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ABSTRACT

Is it possible to learn from the future? Here, we introduce knowledge distilla-
tion through time (KDTT). In traditional knowledge distillation (KD), a reliable
teacher model is used to train an error-prone student model. The difference be-
tween the teacher and student is typically model capacity; the teacher is larger
in architecture. In KDTT, the teacher and student models differ in their assigned
tasks. The teacher model is tasked with detecting events in sequential data, a sim-
ple task compared to the student model, which is challenged with forecasting said
events in the future. Through KDTT, the student can use the ’future’ logits from a
teacher model to extract temporal uncertainty. We show the efficacy of KDTT on
seizure prediction, where the student forecaster achieves a 20.0% average increase
in the area under the curve of the receiver operating characteristic (AUC-ROC).

1 INTRODUCTION AND RELATED WORK

KD traditionally involves transferring knowledge from a high-capacity teacher model to a more
compact representation in a student model (Gou et al., 2021). In predictive modeling, the task of
forecasting future events presents a greater challenge than the detection of current events, primarily
due to increased stochastic variability. To offset this performance difference, larger capacity models
must be used to handle the uncertainty associated with predictive tasks.

Where the tasks of the forecasting model and detection model only differ by the time of detection,
we posit that the student model can enhance its predictive capabilities by integrating insights from
future data already processed by the teacher model. Our proposed approach, KDTT, can mitigate
the elevated uncertainty and stochastic noise characteristics of forecasting tasks. Temporal disparity
can ultimately be used to reduce predictive ambiguity and enhance model robustness.

We test KDTT on seizure prediction. Clinicians monitor epilepsy patients by interpreting EEG
signals to identify seizures, which has been automated by machine learning (Shoeb & Guttag, 2010).
However, the challenge of seizure prediction—determining the confidence of a seizure event within a
given time horizon—is a complex task due to patient specificity and seizure stochasticity (Mormann
et al., 2007). KDTT is effective as seizure detection and prediction are similar time-series tasks
with differing complexity. Prior related work reinforces a prediction model using a binary target
as a ‘weak label’ (Yang et al., 2022). We introduce direct logit matching between the detector and
predictor, allowing the forecasting model to be exposed to uncertainty in the detection model.

2 METHODOLOGY

Temporal distillation: Our distillation loss function adheres to those from Hinton et al. (2015) and
Kim et al. (2021). Given a teacher model T and a student model S, the total loss L is defined as a
weighted combination of Cross-Entropy (CE) Loss and Kullback Leibler (KL) Divergence Loss:

L = α×−
∑
i

Ytrue,i · σ(logitsS,i)︸ ︷︷ ︸
Cross-Entropy Loss

+β ×
∑
i

σ(logitsT,i/t) ·

[
log

(
σ(logitsT,i/t)

log σ(logitsS,i/t)

)]
︸ ︷︷ ︸

Time-Offset KL Divergence Loss

(1)
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α and β scale the contribution of each loss function, and σ(·) applies the softmax function. Tem-
perature t alters the ‘softness’ of the softmax for both the teacher and student. Critically, the logits
between both models are offset by at least five minutes, such that S aims to forecast whether a
seizure will occur five minutes in the future, while T detects seizures at the present step.

Network Architecture: Following other high-performing models for seizure detection (Yang et al.,
2023), a pair of convolutional layers encode the pre-processed input (3× 3 kernel), a pair of LSTM
layers do sequential processing (768 input neurons, 320 hidden neurons), terminated by a dense
layer for both teacher and student. The learning rate was 5e− 4 using Adam.

Data Processing Pipeline: EEG signals are classed as either pre-seizure, seizure, or inter-seizure.
The teacher model is trained to distinguish between seizure and non-seizure instances. Given that
the objective of the student model is to forecast seizures, the student is trained on pre-seizure data
and the seizure data itself is concealed. A seizure occurrence period (SOP) of 30 minutes is used,
and the seizure prediction horizon (SPH) is set to 5 minutes (Maiwald et al., 2004). Samples are
binned into 30 second chunks and pre-processed with a short-time Fourier transform.

Training Pipeline: First, the teacher is pre-trained on a specific patient for seizure detection. During
training of the student model, logits are obtained from the teacher model at the future time step, i.e.,
the student model lags behind the teacher by 5 minutes. This is because prediction takes place prior
to detection. The student model strives to make the same conclusion as the teacher, while using EEG
signals that occur earlier in time. The loss in 1 is used, and both models are trained for 100 epochs.

3 RESULTS

We evaluate KDTT on 11 patients from the CHB-MIT database (Shoeb, 2009). We used the hy-
perparameters α = 0.7, β = 0.5, and t = 4.3. We additionally test KDTT performance where
KL Divergence from 1 is replaced with the mean-square error (MSE) loss for direct logit matching.
These are compared with a base student model trained without the KL Divergence term from 1. Note
the vast degradation of the base student model relative to the teacher models. This is unsurprising,
given the stochastic nature of seizure forecasting, and it highlights the difficulty of future time pre-
diction, even where the time window is 30 s. Table 1 shows an average improvement of 15.0% when
using KL, and 20.0% when using MSE. All results shown are an average of 5 trials per model.

ID T (MSE) T (KL) S (Base) S (MSE) S (KL)
1 0.93 1.0 0.93 ± 0.05 1.0 ± 0.01 0.99 ± 0.00
2 1.0 1.0 0.16 ± 0.09 0.73 ± 0.25 0.65 ± 0.36
3 0.99 0.99 0.1 ± 0.09 0.86 ± 0.17 0.81 ± 0.11
5 1.0 1.0 0.50 ± 0.23 0.81 ± 0.36 0.73 ± 0.14
10 1.0 1.0 0.38 ± 0.07 0.43 ± 0.26 0.39 ± 0.22
13 0.87 0.88 0.91 ± 0.13 0.95 ± 0.06 0.94 ± 0.03
18 0.98 0.97 0.45 ± 0.24 0.45 ± 0.21 0.56 ± 0.17
19 1.0 1.0 0.99 ± 0.01 0.58 ± 0.16 0.64 ± 0.26
20 1.0 1.0 0.80 ± 0.15 0.88 ± 0.29 0.68 ± 0.08
21 0.72 0.54 0.85 ± 0.02 0.39 ± 0.09 0.35 ± 0.04
23 0.63 0.71 0.56 ± 0.04 0.87 ± 0.13 0.84 ± 0.10

Avg 0.93 0.92 0.60 ± 0.04 0.72 ± 0.02 0.69 ± 0.04

Table 1: Results: Mean AUC-ROC w/std. T: Teacher model. S: Student model. S (Base): no KDTT.

4 CONCLUSION

To summarize, we propose KDTT and verify its effectiveness using seizure forecasting as an ap-
plication. The improvement of AUC-ROC highlights the importance of using latent uncertainty
in present-time data to train forecasting models. Future work can span label-free forecasting, to
developing models of predictive coding. Code URL: github.com/SkyeGunasekaran/KDTT
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