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Abstract

Reinforcement learning (RL) offers adaptive solu-1

tions to portfolio optimization, yet standard meth-2

ods such as proximal policy optimization (PPO)3

rely exclusively on historical price data and over-4

look the impact of investor sentiment. We intro-5

duce sentiment-augmented PPO (SAPPO), a re-6

inforcement learning framework that incorporates7

real-time sentiment signals extracted from Refini-8

tiv financial news. Daily sentiment scores are gen-9

erated using LLaMA 3.3, a large language model10

fine-tuned for financial text analysis. SAPPO inte-11

grates these signals into the PPO advantage func-12

tion via a sentiment-weighted term, enabling allo-13

cation strategies that respond to both price move-14

ments and market sentiment. Experiments on a15

three-asset portfolio demonstrate that SAPPO in-16

creases the Sharpe ratio from 1.55 to 1.90 and17

reduces drawdowns relative to PPO. The optimal18

configuration uses a sentiment influence parameter19

λ = 0.1, as validated through ablation studies and20

statistically significant t-tests (p < 0.001). These21

findings show that sentiment-aware reinforcement22

learning improves trading performance and offers a23

robust alternative to purely price-based strategies.24

1 Introduction25

Portfolio optimization is a fundamental problem in financial26

management that aims to allocate resources across various27

assets to maximize returns and minimize risk [Markowitz,28

1952; Sharpe, 1994; Fabozzi et al., 2007]. Traditional ap-29

proaches, such as mean-variance optimization, rely primarily30

on historical data to estimate expected returns and asset co-31

variances [Markowitz, 1952; Michaud, 1989]. These static32

techniques often struggle to dynamically adapt to rapidly33

evolving market conditions, reducing their effectiveness in34

volatile financial environments [DeMiguel et al., 2009; Kolm35

et al., 2014].36

The emergence of reinforcement learning, and particu-37

larly deep reinforcement learning, provides promising new38

solutions to dynamic asset allocation problems by enabling39

adaptive decision-making [Deng et al., 2017; Sutton and40

Barto, 2018; Wang et al., 2019]. RL agents learn opti- 41

mal allocation strategies through continuous interaction with 42

financial environments, adapting policies based on market 43

feedback [Moody and Saffell, 1998; Moody et al., 2001]. 44

DRL extends these capabilities by employing deep neural 45

networks to approximate complex value functions and pol- 46

icy decisions, effectively handling nonlinear and nonstation- 47

ary market behaviors [Deng et al., 2017; Ye et al., 2020; 48

Jin et al., 2023]. Prominent DRL algorithms, including PPO 49

and deep Q-networks (DQN), offer robust frameworks suit- 50

able for continuous action spaces in financial portfolio man- 51

agement [Schulman et al., 2017; Sutton and Barto, 2018; 52

Wang et al., 2019; Gu et al., 2020]. 53

Although PPO effectively captures market dynamics based 54

on historical price data, existing implementations generally 55

overlook the critical influence of investor sentiment on as- 56

set prices. Financial markets exhibit significant sensitiv- 57

ity to sentiment-driven investor behaviors, making sentiment 58

analysis an important supplementary component for accu- 59

rately predicting market movements [Tetlock, 2007; Baker 60

and Wurgler, 2012; Huang et al., 2023; Kirtac and Ger- 61

mano, 2025]. Recent advances in natural language process- 62

ing (NLP) and large language models (LLMs), such as Fin- 63

BERT [Araci, 2019] and LLaMA 3.3 [Dubey et al., 2024], 64

enable precise extraction and interpretation of sentiment from 65

financial news, analyst reports, and market commentary. In- 66

tegrating sentiment signals into quantitative strategies has 67

been shown to enhance predictive accuracy, volatility fore- 68

casting, and overall trading performance [Smales, 2014; 69

Chen et al., 2022; Jin et al., 2023]. 70

We extend the PPO framework by introducing sentiment- 71

augmented SAPPO, a novel reinforcement learning model ex- 72

plicitly incorporating real-time market sentiment into portfo- 73

lio optimization. SAPPO integrates daily sentiment scores 74

extracted from financial news articles using the LLaMA 3.3 75

model, a transformer-based architecture fine-tuned for finan- 76

cial text analysis. This integration provides the PPO agent 77

with additional contextual insights beyond purely historical 78

prices, allowing for more informed and adaptive allocation 79

decisions. 80

We evaluate the performance of SAPPO relative to a base- 81

line PPO model that relies exclusively on historical price 82

information. Our comparative analysis employs key finan- 83

cial performance metrics such as the Sharpe ratio, annual- 84



ized returns, and maximum drawdown, assessing whether85

sentiment-aware reinforcement learning strategies offer tan-86

gible improvements over conventional RL techniques. Ex-87

perimental results demonstrate that incorporating sentiment88

analysis leads to significantly better risk-adjusted returns and89

reduced drawdowns. These findings contribute to the existing90

literature by showcasing how leveraging financial sentiment91

in reinforcement learning frameworks can substantially en-92

hance the adaptability and robustness of portfolio optimiza-93

tion strategies in dynamic market environments.94

2 Related work95

Portfolio optimization techniques have significantly evolved96

since Markowitz (1952) introduced mean-variance optimiza-97

tion. Traditional methods estimate asset returns and covari-98

ances from historical financial data, which often limits their99

adaptability in volatile market conditions [Michaud, 1989;100

DeMiguel et al., 2009]. The rigidity inherent in these static101

optimization frameworks has motivated researchers to ex-102

plore more dynamic and adaptive strategies.103

Reinforcement learning provides an alternative approach104

by enabling agents to adapt asset allocation decisions through105

continuous interaction with the market environment [Moody106

and Saffell, 1998; Moody et al., 2001]. Deep reinforce-107

ment learning extends these capabilities further, using deep108

neural networks to effectively approximate complex, nonlin-109

ear market dynamics [Deng et al., 2017; Ye et al., 2020].110

Prominent DRL algorithms, including PPO and deep Q-111

networks (DQN), have shown robust performance in continu-112

ous decision-making scenarios such as portfolio management113

[Schulman et al., 2017; Wang et al., 2019; Gu et al., 2020].114

PPO has gained popularity within financial DRL due to115

its stable and effective policy updates in continuous action116

spaces [Schulman et al., 2017]. PPO optimizes stochastic117

policies iteratively by maximizing a clipped surrogate ob-118

jective function, ensuring incremental updates of policy pa-119

rameters. The algorithm employs an advantage function120

to evaluate the effectiveness of actions relative to an esti-121

mated baseline value. This structure enables PPO to bal-122

ance exploration and exploitation, facilitating efficient learn-123

ing in dynamic market environments [Schulman et al., 2017;124

Sutton and Barto, 2018]. PPO’s combination of stability and125

adaptability has made it a reliable baseline method for port-126

folio optimization research.127

Despite the strengths of PPO and related DRL methods,128

most current implementations rely exclusively on structured129

numerical inputs such as historical price and volume data130

[Wang et al., 2019; Ye et al., 2020]. These numerical ap-131

proaches typically neglect qualitative market factors like in-132

vestor sentiment, which play a critical role in short-term as-133

set price fluctuations and volatility [Tetlock, 2007; Baker and134

Wurgler, 2012; Smales, 2014]. Investor sentiment strongly135

influences market dynamics, and purely numerical DRL mod-136

els often fail to anticipate sentiment-driven market shifts,137

leading to suboptimal allocation decisions [Chen et al., 2022;138

Jin et al., 2023].139

Recent advancements in NLP have improved sentiment ex-140

traction accuracy from textual financial data. Transformer-141

based LLMs, notably FinBERT [Araci, 2019] and LLaMA 142

3.3 [Dubey et al., 2024], effectively differentiate neutral fi- 143

nancial reporting from sentiment-rich market commentary. 144

These domain-specific LLMs outperform general-purpose 145

NLP models by producing more accurate and context-aware 146

sentiment signals tailored for financial forecasting [Ke et 147

al., 2019; Lopez-Lira and Tang, 2023; Kirtac and Germano, 148

2024b; Kirtac and Germano, 2024a]. 149

Hybrid strategies integrating sentiment analysis with quan- 150

titative finance have demonstrated significant improvements 151

in predictive accuracy, volatility forecasting, and overall risk- 152

adjusted performance [Ding et al., 2015; Chen et al., 2022; 153

Dai et al., 2022]. Bollen et al. (2011) notably demonstrated 154

that social media-derived sentiment can accurately predict 155

short-term market movements. Recent literature continues to 156

support hybrid models combining structured market data and 157

sentiment signals, frequently outperforming strategies relying 158

solely on historical prices [Liu et al., 2020; Dai et al., 2022; 159

Jin et al., 2023]. 160

We directly build upon these insights by explicitly integrat- 161

ing financial news sentiment into PPO. The proposed SAPPO 162

model leverages sentiment scores derived from financial news 163

using LLaMA 3.3. Our approach systematically compares 164

SAPPO against traditional PPO, quantifying the benefits of 165

incorporating sentiment signals. The results provide practical 166

insights into enhancing adaptive portfolio management strate- 167

gies within dynamic market environments. 168

3 Methodology 169

We represent the financial market state at time step n us- 170

ing an array sn. This array consists of current portfolio 171

weights wn and current adjusted closing spot prices Sn for 172

multiple assets. This setup enables the agent to make port- 173

folio decisions informed by both its existing portfolio al- 174

location and current market conditions [Markowitz, 1952; 175

Sutton and Barto, 2018]. The discrete index n = ⌊t/∆t⌋ 176

counts trading days, where t represents continuous time and 177

∆t = 1 day. The agent also maintains a cash account to en- 178

sure feasible transactions. 179

Each trading day ends with the observation of adjusted 180

closing prices. The agent then computes daily returns and 181

selects new allocation weights. Portfolio rebalancing occurs 182

at the beginning of the next trading day. Trades are executed 183

using market orders priced at the volume-weighted average 184

price (VWAP) during the first ten minutes of the trading ses- 185

sion. This VWAP-based execution reduces volatility typically 186

associated with raw market-opening prices. We denote the 187

action an as the change in portfolio holdings at day n, 188

wn = wn−1 + an. (1)

Positive elements of an indicate asset purchases, negative el- 189

ements correspond to asset sales. A self-financing constraint 190

ensures that the total trade value sums to zero, 191

an · Sn = 0. (2)

We subtract from the portfolio transaction costs equal to 192

0.05% of the total turnover to reflect realistic market frictions. 193



The immediate reward received by the agent is the logarith-194

mic return of the portfolio, providing a scale-invariant mea-195

sure.196

xn+1 := log
wn · Sn+1

wn · Sn
. (3)

Alternatively, one can use the relative return Rn+1, defined197

from198

xn+1 = log(1 +Rn+1). (4)

The two return definitions approximate each other for small199

values and are numerically stable in reinforcement learning200

training.201

The state-action value function Q(sn,an) and the value202

function V (sn) represent the expected cumulative discounted203

future rewards, conditional on the current state and action,204

and are defined as follows205

Q(sn,an) := E

[ ∞∑
k=1

γkxn+k

∣∣∣ sn,an] , (5)

V (sn) := E

[ ∞∑
k=1

γkxn+k | sn

]
. (6)

Their difference is the advantage function206

A(sn,an) := Q(sn,an)− V (sn). (7)

The state-action value function estimates cumulative future207

rewards achievable by selecting an action an given the cur-208

rent state sn, whereas the value function estimates the ex-209

pected return from the current state sn under the current pol-210

icy. Actions follow a stochastic policy distribution π(an|sn),211

which transitions states according to the probability distribu-212

tion p(sn+1|sn,an) [Sutton and Barto, 2018]. The discount213

factor γ ∈ (0, 1] determines the trade-off between immedi-214

ate and long-term rewards, with γ = 0.99 employed in our215

experiments to prioritize future returns significantly.216

DRL uses deep neural networks to approximate both the217

state-action-value function Q and policy π effectively [Sood218

et al., 2023]. Our implementation uses PPO, a DRL algorithm219

designed explicitly for continuous action spaces. PPO dy-220

namically learns optimal portfolio rebalancing strategies di-221

rectly from market interactions. The PPO policy uses a mul-222

tivariate Gaussian distribution, with the self-financing con-223

straint in Eq. (2) ensuring all trades remain budget-neutral.224

The policy’s mean and covariance parameters are learned by225

a deep neural network parameterized by θ.226

3.1 Sentiment-augmented PPO (SAPPO)227

We propose SAPPO, extending traditional PPO by integrat-228

ing real-time market sentiment derived from financial news229

into the decision-making framework. SAPPO enriches the230

state representation by incorporating daily sentiment scores231

extracted from Refinitiv financial news. Sentiment extraction232

utilizes the LLaMA 3.3 model, a transformer-based financial233

large language model specialized in market sentiment anal-234

ysis [HuggingFace, 2024]. Daily sentiment scores are nor-235

malized within the range [−1, 1], creating an augmented state236

vector237

sn := (wn,Sn,mn), (8)

where mn represents sentiment scores for the assets. SAPPO 238

incorporates sentiment directly into the PPO policy optimiza- 239

tion by modifying the advantage function: we define the 240

sentiment-weighted advantage function 241

A′(sn,an,mn) := A(sn,an) + λwn ·mn, (9)

where λ controls the influence of sentiment on portfolio deci- 242

sions. We set λ = 0.1, chosen through a grid search over the 243

candidate values 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.30. 244

We filter sentiment signals to exclude redundant news us- 245

ing cosine similarity between daily article embeddings, 246

sim(mni,mlj) =
mni ·mlj

∥mni∥∥mlj∥
. (10)

Article pairs i, j that exceed a similarity threshold of 0.8 247

within a rolling window |n − l| of 5 days have one element 248

discarded to prevent that repeated sentiment signals bias allo- 249

cation decisions. The SAPPO agent decides portfolio alloca- 250

tions at each day’s market close. It places trade orders at the 251

VWAP during the first ten minutes of the following trading 252

day, realistically modeling trade execution. 253

3.2 Training setup 254

We train both PPO and SAPPO using the Stable-Baselines3 255

framework [Raffin et al., 2021]. The models are trained on 256

historical daily price data for Google, Microsoft, and Meta 257

over the period January 2013 to December 2019. Perfor- 258

mance is evaluated on a held-out test set from January 2020 259

onwards. A summary of the dataset’s structure and charac- 260

teristics is provided in Appendix B. Portfolio rebalancing de- 261

cisions are made at market close and executed the next day 262

using VWAP prices. 263

Both PPO and SAPPO share the same policy and value 264

network architecture, consisting of two hidden layers with 265

128 and 64 units, respectively, activated by rectified linear 266

units. The policy network models a multivariate Gaussian 267

distribution over continuous portfolio weights, subject to a 268

self-financing constraint. 269

We use the Adam optimizer with a learning rate of 3×10−4 270

and a minibatch size of 256. Each model is trained for 200 271

epochs, with early stopping based on out-of-sample Sharpe 272

ratio performance. The discount factor is set to γ = 0.99 to 273

prioritize long-term reward accumulation. 274

The key difference between PPO and SAPPO lies in the 275

use of sentiment signals. SAPPO incorporates daily senti- 276

ment vectors into the state representation and modifies the 277

advantage function with a sentiment influence term λ = 0.1, 278

calibrated through grid search. PPO uses only price and port- 279

folio information in its state space. 280

Full training configurations, hyperparameter settings, and 281

ablation studies are provided in Appendices E and A. 282

3.3 Evaluation methodology 283

We evaluate PPO and SAPPO strategies using standard 284

portfolio performance metrics, including cumulative returns, 285

Sharpe ratio, maximum drawdown, and portfolio turnover. 286

Benchmark comparisons include the S&P 500, Dow Jones In- 287

dustrial Average (DJI), and NASDAQ-100 indices [Wang et 288



al., 2019]. Sharpe ratios measure risk-adjusted returns, maxi-289

mum drawdowns assess downside risk, and portfolio turnover290

quantifies trading activity.291

The empirical analysis compares SAPPO against standard292

PPO, systematically assessing the value added by sentiment293

integration. Our results quantify improvements achieved by294

sentiment-aware DRL in dynamic portfolio management, em-295

phasizing enhanced adaptability and robustness relative to296

purely price-based reinforcement learning methods.297

Detailed training procedures, including hyperparameter298

tuning, ablation studies, and further implementation details,299

are provided in Appendices C–E.300

4 Experiments and results301

We evaluate the performance of the trained DRL agents using302

a realistic backtesting framework on out-of-sample market303

data. The models are benchmarked against traditional port-304

folio strategies, including buy-and-hold and equal-weighted305

portfolios. Figure 1 presents a risk-return comparison of the306

SAPPO and PPO portfolios alongside major benchmark in-307

dices.308

Figure 1: Risk-return scatter plot as of January 1, 2020, for SAPPO
and PPO portfolios compared to NASDAQ-100, DJI, and S&P 500.
SAPPO shows the highest Sharpe ratio and return among all strate-
gies, indicating superior risk-adjusted performance from sentiment
integration.

The reinforcement learning agent demonstrates strong per-309

formance across multiple evaluation metrics. The annualized310

return of the SAPPO portfolio reaches 30.2%, while the PPO311

portfolio achieves 26.5%. Both portfolios outperform major312

benchmark indices, including the NASDAQ-100 (20%), the313

S&P 500 (15%), and the DJI (10%). The risk-return scatter314

plot (Figure 1) highlights SAPPO’s superior positioning in315

terms of volatility-adjusted returns, followed by PPO. Com-316

pared to traditional indices, SAPPO and PPO exhibit higher317

returns but at the cost of increased volatility, indicating their318

ability to exploit market inefficiencies more effectively. The319

Figure 2: Portfolio weight allocation over time for the PPO port-
folio, showing dynamic rebalancing among Google, Microsoft, and
Meta. Although weights initially appear balanced, the agent actively
adjusts allocations throughout the period in response to market con-
ditions, contributing to the cumulative return improvements shown
in Figure 5.

Sharpe ratio of SAPPO surpasses that of PPO and all bench- 320

mark indices, confirming its improved risk-adjusted perfor- 321

mance and highlighting the effectiveness of sentiment-aware 322

reinforcement learning in portfolio optimization [Fama and 323

MacBeth, 1973]. 324

Figure 2 reveals how the PPO agent adjusts asset weights 325

over time. The model increases exposure to Microsoft during 326

high-volatility periods, capitalizing on its stability, while bal- 327

ancing Google and Meta allocations for diversification. This 328

adaptive reallocation highlights the agent’s ability to respond 329

to market changes dynamically [Markowitz, 1952]. 330

Figure 3: 30-day rolling volatility comparison of SAPPO and
PPO portfolios against NASDAQ-100, S&P 500, and DJI indices.
SAPPO exhibits higher volatility, reflecting more active trading
driven by sentiment shifts, while PPO shows slightly lower but still
elevated volatility compared to benchmarks.

Figure 3 presents the 30-day rolling volatility compari- 331

son, showing that the SAPPO and PPO portfolios exhibit 332

higher volatility than major benchmark indices such as the 333

NASDAQ-100, S&P 500, and DJI. The SAPPO portfolio 334

demonstrates the highest volatility for most of the observed 335

period, indicating a more aggressive trading strategy that re- 336

acts dynamically to market fluctuations. The PPO portfolio 337

follows a similar trend but with slightly lower volatility, sug- 338



gesting a relatively more balanced risk exposure.339

Both SAPPO and PPO portfolios experience pronounced340

volatility spikes, particularly around mid-2019, aligning with341

increased market uncertainty. As the period progresses, their342

volatility gradually declines but remains above traditional in-343

dices, reinforcing their active trading and frequent realloca-344

tion approach. The NASDAQ-100, S&P 500, and Dow Jones345

exhibit more stable and lower volatility levels, consistent with346

their passive investment nature.347

These results confirm that sentiment-aware reinforcement348

learning strategies adapt quickly to market changes, captur-349

ing short-term trends efficiently. However, the higher volatil-350

ity associated with SAPPO and PPO highlights the tradeoff351

between increased return potential and short-term risk expo-352

sure.353

Figure 4: Correlation heatmap comparing PPO portfolio returns
with those of major indices. Moderate correlation values (e.g., 0.67
with DJI) suggest that PPO develops relatively independent alloca-
tion strategies, enhancing diversification.

The correlation heatmap (Figure 4) shows that the PPO354

portfolio maintains a moderate level of independence from355

major indices, with correlations of 0.67 with the DJI and 0.75356

with the S&P 500. This diversification suggests that the PPO357

agent develops unique portfolio allocation strategies, reduc-358

ing reliance on broader market movements [Campbell and359

Viceira, 2002].360

The second experiment introduces market sentiment anal-361

ysis into the PPO framework, forming the SAPPO model.362

By incorporating sentiment data from Refinitiv financial news363

sources, processed using LLaMA 3.3 via Hugging Face trans-364

formers, the agent receives an additional market signal to365

guide allocation decisions. This enables sentiment-driven ad-366

justments in response to market sentiment shifts.367

The cumulative return comparison (Figure 5) highlights the368

performance improvement achieved by SAPPO over standard369

PPO. SAPPO consistently outperforms PPO in cumulative370

returns, leveraging sentiment-aware trading strategies to en-371

hance profitability. By reacting to shifts in market sentiment,372

SAPPO is better equipped to capture momentum and avoid373

adverse market conditions.374

Figure 5: Cumulative return comparison of PPO and SAPPO portfo-
lios against NASDAQ-100, S&P 500, and DJI indices over the test
period. SAPPO consistently outperforms PPO and benchmarks by
leveraging sentiment-aware policy updates, leading to higher prof-
itability.

Metric PPO SAPPO NASDAQ-100
Sharpe ratio 1.55 1.90 1.25
Annualized return 26.5% 30.2% 21.3%
Max drawdown -17.5% -13.8% -21.9%
Volatility 11.8% 11.2% 14.5%
Turnover rate 3.5% 12.0% n/a

Table 1: Performance comparison between PPO and SAPPO.
SAPPO outperforms PPO across Sharpe ratio, return, and drawdown
metrics, with a higher turnover rate due to frequent sentiment-driven
rebalancing.

Table 1 presents a quantitative comparison between PPO 375

and SAPPO. The Sharpe ratio of SAPPO (1.90) is higher than 376

that of PPO (1.55), indicating improved risk-adjusted returns. 377

Annualized returns increase from 26.5% (PPO) to 30.2% 378

(SAPPO), demonstrating better profitability. Additionally, 379

SAPPO exhibits a lower maximum drawdown (-13.8%) com- 380

pared to PPO (-17.5%), suggesting enhanced downside pro- 381

tection. 382

SAPPO also shows a slightly higher daily average turnover 383

rate of 12% compared to PPO’s 3.5%. This indicates that, on 384

average, SAPPO adjusts 12% of the portfolio’s total value 385

through buying and selling activities each day. This ele- 386

vated turnover reflects the model’s increased sensitivity to 387

sentiment changes, resulting in more active rebalancing in re- 388

sponse to daily news signals. 389

These results indicate that sentiment-aware reinforcement 390

learning enhances portfolio management by integrating ex- 391

ternal market sentiment signals. The ability to react to news- 392

driven market sentiment fluctuations provides an additional 393

layer of adaptability beyond price-based decision-making. 394

The findings highlight the potential of combining reinforce- 395

ment learning with financial sentiment analysis for dynamic 396

investment strategies. Appendix A reports the statistical sig- 397

nificance of SAPPO’s performance improvement over PPO. 398



5 Impact399

Sentiment-aware reinforcement learning offers a measurable400

performance edge in portfolio optimization. SAPPO outper-401

forms vanilla PPO by integrating real-time financial news402

sentiment into a deep reinforcement learning framework.403

This enhancement leads to significantly higher Sharpe ratios404

and lower drawdowns, as confirmed by statistical significance405

testing and ablation studies reported in Appendix A. These406

results validate sentiment as a meaningful input signal in dy-407

namic allocation tasks.408

The findings contribute to the broader field of financial409

reinforcement learning by showcasing the tangible value of410

sentiment-aware trading strategies. SAPPO enables agents411

to respond more effectively to market fluctuations, capturing412

momentum and mitigating downside risk during adverse con-413

ditions. Institutional investors, hedge funds, and algorithmic414

trading firms can benefit from models that adapt allocations415

based on evolving sentiment rather than relying solely on his-416

torical price movements.417

Our research emphasizes the growing relevance of multi-418

modal financial decision-making. The SAPPO framework in-419

tegrates structured market data with unstructured textual in-420

formation to inform portfolio policies more holistically. The421

use of LLaMA 3.3 for domain-specific sentiment extraction422

exemplifies the expanding role of foundation models in fi-423

nancial analysis. This work lays a foundation for future424

sentiment-aware trading systems that combine natural lan-425

guage understanding with adaptive reinforcement learning426

techniques.427

6 Limitations and future work428

We demonstrate the value of sentiment-aware reinforcement429

learning, but it leaves several directions open for future re-430

search.431

The sentiment layer uses only financial news from Refini-432

tiv, processed via LLaMA 3.3. While this ensures domain-433

specific, high-quality signals, it excludes other sources such434

as social media, earnings calls, and analyst reports. Incorpo-435

rating diverse sentiment channels could improve robustness436

and capture complementary market signals.437

The portfolio scope focuses on three technology438

stocks—Google, Microsoft, and Meta. This controlled439

setting helps isolate model behavior but limits generaliz-440

ability. Extending SAPPO to sector-diverse or large-cap441

portfolios would test its effectiveness under broader market442

conditions and enhance practical relevance.443

The evaluation relies on historical backtesting from 2013444

to 2020. This setup omits real-time market execution, or-445

der slippage, liquidity constraints, and shocks beyond the test446

window. Future work could implement paper trading or live447

simulations to assess deployment readiness under actual trad-448

ing constraints.449

The model uses daily sentiment updates available only at450

market close, with decisions applied the next day. This de-451

sign does not exploit intra-day news shifts or fast-moving452

sentiment. Integrating real-time or high-frequency sentiment453

signals could increase responsiveness and improve intra-day454

trading strategies.455

Future research that addresses these limitations will im- 456

prove the generalization, scalability, and practical deploy- 457

ment of sentiment-aware reinforcement learning in modern 458

financial markets. 459

7 Conclusion 460

We extend PPO by introducing a sentiment-aware reinforce- 461

ment learning model for portfolio optimization. The pro- 462

posed SAPPO framework incorporates LLM-based sentiment 463

analysis to integrate real-time financial news into trading de- 464

cisions. 465

The sentiment-enhanced model consistently delivers supe- 466

rior risk-adjusted performance, achieving higher Sharpe ra- 467

tios, stronger annualized returns, and reduced drawdowns 468

compared to the standard PPO baseline. SAPPO also out- 469

performs benchmark indices such as the NASDAQ-100, S&P 470

500, and DJI, demonstrating the value of combining senti- 471

ment signals with reinforcement learning. 472

Investor sentiment serves as a critical complementary sig- 473

nal, enhancing adaptability in dynamic portfolio manage- 474

ment. Incorporating sentiment provides the agent with greater 475

adaptability to shifting market conditions and offers a viable 476

alternative to purely price-driven strategies. 477

These findings highlight the practical and theoretical rele- 478

vance of sentiment-aware reinforcement learning in financial 479

decision-making. This work lays the groundwork for future 480

research on multi-modal trading systems that combine struc- 481

tured market data with unstructured textual information. 482
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Appendix628

A Ablation studies629

We conduct ablation experiments to assess the impact of the630

sentiment integration and the λ weighting parameter in the631

SAPPO model. Table 2 shows how performance varies with632

different values of λ. The results highlight that moderate sen-633

timent influence (λ = 0.1) yields the best Sharpe ratio and634

return, whereas overly small or large values underperform.635

λ Sharpe Ratio Annualized Return Max Drawdown

0.00 1.55 26.5% −17.5%
0.01 1.62 27.3% −16.4%
0.05 1.75 29.1% −14.3%
0.10 1.90 30.2% −13.8%
0.15 1.78 29.4% −14.5%
0.20 1.60 27.4% −15.6%
0.25 1.50 26.2% −17.0%
0.30 1.41 25.3% −18.2%

Table 2: Extended ablation study of the sentiment influence param-
eter λ in SAPPO; λ = 0 corresponds to the PPO baseline. Perfor-
mance peaks at λ = 0.10, with diminishing returns and increased
risk for larger values.

We also tested alternative sentiment models. When re-636

placing LLaMA 3.3 with FinBERT [Araci, 2019], the model637

achieved a Sharpe ratio of 1.72 and annualized return of638

28.1%, which outperforms PPO but slightly underperforms639

the full SAPPO implementation. These results underscore640

the importance of both the sentiment source and tuning λ.641

A.1. Statistical significance of SAPPO improvements642

We assess the statistical significance of SAPPO’s perfor-643

mance gains over PPO using a Welch’s t-test on daily Sharpe644

ratios over a 1-year out-of-sample period. The result is sta-645

tistically significant (t = −16.68, p < 0.001), confirming646

that the observed Sharpe ratio improvement from 1.55 (PPO)647

to 1.90 (SAPPO) is statistically robust and unlikely to be at-648

tributable to random variation.649

A.2. Extended ablation: Sentiment filtering and timing650

To better understand the role of sentiment processing, we 651

perform two additional ablation experiments shown in Ta- 652

ble 3. 653

Configuration Sharpe Ratio Annualized Return Max Drawdown

SAPPO (base) 1.90 30.2% -13.8%
– No Filtering 1.63 27.8% -16.1%
– Lagged Sentiment (t-1) 1.67 28.4% -15.4%

Table 3: Extended ablation: effect of removing sentiment filtering
and lagging sentiment input.

Removing cosine-similarity-based sentiment filtering re- 654

duces SAPPO’s Sharpe ratio from 1.90 to 1.63, confirming 655

that redundant news signals degrade learning performance. 656

Additionally, using lagged sentiment scores (from the previ- 657

ous trading day) leads to a moderate drop in return and Sharpe 658

ratio, showing that timely sentiment access improves adapt- 659

ability. 660

B Dataset summary 661

Attribute Value
Asset Universe Google (GOOG), Microsoft (MSFT), Meta (META)
Market Data Source Yahoo Finance (daily adjusted closing prices)
Sentiment Source Refinitiv Financial News
Sentiment Model LLaMA 3.3 (via Hugging Face Transformers)
Sentiment Range Normalized to [-1, 1]
Training Period January 2013 – December 2019
Test Period January 2020 – December 2020
Total Trading Days 1,760 (Training), 251 (Test)
Execution Model VWAP for first 10 minutes of trading day
Transaction Costs 0.05% per turnover

Table 4: Dataset summary and environment configuration.

C Implementation details 662

We implement both PPO and SAPPO using PyTorch and 663

Stable-Baselines3 [Raffin et al., 2021]. The financial envi- 664

ronment is built using a customized version of OpenAI Gym 665

[OpenAI, 2022] that simulates trading with transaction costs, 666

VWAP execution, and rebalancing constraints. 667

The dataset includes daily adjusted closing prices for 668

Google, Microsoft, and Meta from January 2013 to January 669

2020. Financial news sentiment is extracted using LLaMA 670

3.3 [MetaAI, 2024], a large language model fine-tuned for 671

financial applications. 672

D Model architecture 673

The PPO and SAPPO models share the same neural network 674

structure. Each model uses a state input that combines port- 675

folio weights, normalized prices, and sentiment scores. 676

The policy and value networks contain two hidden layers 677

with 128 and 64 units, respectively, activated by rectified lin- 678

ear unit functions. The policy network outputs the mean and 679

log variance for a multivariate Gaussian policy. The value 680

network produces a scalar estimate of state value. 681



E Training configuration682

Training occurs on 90% of the data spanning 2013–2019,683

while testing is performed on 10% held-out data from 2020.684

Each model is trained for 1 million timesteps. The hyperpa-685

rameters are:686

Optimizer: Adam687

Learning rate: 3e−4688

Batch size: 256689

PPO epochs per update: 10690

Discount factor γ: 0.99691

Clipping parameter ϵ: 0.2692

Sentiment influence λ: 0.1 (for SAPPO only)693

F Sentiment filtering694

We apply cosine similarity to filter redundant financial news.695

Embeddings of daily articles are compared in a rolling 5-day696

window. A similarity threshold of 0.8 removes duplicate sig-697

nals. This improves sentiment diversity and reduces noise698

during training.699

G Additional results700

SAPPO is evaluated using FinBERT [Araci, 2019] as an al-701

ternative sentiment model. This variant achieves a Sharpe ra-702

tio of 1.72 and an annualized return of 28.1%, showing gains703

over PPO but slightly underperforming the LLaMA 3.3-based704

SAPPO model.705

Baseline strategies such as equal-weighted and706

momentum-based portfolios perform worse across all707

key metrics. SAPPO demonstrates consistent improvements708

in return and Sharpe ratio across different sentiment sources709

and baselines.710
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