results for the high-frequency trading task. The trading
agent trained with DiGA generated environment has earned the best daily return and Sharpe ratio
against all baselines. Agent trained with DiGA-c obtains the best daily volatility and maximum
drawdown, which indicates a more conservative strategy. These results show that the DiGA generated
environment helps the trading agent learn a better policy. Moreover, the result difference between
DiGA and DiGA-c indicates that performing control on the training environment is meaningful for
establishing decision preference of a trading agent.

E.4 Analysis on Computational Efficiency

In this section, we compare the computational efficiency of between DiGA and all baseline models.
We use the speed of financial market generation which is measured by the average time used for
generating an order as the benchmark for computation efficiency. The results are shown in Table 4.

From Table 4, DiGA can generate orders at the fastest speed among baselines, taking approximately
0.017 milliseconds for generating each order and providing support for real-time, latency-critical
applications. RFD and RMSC methods generate orders by a slightly slower rate, which are the results
of their specific agent design that requires quoting from the virtual exchange for each decision time.
LOBGAN generates orders about 100 times slower than DiGA, due to the recurrent neural network
architecture and the autoregressive nature of its generator module. Considering the best performance
on fidelity, we can conclude that DiGA achieves the best efficiency on financial market generation.

13



Table 5: MSE between the targeted indicator and the generated aggregative statistics of generated
order flow. Best results are highlighted with bold face.

A-Main ChiNext

Target Method Lower Low Medium High Higher Lower Low Medium High Higher

Return

No Control mean 1.443 0.583 0.529 0.813 2.337 0.979 0.684 0.992 1.718 3.923
std 0.211 0.096 0.048 0.072 0.201 0.134 0.095 0.103 0.133 0.209

Discrete mean 1.055 0.494 0.228 0.429 0.664 1.285 0.807 0.243 0.413 0.869
std 0.159 0.040 0.003 0.027 0.031 0.008 0.055 0.023 0.029 0.110

Continuous mean 0.206 0.178 0.161 0.184 0.212 0.584 0.539 0.342 0.449 0.840
std 0.080 0.023 0.022 0.017 0.033 0.211 0.267 0.389 0.422 0.522

Amplitude

No Control mean 0.521 0.268 0.268 0.699 3.298 1.130 0.638 0.427 0.608 2.763
std 0.071 0.044 0.017 0.024 0.105 0.074 0.077 0.081 0.088 0.107

Discrete mean 0.049 0.088 0.309 0.502 0.930 0.057 0.134 0.346 0.523 0.963
std 0.005 0.004 0.016 0.016 0.053 0.003 0.008 0.002 0.031 0.015

Continuous mean 0.054 0.076 0.149 0.247 0.348 0.110 0.116 0.255 0.437 0.973
std 0.017 0.016 0.017 0.080 0.011 0.007 0.011 0.045 0.065 0.113

Volatility

No Control mean 0.021 0.115 0.431 1.209 4.288 0.029 0.246 0.713 1.737 5.221
std 0.003 0.018 0.038 0.065 0.123 0.006 0.015 0.034 0.061 0.116

Discrete mean 0.016 0.123 0.383 0.890 2.393 0.029 0.188 0.481 0.948 2.257
std 0.001 0.017 0.008 0.021 0.008 0.003 0.007 0.014 0.016 0.019

Continuous mean 0.011 0.104 0.318 0.774 2.389 0.028 0.178 0.473 1.016 2.631
std 0.001 0.010 0.030 0.057 0.098 0.005 0.008 0.020 0.078 0.260

Table 6: K-L divergence of stylized facts distribution between real and simulated order flow.
A-Main ChiNext

Model MinR RetAC VolC OIR MinR RetAC VolC OIR

RFD mean 1.198 5.010 0.839 0.015 0.272 2.987 0.691 0.022
std 0.083 1.335 0.322 0.001 0.037 0.937 0.316 0.001

RMSC mean 2.640 10.170 1.237 0.563 1.371 7.461 0.668 0.588
std 0.051 0.204 0.959 0.016 0.001 0.195 0.243 0.016

LOBGAN mean 0.151 1.903 1.101 0.309 0.135 1.711 0.507 0.282
std 0.007 1.045 0.639 0.011 0.002 1.043 0.108 0.010

DiGA mean 0.084 2.781 0.273 0.009 0.079 1.997 0.218 0.009
std 0.006 0.417 0.020 0.001 0.002 0.243 0.049 0.001

Table 7: Detailed out-of-sample test results (in percentage). Best results are highlighted with bold
face.

Environment Period Ret(%)(↑) Vol(↓) SR(↑) MDD(%)(↑)

Replay

1 0.031 0.502 0.012 -1.198
2 0.036 0.323 0.023 -0.936
3 -0.040 0.413 0.007 -1.264

Average 0.009±0.043 0.413±0.090 0.014±0.008 −1.133±0.173

RFD

1 -0.004 0.265 -0.012 -1.004
2 0.009 0.084 0.044 -0.426
3 -0.005 0.128 0.001 -0.980

Average 0.000±0.008 0.159±0.094 0.011±0.029 −0.803±0.327

DiGA-c

1 0.037 0.320 0.025 -1.250
2 0.017 0.074 0.060 -0.472
3 -0.009 0.046 -0.068 -0.422

Average 0.015±0.023 0.147±0.151 0.006±0.066 −0.715±0.464

DiGA

1 0.033 0.550 0.023 -1.488
2 0.046 0.330 0.084 -1.188
3 0.009 0.352 0.040 -1.264

Average 0.029±0.019 0.411±121 0.049±0.031 −1.313±0.156

14



Figure 4: Limit order book and order flow

F Preliminaries and Related Work

In this section, we briefly describe the preliminaries of limit order book, and review the related
research work regarding financial market simulation and diffusion models.

F.1 Limit Order Book

The majority of financial markets around the world operate on a double-auction system, where orders
are the minimal units of events. An order in the market consists of four basic elements: timestamp
t, price p, quantity q, and order type o. There are a variety of order types in real markets, such as
limit orders, market orders, cancel orders, conditional order, etc. In the literature, it is sufficient to
represent trade decisions with limit orders and cancel orders [17].

The output of market simulation model is a series of orders O = {(t1, p1, q1, o1), (t2, p2, q2, o2), ...},
also known as the order flow, which constitutes the order book and price series. An order book is the
collection of outstanding orders that have not been executed. Limit orders can be further categorized
into buy limit orders and sell limit orders, with their prices known as bids and asks, respectively. The
order book specifically consisting of limit orders are called the limit order book (LOB). The price at
each timestamp is commonly determined by the price of the most recently executed order. Prices
sampled at a certain frequency form the price series. An illustrative example of limit order book can
be found in Figure 4.

F.2 Financial Market Simulation

Early works on market simulation has followed a multi-agent approach [15, 13, 14], using rule-based
agents under simplified trading protocols to replicate “stylized facts” [30] such as volatility clustering.
[16, 17] extended the simulation analysis to order-driven markets, which more closely resemble
the settings of most of current active stock markets. Subsequent works further customized agents’
behaviors based on this protocol to better support research on decision-making [18, 19, 31]. With the
recent success of machine learning, researcher has also employed neural networks as world agent
to directly predict orders given history [32, 21, 22, 33]. In contrast, our model employs conditional
diffusion model for controlling agent based models to generate orders.

F.3 Diffusion Models

The diffusion probabilistic models, also known as the diffusion models, fit sequential small per-
turbations from a diffusion process to convert between known and target distributions [28, 29, 34].
Diffusion models have been built to generate data in different modalities, such as image [4, 11, 35, 36],
audios [37, 38], videos [39, 40] and general time series [41, 42, 43]. Different from existing works,
we are the first to apply diffusion model for generating financial market.

15


	Introduction
	Diffusion Guided Meta Agent Model
	Meta Controller
	Order Generator

	Experiments
	Evaluation on Controlling Financial Market Generation
	Evaluation on Generation Fidelity
	Evaluation for High-frequency Trading Task with Reinforcement Learning

	Conclusion and Future Work
	Codes and Extended Version
	Detailed Description of Dataset and Preprocessing
	Detailed Description of DDPM
	Brief Review of DDPM model
	Algorithmic Procedure for Training Meta Controller
	Detailed Parameters of Training Meta Controller

	Details of Generating with DiGA
	Algorithmic Procedure for Generating Financial Market with DiGA.
	Discussion on Meta Controller Sampling Parameters
	Discussion on Meta Agent Parameters

	Additional Experiment Description and Results
	Evaluation on Controlling Financial Market Generation
	Evaluation on Generation Fidelity
	Evaluation for High-frequency Trading Task with Reinforcement Learning
	Settings
	Results

	Analysis on Computational Efficiency

	Preliminaries and Related Work
	Limit Order Book
	Financial Market Simulation
	Diffusion Models


