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Abstract

Long documents often exhibit structure with001
hierarchically organized elements of different002
functions, such as section headers and para-003
graphs. Despite the omnipresence of docu-004
ment structure, its role in natural language005
processing (NLP) remains opaque. Do long-006
document Transformer models acquire an in-007
ternal representation of document structure008
during pre-training? How can structural in-009
formation be communicated to a model after010
pre-training, and how does it influence down-011
stream performance? To answer these ques-012
tions, we develop a novel suite of probing tasks013
to assess structure-awareness of long-document014
Transformers, propose general-purpose struc-015
ture infusion methods, and evaluate the ef-016
fects of structure infusion on QASPER and017
Evidence Inference, two challenging long-018
document NLP tasks. Results on LED and019
LongT5 suggest that they acquire implicit un-020
derstanding of document structure during pre-021
training, which can be further enhanced by022
structure infusion, leading to improved end-023
task performance. To foster research on the024
role of document structure in NLP modeling,025
we make our data and code publicly available1.026

1 Introduction027

Long documents such as news articles, scientific028

papers, and clinical reports play a vital role in many029

human activities. These documents are usually or-030

ganized into chapters, sections, subsections, and031

paragraphs, i.e. they are structured. This helps032

humans in navigating documents (Guthrie et al.,033

1991; Nguyen et al., 2021) and building a men-034

tal model of the content (Taylor and Beach, 1984;035

Meyer et al., 1980). The example in Fig. 1 shows036

how the hierarchy of sections and subsections helps037

when looking for the size of a dataset in an NLP038

paper: one would go via the "Experiments" section039

to the "Datasets" subsection.040

1[link when accepted], under MIT and CC-BY license.
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Figure 1: Transformer models receive unstructured text
as input (top right) – yet long texts exhibit structure,
which helps in finding information (bottom). We in-
vestigate whether Transformers learn representations of
document structure during pre-training (§4), whether
structure-awareness can be enhanced by infusion after
pre-training (§5), and what effects infusion has on down-
stream task performance. Source: QASPER dataset,
arxiv ID 1909.00694 (Dasigi et al., 2021).

Although structure is omnipresent and useful to 041

humans, existing long-document Transformers (e.g. 042

Ainslie et al. 2020; Beltagy et al. 2020; Ivgi et al. 043

2023) operate with linearized textual input: doc- 044

uments are converted to flat character strings, re- 045

moving the distinction between different functional 046

elements and their hierarchy (Fig. 1, top right). 047

Understanding the structural capabilities of long- 048

document Transformers is important both theoreti- 049

cally and practically. From a theoretical standpoint, 050

prior work in probing has demonstrated the ability 051

of Transformers to learn syntactic representations 052

on the sentence level (Hewitt and Liang, 2019) 053

– yet little is known about the ability to induce 054

higher-level discourse structures from linearized 055

text. Probing methodology and datasets for this 056

investigation are missing. From a practical per- 057

spective, recent works demonstrate that structure- 058
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aware modeling can improve downstream task per-059

formance (Li et al., 2023; Cao and Wang, 2022;060

Ruan et al., 2022) – yet existing studies are limited061

to task-specific architectures and data formats, mak-062

ing it hard to generalize the findings to new tasks063

and document types. General-purpose methodol-064

ogy for communicating structural information to065

Transformer models is yet to be established.066

Our work aims to close this gap. Instead of com-067

mitting to a specific document format, we build068

upon a task- and format-agnostic formalism of In-069

tertextual graphs (ITG, Kuznetsov et al. 2022) to070

encode structure obtained from the original doc-071

uments. Using this formalism, we (1) devise a072

novel suite of probing tasks to investigate structure-073

awareness of pre-trained Transformer models. We074

then (2) introduce a general-purpose structure infu-075

sion kit that allows communicating information076

about document structure to Transformers, and077

(3) investigate the impact of document structure078

on end-task performance using two widely used079

long-document Transformer models – LED (Belt-080

agy et al., 2020) and LongT5 (Guo et al., 2022) –081

and two challenging long-document NLP datasets –082

QASPER (Dasigi et al., 2021) and Evidence Infer-083

ence (DeYoung et al., 2020). Our findings suggest084

that Transformers do acquire an implicit notion of085

document structure during pre-training, and that086

their structure-awareness can be enhanced via in-087

fusion, leading to up to 6.8 F1 points increase on088

downstream tasks. Our work lays the foundation089

for the systematic analysis of the role of document090

structure in long document modeling.091

2 Background092
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Figure 2: Document Graph. Black arrows show
parent edges, next edges between alphabetically
consecutive nodes are omitted for clarity. Node depth
and node type information are infused in §5.

Document structure. The term "structure" is093

used ambiguously for textual documents. Rhetor-094

ical structure is the hierarchical organization of 095

semantic units, usually latent and not available for 096

explicit processing. (Kintsch and van Dijk, 1978; 097

Mann and Thompson, 1987). Abstract structure 098

refers to the hierarchical organization of a text into 099

elements such as sections, paragraphs, and lists2 100

(Nunberg, 1990; Power et al., 2003). Concrete, 101

or visual structure, includes aspects of typesetting 102

such as font size, spacing and the location of textual 103

elements in a typeset text, classically ordered into 104

pages (Power et al., 2003). In this work, we focus 105

on the study of abstract document structure as the 106

direct author expression of textual organization. 107

Long-document Transformers. The memory 108

and computational requirements of the standard 109

Transformer architecture (Vaswani et al., 2017) 110

scale quadratically with the input length, making 111

it hard to process long documents under compu- 112

tational constraints. Several innovations for in- 113

creased efficiency have been proposed, surveyed by 114

Tay et al. (2022). A popular and well-performing 115

approach is the combination of local attention with 116

a varied distribution of global attention (Ainslie 117

et al., 2020; Beltagy et al., 2020; Guo et al., 2022), 118

used by the top 5 models in the Scrolls bench- 119

mark for long-document processing (Shaham et al., 120

2022). We experiment with two representatives for 121

this approach: LED (Beltagy et al., 2020), which is 122

employed in many recent works on long documents 123

(e.g. Dasigi et al. 2021; Cao and Wang 2022) and 124

LongT5 (Guo et al., 2022), the best "base" model 125

on the Scrolls leaderboard at the time of writing3. 126

Probing. Probing tasks are diagnostic classifica- 127

tion tasks which investigate whether a linguistic 128

feature (e.g. sentence length, word content or syn- 129

tax tree depth) is encoded in a representation (Con- 130

neau et al., 2018; Belinkov, 2022; Rogers et al., 131

2020). Early work on probing measured the en- 132

coded knowledge through the delta to a majority 133

baseline or randomly initialized embeddings. Con- 134

trol tasks were introduced as a better approximation 135

of what a probing classifier is able to learn in its 136

own neural representation compared to what lin- 137

guistic features it can extract from the underlying 138

representations (Hewitt and Liang, 2019). We fol- 139

low this line of work by designing a novel atomic 140

2Power et al. (2003) include phenomena such as emphasis
and quotation into abstract document structure. They are not
considered here, as they are rarely preserved or standardized.

3https://www.scrolls-benchmark.com/
leaderboard, October 2023.
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control setting where we remove contextual infor-141

mation. To measure contextual information beyond142

a given span, we employ edge probing introduced143

by Tenney et al., (2019).144

Syntax trees have been shown to be encoded in145

BERT (Hewitt and Manning, 2019), but the repre-146

sentation of higher-order document structure has147

not been investigated. For the first time, we show148

that long-document Transformers internally repre-149

sent several aspects of document structure, and that150

this internal representation can be enhanced.151

Document structure in Transformers. Existing152

approaches that make use of document structure in153

Transformers broadly fall into two categories. In hi-154

erarchical processing (Zhang et al., 2022; Qi et al.,155

2022; Liu and Lapata, 2019; Ruan et al., 2022),156

complex, task specific architectures are built, from157

which results and analyses are hard to generalize.158

In structure infusion, additional structural informa-159

tion is added to pre-trained Transformer models.160

We employ the latter setting, because methods and161

models can be reused and analyzed more easily.162

Structure infusion through special tokens (Agha-163

janyan et al. 2022; Fisch et al. 2019), attention164

masks (Liu et al., 2021; Hong et al., 2022), absolute165

(Bai et al. 2021) or relative position embeddings166

(Cao and Wang, 2022) has been shown to improve167

downstream task performance. Here, we combine168

special tokens and position embeddings which only169

require changes at the input layer, making them170

easily transferrable to other transformer models.171

3 Representing Structure172

Formalism. We model the abstract structure of173

a document (Power et al. 2003, see §2) as an174

ordered graph G (Fig. 2) as in Kuznetsov et175

al. (2022), using their notation. Structural el-176

ements such as section headings or paragraphs177

are represented as a set of typed nodes NG.178

The node types correspond to the function of179

the element in the document. We consider180

the types article-title, section-title,181

abstract, and paragraph4. The set of typed,182

directed edges EG encodes the hierarchical organi-183

zation of the textual elements with parent edges184

and the linear order with next edges. Node func-185

tion and hierarchical organization can be seen as186

orthogonal pieces of information that together fully187

describe the abstract document structure.188

4We do not consider sentences, as their borders often can-
not be extracted unambiguously from English texts.

Data conversion. All datasets used in the present 189

work were converted to the intertextual graph (ITG) 190

format5 introduced in Kuznetsov et al. (2022), 191

which is a JSON representation of the graph data 192

structure introduced above. All our methods and 193

experiments are based on this format, and therefore 194

dataset agnostic, easily adaptable, and extensible. 195

4 Probing for Structure 196

4.1 Probing Suite Design 197

As the first step towards the systematic study of 198

document structure in long document processing, 199

we propose a suite of seven probing tasks that 200

measure the ability of pre-trained Transformers 201

to capture structural information from their input, 202

described in Tab. 1. For example, the parent 203

predecessor probe measures the representa- 204

tion of document hierarchy in a Transformer by 205

learning to distinguish between pairs of document 206

elements (e.g. headings or paragraphs) that are in 207

a parent-child relationship and pairs that are not. 208

As shown in our introduction example, a good rep- 209

resentation of the hierarchy can help in locating 210

relevant information in a document (Fig. 1). 211

All probing tasks are cast as classification and 212

evaluated via accuracy. Assuming a model that 213

computes vector representations of textual nodes, 214

classification is implemented as a linear layer pro- 215

jecting from the representation of a node or a node 216

pair to the label space. If a model has multiple 217

layers, node representations are computed as a 218

weighted sum (Tenney et al., 2019) of the repre- 219

sentations from each layer. For tasks on node pairs, 220

the representations of two nodes are concatenated. 221

Only the linear layer and the scalar mix weights 222

are updated during training on the probing task. 223

4.2 Experiments and Results 224

Probing dataset. We instantiate our probing 225

tasks with research papers from the open sci- 226

ence platform F1000Research6. Based on the 227

pre-processing used for the F1000RD corpus 228

(Kuznetsov et al., 2022) we convert each paper into 229

the ITG format (Fig. 2), removing all non-textual 230

nodes7. Removing all papers exceeding the maxi- 231

mum input length of LED (16384 tokens) results 232

5https://github.com/UKPLab/
intertext-graph

6https://F1000research.com, downloaded on
April 9th, 2021. We use the paper first versions.

7For the node type probe we remove the document title
and abstract as well, as these occur once per document.
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Name Classification task Labels

Node type Type of nj with all nodes of type section and a
tree depth > 1 grouped as subsection[1].

Section,
subsection,
paragraph

Sibling Do nj and nk share the same parent np? Boolean
Ancestor Is nj on the parent path of nk and the root n0? Boolean
Position Position within an ordered set S for all nodes nj ∈

S with the same parent np.
Begin, inside,
outside

Parent predecessor Is np the parent of nj? Boolean
Tree depth Depth of nj from the root n0. Integer
Structural Shortest parent path between nj and nk. Integer

Table 1: Definitions of probing tasks and their labels. nj,k,p,0 denote nodes in the document graph G. [1]
Subsection is a mixture of functional and hierarchical description, so it is not part of the node types defined in
§3. It is added to the node type probing task to increase the difficulty.

in a corpus of 2,499 documents. All probing tasks233

are balanced through downsampling on document234

basis, meaning that the label distribution is uniform235

in most cases (Tab. 5). For some probes, e.g. tree236

depth, not all labels occur in all documents, re-237

sulting in a non-uniform label distribution.238

Probing architecture. We compare probing of239

the "vanilla" LED and LongT5 encoders with two240

control configurations each: atomic and random.241

In the atomic control (Fig. 3), nodes are input to242

the model individually, i.e. without their document243

context. Comparing the vanilla and atomic configu-244

rations shows the effect of contextualization on the245

representation of structure. For the random control,246

all model weights except for the embedding layer247

are re-initialized randomly (Jawahar et al., 2019).248

It shows the effect of pre-training on the represen-249

tation of structure. Details on implementation and250

hyperparameters can be found in Appx. B.2.251

Results. In all probes, the accuracy of the vanilla252

model is higher than the random control (Tab. 2).253

The difference varies between 34% for LongT5 on254

position and 2.7% for LED on node type –255

a magnitude comparable to reported results from256

prior work on probing (e.g. Conia and Navigli257

2022). This result suggests that LED and LongT5258

learn to represent document structure during pre-259

training, but the effect varies between different as-260

pects of document structure. The cases with small261

difference between vanilla and random control im-262

ply that the input token and position embeddings,263

not being re-initialized, contain much of the infor-264

mation needed to solve the task. The scores of the265

atomic control are lower than those of the vanilla266

configuration on all probes, showing that context 267

helps to represent document structure. 268

Vanilla LED and LongT5 achieve accuracies of 269

0.9 on some probes, e.g. node type, suggest- 270

ing that they are able to encode some aspects of 271

structural information well even without its explicit 272

input. It is surprising that the accuracy on the 273

sibling probe is far below that of parent 274

predecessor, because the information on the 275

parents of two nodes is enough to determine their 276

siblinghood. It seems that the combination of par- 277

ent information from two nodes in a queried pair is 278

difficult. The structural probe can be consid- 279

ered the most complex, as it has the most classes. 280

Thus, the large room for improvement is expected. 281

We could show for the first time that long- 282

document Transformers can learn to represent doc- 283

ument structure, even though the models were not 284

explicitly trained for this. However, the representa- 285

tion of some aspects of structure is far from optimal. 286

In the following, we investigate whether structure 287

infusion, i.e. the input of additional, explicit infor- 288

mation on document structure, improves the inter- 289

nal representation of structure and if this translates 290

to improvements on downstream tasks. 291

5 Infusing Structure 292

As exemplified in Fig. 1, structure can help hu- 293

mans in working with documents. While previous 294

work shows that the addition of structural informa- 295

tion can improve the downstream performance of 296

Transformer models (Li et al., 2023; Cao and Wang, 297

2022; Ruan et al., 2022), the use of task-specific 298

architectures and document formats prevents com- 299
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Figure 4: Structure infusion via special tokens and embeddings. Special tokens ("<Ti>", "<Ab>") are prepended
to the text of the corresponding node, embeddings are summed with the token embeddings. The figure shows the
combination of hierarchical embeddings and node type special tokens, short description tok-type-emb-depth.

parison of structure infusion methods across the300

studies, and makes it challenging to relate perfor-301

mance to probing results. To remedy this, we intro-302

duce a task- and format-agnostic structure infusion303

kit, and demonstrate its wide applicability by study-304

ing the effects of structure infusion on LED and305

LongT5 and two challenging long-document tasks.306

5.1 Methodology 8307

Structure infusion. We infuse structural infor-308

mation through position embeddings added to the309

token embeddings (indicated as emb, see Fig. 4)310

and special tokens that are prepended to the tokens311

of the corresponding node (tok). Both methods312

only modify the input layer and are therefore easily313

applicable to any Transformer model.314

We infuse the two types of abstract structural315

information that are missing in the input of Trans-316

former models (§3): node function and hierar-317

chy. Node function is infused through embed-318

dings and special tokens representing the node type319

(type). To infuse the hierarchical organization, to-320

kens and embeddings represent the depth of a node321

in the graph, i.e. its distance to the document root322

(depth). As a baseline for structural tokens, we323

prepend each node with the same separator token324

(sep). We refer to the infusion configurations us-325

ing short descriptors, e.g. the combination of node326

depth position embeddings and node type tokens is327

8We provide implementation details in Appx. B.3-B.6.

shortened to emb-depth-tok-type. 328

Probing. The probing experiments were con- 329

ducted as described in §4 using the same probing 330

dataset, with the addition of structural information 331

in the input. We omit the atomic and random con- 332

trol here, as we are interested in the capabilities of 333

the configuration that is used for downstream tasks. 334

Downstream task datasets. We selected 335

QASPER (Dasigi et al., 2021) and Evidence 336

Inference (DeYoung et al., 2020) by the following 337

criteria: they are based on long documents, abstract 338

document structure is available, and several types 339

of downstream tasks are covered, to see possible 340

differences in the effect of structure infusion. 341

QASPER is a collection of scientific papers 342

from computational linguistics / NLP and corre- 343

sponding questions with one or multiple answers 344

with evidence. We model question answering as a 345

generative problem and evidence selection as para- 346

graph classification. Answer generation and evi- 347

dence selection are evaluated with F1 scores using 348

the evaluation script provided by the authors9. 349

Evidence Inference consists of reports from 350

clinical studies, "prompts" in the form of inter- 351

vention, comparator, and outcome, one or multi- 352

ple labels for the prompt ("significantly increased", 353

"significantly decreased", or "no significant dif- 354

ference") and corresponding evidence spans. We 355

9https://github.com/allenai/qasper-led-baseline
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Nod Sib Anc Pos Par Tre Str

LED 93.98 64.93 89.53 86.05 85.68 84.12 41.49
LED Atom 92.75 60.26 87.30 65.53 84.82 82.41 40.64
LED Rand 88.21 58.36 86.73 56.44 82.90 73.76 35.33

LongT5 95.28 65.85 89.38 91.95 86.13 87.88 42.97
LongT5 Atom 91.84 50.79 86.60 61.05 83.77 78.90 34.68
LongT5 Rand 88.21 57.41 84.81 57.97 81.54 73.40 33.49

Table 2: Probing accuracy of LED and LongT5 with atomic and random controls. Best result per model and probe
in bold, second best underlined.
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Figure 5: Probing of structure-infused models. Bars show the difference in accuracy to the vanilla baseline (Tab. 2)
For absolute values see Tab. 4.

LED LongT5
QAS EvI QAS EvI

Ans Evi Cla Evi Ans Evi Cla Evi

vanilla 36.80 42.05 74.30 61.55 45.89 52.09 81.54 70.39

tok-sep 37.35 42.54 75.17 66.81 45.54 54.12 81.08 75.92
tok-depth 36.24 41.90 74.60 64.19 46.60 56.14 80.90 76.88
tok-type 37.43 42.32 75.85 66.93 46.76 56.08 80.75 76.28
emb-depth 36.17 42.53 73.78 60.67 44.91 51.53 81.36 71.18
emb-type 36.03 42.92 74.71 61.05 46.37 53.89 80.86 68.91
emb-depth-tok-type 37.83 43.16 76.49 66.07 45.63 56.04 79.94 75.57
emb-type-tok-type 38.02 43.83 76.38 65.31 46.43 55.70 81.42 77.23
emb-type-tok-depth 39.08 44.41 75.30 64.58 44.72 55.60 80.71 75.86
emb-depth-tok-depth 37.74 44.64 76.34 67.07 45.33 54.27 80.98 75.96

Table 3: Downstream task results on test sets. All scores are F1 scores averaged over 3 runs with different random
seeds. Best result in column in bold, second best underlined. QAS: QASPER. EvI: Evidence Inference. Ans:
Answer F1. Evi: Evidence F1. Cla: Classification F1.
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model prompt answering as 3-way classification,356

and convert evidence span selection to node classi-357

fication by mapping evidence spans to nodes. As358

there is no adaptable evaluation script, and for con-359

sistency with QASPER, we re-implemented eval-360

uation, choosing the annotation resulting in the361

highest score as gold standard. This means that we362

can only compare the models in our work.363

Training Downstream tasks were fine-tuned for364

10,200 steps with an effective batch size of 8 in a365

multi task fashion. We report mean test set results366

of 3 random seeds.367

In all experiments in this section, the models368

were pre-trained for 15,000 steps, with an effec-369

tive batch size of 16, with the respective struc-370

ture infusion configuration on the relevant probing371

(F1000RD) or downstream task dataset (QASPER372

or Evidence Inference), as we noted this to be373

beneficial in early experiments (Gururangan et al.,374

2020). "T5-style" denoising (Raffel et al., 2020)375

was used as the pre-training task as suggested in376

Xiong et al, (2022).377

5.2 Probing of Structure-Infused Models378

We see an improvement in all probes through struc-379

ture infusion (Fig. 5, Tab. 4). The node type380

and tree depth probes show an accuracy of381

around 1 with tree depth infusion, as this informa-382

tion suffices to solve the tasks. Node type infusion383

does not lead to perfect scores on the node type384

probe, as the subsection node type is part of the385

probing task, but not of the infusion (Tab. 1).386

Except for LongT5 on sibling, infusion of387

node depth results in higher accuracy than node388

type or node boundary information infused on389

the same pathway. For the majority of LED390

probes (sibling, position, tree depth,391

and structural), models with position embed-392

ding infusion show higher metrics than their coun-393

terparts with the same information in special tokens,394

while for LongT5, the results are mixed. LED,395

based on BART (Lewis et al., 2020), is pre-trained396

with absolute position embeddings like our struc-397

tural embeddings, while LongT5, based on T5 (Raf-398

fel et al., 2020), uses relative position embeddings.399

LED might therefore have a better capability to use400

the information from absolute embeddings.401

5.3 Structure infusion in Downstream Tasks402

QASPER For LED in answer generation, the403

emb-type-tok-depth configuration results in404

the best performance, with an improvement of 2.28 405

F1 points over vanilla (Tab. 3). In evidence selec- 406

tion, emb-depth-tok-depth outperforms the 407

vanilla configuration by 2.59 F1 points. This is an 408

improvement of 5.58 F1 points for answer gener- 409

ation and 14.04 F1 points for evidence selection 410

over the LED state-of-the-art (SOTA) (Caciularu 411

et al., 2022) on QASPER. The vanilla configuration 412

already outperforms the SOTA by 3.30 and 11.45 413

F1 points, respectively. Infusing the node depth 414

through two pathways improves over a single path- 415

way. While unintuitive, this was also observed for 416

the sibling, parent predecessor, and 417

tree depth probes (Fig. 5). 418

For LongT5, special tokens structure infusion 419

results in the highest scores. The best answer F1 of 420

46.76 with node type tokens improves the vanilla 421

model by 0.87 points and is slightly higher than 422

the current LongT5-base SOTA of 46.6 (Guo et al., 423

2022). In evidence selection, infusion of depth 424

tokens increases the vanilla configuration by 4.05 425

F1 points. To our knowledge, there are no reported 426

scores for LongT5 on QASPER evidence selection. 427

Evidence Inference For LED, the best per- 428

formance in classification is obtained by the 429

emb-depth-tok-type configuration, improv- 430

ing 2.19 F1 points over the vanilla configuration. 431

In evidence selection, emb-depth-tok-depth 432

outperforms the vanilla baseline by 5.52 F1 points, 433

but adding node separator tokens already leads to 434

an increase of 5.26 F1 points. 435

For LongT5, no structure infused variant outper- 436

forms vanilla in classification, while in evidence 437

selection, emb-type-tok-type outperforms 438

vanilla by 6.84 F1 points. 439

Comparison of infusion configurations. In 440

most cases, adding node separator tokens improves 441

performance. This was expected, as it is common 442

practice to signify segment boundaries to models 443

(e.g. Beltagy et al. 2020) and could also be seen 444

in probing. For LED, the combination of position 445

embeddings and structural tokens exhibits the best 446

scores, which again resembles the probing results. 447

For LongT5, combining both infusion pathways 448

only results in the best scores on Evidence Infer- 449

ence evidence selection. Infusion via structural 450

tokens outperforms infusion via position embed- 451

dings for LongT5 on most subtasks. 452

The increases for LED of about 2 F1 points 453

are similar to the reported performance increases 454

7



through document structure infusion on other long-455

document datasets, showing that our employed456

methods are effective. These works use relative457

position embeddings (Cao and Wang, 2022) or spe-458

cial attention patterns (Liu et al., 2021; Hong et al.,459

2022), while we use structural tokens and absolute460

position embeddings. Our methods are easier to ap-461

ply and adapt, as only the input to the model needs462

to be modified. For LongT5, the performance gains463

through structure infusion of up to 6.84 F1 points464

suggest that this is a promising research direction.465

5.4 Correlation between Probing and466

Downstream Tasks467

Ans Evi

Nod
Sib

Anc
Pos
Par
Tre
Str

0.15 0.31

0.39*0.60*

0.48*0.61*

0.35 0.62*

0.43*0.54*

0.14 0.32

0.18 0.42*

QAS

Cla Evi

0.05 0.03

0.34 0.17

0.37* 0.35

0.23 0.03

0.39* 0.26

0.05 0.00

0.11 -0.01

EvI

Ans Evi

-0.31 0.11

0.05 0.33

-0.160.39*

-0.26 0.14

-0.010.61*

-0.29 0.15

-0.22 0.15

QAS

Cla Evi

-0.17 0.24

-0.11 0.19

-0.06 0.55*

-0.19 0.12

-0.25 0.65*

-0.17 0.26

-0.19 0.27

EvI

1

0

1

    LED                   LongT5

Figure 6: Pearson correlation between probing and
downstream tasks. * denotes significance (p < 0.05).

To find associations between the representation468

of document structure and downstream task per-469

formance, we computed the Pearson correlation470

between probing and downstream task metrics 10471

(Fig. 6). All combinations of probing and down-472

stream tasks for LED, and evidence selection and473

all probing tasks for LongT5 have a correlation474

greater or around 0. In contrast, the performance475

of LongT5 on QASPER answer generation and Ev-476

idence Inference classification is mostly negatively477

correlated with the probing task metrics. These478

were also the tasks with the least improvements479

through structure infusion. As they are decoder-480

based tasks, while evidence selection is encoder-481

based (§B.5), it seems that LongT5 has less need482

for structure infusion on decoder-based tasks.483

For LED in both QASPER subtasks and Evi-484

dence Inference classification and for LongT5 in485

evidence selection on both Evidence Inference486

and QASPER, we see significant (p < 0.05)487

10The absolute values from each set of bars in Fig. 5 were
paired with the unaggregated values from each column in
Tab. 3 for the same model.

correlation with the ancestor and parent 488

predecessor probes, which measure the rep- 489

resentation of relations between nodes on one di- 490

rected path of parent edges. These usually have 491

more defined semantic relationships among each 492

other compared to nodes from different paths, e.g. 493

a section heading has more relevant information 494

about the paragraphs belonging to that section than 495

about those in other sections. Our results suggest 496

that better representation of these relations is asso- 497

ciated with better downstream performance. 498

6 Conclusion 499

In this work, we provided an in-depth analysis of 500

the representation of abstract document structure 501

in long-document Transformers. Experiments with 502

our novel probing suite show that LED and LongT5 503

have learned to represent node function and hier- 504

archical organization through pre-training without 505

explicit supervision, with room for improvement. 506

To investigate the effect of infusing the aspects 507

of document structure that are missing in Trans- 508

former inputs due to linearization, we developed 509

a modular structure infusion framework. Probing 510

shows that structure infusion enhances the internal 511

representation of document structure, and we see 512

performance improvements from structure infusion 513

on QASPER and Evidence Inference, two down- 514

stream tasks where this has not been shown before. 515

The significant correlation between several probing 516

and downstream tasks suggests that it is indeed the 517

improved representation of document structure that 518

leads to downstream task performance gains. 519

Our probing, structure infusion and downstream 520

task suite is easily extensible with new probing 521

and downstream tasks and new types of infused 522

information. While this work provides proof of 523

the utility of our graph-based framework for doc- 524

uments from the scientific domain, the framework 525

can be applied to other document types (e.g. web 526

pages or conversation threads). Given that the ad- 527

dition of separator tokens between document ele- 528

ments can already increase performance, we deem 529

applying our methods to documents with less well- 530

defined structure promising. Our probing methods 531

are fully compatible with the current generation of 532

Transformer-based LLMs (BigScience Workshop, 533

2023; Touvron et al., 2023), as long as the internal 534

states of the model can be accessed. We hope that 535

our contributions pave the path towards systematic 536

study of the role of document structure in NLP. 537
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Ethical Considerations538

Long documents lie at the core of text work, and539

structure is omnipresent in long documents. We540

believe that developing a better understanding of541

the role of document structure in NLP would allow542

us to build more efficient, robust, and interpretable543

systems for the analysis of long texts. We envision544

a trade-off between structural modeling capabili-545

ties of NLP systems (which, as we show, can be546

enhanced by providing explicit document structure)547

and the computational and storage overhead associ-548

ated with processing additional structural informa-549

tion in the documents. Future work would inves-550

tigate this trade-off and determine in which cases551

this overhead is justified. As document structure is552

openly present in documents and easily accessible553

by humans, we do not envision additional ethical554

risks or misuse scenarios due to the use of docu-555

ment structure in NLP modeling. Our work only556

uses data published under permissive licenses; our557

adaptations of this data are made available under558

permissive conditions as well.559

Limitations560

We see our work as an important step towards the561

general study of the role of document structure in562

NLP modeling. Below we outline the limitations563

of our work, which present excellent opportunities564

for follow-up research.565

Dataset diversity. Our work unifies structured566

document data from multiple sources. Yet all of this567

data originates form the scientific domain. There568

are several benefits to this: scientific documents569

are long, clearly licensed, and exhibit structure570

– and the scientific domain offers multiple long-571

document processing tasks. In addition, focusing572

on one general domain allows us to control for573

domain shift during our measurements. We note574

that no part of our methodology is tailored to the575

particularities of the scientific domain – and as576

long as source documents can be converted into577

the domain-agnostic ITG formalism, our methods578

should be easily adaptable to other domains like579

Wikipedia or conversation threads. Similarly, we580

limit our studies to the English language, as other581

languages face scarcity both in terms of available582

long-document Transformer models and academic583

texts. As more data and models become available,584

it will become possible to evaluate our findings in585

new contexts.586

Models and Tasks. Our setup involves multiple587

probing tasks coupled with a range of structure infu- 588

sion methods, resulting in a wide experimental grid. 589

To make in-depth analysis feasible, we had to limit 590

our focus on a few models and tasks. We chose 591

two datasets which combine generative question 592

answering, segment classification and document 593

classification. Our experiments show that structure 594

infusion can be useful for all tasks and models con- 595

sidered. This suggests that experiments on other 596

tasks are a promising direction for future research, 597

which is facilitated by our open implementation. 598

Large language models. While it would be 599

technically possible to apply our kit to the recent 600

decoder-only models such as LLaMA (Touvron 601

et al., 2023) or BLOOM (Fan et al., 2022), this 602

would require substantial computational resources 603

– which illustrates the challenges of long-document 604

processing by modern NLP models and does not 605

constitute a limitation of our proposed approach. 606

Similarly, commercially hosted models with in- 607

creased input length such as GPT-411 (32k tokens) 608

and Claude 12 (100k tokens) could be evaluated 609

and infused with document structure – yet their 610

closed-source nature and lack of access to model 611

weights prevents such investigation. We hope that 612

the progress in efficient NLP and the ongoing open- 613

source LLM development make such studies possi- 614

ble in the near future. 615

Correlated model states. The structure-infused 616

models in this work were first pre-trained using a 617

language modeling loss on probing or downstream 618

task data, and then further fine-tuned using a task- 619

specific loss. The probing and downstream task 620

datasets in our work are not identical; thus, strictly 621

speaking, the scores used to compute the correla- 622

tion in Fig. 6 come from models with the same 623

structure infusion configuration, but not the same 624

state. We believe this to be unproblematic and ex- 625

pect the states to be comparable, since each model 626

is pre-trained under the same regime. To confirm 627

this, future work could create probing datasets from 628

downstream task datasets to use the same model 629

state in probing and downstream tasks – at the cost 630

of a drastic increase in the number of probing ex- 631

periments. This technical limitation only pertains 632

to §5.4 and Fig. 6 and leaves all other results unaf- 633

fected. 634

11https://openai.com/gpt-4
12https://www.anthropic.com/product
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A Table of Probing Results 938

See Tab. 4 939

B Implementation Details 940

B.1 Models 941

In all experiments, we used the huggingface Trans- 942

formers13 (Wolf et al., 2020) implementations and 943

weights of LED base (162M parameters, Beltagy 944

et al. 2020) and LongT5 base with transient global 945

attention (220M parameters, Guo et al. 2022). 946

B.2 Probing 947

Dataset. Our probing dataset is split 0.6/0.2/0.2 948

across train, dev, and test using in-document bal- 949

ancing. For boolean and the position probe we 950

see a uniform distribution of instances per label, 951

compared to the node type probe where sub- 952

sections occur not in all documents, resulting in a 953

non-uniform distribution. The structural and 954

tree depth probes naturally feature a diverse 955

set of labels and instances. A full overview of the 956

label distribution can be found in Tab. 5. 957

Implementation and hyperparamenters. Our 958

probing kit is implemented using the AllenNLP 959

library (Gardner et al., 2018). We stack a frozen 960

13https://huggingface.co/
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Nod Sib Anc Pos Par Tre Str

LED 93.98 64.93 89.53 86.05 85.68 84.12 41.49
LED Atom 92.75 60.26 87.30 65.53 84.82 82.41 40.64
LED Rand 88.21 58.36 86.73 56.44 82.90 73.76 35.33

tok-boundaries 94.15 65.87 89.80 87.13 86.30 85.64 40.68
tok-depth 99.78 67.41 90.99 89.59 87.64 99.96 51.22
tok-type 95.39 66.70 90.23 88.64 87.12 87.06 42.16
emb-depth 99.90 68.55 90.21 94.09 87.83 99.96 54.54
emb-type 95.60 67.99 90.49 92.37 86.99 89.32 46.48
emb-depth-tok-type 99.98 69.71 91.31 94.85 88.85 99.96 55.87
emb-type-tok-type 95.54 69.34 90.74 92.30 88.23 90.26 46.14
emb-type-tok-depth 100.00 69.57 91.72 95.97 88.31 99.96 54.43
emb-depth-tok-depth 99.95 69.43 91.81 96.30 88.68 99.96 55.94

LongT5 95.28 65.85 89.38 91.95 86.13 87.88 42.97
LongT5 Atom 91.84 50.79 86.60 61.05 83.77 78.90 34.68
LongT5 Rand 88.21 57.41 84.81 57.97 81.54 73.40 33.49

tok-sep 95.88 66.93 90.41 93.16 87.62 88.76 45.47
tok-depth 99.90 67.79 91.20 95.82 88.45 99.96 52.51
tok-type 95.99 67.96 90.92 94.80 87.59 89.26 44.60
emb-depth 99.92 67.75 90.94 98.32 87.45 99.96 51.92
emb-type 95.85 68.23 90.33 96.13 86.79 89.92 45.89
emb-depth-tok-type 99.98 67.88 90.52 98.86 88.25 99.96 54.09
emb-type-tok-type 96.07 68.30 90.85 96.75 87.44 91.13 46.73
emb-type-tok-depth 99.98 67.99 91.53 97.98 87.92 99.74 49.07
emb-depth-tok-depth 99.97 68.66 91.27 98.70 87.15 99.96 54.40

Table 4: Probing result numbers for Fig. 5 and from Tab. 2 for comparison. The best result per model is printed in
bold, the second best is underlined.
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Label Dev Test Train

Anc False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Nod Paragraph 2353 2369 7046
Section 2278 2298 6708
Subsection 1250 1262 3611
Total 5881 5929 17365

Par False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Pos Begin 3049 3180 9406
End 3049 3180 9406
Inside 3049 3180 9406
Total 9147 9540 28218

Sib False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Str 1 2939 3044 8946
2 2939 3044 8946
3 2939 3044 8946
4 2912 3018 8823
5 1840 1926 5560
6 985 1124 3161
7 - 10 5
8 - - 5
Total 14554 15210 44392

Tre 1 2892 2895 8642
2 2892 2895 8642
3 1634 1639 4872
4 - 3 1
5 - - 1
Total 7418 7432 22158

Table 5: Label distribution across probing tasks. Anc:
Ancestor; Nod: Node type; Par: Parent
predecessor; Pos: Position; Sib: Sibling;
Str: Structural; Tre: Tree depth.

Training
Batch size 4 (VR), 64 (AT)
Epochs 20
Patience 10

Optimization
Algorithm Adam (Kingma and Ba, 2015)
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−3(LED), 10−1(LongT5)

Table 6: Vanilla and random (VR), and atomic (AT)
configuration hyperparameters.

pre-trained Transformer model with an endpoint 961

span extractor from AllenNLP, extracting and con- 962

catenating the first and last token of a given span. 963

Our hyperparameters are described in Tab. 6. 964

Layer utilization. The layer utilization shown 965

in Fig. 7 reveals differences between the probed 966

models and their controls. For LED, the vanilla con- 967

figuration shows a more uniform layer utilization 968

compared to the control configurations. The atomic 969

control puts more weight on the last layer for all 970

probes except node type and tree depth. 971

For LongT5, both vanilla and atomic put all weight 972

on the last layer. For LED and LongT5, the ran- 973

dom control mostly uses the first layer, which has 974

also been observed in other works (Voita and Titov, 975

2020). The random control relies solely on the 976

input embeddings, as there is no additional infor- 977

mation in the Transformer layers. Input words such 978

as "Introduction" and the number of tokens in a 979

text node can be used to infer the node type. Node 980

type and word overlaps between two nodes can 981

give hints to the relation between two nodes. With 982

LongT5, the intermediate layers are not used at all. 983

As the atomic control cannot compare the posi- 984

tion embeddings of different nodes, it makes full 985

use of the contextualization through the entire for- 986

ward pass. To solve the node type task, the 987

length of a node provides useful information. It 988

is retained in the atomic position embeddings, ex- 989

plaining the more uniform layer utilization on this 990

probe. The random control puts most weight on 991

the the first layer, which has also been observed 992

in other works (Voita and Titov, 2020). It relies 993

on the input embeddings, as there is no additional 994

information in the Transformer layers. 995
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Figure 7: Layer utilization in probing of the vanilla LED and LongT5 models.

Config nparameters

tok-type 3K
emb-type 3K
tok-depth 15K
emb-depth 15K

Table 7: Number of added parameters in structure infu-
sion

B.3 Structure Infusion996

Embeddings. Structural embeddings are added997

to the token embeddings of each token in a node998

(including special tokens) before the first encoder999

self-attention layer (Fig. 4). They were initialized1000

according to a Gaussian distribution with mean 01001

and standard deviation 0.0305 (LED) and 4.8751002

(LongT5). Standard deviation for LED was chosen1003

to be the same as the standard deviation of the abso-1004

lute linear position embeddings matrix. As LongT51005

does not have absolute position embeddings, the1006

standard deviation for structural embedding initial-1007

ization was chosen to result in the same ratio of1008

token embedding standard deviation to structural1009

embedding standard deviation as for LED.1010

Special tokens. Special tokens are prepended1011

to the tokens of the respective node, lead-1012

ing to an increase in total sequence length1013

(Fig. 4). They were initialized using the1014

resize_token_embeddings() function in1015

the model implementation.1016

Number of added parameters. For the num-1017

ber of added parameters for each infusion config-1018

uration see Tab. 8. Each special token and each1019

embedding adds dmodel parameters to a model1020

(dLED = dLongT5 = 768). There were 4 structural1021

tokens / embeddings and 20 node depth tokens /1022

embeddings.1023

Masking
Noise density 3%
Mean noise span length [4,8,12]*

Training
Batch size 16 (PT), 8 (FT)
Steps 15000 (PT)

10200 (FT)
Optimization

Algorithm AdamW [1]
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−5 (LED)

10−4 (LongT5)
Warmup Linear (PT), - (FT)
Warmup steps 500 (PT), - (FT)

Table 8: Pre-training (PT) and fine-tuning (FT) hyper-
parameters. *: Mean noise span length is chosen uni-
formly from the given values for each input sequence.
[1] Loshchilov and Hutter 2019

B.4 Pre-Training 1024

All structure infused models and baselines were 1025

pre-trained on the respective probing or evalu- 1026

ation dataset using a "T5-style" denoising task. 1027

Noise was added to the model input using 1028

code provided by the authors of the T5 (Raf- 1029

fel et al., 2020) paper14, which replaces spans 1030

of tokens in the input with numbered mask to- 1031

kens. The mask tokens were initialized using the 1032

resize_token_embeddings() function in 1033

the model implementation. Masking is controlled 1034

by two hyperparameters: noise density, the propor- 1035

tion of masked tokens in the input, and mean noise 1036

span length. We chose the noise density as 3%, the 1037

14https://github.com/google-research/
text-to-text-transfer-transformer
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mean noise span length was uniformly chosen for1038

each input sequence from 4, 8 or 12 tokens.1039

The model is trained with a cross entropy loss1040

to generate each mask token followed by the to-1041

kens replaced by that mask, respecting the order1042

of masked spans. To save computation, only one1043

checkpoint was pre-trained for each combination1044

of model, infusion configuration and dataset. This1045

checkpoint was used in all replicates of a down-1046

stream experiment.1047

Training hyperparameters For training hyper-1048

parameters, see Tab. 8.1049

The only optimized hyperparameter is the learn-1050

ing rate, which was done by grid search with the1051

respective non-pretrained vanilla configuration on1052

the QASPER dataset.1053

1054

B.5 Downstream Tasks1055

B.5.1 QASPER1056

Dataset conversion. Each entry in the QASPER1057

dataset (Dasigi et al., 2021) consists of a paper title,1058

abstract, full text in the form of a list of sections1059

with section name and corresponding paragraphs,1060

a list of figures and tables, as well as a list of ques-1061

tions, answers and evidence. We converted the1062

QASPER dataset into the Intertext Graph (ITG)1063

format (Kuznetsov et al., 2022) creating a node1064

for the title, abstract, each section title and each1065

paragraph, as well as figures and tables. We added1066

an additional abstract node with the content1067

"Abstract" to serve as the parent for the abstract1068

text.1069

All answer types (extractive, abstractive, yes/no,1070

unanswerable) were mapped to a single reference1071

answer string for each question as done by the1072

dataset authors. The provided evidence strings1073

were mapped to the ITG nodes through string1074

matching, which which was successful for 99.35%1075

of evidence pieces from the original dataset. For1076

0.41%, there was no match, and for 0.24% there1077

were multiple matches, which were discarded.1078

Questions, answers and evidence are stored in the1079

ITG metadata. We follow the original data splits,1080

resulting in 888 train, 281 validation and 416 test1081

documents.1082

Model input. For LED, model input was formed1083

as "<s> [question] </s> [document]".1084

For LongT5, the initial <s> token was not used, as1085

it is not pre-trained with this token. Figures and1086

tables were discarded for model input. 1087

Evaluation. QASPER evaluation was imple- 1088

mented by adapting the evaluation script provided 1089

by the creators of the dataset15. If there are mul- 1090

tiple reference answers to a question, the answer 1091

that results in the highest score is chosen as the 1092

gold standard. Answer generation is evaluated with 1093

a token-level F1 score as in SQuAD (Rajpurkar 1094

et al., 2016). Evidence selection is evaluated with 1095

a node-level F1 score. 1096

Answer generation. Answers were generated 1097

with beam search, using 4 beams, length penalty 1098

1.0 and a maximum generated length of 100 tokens. 1099

Evidence selection. Evidence selection was im- 1100

plemented as paragraph classification. There can be 1101

multiple evidence paragraphs for a question. The 1102

final encoder hidden state h of the first token of 1103

each paragraph node in a document is used as 1104

the representation for the paragraph. This vector 1105

is passed through a fully connected linear layer 1106

W1 followed by a tanh nonlinearity and a linear 1107

layer W2 projecting to the score vector s ∈ R2 for 1108

evidence and no-evidence. 1109

s = W2 tanh(W1h), W1 ∈ Rd×d, W2 ∈ Rd×2

(1) 1110

Fine-tuning. Models pre-trained as described 1111

above on the QASPER train documents were fine- 1112

tuned on with the hyperparameters given in Tab. 8. 1113

Answer generation and evidence selection were 1114

trained with cross entropy loss: 1115

L = wALAnswer + wELEvidence (2) 1116

For LED and LongT5 the loss weights were set to 1117

wA = wE = 0.5. The checkpoint with the best 1118

score on the dev set was used for evaluation. 1119

B.5.2 Evidence Inference 1120

Dataset conversion. Evidence Inference 2.0 1121

(DeYoung et al., 2020) is provided as sets of arti- 1122

cles, prompts and labels with evidence. The article 1123

full texts are provided as plain text files and NXML 1124

files following the PubMed DTD schema16. We 1125

used the parser from the dataset creators17 to parse 1126

15https://github.com/allenai/
qasper-led-baseline

16https://pubmed.ncbi.nlm.nih.gov/
download/

17https://github.com/jayded/
evidence-inference
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the NXML files, and converted the output to the1127

ITG format. We added an additional abstract1128

node with the content "Abstract" to serve as the1129

parent for the abstract text.1130

Evidence annotations are given as character off-1131

sets pertaining to the articles in plain text format.1132

We transform this span selection problem to a node1133

classification problem by mapping evidence strings1134

to ITG nodes. Evidence text at a given offset is1135

extracted from a text file and then matched against1136

ITG nodes using fuzzysearch18. Full string match-1137

ing resulted in low recall, because of small dif-1138

ferences between the plain text files and NXML1139

files. For 92.03% of evidence spans, we find ex-1140

actly one ITG node, for 5.10% we find no node,1141

and for 2.07% we find more than one node, which1142

are discarded. The prompts, labels and evidence1143

for a document are stored in the ITG metadata. We1144

follow the original data splits, resulting in 35621145

train, 443 validation and 449 test documents.1146

Model input. For LED, model input1147

was formed as "<s> With respect1148

to [outcome], characterize the1149

reported difference between1150

patients receiving [intervention]1151

and those receiving [comparator].1152

</s> [document]". For LongT5, the initial1153

<s> token was not used, as it is not pre-trained1154

with this token.1155

Evaluation. Evidence Inference classification is1156

evaluated with macro F1 score. Evidence selection1157

is evaluated with a node-level F1 score. If there are1158

multiple annotations to a prompt, the annotation1159

that results in the highest score is chosen. We chose1160

to implement the evaluation similar to QASPER1161

evaluation for consistency, and thus different from1162

the implementation by the creators of the dataset.1163

The main differences are (1) the conversion of ev-1164

idence selection to a node classification task and1165

(2) choosing the classification annotation that re-1166

sults in the highest score, where in the original1167

implementation the class with the highest number1168

of annotations is chosen as the gold standard.1169

Classification. To get the class of a prompt-1170

document pair, a vector representation v of the1171

document is passed through a fully connected layer1172

M1, followed by a tanh nonlinearity and a linear1173

18https://github.com/taleinat/
fuzzysearch

layer M2 projecting to the score vector l ∈ R. 1174

l = M2(tanh(M1(v))), M1 ∈ Rd×d, M2 ∈ Rd×3

(3) 1175

For LED, v was chosen as the final encoder hidden 1176

state of the initial <s> token, because it has global 1177

attention. As LongT5 does not have configurable 1178

global attention, a dummy </s> token was input 1179

to the decoder, which has full cross attention over 1180

the input document. The final decoder hidden state 1181

of this token served as v for LongT5. 1182

Evidence selection. Evidence selection was im- 1183

plemented as for QASPER (§B.5.1). 1184

Fine-tuning. Models pre-trained as described 1185

above on the Evidence Inference train documents 1186

were fine-tuned with the hyperparameters given in 1187

Tab 8. Classification and evidence selection were 1188

trained with cross entropy loss: 1189

L = wCLClassification + wELEvidence (4) 1190

For LED, the loss weights were set to wC = 1191

wE = 0.5. For LongT5, they were set to wC = 1192

0.25, wE = 0.75. The checkpoint with the best 1193

score on the dev set was used for evaluation. 1194

B.6 Computation 1195

Experiments were performed on NVIDIA A100, 1196

A180 and A6000 GPUs. Depending on the GPU 1197

size and speed, pre-training, probing (all 7 tasks) 1198

and downstream task experiments took 1-2 days. 1199

Estimating an average of 1.5 days per experiment, 1200

the total number of GPU days is 264 (26 probing 1201

runs, 30 pre-training runs, 120 downstream fine- 1202

tuning runs). 1203

B.7 Use of AI Assistants in Development 1204

Some of the code for the structure infusion frame- 1205

work was developed with assistance from GitHub 1206

Copilot19. 1207

19https://github.com/features/copilot
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