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ABSTRACT

Multimedia generation approaches occupy a prominent place in artificial intelli-
gence research. Text-to-image models achieved high quality results over the last
years, however video synthesis methods recently started to develop. In this paper
we present a new two-stage latent diffusion video generation architecture using a
new MoVQ video decoding scheme. The first stage concerns keyframes synthesis,
while the second one is devoted to interpolated frames generation. We compare
two temporal conditioning approaches during evaluation and show the improve-
ment of using temporal blocks over temporal layers in terms of IS and CLIPSIM
metrics reflecting video generation quality aspects. We also evaluate different
configurations of MoVQ-based video decoding scheme to achieve higher PSNR,
SSIM, MSE and LPIPS scores. Finally, we compare our pipeline with existing
solutions and achieve top-3 CLIPSIM metric score (0.2976).

1 INTRODUCTION

The task of video generation is a natural and logical continuation of the development of generative
learning and, in particular, text-to-image generative approaches, which in recent years has achieved
stunning results Nichol et al. (2022); Ramesh et al. (2022); Rombach et al. (2022); Saharia et al.
(2022). The emergence of diffusion probabilistic models Sohl-Dickstein et al. (2015); Ho et al.
(2020); Song et al. (2021) played an important role in the image generation quality improvement.
Text-to-video generative diffusion models are also becoming extremely popular, but the problems
inherent in this particular task still pose a serious challenge.

Such problems include, among other things, the computational costs of training and inference and
the scarcity of large high quality open-source text-video datasets. The available data is not enough
to fully understand all the generation possibilities when training from scratch. In addition, such
datasets impose restrictions on models related to the specificity of video domains. For this reason,
the use of large pretrained text-to-image generative models as the initial step has become the rule of
thumb for the video generation field. This allows to transfer comprehensive knowledge of text-to-
image models about the visual world to the video world. Also, the use of latent diffusion models
Rombach et al. (2022) reduces the volume of computational resources.

However, video generation is not limited to the mentioned difficulties. Video generation is also
more complicated than image generation because in order to achieve a high degree of realism and
aesthetics, it requires not only the visual quality of a single frame, but also the frame coherence in
terms of semantic content and appearance, smooth transitions between frames, as well as correct
physics of movements. On the other hand, text-to-image models do not have these requirements.
The main key that is responsible here for the mentioned aspects is the temporal information inherent
in the video as an object in space-time. Accordingly, the quality of generation will ultimately largely
depend on the data processing along the time dimension of video sequences.

As a rule, temporal information is taken into account in diffusion models by including temporal
convolutional layers or temporal attention blocks in the architecture Ho et al. (2022b); Wu et al.
(2022); Singer et al. (2022); Ho et al. (2022a); Esser et al. (2023); Blattmann et al. (2023); Zhou
et al. (2022); Zhang et al. (2023b); Li et al. (2023). This allows initializing the weights of the
remaining spatial layers with the values of the weights of the pretrained text-to-image model and
training only the temporal layers, which is effective in terms of reducing memory consumption.
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In this paper, we separate the text-conditional video generation process based on latent diffusion
models into two stages: key frames generation step and frames interpolation step. The key frames
are designed to set the main amount of semantic information for the future video. This separation
allows us to maintain accordance with the text description along the entire length of the video in
terms of both content and dynamics. At the stage of key frames generation, we compare temporal
conditioning approaches, namely using traditional mixed spatial-temporal blocks and the proposed
separate temporal blocks. We find that the use of the latter makes it possible to significantly improve
the video quality both in terms of visual aesthetics and dynamics. We propose this solution as a
general approach to include temporal components in text-to-image models to use them in video
generation. For the interpolation step, we also modify the text-to-image model and claim that the
use of context guidance is a key factor for smooth transitions between frames. At the experimental
stage we are also exploring various possibilities of including temporal architecture components in
the MoVQGAN Zheng et al. (2022) decoder to improve the quality of latent video generation.

Thus, our contribution contains the following aspects:

• We present an end-to-end text-to-video latent diffusion pipeline, which is based on the
pretrained frozen text-to-image model. Our pipeline divided into two parts – key frames
generation and frames interpolation.

• As a part of the key frames generation, we propose to use separate temporal blocks to
account for temporal information. We compare this approach with incorporated temporal
layers and demonstrate the qualitative and quantitative advantage of our solution in terms
of visual quality and temporal consistency using a set of metrics (IS, CLIPSIM) on several
video datasets in different domains.

• We provide an overview of our interpolation architecture, which incorporates temporal
output masking in conjunction with data augmentations, contributing to robust video frame
interpolation.

• We investigate various architectural options to build Video Decoder and evaluate their per-
formance in terms of quality metrics and the impact on the size of decoder.

2 RELATED WORK

2.1 TEXT-TO-VIDEO GENERATION

Prior works on video generation utilize VAEs Mittal et al. (2017); Babaeizadeh et al. (2017; 2021);
Yan et al. (2021); Walker et al. (2021), GANs Vondrick et al. (2016); Pan et al. (2017); Li et al.
(2018); Lee et al. (2018); Clark et al. (2019), normalizing flows Kumar et al. (2019) and autoregres-
sive transformers Wu et al. (2021a;b); Ge et al. (2022); Hong et al. (2022); Villegas et al. (2022).
GODIVA Wu et al. (2021a) adopts a 2D VQVAE along with sparse attention for Text-to-Video
generation. CogVideo Hong et al. (2022) is built on top of a frozen CogView2 Ding et al. (2022)
text-to-image transformer by adding additional temporal attention layers.

Recent research extend text-to-image diffusion-based architecture for text-to-video generation
Singer et al. (2022); Ho et al. (2022a); Blattmann et al. (2023); He et al. (2022); Zhou et al. (2022).
This approach can benefit from pretrained image diffusion models and transfer that knowledge to
video generation tasks. Specifically, it involves the introduction of temporal convolution and atten-
tion layers interleaved with existing spatial layers. This adaptation aims to capture temporal depen-
dencies between video frames while also achieving computational efficiency by avoiding the use
of infeasible 3D convolutions and 3D attention mechanisms. These temporal layers can be trained
independently or jointly with the 2D spatial layers.

The first widely known end-to-end model in which this technique was applied was VDM (Ho et al.
(2022b)) based on the 3D UNet, in which 3× 3 convolutions were replaced with 1× 3× 3 convolu-
tions, and after each spatial attention layer, a temporal attention layer was added. In Make-a-Video
approach (Singer et al. (2022)) each spatial 2D convolution was followed by a temporal 1D convo-
lution. This technique of mixed spatial-temporal blocks for both convolutions and attention layers
has become widespread in most subsequent text-to-video models (Ho et al. (2022a); Esser et al.
(2023); Wu et al. (2022); Blattmann et al. (2023); Zhou et al. (2022); Li et al. (2023)). Alternative
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approaches to operate with the time dimension include the use of image diffusion model in conjunc-
tion with a temporal autoregressive Recurrent Neural Network (RNN) model to predict individual
video frames (Yang et al. (2022)), projection of 3D data into a latent 2D space (Yu et al. (2023)) and
the use of diffusion to generate latent flow sequences (Ni et al. (2023)). We propose a new approach
for conditioning on temporal information and instead of blocks with spatial and temporal layers, we
consider separate temporal blocks.

Finally, it is worth noting that certain studies (Singer et al. (2022); Ho et al. (2022a)) operate entirely
in pixel space, whereas others He et al. (2022); Zhou et al. (2022); Wu et al. (2022); Esser et al.
(2023); Blattmann et al. (2023); Zhang et al. (2023b); Li et al. (2023)) utilize the more efficient
latent space. We follow the second approach in this paper.

2.2 VIDEO FRAME INTERPOLATION

In text-to-video generation, the typical approach involves a two-stage process: first generating
keyframes and then interpolating between these generated keyframes. This method simplifies the
overall generation, ensuring coherence and smoothness, minimizing artifacts, and improving real-
ism.

Existing video frame interpolation techniques (Zhang et al. (2023a); Reda et al. (2022)) are primarily
designed for real video decompression and often prove inadequate when applied to interpolating be-
tween synthesized keyframes. Our examination of these models revealed specific failure scenarios,
notably when dealing with large object motion and occlusion. Utilizing these methods for interpo-
lation frequently results in undesirable blurring and ghosting artifacts in the generated frames which
affect the realism of the final video.

MCVD (Voleti et al. (2022)) utilizes a diffusion-based model for interpolation, leveraging the two
keyframes from each side to generate three frames in between. Within Text-to-Video research, a
diffusion-based T2V architecture is employed for frame interpolation (Blattmann et al. (2023); Ho
et al. (2022a); Zhou et al. (2022)). Two keyframes are combined with a noisy input in a channel-
wise concatenation before being fed into the UNet architecture. The entire UNet-based model is
subsequently trained to predict one or more frames between each pair of keyframes.

Consistent with prior researches, we incorporate conditioning frames from both the left and right
keyframes to generate three middle frames. We also adopt temporal layers to enhance temporal
coherence. Furthermore, we include the conditioning frame perturbation technique, combined with
augmentations, to enhance the model’s resilience in situations where the generated keyframes are
less than optimal. This leads us to present our ultimate architecture for robust video frame interpo-
lation.

2.3 VIDEO DECODER

Utilizing an Image decoder for frame decoding often leads to inconsistencies in the resulting details
and the presence of flickering artifacts. To address this issue and ensure a more uniform genera-
tion process, the integration of temporal layers becomes essential. In their works, Blattmann et al.
(2023) builds a video decoder with 3D convolution, while Li et al. (2023) enhances it with tempo-
ral 1D convolution and temporal self-attention. Zhou et al. (2022), on the other hand, incorporates
two temporal directed attention layers in the decoder to build a VideoVAE decoder. To the best of
our knowledge, previous studies have not offered a comparison of their strategies for constructing a
video decoder. In this research, we present multiple options for designing a video decoder and con-
duct an extensive comparative analysis, evaluating their performance in relation to quality metrics
and the implications for additional parameters.

3 DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al. (2020)) is a family of generative mod-
els designed to learn a target data distribution pdata(x). It consists of a forward diffusion process
and a backward denoising process. In the forward process, random noise is gradually added into the
data x through a T -step Markov chain (cite). The noisy latent variable at step t can be expressed as:
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zt =
√
α̂tx+

√
1− α̂tϵ (1)

with α̂t =
∏t

k=1 αk, 0 ≤ αk < 1, ϵ ∼ N(0, 1). For a sufficiently large T , e.g., T = 1000,√
α̂T ≈ 0, and 1 −

√
α̂T ≈ 1. Consequently, zT ends up with pure noise. The generation of x can

then be seen as an iterative denoising process. This denoising process corresponds to learning the
inverted process of a fixed Markov Chain of length T.

Lt(x) = Eϵ∼N(0,1)[∥ϵ− zθ(zt, t)∥22] (2)

Here, zθ represents a denoising neural network parameterized by θ, and Lt is the loss function.

4 METHODS

Overall pipeline. The scheme of our text-to-video model is shown in the Fig 1. It includes a text
encoder, a keyframe latent generation model, a frame interpolation model, and a latent decoder that
is the single model, but performs differently when decoding keyframes and full video. Below we
describe the key components in detail.

Figure 1: The overall scheme of the pipeline. The encoded text prompt gets into the UNet
keyframe generation model with temporal layers or blocks, and then the sampled keyframes are
putting into the latent interpolation model in such a way as to predict three interpolation frames
between two keyframes. A temporal MoVQ-GAN decoder is used to get the final video result.

4.1 KEYFRAMES GENERATION WITH TEMPORAL CONDITIONING

The keyframes generation is based on a pre-trained latent diffusion text-to-image model. We use
the weights of this model to initialize the spatial layers of the keyframe generation model, which is
distinguished by the presence of temporal components. In all experiments, the weights of text-to-
image UNet remained frozen, and only temporal components were trained.

We are considering two key ways of introducing temporal components into architecture – using
temporal layers of convolutions and attention, as well as using our separate temporal blocks. The
Fig. 2 exhaustively explains our concept.

The traditional approach with a mixed spatial-temporal block is the inclusion of temporal compo-
nents of architecture in the environment of spatial layers. So, in the case of convolutions (Fig. 2 (a),
left), after a spatial convolution with a 3 × 3 kernel (dimensions correspond to the high and width
of the frame), a 3 × 1 × 1 temporal 1D convolution follows, in which the first dimension of the
kernel corresponds to the time axis along video frames in the batch. In Fig. 2 (a) on the right is our
separate temporal block, in which all temporal convolutions are located, and the gray frozen spatial
block remained unchanged in comparison with the block of UNet from the text-to-image model.
The Fig. 2 (b) shows a similar case for the spatial and temporal attention.

4.2 VIDEO FRAME INTERPOLATION

In the latent space, interpolation is applied to predict three middle frames between each pair of
keyframes. This necessitates the adaptation of the text-to-image architecture. Changes are made to
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(a)

(b)

Figure 2: Comparative schemes for temporal conditioning. We compare two approaches for
including temporal components of architecture in a pre-trained text-to-image UNet – the traditional
approach of mixing spatial and temporal layers in one block (left) and our approach of allocating a

separate temporal block (right). All layers indicated in gray are not trained in text-to-video
architectures and are initialized with the values of the weights of the text-to-image model. a) A

case for convolutions, b) a case for attention.

the input convolution layer, enabling it to handle three noisy input frames z with two conditioning
frames c concatenated all together. The output convolution layer is similarly adjusted to generate
three middle frames. Temporal convolution layers ϕ are also introduced after each spatial convolu-
tion in the original text-to-image model θ. A detailed description of these adjustments is provided
in Appendix A. As part of this process, text conditioning is removed, and instead, we incorporate
skip-frame s and perturbation noise level conditioning pt. For interpolation, we use v-prediction
parameterization (vt ≡ αtϵ− σtx) as described in (Salimans & Ho (2022); Ho et al. (2022a)).

Building on the conditioning frame perturbation technique (Blattmann et al. (2023); He et al.
(2022)), we randomly sample a perturbation level tp ∈ {0, 1, 2, . . . , 250}. This tp value guides
in perturbing the conditioning keyframes using a variance-preserving diffusion process, following
the cosine diffusion schedule utilized in the main diffusion model. This perturbation noise level is
also employed as a condition for the UNet. Additionally, with a some probability uncond prob, we
replace the conditioning frames with zeros and zero out the temporal layer outputs using a mask mt
for unconditional frames generation training. mt = 0 implies that we mask the output produced by
the temporal convolution layers. The final training objective looks like:

Lt(x; tp, s,mt) = Eϵ∼N(0,1)[∥v − zθ,ϕ(zt, t, c, tp, s,mt)∥22] (3)
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We employ context guidance (Blattmann et al. (2023)) at inference, with w representing the guidance
weight:

z̃θ,ϕ(zt, c, tp, s) = (1 + w)zθ,ϕ(zt, c, tp, s,mt = 1)− wzθ,ϕ(zt, s,mt = 0) (4)

Our interpolation model can benefit from a relatively low guidance weight value, such as 0.25 or 0.5.
Increasing this value can have a significant negative impact on the quality of the interpolated frames,
sometimes resulting in the model generating frames that closely match the conditioning frames.

4.3 VIDEO DECODER

Modulated VQGAN (Zheng et al. (2022)) is an advanced variant of the Vector Quantized Gener-
ative Adversarial Network (VQGAN) Esser et al. (2020). It enhances image generation by using
spatially conditional normalization to reduce artifacts in adjacent regions and employs multichannel
quantization for improved code recombination resulting in high-fidelity, photo-realistic images.

To enhance the video decoding process, we make use of a pretrained MoVQ-GAN model1 with a
frozen encoder. To extend the decoder into the temporal dimension, we explore several choices:
The substitution of 2D convolutions with 3D convolutions and the addition of temporal layers inter-
leaved with existing spatial layers. Regarding the temporal layers, we explore the use of temporal
convolutions, temporal blocks and temporal self-attentions. All additional parameters are initialized
with zeros.

This extension is essential in improving consistencies of generated details among frames, reducing
flicker artifacts, and as result improving the fidelity of the resulted video.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Our internal training dataset for Text-to-Video contains 120k text-video pairs, and the
same dataset is utilized for training the interpolation model. In our evaluation, we evaluate the T2V
model on two testsets: UCF-101 (Soomro et al. (2012)) and MSR-VTT (Xu et al. (2016)). For
training the decoder, we use a mix of 80k videos from the internal dataset, while model testing is
performed on the subtuplet part of Vimeo90k (Xue et al. (2019)) dataset.

In preparing frame sequences for the interpolation task training, we randomly select a skip-frame
value s ∈ {1, 2, . . . , 12}. Subsequently, the input video is resampled with a skip of s frames be-
tween each pair. This resampled video is then organized into 8 conditioning frames for each side
and 8x3 target frames, resulting in a total of 33 frames per input video. Augmentation techniques
are applied to the condition frames, including the averaging of two consecutive frames and the intro-
duction of blur. Furthermore, we apply consistent augmentations to the entire sequence of frames,
such as random flipping, reversing, random cropping, and sliding. For decoder training, sequences
comprising 8 frames are employed.

Metrics. In line with previous works (Singer et al. (2022); Luo et al. (2023); Li et al. (2023)),
we assess our text-to-video model using the following evaluation metrics: Inception Score (IS)
(Saito et al. (2020)) and CLIPSIM (Wu et al. (2021a)). IS metric assesses the quality and diversity
of individual frames. CLIPSIM, on the other hand, evaluates text-video alignment. For decoder
training, other metrics are used: PSNR for frame quality assessment, SSIM for structural similarity
evaluation and LPIPIS2 (Zhang et al. (2018)) for perceptual similarity.

Training. We trained the keyframe generation model for 100k steps on 16 GPUs (A100 80GB)
with batch size of 1, gradient accumulation of 2 to generate 8 frames in 512 × 512 resolution. We
used dynamic FPS by encoding the positions of generated frames scaled by this FPS. We train only
temporal layers or temporal blocks depending on the method. All other weights have been taken
from our text-to-image model.

1https://github.com/ai-forever/MoVQGAN
2https://github.com/richzhang/PerceptualSimilarity
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The entire interpolation model is trained for 50k steps, at the task of upsampling 9 frames across
different skip-frame values s to a sequence of 33 frames, all while maintiaining a resolution of
256x256. During training, we set the probability for unconditional frame generation uncond prob
to 10%. Our decoder, including the spatial layers, is trained using sequences of 8 frames for 50k
steps. During training, we use 8 GPUs (A100 80GB) and gradient accumulation steps of 4. For
decoder training, we turn off gradient accumulation.

Inference. Keyframes are generated in the text-to-video generation phase. To interpolate between
these generated keyframes, we employ the generated latents from the first phase as conditions to
generate three middle frames between each keyframe pair. We set the skip-frame value s to 6 during
this stage of interpolation. Additionally, we maintain a constant perturbation noise level tp, with
a value of 150, without actually perturbing the conditioning frames. In cases where unconditional
generation is applied as part of the context guidance approach, we adjust pt value to zero and we set
the guidance weight to a small value w = 0.25. In the final stage, our trained decoder decodes the
resulting latents together with the latents from the generated keyframes to produce the final video
output.

Visually, the results can be assessed in the Figures 3, 4

Figure 3: Prompt: A panda making latte art in cafe. Bloks up, layers down.

Figure 4: Prompt: A storm trooper vacuuming the beach. Bloks up, layers down.

5.2 QUANTITATIVE RESULTS

In this section, we provide a comparison of our trained models Using Inception score (IS) on UCF-
101 and Clip Similarity (CLIPSIM) on MSR-VTT, as detailed in Table 1 and Table 2 respectively.
Our results indicate that the inclusion of temporal blocks, rather than temporal layers, leads to im-
proved quality in terms of these metrics. The IS is lower than baselines due to insufficient training
time.

As for the FVD metric Unterthiner et al. (2019), we could not clearly interpret its results, since we
did not find a correlation between the actual quality of the generated videos and the numbers that
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Table 1: T2V zero-shot results on UCF-101.
Method Resolution IS↑

CogVideo (Chinese) 480x480 23.55
CogVideo (English) 480x480 25.27
Make-A-Video 256x256 33.00
VideoGen 256x256 77.61

Ours (temporal layers) 512x512 23.50
Ours (temporal blocks) 512x512 24.17

Table 2: T2V results on MST-VTT. We report average CLIPSIM scores.

Method Zero-Shot Resolution CLIPSIM↑

GoDIVA No 128x128 0.2402
Nuwa No 336x336 0.2439
CogVideo (Chinese) Yes 480x480 0.2614
CogVideo (English) Yes 480x480 0.2631
Make-A-Video Yes 256x256 0.3049
VideoGen Yes 256x256 0.3127

Ours (temporal layers) Yes 512x512 0.2904
Ours (temporal blocks) Yes 512x512 0.2976

the estimator gave out for both temporal layers and blocks methods. We have decided to abandon
the use of this metric for evaluation.

5.3 QUALITATIVE RESULTS

A qualitative comparison of the method of inserted temporal layers along spatial layers with the
separate temporal blocks approach reveals visually observable advantages of our technique both in
terms of the quality of generated objects on separately taken keyframes, and from the point of view
of dynamics Fig. 3, 4. The method based on temporal layers either produces semantically distant
keyframes, or does not cope well with the dynamics in some cases. On the contrary, the method
based on temporal blocks generates more consistent in content and coherent in time keyframes.
There is a general improvement in the quality of generation and a decrease in the number of artifacts
compared to mixed spatial-temporal blocks with temporal layers inserted in them.

5.4 VIDEO MOVQ-GAN ABLATION STUDY

We conducted comprehensive experiments, considering many choices of how to build video de-
coder, and assessed them in terms of quality metrics and the impact on the number of additional
parameters. The results are presented in table 3. This evaluation process guided us in making the
optimal selection for production purposes. Extending the decoder with a 3x3x3 temporal convolu-
tion and incorporating temporal attention during the fine-tuning process, which applies to the entire
decoder, including spatial layers and the newly introduced parameters, yields the highest overall
quality among the available options. An alternative efficient choice involves using a 3x1x1 temporal
convolutional layer or temporal ResNet Block with temporal attention, which significantly reduces
the number of parameters from 556M to 220M while still achieving results that closely match the
quality obtained through the more extensive approach.
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Table 3: A comparison between different choices to construct video decoder including the use of
temporal convolution, temporal ResNet Block, temporal attention (Attn) and finally converting 2D
spatial convolution in the decoder into 3D conv (2D→3D Conv). We also present whether we only
finetune temporal layers or the entire decoder.

Decoder Temporal Layers Finetune PSNR↑ SSIM↑ MSE↓ LPIPS↓ # Params

Image - - 32.9677 0.9056 0.0008 0.0049 161 M
Video 3x1x1 Conv Temporal 32.2544 0.893 0.0009 0.006 203 M
Video 3x3x3 Conv Temporal 33.5819 0.9111 0.0007 0.0044 539 M
Video 3x1x1 Conv Decoder 33.5051 0.9106 0.0007 0.0044 203 M
Video 3x3x3 Conv Decoder 33.6342 0.9123 0.0007 0.0043 539 M
Video 3x1x1 Conv + Attn Decoder 33.7343 0.9129 0.0007 0.0043 220 M
Video 3x3x3 Conv + Attn Decoder 33.8376 0.9146 0.0006 0.0041 556 M
Video ResNet Block + Attn Decoder 33.7024 0.9121 0.0007 0.0043 220 M
Video 2D → 3D Conv Decoder 33.7321 0.9134 0.0007 0.0043 419 M

6 CONCLUSION

In this research we examined several ways of the text-to-video generative architecture design in or-
der to get better output quality improvement. This challenging task included the development of
a two-stage model for video synthesis taking into account several ways to include temporal infor-
mation: temporal blocks and temporal layers. According to experiments, the first approach lead to
higher metrics values in terms of visual quality measured by IS score. We achieved a comparable
IS score value to several existing solutions and a top-3 score in terms of CLIPSIM metric. A new
MoVQ-based video decoding scheme is presented in the paper as well as the results of its experi-
mental study. The following problems still remain: image quality of frames should be improved,
subsequent frames consistency in terms of smoothness and visual quality preserving due to temporal
correlation should be improved using new approaches to latent noise generation and latent features
interpretation, that we plan to research further. We also plan to evaluate the quality of open-source
text-to-video models with human evaluation and provide some interpretation of Frechet Video Dis-
tance(FVD) score, which shows contradictory values on existing research results.
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A INTERPOLATION

Expanding the text-to-image architecture to effectively handle and generate a sequence of inter-
polated frames requires a series of modifications designed to process the data across the tempo-
ral dimension. In addition to this, further adjustments are necessary to facilitate the generation
of three middle frames between two keyframes. Specifically, starting with pre-trained weights
for the text-to-image model, we replicate the weights within the output convolution layer three
times. This transformation alters the dimensions from (out channels, input channels, 3, 3) to
(3 ∗ out channels, input channels, 3, 3), and a similar modification is carried out for the bias pa-
rameters, shifting them from (out channels) to (3 ∗ out channels). This adaptation enables the
generation of three identical frames before the training phase starts. In the input convolution layer,
we make similar adjustments to the input channels, initializing additional weights as zeros. Subse-
quently, a temporal convolution layer, with a kernel size of (3, 1, 1), is introduced after each spatial
convolution layer. The output from each temporal layer is then combined with the output from the
spatial layer using a learned merge parameter α. The spatial layers are designed to handle input as a
batch of individual frames. When dealing with video input, a necessary adjustment involves reshap-
ing the data to shift the temporal axis into the batch dimension. Consequently, before forwarding
the activations through the temporal layers, a transformation is performed to revert the activations
back to its original video dimensions.
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