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ABSTRACT

Achieving robustness in image segmentation models is challenging due to the
fine-grained nature of pixel-level classification. These models, which are crucial
for many real-time perception applications, particularly struggle when faced with
natural corruptions. While sensitivity analysis can help us understand how in-
put variables influence model outputs, applying it to natural and uncontrollable
corruptions in training data is difficult. In this work, we present an efficient,
sensitivity-based augmentation method to enhance robustness against natural cor-
ruptions. Our sensitivity analysis approach runs up to 10⇥ faster and requires
up to 200⇥ less storage than previous approaches, enabling practical, on-the-fly
estimation during training for a model-free augmentation policy. With minimal
fine-tuning, our sensitivity-based augmentation method achieves improved robust-
ness on both real-world and synthetic datasets compared to state-of-the-art data
augmentation techniques in image segmentation tasks.

1 INTRODUCTION

Segmentation models are crucial in many applications, but they often face unpredictable and uncon-
trollable natural variations that can degrade their performance. For instance, mobile applications using
segmentation for image reconstruction may encounter diverse noises due to varying environmental
lighting, camera quality, and user handling. Similarly, autonomous vehicles and outdoor robots
operate under a wide range of adverse weather conditions that are difficult to simulate accurately.
Even in medical imaging, where conditions are more controlled, factors such as slight movements
can introduce blur, affecting segmentation results. While poor-quality examples can sometimes be
discarded and re-captured, such solutions are costly or impractical, especially in large-scale, ubiqui-
tous use cases, with limited resources, and during real-time inference (e.g., failure in a navigating
robot). Addressing these natural corruptions is challenging because they are hard to predict, simulate,
or parameterize, yet they significantly impact model performance.

One common approach to enhance robustness against such corruptions is data augmentation, which
artificially increases the diversity of training data by applying transformations to existing samples.
While data augmentation is convenient and resource-efficient, its effectiveness depends on selecting
the most beneficial augmentations. Ideally, we would know which augmentations a model is most
sensitive to and focus on those to improve performance—in other words, sensitivity analysis. However,
traditional sensitivity analysis methods are computationally expensive and resource-intensive (Shen
et al., 2021), as shown in Table 1, making them impractical for large-scale or real-time applications.
Existing methods like AutoAugment (Cubuk et al., 2019) and DeepAutoAugment attempt to optimize
augmentation policies by training separate models, which adds significant overhead. Other state-
of-the-art techniques rely on random augmentations (Cubuk et al., 2020; Muller & Hutter, 2021;
Hendrycks et al., 2020), which are scalable but may not target the most impactful transformations for
a given model.

In this paper, we propose a scalable, sensitivity-based augmentation approach for robustifying
segmentation models against natural corruptions, including those not explicitly involved during
training. Our approach performs a lightweight, online sensitivity analysis during training to identify
the geometric and photometric perturbations, shown to be effective as “basis perturbations” (Shen
et al., 2021), to which the model is most sensitive. In contrast to Shen et al. (2021), our sensitivity
analysis is adaptive and significantly less resource intensive, allowing for practical implementation
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Figure 1: Overview of our method. We conduct sensitivity analysis using our Fast Sensitivity
Analysis algorithm after a warmup period on clean data, then solve for L discrete perturbation levels
per perturbation type which the model is sensitive to. Finally, we augment training by sampling from
the computed perturbation levels. Sampling weights are determined based off model performance on
sensitive levels, where worse-performing levels are given higher probability of being sampled.

without the need for offline models or extensive computation. Figure 1 shows a high-level overview
of our augmentation pipeline. Our method bridges the gap between the efficiency of random
augmentation techniques and the effectiveness of policy-based augmentations guided by sensitivity
analysis. Despite our focus on segmentation, our approach is general and can be applied to other
tasks, architectures, or domains without significant modifications.

In experiments, we achieve up to a 6.20% relative mIoU improvement in snowy weather and up to a
3.85% relative mIoU improvement in rainy weather compared to the next-best method in zero-shot
adverse weather evaluation on state-of-the-art architectures. We also show improvements on synthetic
benchmarks and increased data efficiency compared to other augmentation methods as the size of the
training set changes.

Our contributions are summarized as follows:

1. An efficient adaptive sensitivity analysis method for online model evaluation that iteratively
approximates model sensitivity curves for speedup;

2. A comprehensive framework that leverages sensitivity analysis results to systematically
improve the robustness of learning-based segmentation models;

3. Evaluation and analysis of our method on unseen synthetically perturbed samples, naturally
corrupted samples, and ablated contributing factors to robustification.

2 RELATED WORKS

Robustification Against Natural Corruptions. The effect of natural corruptions on deep learning
tasks is a well-explored problem, especially in image classification. Currently, image classifica-
tion has a robust suite of benchmarks, including evaluation on both synthetic and natural corrup-
tions (Hendrycks et al., 2020; Yi et al., 2021; Dong et al., 2020). Many works study correlations
between image corruptions and various factors (Mintun et al., 2021; Hendrycks & Gimpel, 2017).
Additionally, a popular approach to increasing robustness in the general case is through targeted
adversarial training (Xiaogang Xu & Jia, 2021; Shu et al., 2021). Several approaches target model
architecture (Schneider et al., 2020; Saikia et al., 2021; Myronenko & Hatamizadeh, 2020). Other
approaches achieve robustness to natural corruptions via the data pipeline. Data augmentations are a
popular method for increasing out-of-distribution robustness and many have now become standard
practice (Geirhos et al., 2019; Rusak et al., 2020). Hendrycks et al. highlight that existing methods
for generalization may not be consistently effective, emphasizing the need for robustness through
addressing multiple distribution shifts (Hendrycks et al., 2021). In our work, we focus on studying
and improving robustness in the context of semantic segmentation models due to natural corruptions
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Method SA Time Data Gen Time Storage

AdvSteer 90.0±15.5 min ⇠ 48 hours 2.4 TB
Ours 9.6±0.2 min - 12 GB

Table 1: Runtime and Storage Comparison on Sensitivity Analysis of Shen et al. (2021), Com-
pared to Ours. Our approach enables the practical use of sensitivity analysis in online training as an
augmentation policy. We compute each mean and standard deviation value in “SA Time” with 4 runs.
Each sensitivity analysis iteration computes curves for 24 different augmentations at 5 levels each,
for a total of 120 evaluation passes. Ours runs about 10⇥ faster and takes 200⇥ less storage.

using insights from previous work. Among findings from other works, we distinguish that our work
focuses on improving natural corruption robustness in a segmentation, a common task with unique
properties.

Data Augmentation Techniques. Data augmentation methods generate variants of the original
training data to improve model generalization capabilities. These variants do not change the inherent
semantic meaning of the image, and transformed images are typically still recognizable by humans.
Within data augmentation methods, CutMix and AugMix widely-used augmentation techniques
that augment by mixing variants of the same image (Hendrycks et al., 2020; Yun et al., 2019).
Conversely, Franchi et al. (2021) introduces segmentation-specific augmentation approaches which
utilize superpixels, or clusters of similar pixels, to maintain semantic object information. Other
data augmentation methods have utilized augmentation policies based on neural networks to select
productive augmentations (Olsson et al., 2021; Cubuk et al., 2019; Zheng et al., 2022), while
other works have explored data augmentation for domain-specific tasks (Zhao et al., 2019; Zhang
et al., 2023). For example, Zhao et al. (2019) explores learned data augmentation for biomedical
segmentation tasks via labeling of synthesized samples with a single brain atlas. Zhang et al. (2023)
explores data augmentation in specifically brain segmentation via combining multiple brain scan
samples, similarly to Augmix and Cutmix. However, this work is reliant on additional annotations to
augment regions of interest. In our work, we present a generalizable augmentation technique and
show that performance boosts generalize well out-of-the-box on several domains.

3 METHODOLOGY

In general, sensitivity analysis examines how small fluctuations in the inputs affects the outputs of a
system. In our augmentation approach, the key idea is that sensitivity analysis can be used to sample
augmentations uniformly with respect to impact on model performance, as opposed to sampling
uniformly across the parameterized augmentation space.

To quantify this for a given deep learning model, we need a metric for model performance and a
metric for image degradation which is consistent across augmentation types. Choosing a model
performance metric is straightforward; any bounded measure of accuracy (MA) where higher values
are better suffices. As for the image degradation metric, we use Kernel Inception Distance (KID),
introduced by Bińkowski et al. (2018) to reduce bias towards sample size. At a high level, we use
KID to measure the “distance” between an original dataset and its perturbed version. KID does so by
passing both datasets through a generalized Inception model, and computing the square Maximum
Mean Discrepancy (MMD) between their respective features. The reduced sample size bias of KID
allows us to approximate the image degradation metric without iterating through the full validation
set.

By sampling augmentations to which the model is sensitive, we can improve robustness productively.
We define the sensitivity of the model to changes in augmentation intensity as the ratio of the change
in model accuracy to the change in KID:

sensitivity =
�MA

�KID
(1)

Our goal is to identify augmentation intensities that result in high sensitivity—that is, small changes
in the augmentation (as measured by KID) lead to large changes in model performance (MA). This
indicates that the model is particularly sensitive to those augmentations, and training on them could
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improve robustness. To formalize this, we seek to find a set of increasing, nontrivial augmentation
intensities ↵1 < ↵2 < . . . < ↵L that maximize sensitivity. We define the local changes in accuracy
and KID between consecutive intensities as:

�dMA(↵i,↵i�1) = MA(↵i�1)�MA(↵i) (2)

�[KID(↵i,↵i�1) =
DKID(x↵ikxclean)�DKID(x↵i�1kxclean)

DKID(x↵maxkxclean)
(3)

Here, MA(↵) is the model accuracy at augmentation intensity ↵, and DKID(x↵kxclean) is the KID
between the augmented data at intensity ↵ and the original clean data. The normalization in �[KID

ensures that KID values are comparable across different augmentation types.

We then formulate an objective function Q to find the set of intensities that maximizes sensitivity
while ensuring adequate spacing between them:

Q = argmax
↵1,...,↵L

min
2iL

h
�dMA(↵i,↵i�1)��[KID(↵i,↵i�1) + �(↵i � ↵i�1)

i
(4)

In this equation, the term �dMA(↵i,↵i�1) represents the decrease in model accuracy between
intensities ↵i�1 and ↵i. We subtract �[KID(↵i,↵i�1) to favor intensity intervals where accuracy
drops more than the image degradation increases, thus indicating higher sensitivity. Furthermore, the
regularization term �(↵i � ↵i�1) (with � > 0) encourages spacing between intensities, preventing
them from being too close together. In our implementation, � = 2.

Our objective seeks to maximize the minimum value of this expression across all intervals, ensuring
that even the least favorable interval is optimized.

To simplify the optimization, we introduce a function g(↵):

g(↵) = 1�MA(↵)� DKID(x↵kxclean)

DKID(x↵maxkxclean)
+ �↵ (5)

The set of ↵ values which fulfills Q has the following property: g(↵2)� g(↵1) = g(↵3)� g(↵2) =
... = g(↵L) � g(↵L�1); in other words, optimal ↵ values are produced at equal intervals along
the function g. Since g(↵) is approximately monotonically increasing (as MA(↵) decreases and
DKID(x↵, xclean) increases with increasing ↵), and its values lie within a known range, we can
approximate the solution as:

↵i ⇡ g
�1

✓
Gmax · i

L

◆
, i = 1, . . . , L (6)

where Gmax is the maximum value of g(↵) over the range of ↵, and g
�1 is the inverse function. Since

we choose � = 2 in our implementation, Gmax = 2.

However, since we cannot explicitly compute g
�1 due to g(↵) being unknown in closed form, we

iteratively estimate the values of ↵i using methods like the Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP), which is a spline estimation technique. By sampling a few initial points and
fitting an interpolating function, we can estimate the intensities that satisfy our objective. We show
the pseudocode for sensitivity analysis in Algorithm 2 of the appendix. Additionally, the iterative
process for solving ↵ values is visualized in Appendix Figure 12. Below, we show the full training
routine involving Sensitivity Analysis in Algorithm 1.

Resource differences from previous work in sensitivity analysis. Previous sensitivity analysis
methods (Shen et al., 2021) compute g(↵) using a uniformly sampled set of ↵ values across the
entire augmentation space. This approach requires evaluating the model at many intensities and often
necessitates offline generation of augmented datasets for each intensity and augmentation type. As a
result, the storage complexity becomes the size of the original dataset multiplied by the number of
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augmentation types and intensities, leading to substantial storage demands. In contrast, our method
performs sensitivity analysis online during training and adaptively samples intensities based on the
model’s responses. By estimating g(↵) iteratively and focusing only on necessary intensities, we
eliminate the need for pre-generating augmented datasets. As a result, our approach only adds about
0.2 * (number of updates) * (evaluation time) amount of time to the total training pipeline, making
the use of sensitivity analysis practical for on-the-fly augmentation policy during training.

Algorithm 1: Training with Sensitivity-Informed Augmentation.
Data: Training dataset Xt, Validation dataset Xv , Validation Rate rv , SA Rate rSA

Result: Trained semantic segmentation model
1 NV  0 ; // Number of validation rounds

2 f(·) Identity(·) ; // Augmentation transformation

3 Initialize network weights ✓;
4 for i 1...max iter ; // Training loop

5 do
6 xti  DataLoader(Xt);
7 if pf is initialized then
8 f ⇠ pf ; // Sample aug PDF

9 end
10 x

aug
ti  f(xti);

11 if i % rv == 0 then
12 if i % rSA == 0 ; // Update Sensitivity Analysis

13 then
14 levels [] ; // Store all ↵ values

15 metrics [] ; // Store all metrics

16 for each augmentation type f do
17 ↵f , accf  SensitivityAnalysis(f, ✓); // Appendix: Algorithm 2

18 levels.append(↵f );
19 metrics.append(accf );
20 end
21 levels = levels.sort() ; // Sort based on descending metrics

22 pf  BetaBinom(idx(f ), 0.75, 1.0) ; // Categorical PDF by Acc

23 end
24 for xvi  DataLoader(Xv) ; // Validation loop

25 do
26 Compute clean validation metrics;
27 end
28 end
29 end

4 EXPERIMENTS

Hardware. Each experiment is conducted on four NVIDIA RTX A4000 GPUs and 16 AMD Epyc
16-core processors. Sensitivity analysis experiments are conducted on one GPU and 4 processors.

Experiment Setup. We use three different architectures across experimental results. For evaluation
on real-world corruptions and data effiency, we train all experiments with the Segformer (Xie et al.,
2021) backbone, a robust and state-of-the-art architecture for segmentation. For results on other
architectures, a direct comparison of performance between PSPNet and Segformer architectures
can be found in Section D.5 of the Appendix. Finally, for results in downstream fine-tuning from
foundation model DinoV2 (Oquab et al., 2024), we use the original ViT (Dosovitskiy et al., 2021)
architecture as the backbone. All methods are trained for 160k iterations regardless of approach, and
only the best-performing checkpoints by mIoU (mean Intersection-over-Union by class) are used for
evaluation in results. Additionally, nearly all models share the same set of augmentations, with the
exception of IDBH (Li & Spratling, 2023), which uses an additional two augmentations (RandomFlip
and RandomErase). We use official implementations for each method, and fix the random seed for
each experiment such that they are reproducible. Full experiment configurations will be released
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Weather // ACDC Domain // IDD
Method aAcc" mIoU" mAcc" aAcc" mIoU" mAcc"
Baseline 76.31 35.48 47.36 85.82 38.44 59.14
AugMix 79.57 40.90 52.74 86.52 40.50 62.43
AutoAugment 70.29 39.31 54.18 85.79 40.74 62.24
RandAug 78.46 39.07 52.32 85.54 38.99 59.82
TrivialAug 75.50 38.56 53.62 85.23 39.61 61.04
IDBH 78.65 41.67 53.65 86.49 40.48 61.74
Ours 80.16 45.45 57.58 85.76 40.33 63.03

Table 2: Evaluation results on Unseen Real World Driving Datasets. We conduct zero-shot
evaluation of Cityscape models on both ACDC (Sakaridis et al., 2021) and IDD (Varma et al., 2019)
datasets, which represent adverse weather and domain transfer to India respectively. Our method
achieves clear improvements compared to other methods which require chained, more computationally
expensive augmentations or external augmentation models in terms of generalization to real world
scenarios, with relative mIoU improvement up to 9.07% on ACDC compared to the next-best, IDBH.

alongside the code implementation for full reproducibility of results. More hyperparameter details
for experiments can be found in Appendix Section C.

Metrics. We use three different metrics for evaluating the performance of a segmentation model:
absolute pixel accuracy (aAcc), mean pixel accuracy (mAcc), and mean Intersection-over-Union
(mIoU). Mean values are taken over object classes—thus, aAcc will be more susceptible to class
imbalances, although it is the most intuitive.

Fog Rain Night Snow
Method aAcc" mIoU" aAcc" mIoU" aAcc" mIoU" aAcc" mIoU"
Baseline 89.70 55.10 87.41 42.82 54.39 14.89 83.23 41.22
AugMix 89.76 57.79 89.28 47.53 56.64 17.35 83.34 43.94
AutoAugment 77.06 56.18 75.52 42.66 57.14 20.65 71.83 40.94
RandAug 88.24 53.99 86.92 43.10 56.03 18.08 83.35 41.86
TrivialAug 85.79 55.16 84.35 41.26 54.52 17.02 77.99 42.64
IDBH 89.79 60.79 86.93 45.64 54.76 18.41 83.88 45.35
Ours 90.20 62.50 88.87 49.36 58.85 20.72 83.39 48.16

Table 3: Evaluation of zero-shot adverse weather performance across data augmentation
techniques. We evaluate each data augmentation method across four different weather scenarios
from the Adverse Conditions Dataset with Correspondences (ACDC) (Sakaridis et al., 2021) dataset.
Each model is trained only with clean Cityscapes data with the Segformer (Xie et al., 2021) backbone.
Our method, highlighted in grey, maintains the best performance across nearly all metrics for three
out of four scenarios, with relative mIoU improvement over the next best method of up to 2.81% on
fog, 3.85% on rain, and 6.20% on snow.

4.1 EVALUATION ON REAL-WORLD CORRUPTIONS

To evaluate the robustness of our model in visual and graphics applications, we test on real-world
adverse samples. While real-world adverse samples in most datasets are difficult to obtain, there are
numerous real-world datasets for driving representing different cities and adverse weather scenarios.

We evaluate Cityscapes models with Segformer backbone on two real-world datasets: the Adverse
Conditions Dataset with Correspondences (ACDC) (Sakaridis et al., 2021) dataset which represents
adverse weather, and the India Driving Dataset (IDD) (Varma et al., 2019) which represents an
alternative, more heterogeneous domain. IDD represents an alternative, but similar, domain in which
visual appearances of vehicles, traffic, and scenery may slightly change, in addition to co-occurrences
of classes. We emphasize that, for this experiment, models are only trained on Cityscapes, and
evaluation on such scenarios can be interpreted as zero-shot generalization.

Overall performance on both ACDC and IDD datasets across multiple methods can be found in Table 2.
We compare our results to six methods: a baseline model where no augmentation is performed,
AugMix (Hendrycks et al., 2020), AutoAugment (Cubuk et al., 2019), RandAugment (Cubuk et al.,
2020), and TrivialAugment (Muller & Hutter, 2021), and IDBH (Li & Spratling, 2023). On real-world
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dataset evaluation for unseen weather and domain gap scenarios, our method shows improvements
over the next best performing model across almost all metrics. We include a qualitative visualization
of our model versus several other methods in Figure 6 of the appendix, which shows inference on a
rainy weather sample. Amongst all methods, a common failure mode is the presence of windshield
wipers in rainy weather. A visualization of this can be found in Appendix Section D.2.

A break-down the performance on the ACDC dataset by weather type in Table 3. In total, the ACDC
dataset has four different weather scenarios: Fog, Rain, Night, and Snow, where the largest relative
boost over next-best method, IDBH Li & Spratling (2023), (6.20%) is in Snow scenarios. In three
out of four weather categories, our method outperforms other methods, with the exception of Night
scenarios. AugMix achieves higher aAcc but lower mIoU than our method on Rain scenarios possibly
due to class imbalances, such as the large number of pixels classified as “sky”. While the total #
of correct pixels is higher on AugMix, our method outperforms when averaged by class, on mIoU.
Night scenario visibility corruption stems from lack of lighting, as opposed to the other three, which
may have more differences in object appearances and blurring effects. While our method does not
perform worse in mIOU, we do perform worse in aACC. This may suggest that the failure mode of
our method in Night scenarios are due to smaller objects covering less pixel space.

Special case: co-occurence of windshield wipers and rainy weather. In the ACDC dataset, the
rainy scenario evaluation set contains co-occurences with windshield-wiper occlusion. This case is
interesting in that occlusions are not included in any experiments except those of IDBH. In qualitative
results, we observe that our method handles windshield wiper occlusions just as well, if not better,
than IDBH. In Figure 2, we show an example of this, where our method shows comparatively
less artifacts in the building and sky, despite not having been trained on occlusion (RandomErase)
augmentations.

(a) Ground Truth. (b) AutoAugment. (c) IDBH. (d) Ours.

Figure 2: Special case on ACDC prediction: windshield wiper occlusion. We observe a special
case of natural corruptions in rainy weather which cannot be directly simulated by the existing set of
perturbations: physical occlusion by windshield wipers. While IDBH involves random occlusion
during training, ours does not.

4.2 EVALUATION ON DATASETS

The results in previous experiments show the efficacy of our method in context of driving domains.
In this experiment, we demonstrate that our method also shows improvements across several datasets
and visual computing domains compared to SOTA.

We evaluate our method on six semantic segmentation datasets: ADE20K (Zhou et al., 2019),
VOC2012 (Everingham et al., 2012), POTSDAM (for Photogammetry & Sensing), Cityscapes (Cordts
et al., 2016), Synapse (Landman et al., 2015), and A2I2Haze (Narayanan et al., 2023). POTSDAM is
a remote sensing datasets taken from aerial views, with classes focusing on classification of buildings,
roads, trees, etc. POTSDAM describes aerial imagery in Potsdam, Germany. Cityscapes is a popular
benchmark dataset for segmentation in urban traffic scenes, with annotations describing classes
such as terrain, human, and vehicle types. ADE20K and VOC2012 are generic datasets describing
everyday life and objects, with both indoor and outdoor scenes. Synapse is a medical imaging dataset
of clinically-acquired CT scans. In our experiments, we use abdomen data and classify organs.
A2I2Haze is a dataset representing outdoor clear and hazy data collected from unmanned robots for
scene understanding. We use the UGV, or Unmanned Ground Vehicle data in our experiments, which
is similar to autonomous driving datasets except in more heterogeneous outdoor environments.

In Table 4, we show mIoU performance of our method versus the next-best augmenta-
tion technique, the SOTA baseline. We evaluate on clean data and three different syn-
thetic scenarios: individual transformations from the basis augmentations at uniform param-
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Clean Basis Aug AdvSteer IN-C
Dataset Type Method aAcc" mIoU" aAcc" mIoU" aAcc" mIoU" aAcc" mIoU"

ADE20K General
TrivialAug 75.420 32.580 69.559 27.083 41.783 9.188 61.495 18.668

IDBH 76.220 33.950 72.752 30.651 40.557 9.475 61.971 19.091
Ours 76.110 33.790 74.285 31.922 43.075 9.628 61.280 18.721

VOC2012 General
TrivialAug 90.090 57.900 87.837 52.340 75.350 20.338 82.884 36.080

IDBH 90.610 60.570 89.262 56.876 69.843 20.810 81.819 36.933
Ours 90.800 61.140 89.555 58.183 69.690 21.470 82.519 38.834

POTSDAM Aerial
TrivialAug 84.360 67.820 77.649 55.763 55.817 34.282 55.866 36.967

IDBH 84.280 68.690 79.392 63.757 22.675 14.975 46.413 30.123
Ours 84.550 68.450 82.590 66.065 44.817 29.983 54.275 36.416

A2I2Haze UGV
TrivialAug 98.730 69.180 97.317 51.800 85.598 22.225 97.363 46.502

IDBH 98.680 69.300 98.346 64.615 85.545 19.490 97.368 45.970
Ours 98.790 70.290 98.613 67.919 89.482 21.843 97.407 49.805

Cityscapes Driving
TrivialAug 95.570 74.300 86.117 56.952 69.785 30.593 82.664 44.332

IDBH 95.530 73.930 93.160 68.052 71.932 29.388 83.041 44.225
Ours 95.780 75.530 94.305 71.539 68.468 28.070 82.435 45.066

Synapse Medical
TrivialAug 98.890 62.000 97.939 49.237 97.243 32.182 98.425 51.512

IDBH 99.150 67.720 98.912 63.504 95.143 29.760 98.486 53.475
Ours 99.250 71.380 99.082 68.828 90.282 30.310 96.779 56.013

Table 4: Performance evaluation of our method vs. SOTA on synthetic scenarios across 6 differ-
ent datasets. We evaluate our method and SOTA on ADE20K (Zhou et al., 2019), VOC2012 (Ev-
eringham et al., 2012), POTSDAM (for Photogammetry & Sensing), A2I2Haze (Narayanan et al.,
2023), Cityscapes (Cordts et al., 2016), and Synapse (Landman et al., 2015) datasets, across three syn-
thetic corruption scenarios: individual basis augmentations (Basis Aug), compositions of photometric
augmentations produced by sensitivity analysis in Adversarial Steering (AdvSteer) (Shen et al.,
2021), and the synthetic augmentation benchmark ImageNet-C (IN-C) (Hendrycks & Dietterich,
2019). Our method consistently achieves improved performance on synthetic corruption benchmarks
while still maintaining or even improving clean evaluation accuracy.

eter intervals (Basis Aug), the combined perturbation benchmark from Shen et al. (2021)
(AdvSteer), and ImageNet-C (IN-C) (Hendrycks & Dietterich, 2019) corruptions. On the
synthetic benchmark ImageNet-C (Hendrycks & Dietterich, 2019), our model achieves im-
proved scores, particularly in the robotics and medical domains. Our method performed
worse primarily in the AdvSteer benchmark of Table 4, notably for Cityscapes and Synapse.

ViT+DinoV2
Method aAcc" mAcc" mIoU"
Baseline 77.65 45.83 32.70
Augmix 79.99 51.63 41.38
AutoAugment 81.18 55.93 43.65
RandAugment 80.42 54.02 43.25
TrivialAugment 82.56 54.27 43.58
IDBH 84.45 60.22 48.69
Ours 84.13 62.92 49.82

Table 5: Performance of Cityscapes
models on unseen ACDC weather
evaluation set across different aug-
mentation methods, when fine-tuned
from DinoV2 (Oquab et al., 2024) with
ViT (Dosovitskiy et al., 2021) back-
bone.

This may be due to the sheer intensity of benchmark
corruption—the AdvSteer benchmark applies a combina-
tion of intense perturbations (not the same as the augmen-
tations used during training), resulting in an extreme case
from the original distribution. This may be related to de-
graded performance on Night scenarios in ACDC evalua-
tion, as both scenarios heavily corrupt visibility based on
color. Examples of the AdvSteer benchmark corruptions
can be found in Appendix Section D.4.

Qualitative results on Synapse with synthetic motion blur
between our method and next best, TrivialAugment, can be
observed in Figure D. We emphasize that our method is not
necessarily bound to image segmentation—we find simi-
lar boosts in performance in classification (see Appendix
Section 9).

4.3 DOWNSTREAM FINETUNING WITH FOUNDATION
MODELS

A popular choice for boosting feature robustness is fine-tuning downstream tasks from foundation
models. In these experiments, we examine how our approach can complement robustness pro-
vided by foundation models when fine-tuning on downstream tasks. We first initialize a distilled
DinoV2 (Oquab et al., 2024) model on the ViT-Small (ViT-S) architecture, then fine-tune on the se-
mantic segmentation task with Cityscapes. We choose Cityscapes due to the availability of real-world
corrupted images (ACDC and IDD) to evaluate on. In our experiments, we observe an 2.32% mIoU
improvement over the next best method, IDBH. While the largest boost in robustness stem from
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(b) # Samples vs. IDD mIoU performance.

Figure 3: Comparison of Ours vs. SOTA Data Augmentation Methods: Ours (top, blue) out-
performs all others with performance improving as the number of samples increases, while other
methods plateau on both (a) adverse weather data (ACDC) and domain shifted data (IDD).

robust foundation model features, our results suggest that our method can complement approaches
centered around model architecture (such as Segformer).

4.4 DATA EFFICIENCY

We also analyze data efficiency of our method in comparison to other data augmentation methods
by training various Segformer models with varying training dataset sizes. For each method in
Table 2, we train five models with training dataset sizes of 1000, 2000, 3000, 4000, and 5000
samples from the Cityscapes dataset. We plot the progression of mIoU (Minimum Intersection over
Union) performance (higher the better) on (a) adverse weather data (ACDC) and (b) the domain shift
setting (IDD), as shown in Figure 3. Our method, in blue, shows consistent improvement on adverse
weather and domain shift evaluation with increasing number of samples, and maintains best mIoU
performance across each # of samples slice, suggesting that our method is more data efficient than
others. Interestingly, not all methods show increased robustness to adverse weather as number of
samples increases for training, indicating that in some cases, scaling data may not necessarily mean
increased robustness.

4.5 ABLATION STUDY

We examine several variants of our method to determine the impact of individual components in an
ablation study: a baseline trained only with random cropping, a variant of our method using only
geometric augmentations, a variant of our method using only photometric augmentations, a variant
of our method without clean training warmup, and a variant of our method using uniform sampling
instead of the Beta-Binomial sampling described in Algorithm 1. Uniform sampling of augmentation
parameters computed with sensitivity analysis decreases generalization to both synthetic and real-
world corruption benchmarks by small margins. In addition, training without clean warmup produces
similar results to that with warmup, suggesting that warmup is optional. In our case, warming up
with clean evaluation reduces the total number of sensitivity analysis updates, making warm-up with
clean evaluation marginally less resource expensive ( 0.5 GPU hours total). Interestingly, while clean
performance remains largely the same across all models, the largest decrease in performance on
unseen corruption benchmarks comes from the lack of photometric augmentations.

To examine generalization of photometric robustness over training, we plot the g values computed
from Equation 5 across training for our Cityscapes experiments in Figure 4. One curve is plotted
per component for RGB, HSV, Noise, and Blur corruptions. Note that the components in this Figure
are based on individual color channels and are separate from those used during training. From this
visualization, we observe that Hue curves (teal, center) are most volatile during training, with most
sensitive augmentation parameters falling towards ↵ values close to 1.0 in the beginning of training.
As the model generalizes, the Hue curve converges slowly towards ↵ values centered around 0.5,
similarly to other curves. This suggests that Hue is a significant factor in model robustness, whilst
other channels are largely stagnant as models generalize over training.
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Clean Basis Aug AdvSteer IN-C ACDC
Method aAcc" mIoU" aAcc" mIoU" aAcc" mIoU" aAcc" mIoU" aAcc" mIoU"
Baseline 95.610 75.130 92.042 65.319 62.040 21.995 79.437 38.362 78.49 37.54
Ours⇠g 95.780 75.500 93.405 68.877 71.070 27.997 83.032 44.385 78.13 43.69
Ours⇠p 95.740 75.210 92.544 69.002 64.907 22.437 80.817 40.876 75.74 37.97
Ours⇠Warmup 95.830 75.430 94.458 71.891 69.138 28.472 84.438 45.849 79.78 44.66
Ours⇠Uniform 95.740 75.200 94.304 71.213 69.678 27.235 85.135 46.219 80.95 43.17
Ours 95.790 75.100 94.439 71.665 70.605 28.895 83.844 45.617 80.13 44.67

Table 6: Ablation study results comparing different variants of our method. We compare: (1) a
baseline trained with no augmentations, (2) a variant of our method that only augments with photo-
metric augmentations (Ours⇠g), (3) a variant of our method that only uses geometric augmentations
(Ours⇠p), (4) a variant of our method trained without clean training warmup, (5) a variant of our
method with uniform augmentation (OursUniform) of computed sensitivity analysis values ↵, and (6)
our full method combining informed probability sampling, and adaptive sensitivity analysis, and all
augmentation types (Ours).
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Figure 4: Cumulative sensitivity curves (g values) throughout training of Cityscapes. We visualize
how the estimated cumulative sensitivity curve, Equation 5, changes for RGB, HSV, Gaussian blur,
and Gaussian noise during augmented training. In this plot, the most recent curve is opaque, while
others decrease in opacity in order of recency. The red X markers indicate the values at which ↵ values
are selected (horizontal axes). Surprisingly, most curves remain largely stagnant throughout training,
with the exception of Hue in HSV (teal, center), which changes drastically as the model generalizes.
This may suggest that Hue is a major factor in model generalization. Ablation study results in Table 6
support this, where the model trained without photometric augmentations demonstrate a significant
decrease in performance.

5 DISCUSSION AND CONCLUSION

In this paper, we present a method for sensitivity-informed augmented training for semantic segmen-
tation. Our method combines the information granularity of sensitivity analysis-based methods and
the scalability of data augmentation methods, which run on-the-fly during training. In our results,
we show that our method achieves improved robustness on zero-shot real-world adverse weather
and domain shift scenarios, in addition to improvements on synthetic benchmarks like ImageNet-C.
Additionally, evaluation on real world datasets show clear improvements over current SOTA methods
for augmentation. Our model can complements other approaches for model robustness such as
architecture design and downstream fine-tuning.

Currently, a limitation of our work is that our method does not address gaps in low-lighting scenarios.
Future work can explore occlusion and low-lighting techniques for segmentation, as both cases
resulted in degraded performance for all methods. Additionally, our method treats all augmentation
types as equal, in that weighting of augmentation is uniform across types—sensitivity analysis is
used to update the intensity values ↵ only for online sampling. From our ablation study, we show that
uniform sampling matters little in context of our method. However, future work dissecting whether all
augmentations are equal, especially photometric augmentations, will be useful especially for unseen
scenarios in robotics.
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