Under review as submission to TMLR

Communication-Efficient Distributionally Robust Decentral-
ized Learning

Anonymous authors
Paper under double-blind review

Abstract

Decentralized learning algorithms empower interconnected devices to share data and com-
putational resources to collaboratively train a machine learning model without the aid
of a central coordinator. In the case of heterogeneous data distributions at the network
nodes, collaboration can yield predictors with unsatisfactory performance for a subset of the
devices. For this reason, in this work we consider the formulation of a distributionally robust
decentralized learning task and we propose a decentralized single loop gradient descent/ascent
algorithm (AD-GDA) to directly solve the underlying minimax optimization problem. We
render our algorithm communication-efficient by employing a compressed consensus scheme
and we provide convergence guarantees for smooth convex and non-convex loss functions.
Finally, we corroborate the theoretical findings with empirical results that highlight AD-GDA
ability to provide unbiased predictors and to greatly improve communication efficiency
compared to existing distributionally robust algorithms.

1 Introduction

Decentralized learning algorithms have gained an increasing level of attention, mainly due to their ability
to harness, in a fault tolerant and privacy preserving manner, the large computational power and data
availability at the network edge (Chen & Sayed, 2012; [Yan et all) [2012)). In this framework, a set of
interconnected nodes (smartphones, IoT devices, health centers, research labs, etc.) collaboratively train a
machine learning model alternating between local model updates, based on in situ data, and peer-to-peer type
of communication to exchange model-related information. Compared to federated learning in which a swarm
of devices communicates with a central parameter server at each communication round, fully decentralized
learning has the benefits of removing the single point of failure and of alleviating the communication bottleneck
inherent to the star topology.

The heterogeneity of distributedly generated data entails a major challenge, represented by the notions of
fairness (Dwork et al 2012) and robustness (Quinonero-Candela et al., [2009)). In the distributed setup, the
customary global loss function is the weighted sum of the local empirical losses, with each term weighted by
the fraction of samples that the associated node stores. However, in the case of data heterogeneity across
participating parties, a model minimizing such definition of risk can lead to unsatisfactory and unfair E]
inference capabilities for certain subpopulations. Consider, for example, a consortium of hospitals spread
across the world sharing medical data to devise a new drug and in which a small fraction of hospitals has
medical records influenced by geographical confounders, such as local diet, meteorological conditions, etc.
In this setting, a model obtained by myopically minimizing the standard notion of risk defined over the
aggregated data can be severely biased towards some populations at the expense of others. This can lead to
a potentially dangerous or unfair medical treatment as shown in Figure

To tackle this issue, distributionally robust learning aims at maximizing the worst-case performance over a set
of distributions, termed as uncertainty set, which possibly contains the testing distribution of interest. Typical
choices of the uncertainty sets are balls centered around the training distribution (Esfahani & Kuhnl 2018)

n the machine learning community, the notion of fairness has many facets. In this work, we will use the term “fair” in
accordance with the notion of good-intent fairness as introduced in (Mohri et al., |2019)).
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Figure 2: Comparison between standard and distributionally robust decentralized learning procedures. We
consider a network of 10 nodes that collaboratively train a mouse cell image classifier based on the Cells Out
Of Sample 7-Class (COOS7) data set (Lu et al.,|2019)). Two nodes store samples obtained using a different
microscope from the rest of the network devices (left figure). On the right, we report the validation accuracy
of the standard decentralized learning (CHOCO-SGD) and the proposed distributionally robust decentralized
learning (AD-GDA). We consider three different validation sets: one made of samples from one microscope,
another with samples from the other, and one made of a 50/50 mixture of the two. CHOCO-SGD (dashed
lines) yields a final model with a 24% accuracy gap between the two types of instruments. On the contrary,
AD-GDA (solid lines) reduces the accuracy gap to less than 2% and improves fairness among collaborating
parties. The average performance is not affected by the distributionally robust procedure.

or, whenever the training samples come from a mixture of distributions, the set of potential subpopulations
resulting in such mixture (Duchi et al.| |2019; Duchi & Namkoong] |2018]). Robust distributed learning with
heterogeneous data in which different distributions exist at the various devices falls in the latter category, as
the natural ambiguity set is the one represented by the convex combination of the local distributions. In that
case, minimizing the worst-case risk is equivalent to trying to ensure a minimum level of performance for each
participating device. Specifically for the federated case, Mohri et al. (Mohri et al.l |2019) introduced agnostic
federated learning (AFL) as a means to ensure fairness and proposed a gradient based algorithm to solve the
distributionally robust optimization problem. In (Deng et al.,[2021)) a communication-efficient version of AFL,
which avoids frequent retransmission of the dual variables, was proposed. More recently, distributionally
robust learning has also been studied in the fully decentralized case. In this setting, the underlying minimax
optimization problem becomes challenging and distributionally robust learning has been limited to a special
formulation — Kullback-Leibler (KL) regularization — that allows to simplify the problem (Issaid et al.l
2022]).

In virtue of the advantages of the fully decentralized setup and advocating the necessity for robust and fair
predictors, in this work we propose AD-GDA, a novel distributionally robust algorithm for the decentralized
setting. In contrast to previous works, our solution directly tackles the minimax optimization problem in
a fully decentralized fashion. Our algorithm is general and encompasses previous solutions as particular
choices of the regularization function. Furthermore, we show that it is possible to perform distributionally
robust optimization in a communication-efficient manner by employing a compressed gossip scheme without
hampering the rate of convergence of the algorithm.

Contributions: The main contributions of the work are the following:

e We propose AD-GDA, an optimization algorithm to perform distributionally robust learning in a fully
decentralized fashion. While previous works have either been limited to the federated case or particular
choices of the regularizer, AD-GDA directly tackles the distributionally robust minimax optimization
problem in a fully decentralized fashion. Despite the additional complexity stemming from solving
the decentralized minimax optimization problem, our solution is computation and communication
efficient. AD-GDA alternates between local single-loop stochastic gradient descent/ascent model
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updates and compressed consensus steps to cope with local connectivity in a communication-efficient
manner.

o We establish convergence guarantees for the proposed algorithm both in the case of smooth convex
and smooth non-convex local loss functions. In the former case, the algorithm returns an e-optimal
solution after O(1/€?) iterations. In the latter, the output is guaranteed to be an e-stationary solution
after O(1/€?) iterations whenever the stochastic gradient variance is also bounded by €, otherwise,
we can obtain the same guarantee by increasing the number of calls to the stochastic gradient oracle.

¢ We empirically demonstrate AD-GDA capability in finding robust predictors under different com-
pression schemes, network topologies, and models. First, we compare the proposed algorithm with
compressed decentralized stochastic gradient descent (CHOCO-SGD) and highlight the merits of
the distributionally robust procedure. We then consider the existing distributionally robust learning
algorithms; namely, Distributionally Robust Federated Averaging (DRFA) (Deng et al., 2021 and
Distributionally Robust Decentralized Stochastic Gradient Descent (DR-DSGD) (Issaid et al., [2022)).
We show that AD-GDA attains the same worst-case distribution accuracy transmitting a fraction of
the bits and it is up to 4x and 10x times more communication efficient compared to DRFA and
DR-DSGD, respectively.

2 Related Work

Communication-efficient decentralized learning. Initiated in the 80s by the work of Tsitsiklis (Tsitsiklig
[1984% [Tsitsiklis et all [1986), the study of decentralized optimization algorithms was spurred by their
adaptability to various network topologies, reliability to link failures, privacy-preserving capabilities, and
potentially superior convergence properties compared to the centralized counterpart (Chen & Sayed, 2012}
[Yan et all [2012; |Olfati-Saber et al., 2007} Ling et al., 2012} Lian et al. [2017). This growing interest and the
advent of large-scale machine learning brought forth an abundance of optimization algorithms both in the
deterministic and stochastic settings (Nedic & Ozdaglar, [2009; Wei & Ozdaglar, 2012} Duchi et al., 2011}
[Shamir & Srebro, 2014; Rabbat], 2015). With the intent of extending its applicability, a concurrent effort has
been made to devise techniques able to reduce the delay due to inter-node communication. Notable results in
this direction are the introduction of message compression techniques, such as sparsification and quantization
(Stich et al., |2018; |Aji & Heafield) 2017} |Alistarh et al., 2018; |2017; Bernstein et al., 2018 [Koloskova et al.|
[2019b)), and event-triggered communication to allow multiple local updates between communication rounds
(Stichl [2018; [Yu et al., [2019)

Distributional robust learning. Tracing back to the work of Scarf , distributional robustness
copes with the frequent mismatch between training and testing distributions by posing the training process
as a game between a learner and an adversary, which has the ability to choose the testing distribution
within an uncertainty set. Restraining the decisional power of the adversary is crucial to obtain meaningful
and tractable problems and a large body of the literature deals with uncertainty sets, represented by balls
centered around the training distribution and whose radius are determined by f-divergences (Namkoong &
Duchi, 2016; Hu & Hong, 2013) or Wasserstein distance (Wozabal, |2012; [Jiang & Guan, [2016; Esfahani &
Kuhn|, . Distributional robustness is deeply linked with the notion of fairness as particular choices of
uncertainty sets allows to guarantee uniform performance across the latent subpopulations in the data
|& Namkoong| 2018; Duchi et al.| 2019). In the case of federated learning, robust optimization ideas have been
explored to ensure uniform performance across all participating devices (Mohri et al. [2019). Distributionally
robust learning has also been studied in the fully decentralized scenario in the case of Kullback-Leibler (KL)
regularizers for which exists an exact solution for the inner maximization problem (Issaid et al. [2022).

Decentralized minimax optimization. Saddle point optimization algorithms are of great interest given
their wide range of application in different fields of machine learning, including generative adversarial networks
(Goodfellow et al., [2014)), robust adversarial training (Sinha et al.| 2017} Madry et al., 2017)), and multi-agent
reinforcement learning (Pinto et al| 2017} [Li et al., [2019). Their convergence properties have also been
studied in the decentralized scenario for the convex-concave setting (Koppel et al., 2015; Mateos-Nunez &/
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Cortés, |2015). More recently, the assumptions on the convexity and concavity of the objective function have
been relaxed. In Tsaknakis et al.| (2020) an algorithm for nonconvex strongly-concave objective functions
has been proposed; however, the double-loop nature of the solution requires to solve the inner maximization
problem with increasing level of accuracy rendering it potentially slow. On the other hand, our algorithm is
based on a single loop optimization scheme - with dual and primal variables being updated at each iteration
in parallel - and, consequently, has a lower computational complexity. For the nonconvex-nonconcave case,
Liu et al.| (2019b)) provides a proximal point algorithm while a simpler gradient based algorithm is provided
in |Liu et al.|[(2019a) to train generative adversarial networks in a decentralized fashion. None of these works
take into consideration communication efficiency in their algorithms.

3 Preliminaries

Distributed system We consider a network of m devices in which each node i is endowed with a local
objective function f; : R — R given by Er..p,£(8,Rz), with P; denoting the local distribution at node i
and 0 € R? being the model parameter to be optimized. Whenever P; is replaced by an empirical measure
ﬁim“ the local objective function coincides with the empirical risk computed over n; samples. Network nodes
are assumed to be interconnected by a communication topology specified by a connected graph G := (V,€) in
which ¥V = {1,...,m} indexes the devices and (¢, j) € £ if and only if nodes 7 and j can communicate. For each
node i € V, we define its set of neighbors by N () := {j : (¢,j) € £} and since we assume self-communication
we have (i,4) € N(4) for all 4 in V. At each communication round, the network nodes exchange messages
with their neighbors and average the received messages according to a mixing matrix W € R™*™,

Assumption 3.1. The mixing matrix W € R"*"™ is symmetric and doubly-stochastic; we denote its eigengap
by p € (0,1] and define g = ||I — W||2 € [0, 2].

Compressed communication Being the communication phase the major bottleneck of decentralized
training, we assume that nodes transmit only compressed messages instead of sharing uncompressed model
updates. To this end, we define a, possibly randomized, compression operator @ : R? — R? that satisfies the
following assumption.

Assumption 3.2. For any & € R" and for some § € [0, 1],
Eq [1Q(z) — x[”] < (1 - d)llz|*. (1)

The above definition is quite general as it entails both biased and unbiased compression operators. For
instance, random quantization (Alistarh et al., [2017)) falls into the former class and satisfies with 6 = 1.

=
For a given vector € R? and quantization levels 2°, it yields a compressed message

2, = Sen@ =] Pbm v 5J 2)

27 el

with 7 =1+ min {d/22b7 \/ﬁ/?b} and ¢ ~ U[0,1]®?. A notable representative of the biased category is the

top-K sparsification (Stich et al., 2018)), which for a given vector & € R? returns the K largest magnitude
components and satisfies with § = %. Operators of that type have been previously considered in the
context of decentralized learning and the effect of compressed communication in decentralized stochastic
optimization has been previously investigated (Koloskova et al., [2019azb} |Stich et all 2018). The resulting
communication cost savings have been showcased in the context of decentralized training of deep neural
networks (Koloskova et all |2019a)). However, to the best of our knowledge, there are no applications of
compressed communication to distributional robust training in the decentralized setup.

Distributionally robust network loss In order to obtain a final predictor with satisfactory performance
for all local distributions {P;}7,, the common objective is to learn global model which is distributionally
robust with respect to the ambiguity set P := {ZZI NP\ € Am_l} where A™~! where denotes the
m — 1 probability simplex. As shown in Mohri et al.| (2019), a network objective function that effectively
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Algorithm 1: Agnostic Decentralized GDA with Compressed Communication (AD-GDA)

Input :Number of nodes m, number of iterations T, learning rates 7o and 1), mixing matrix W | initial values
0° c RY and X0 € A™ L,

T—1 pt _ T—1
Output: 0007 %Z 00 Ao T o A
initialize 6; 0 = and s?=0fori=1,.
for ¢t in O, . -1 do
// In parallel at each node 1
1
0:+2 — 0! —noVegi (0, XL, €D // Descent Step
1
)\?2 < Pa ()\t + n)\VAgi(Bf7A§,§f)) // Projected Ascent Step
9t+1 <_(9t+2 +'y( t+1 éf“) // Gossip
g + Q (0§+1 - 9:) // Compression
1 1
send (qf, A;"2) to j € N(i) and receive (q§,A§+2) from j € N(4) // Msgs exchange
éﬁl —qi+ éf // Public variables update

+1 t m
— s+ Evzl Wi, 45
t+1 m t+2
AT Zj w; ])\7
end

// Dual variable averaging

works as proxy for this scope is given by

1 m
i — (A A 3
SR |9 = i 2 Qifil6) + arV) )
B :=9:(0,2)

in which 7 : A™~! — R is a strongly-concave regularizer and a € R*. For instance, in the empirical risk
minimization framework in which each node i is endowed with a training set D; ~ P®7“ and the overall number
of training points is n = Y, n;, a common choice of r(X) is x*(A) := Y, % or the Kullback-Leibler
divergence Dk, () := Y, A;log (Ain/n;) (Issaid et al. [2022]). Restricting (3) to the latter regularizer, the
inner maximization problem can be solved exactly (Issaid et al. 2022} Mohajerin Esfahani & Kuhnl [2018)).

In what follows, we refer to 8 and A as the primal and dual variables, respectively, and make the following
fairly standard assumptions on the local functions g; and the stochastic oracles available at the network
nodes.

Assumption 3.3. Each function g;(0, ) is differentiable in R x A™~!  L-smooth and pu-strongly concave
in A.

Assumption 3.4. Each node i has access to the stochastic gradient oracles Vgg;(0, A, &;) and Vg;(0, X, &),
with randomness w.r.t. &;, which satisfy the following assumptions:

o Unbiasedness

Ee, [Vog:(6 . €:)] = Vogi(6,A) (4)
Ee, [Vgi(6, X, &) = Vagi(6,A). (5)
o Bounded variance
(1V09:(6, 2. &) — Vagi(8. N)|I*] < o7 (6)
[IV29:(8,7,€) = Vagi(6. V)] < 03 (7)
« Bounded magnitude
Ee, [IVogi(0, A, €)I°] < G3 (8)
Ee, [IVa0:(6, A &)I°] < G3. (9)
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The above assumption implies that each network node can query stochastic gradients that are unbiased, have
finite variance, and have bounded second moment. The last assumption is rather strong but it is often made
in distributed stochastic optimization (Stich et al., |2018; [Koloskova et all 2019a; Deng et al.| [2021)).

4 Distributionally Robust Decentralized Learning Algorithm

Problem (3] entails solving a distributed minimax optimization problem in which, at every round, collaborating
nodes store a private value of the model parameters and the dual variable, which are potentially different
from node to node. We denote the estimate of the primal and dual variables of node i at time ¢ by 8¢ and
Al and the network estimates at time ¢t as 8 = L 3" 6! and A* = L 3™ Al respectively. The main
challenge resulting from the decentralized implementation of the stochastic gradient descent/ascent algorithm
consists in approaching a minimax solution or a stationary point (depending on the convexity assumption
on the loss function) while concurrently ensuring convergence to a common global solution. To this end,
the proposed procedure, given in Algorithm [T} alternates between a local update step and a consensus step.
At each round, every node i queries the local stochastic gradient oracle and, in parallel, updates the model
parameter 0; by a gradient descent step with learning rate 7y > 0 and the dual variable A; by a projected
gradient ascent one with learning rate 1) > 0. Subsequently, a gossip strategy is used to share and average
information between neighbors. In order to alleviate the communication burden of transmitting the vector of
model parameters, which is typically high dimensional and contributes to the largest share of communication
load, a compressed gossip step is employed. To implement the compressed communication, we consider the
memory efficient version of CHOCO-GOSSIP (Koloskova et al., [2019b)) in which each node needs to store
only two additional variables él and s;, each of the same size as 6;. The first one is a public version of 6;,
while the second is used to track the evolution of the weighted average, according to matrix W, of the public
variables at the neighboring nodes. Instead of transmitting 6;, each node first computes an averaging step to
update the value of the private value using the information about the public variables encoded in 0; and s;.
It then computes q;, a compressed representation of the difference between 6; and 0;, and shares it with
the neighboring nodes to update the value of 6; and s; used in the averaging step in the next round. As
the number of participating nodes is usually much smaller than the size of the model (m < d), the dual
variable A; is updated sending uncompressed messages and then averaged according to matrix W. Note that
AD-GDA implicitly assumes that collaborating parties are honest and for this reason it does not employ
any countermeasure against malicious nodes providing false dual variable information in order to steer the
distributional robust network objective at their whim.

4.1 Convex Loss Function

We provide now a convergence guarantee for the solution output by Algorithm [I] for the case the loss function
£(-) is convex in the model parameter 8. The result is given in the form of a sub-optimality gap bound for
the function
®(0) =g (0,A7(0)), A*():= argAma)fg(w A) (10)
AEA™M—

and it can be promptly derived from a primal-dual gap type of bound provided in the Appendix. In the
bound we also refer to 8*(-) € arg maxgcpa 9(6,-).

Theorem 4.1. Under Assumptions we have that for any 0* € argming ®(0) the solution 8, returned

by Algorithm with learning rates ng = ny = % and consensus step size vy = 16p+p2+4g:‘i2p5278p

5 satisfies

2 2 2 2
E[CI)(OO)@(0*)}§O<D9+D>\+G9+G/\) O(LD)\GQ LD,gG)\> <LG/\ LGQ) (11)

+
VT T oNT p?T AT

where Dy 1= max; E Hj\t — )\*(HO)H , Dy :=max; E Hét — 0*()\O)H and ¢ = %.

The bound establishes a O(1/ V/T) non-asymptotic optimality gap guarantee for the output solution. Compared
to decentralized stochastic gradient descent (SGD) in the convex scenario, we obtain the same rate but with
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a dependency on the network topology and compression also in the lower order terms. Moreover, whenever 6
and A are constrained in convex sets, the diameter of the two can be used to explicitly bound Dy and D).

4.2 Non-convex Loss Function

We now focus on the case where the relation between the model parameters @ and the value of the loss
function is non-convex. In this setting we provide a bound on the stationarity of the randomized solution,
picked uniformly over time. In this setting, carefully tuning the relation between primal and dual learning
rates is key to establish a convergent recursion (see . This technical condition allows us to derive the
following result.

Theorem 4.2. Under Assumptions we have that the solution 0, returned by Algorithm [d] with
2

learning rates ng = 16(:%)2 and ny = QL{/? and consensus step size vy = 16p+p2+452i2pﬁ278p5 satisfies
T E||ve@)?
Y E|[[Veeh)| <O<LA@T+L%2D9> (DALGQ oz+m§> 0<G3+/~;G§>+03
T - VT 2T VT mVT 2T~ p2T m
(12)

where ADT = E[®(0°)] — E[®(87)] and c = %‘

We note that the bound decreases at a rate O(1/v/T), except the last variance term which is non-vanishing.
Nonetheless, whenever the variance of the stochastic gradient oracle for the primal variable is small or the
number of participating devices is large, this term becomes negligible. Otherwise, at a cost of increased
gradient complexity, each device can query the oracle O(1/€?) times every round, average the results and
make the stochastic gradient variance O(1/€?). This procedure make the bound vanishing and leads to a
gradient complexity matching the one of |Sharma et al.| (2022) given for the federated learning scenario.

Table 1: Final worst-case distribution accuracy attained by AD-GDA and CHOCO-SGD under different
compression schemes and compression ratios.

Quantization Sparsification
16 bit 8 bit 4 bit 50% 25% 10%
Logistic AD-GDA 59.19+2.05 5743+1.44 55.75+2.09 57.05+0.68 54.02+1.14 51.51+2.88
Logistic CHOCO-SGD  30.69 £0.96 30.06 =0.83 29.46 +0.05 30.28 +£0.60 28.56 +0.54 26.39 + 0.67
F.C. AD-GDA 54.99 +1.92 48.99 £2.30 47.08 £2.53 51.85+2.11 43.65+2.97 38.95+3.21
F.C. CHOCO-SGD 30.83 £2.22 28.08+2.50 28.01+259 29924254 27.114+296 25914 3.20

5 Experiments

In this section, we empirically evaluate AD-GDA capabilities in producing robust predictors. We first
compare AD-GDA with CHOCO-SGD and showcase the merits of the distributionally robust procedure across
different learning models, communication network topologies, and message compression schemes. We then
consider larger scale experimental setups in which we study the effect of the regularization on the worst-case
distribution accuracy, and compare AD-GDA against Distributionally Robust Federated Averaging (DRFA)
(Deng et all [2021)) and Distributionally Robust Decentralized Stochastic Gradient Descent (DR-DSGD)
(Issaid et al., [2022)).

5.1 Fashion-MNIST Classification

We perform our experiments using the Fashion-MNIST data set (Xiao et al., |2017) EL a popular data set
made of images of 10 different clothing items, which is commonly used to test distributionally robust learners

2The Fashion-MNIST data set is released under the MIT License
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quantization compression scheme.

(Mohri et al.| 2019; Deng et al. 2021). In order to introduce data heterogeneity, samples are partitioned across
the network devices using a class-wise split. Namely, using a workstation equipped with a GTX 1080 Ti, we
simulate a network of 10 nodes, each storing data points coming from one of the 10 classes. In this setting,
we train a logistic regression model and a two layer fully connected neural network with 25 hidden units in
order to investigate both the convex and the non-convex case. In both cases, we use the SGD optimizer and,
in order to ensure consensus at the end of the optimization process, we consider a geometrically decreasing
learning rate nf, = r~'nJ with ratio r = 0.995 and initial value nj = 1. The metrics that we track are the
final worst-node distribution accuracy and the average accuracy over the aggregated data samples of the
network estimate 6.

5.1.1 Effect of Compression

We assess the effect of compression with a fixed budget in terms of communication rounds by organizing nodes
in a ring topology and training the logistic model and the fully connected network for 7' = 2000 iterations. As
representative of the unbiased compression operators, we consider the b-bit random quantization scheme for
b = {16, 8,4} bit levels, while for the biased category we implement the top-K sparsification scheme saving
K = {50%, 25%,10%} of the original message components. For each compression scheme and compression
level, we tune the consensus step size v performing a grid search. We train the different model for 20 different
random placements of the data shards across the devices using the distributionally robust and standard
learning paradigms. In Table[I]we report the average worst-case accuracy attained by the final averaged model
07. AD-GDA almost doubles the worst-case accuracy compared to the not-robust baseline CHOCO-SGD
(Koloskova et al.,[2019b). This gain holds for both compression schemes and across different compression levels.
For increased compression ratios, the worst-case accuracy degrades; however, for a comparable saving in
communication bandwidth the unbiased quantization scheme results in superior performance than the biased
sparsification compression operator. For a fixed optimization horizon compression degrades performance.
Nonetheless, compression allows to obtain the same accuracy level with fewer transmitted bits as shown in
Figure [3a] where we plot the average worst-case accuracy of the fully connected model as a function of the
transmitted bits using the random quantization scheme. Furthermore, in Figure |3b| we compare the average
accuracy of the robust predictor against the standard one. The price to pay in terms of average performance
in order to ensure robustness of the predictor is modest and in the range of 2.5%.
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Table 2: Comparison of the worst-case distribution accuracy attained by AD-GDA and CHOCO-SGD for

different network topologies.

Top-10% Sparsification

4-bit Quantization

2D Torus Mesh 2D Torus Mesh
Log. AD-GDA 54.00 £ 0.61 54.07 +£0.03 56.94 +0.38 57.11 +0.03
Log. CHOCO-SGD 26.82+0.41 29.00+0.02 30.82+0.24 30.97+0.03
F.C. AD-GDA 44.31 £2.47 4521 +£2.22 50.16£1.85 50.80+ 1.83
F.C. CHOCO-SGD 26.02 +2.29 26.38 £2.65 28.79+2.22 28.96 £+ 1.87

5.1.2 Effect of Topology

We now turn to investigate the effect of node connectivity. Sparser communication topologies slow down
the consensus process and therefore hamper the convergence of the algorithm. In the previous batch of
experiments we considered a sparse ring topology, in which each node is connected to only two other nodes.
Here, we explore two other network configurations with a more favorable spectral gap. The communication
topology with each node connected to other 4 nodes and the mesh case, in which all nodes communicate with
each other. For these configurations we consider the 4-bit quantization and top-10% sparsification compression
schemes. In Table [2| we report the final worst-case performance for the different network configurations. As
expected, network configurations with larger node degree lead to higher worst-case accuracy owing to the
faster convergence as shown in Figure [d] in which we plot the worst-case distribution accuracy versus the
number of transmitted bits for the fully connected model trained using the random quantization compression

operator.

5.2 Larger Scale Experiments
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Figure 5: Examples of CIFAR-10 images with differently tuned contrast.
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We now study AD-GDA and compared it with existing distributionally robust algorithms. We consider three

larger-scale experimental setups:

« A larger scale version of the Fashion MNIST classification task of Section [5.1] In this section, we
assume a larger network comprising a total of 50 devices with nodes storing samples from only one

class.

A CIFAR-10 image classification task based on 4-layer convolutional neural networks (CNN)

(Krizhevsky et al., 2009). We consider a network of 20 network nodes and we introduce data
heterogeneity by evenly partitioning the training set and changing the contrast of the images stored
at the devices. The pixel value contrast P € [0,255] is modified using the following non-linear

transformation

fe(P) = clipjg 255 [(128 + (P — 128))"1],

(13)
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where clip(g 55/ (*) rounds values to the discrete set [0,255]. For ¢ < 1 the contrast is reduced while for
¢ > 1 it is enhanced. We consider two network nodes storing images with reduced contrast (¢ = 0.5),
two storing images with increased contrast (¢ = 1.5), and the rest of the nodes storing images with
the original contrast level (¢ = 1). In Figurds| we report a batch of images whose contrast is modified
using these three transforms. This setup can be used to model a camera network (e.g. surveillance
network) containing devices deployed under different lighting conditions.

e A network of 10 nodes collaborating to train a 4-layer CNN to classify microscopy images from the
biological data set COOS7 (Lu et all [2019). Data heterogeneity is a consequence of the existence
of different instruments used to sample the training data. In particular, we consider two of the
collaborating nodes using a different microscope from the rest of the collaborating devices. This
setup illustrates the risk of training models based on biological data affected by local confounder —
in this case, the usage of different sensors.

5.3 Effect of Regularization

Table 3: Testing accuracy attained by AD-DGA for different regularization values «. For the Fagshion-MNIST
data set we report the worst and best class accuracy, for the CIFAR-10 data set the accuracy for the different
contrast images and for the COOST7 data set the accuracy for the different microscopes. The last column in
all tables is the the accuracy attained on a test data set comprising samples from all local data distributions.

(a) Fashion-MNIST. (b) COOST.

Worst Class  Best Class Average Microscope 1 Microscope 2 Average

a=10 52.83+1.14 90.63+0.18 7731£0.19 «a=10 66.93+0.23 86.54£0.06 76.73+0.13
a=1 59.17£1.06 89.77+0.60 76.77£0.04 a=1 72.27£0.31 81.30 £0.18 76.77£0.22
a=0.01 5847+£0.92 89.56£0.52 76.67+0.09 «o=0.01 75.00£0.24 75.63 £ 0.40 75.31 £0.22

(c) CIFAR-10.

Low Contrast High Contrast Original Contrast Average

a =10 34.66 £ 0.47 40.67 £1.29 44.28 £ 0.84 39.87 £ 3.96
a=0.1 37.30 £0.73 40.93 = 1.54 43.62 +£0.91 40.61 £ 2.59
a=0.01 39.06 +0.80 41.13+1.14 42.96 £ 0.91 41.05 +£1.59

We first evaluate the effect of the regularization parameter « in the distributionally robust formulation
and study how it affects AD-GDA final performance. According to the two-player game interpretation of
the minimax optimization problem , the regularizer r(\) reduces the freedom that an adversary has in
choosing the weighting vector A to maximize the training loss at every iteration ¢. As a result, the smaller the
value of «, the less constrained is the adversary and the larger will be the emphasis on the worst performing
nodes. This intuition is confirmed by the following experiments in which we consider a regularizer of the form

X2(A) =Y, % and run AD-GDA for o = {10,1,0.01}. In Table 3| we report the average accuracy
attained in the three simulation setups. For e = 10, we observe a large test accuracy gap between the worst
and best nodes in the network: 37% for the Fashion-MNIST data set, 9% for the CIFAR-10 data set and 19%
for the COOS7 data set. This large accuracy mismatch showcases how large regularization parameter values,
and standard decentralized optimization schemes (obtained for & = 00), are unable to guarantee uniform
performance across participating parties. On the other hand, using smaller regularization parameters, the
gap between is effectively reduced: 31% for the Fashion-MNIST, less than 2% for CIFAR-10 and less than 1%
for COOS7. At the same time, the improved fairness brought by AD-GDA does not significantly hamper the

average performance of the final model as reported in the last column of all the tables.

10
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Figure 6: Comparison between the proposed algorithm (AD-GDA), Distributionally Robust Federated
Averaging (DRFA), Distributionally Robust Decentralized Stochastic Gradient Descent (DR-SGD) and
standard decentralized learning (CHOCO-SGD). The algorithms are compared in terms of their communication
efficiency and worst node accuracy.

5.4 Communication Efficiency

In the following we compare AD-GDA against CHOCO-SGD and other existing distributionally robust
learning schemes; in particular, Distributionally Robust Federated Averaging (DRFA) (Deng et al., |2021)) and
Distributionally Robust Decentralized Stochastic Gradient Descent (DR-SGD) (Issaid et al., 2022).CHOCO-
SGD represent a standard decentralized learning procedure that employs compressed gossip to attain
communication efficiency. DRFA is a federated distributionally robust learning scheme with network devices
connected according to a star topology and the star center represented by a central aggregator. Communication
efficiency is obtained allowing network devices to perform multiple local updates of the primal variable
between subsequent synchronization rounds at the central aggregator. We run DRFA allowing devices to
perform 10 local gradient steps before sending their local models for the distributionally robust averaging
steps and we consider half user participation at each round. DR-DSGD is a decentralized distributionally
robust learning scheme based on KL regularizers that does not employ compressed communication. For the
decentralized learning schemes, we consider a 2D torus topology with every node connected to other four nodes.
For AD-GDA and CHOCO-SGD, which employ compressed communication, we consider a 4-bit quantization
scheme. For AD-GDA we consider a chi-squared regularizer with ae = 0.01, while for DR-DSGD we set the
KL regularizer parameter to o = 6 as in |Issaid et al.|(2022). All algorithms are run for 7' = 5000 iterations
using an SGD optimizer and the same exponentially learning rate schedule. The algorithms are compared in
terms of communication efficiency, namely the capability of producing a fair predictor communicating the
smallest number of bits. To this end, in Figure [6] we compare the worst-case distribution accuracy against
the number of bits transmitted by the busiest node in the network. The simulation results are reported over
the different simulation scenarios. AD-GDA and CHOCO-SGD employ the same compression scheme and
converge within the same communication budget. However, AD-GDA can greatly increase the worst node
accuracy compared to CHOCO-SGD. This showcases the merits of distributionally robust learning compared
to standard learning. Compared to the other distributionally robust algorithms, AD-GDA attains the largest
worst-case accuracy by transmitting only a fraction of bits. In particular, for the Fashion-MNIST setup,
AD-GDA is 4x and 8x more communication-efficient compared to DRFA and DR-DSGD respectively. For the
CIFAR-10 data set, AD-GDA reduces by 3x and 5x the number of bits necessary to attain the same final
worst-node accuracy of DRFA and DR-DSGD respectively. Finally, in the COOS7 case, AD-GDA is 3x more
efficient than DRFA and 10x more efficient than DR-DSGD.

11
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6 Conclusion

We provided a provably convergent decentralized single-loop gradient descent/ascent algorithm to solve the
distributionally robust optimization problem over a network of collaborating nodes with heterogeneous local
data distributions. Differently from previously proposed solutions, which are either limited to the federated
scenario with a central coordinator or to specific regularizers, our algorithm directly tackles the underlying
minimax optimization problem in a decentralized and communication-efficient manner. Experiments showed
that the proposed solution produces distributionally robust predictors and it attains superior communication
efficiency compared to the previously proposed algorithms. A combination of the compressed communication
and multiple local updates, combined with acceleration techniques, represents the natural extension of the
algorithm to further improve its efficiency.
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A Appendix

A.1 Useful inequalities

This section contains a collection of ancillary results that are useful for the subsequent proofs.

Proposition A.1. A differentiable and L-smooth function f(x) satisfies
IVf(@) = Vf(@)] < Lz—a.
Furthermore, if f(x) is convex
F(y) < f() + (Vi @)y~ @)+ 5y - ol
and if ** is a minimizer
IV @) < fl@) -~ fa).

Otherwise, if f(x) concave

F) > () + (Vi @)y~ )~ 5y~ ol

and if x* is a maximizer

V@) < fla) — fa).
Proposition A.2. A differentiable and u-strongly convex function f(x) satisfies
F) 2 f(@) +(Vf(@).y — @) + & |y - al)
and a differentiable and p-strongly concave function g(x) satisfies
9(y) < g(@) + (Vg(a).y — @) — & |y - 2.
Proposition A.3. Given two vectors a,b € R?, for 3 > 0 we have
2(a,b) < 57 |lal* + B|b]”
and
la+b] < (L+57") Jal® + (1 +5) B
Proposition A.4. Given two matrices A € RP*9, B € R1*", we have
IAB|p < | All 7 1BIl,

where ||-|| p denotes the Frobenius norm.

Proposition A.5. Given a set of vectors {a;}?_, we have

n 2 n
>_ai| <n) fail.
=1 =1

Consensus inequalities

15
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To streamline the notation we define Vg; (0, Af) = Vg; (0%, At €!) and introduce the following matrices

ot =1[6t,... 6] eR>™ & = [éf,...,éfn] eRD™ A= [AL,... AL] € R™X™,

rYm

VoG(O',A") = [Vgg1 (81, A1), ..., Vogm(0,,AL,)] € R&*™
VAG(O,AY) = [Vagi (8, AY), ..., Vagm (85, AL,)] € R™X™
and for a matrix X we define X = X %
The local update rule of Algorithm [1] can be rewritten as
O3 = O — 1yVeG(O, AY) (25)
A5 =Py (A + 1 VAG(OY,AY)) (26)

where P, is applied column-wise. The compressed gossip algorithm CHOCO-GOSSIP (Koloskova et al.,

2019b)) used to share model parameters preserves averages and satisfies the following recursive inequality
2
with ¢ = %—2‘;

E ||@t+1—ét+1||§+H@t+1—éf+1Hi} <(1-oE||e+: - e+ i+H@t+% Y

m .@)

The uncompressed gossip scheme used to communicate A satisfies

E “|At+1 _ At-&-l”i] <(1-p)E “AH; _ At+E

1 . (28)

Lemma A.6. (Consensus inequality for compressed communication (Koloskova et all |2019d|)) For a fized
25

ng >0 and v = 16p+p2+4gz+2p5278p5 the iterates of Algom'thm satisfy
m _ 2 G2
E[=)] =E Z’ef—at ] §12n§che. (29)
i=1

Lemma A.7. (Consensus Inequality for uncompressed communication (Koloskova et al., |2019b)) For a fized
nx > 0 the iterates of Algorithm [1] satisfy
m _ 2 G2
iz -2 35 - 5| < g
i=1

(30)

A.2 Proof of Theorem 4.1} Convex case

Define

o) = SA);
()=, max g(,X);

under assumptions and if the local objective functions {f;(0)}7, are convex, Theorem [4.1| guarantees
that the output solution (6,,\,) satisfies

4 (LG: _LG2 1 Dy\LGy _DyLGy
— mi < A 0 7
E{@(BO) ggg‘l’(e)] T<p2 +3CQ>+ﬁ<m 2 ; )
+L D9+D)\+G3+Gi '
VT 2 2

The proof starts from the following decomposition of the sub-optimality gap

. < _ .
E{mﬁxg(@o,)\) m(glnm}a\xxg(@,)\)} <E {m}z\mg(@o,)\) mﬁxm{;ng(@,)\))}
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= ) .
<E _nif%exf 2 9(9 ) 9(0»)‘ )
r = ) .
<E _m}&\xx T ; g(0°, ) (P )]
= .- ,
+E mgxffzog(ea)\) (6, A7)

Thanks to Lemmas (A.8) and (A.9) proved below, the two summands can be bounded to obtain

2
E |®(6,) — mlnfl)(e)] Ds +( 2 4 agAL G") +12n3L§9

6co —2neT
D, 7\ 9 DyLG), 5 LG3
— (G5 +4 4 .
T + ( At 5 AN
Setting ) =19 = f’ the final result is obtained. O

Lemma A.8. For T >0 and any 6, the sequence {6, S\t}fzo generated by Algom'thm satisfies

Dy
= 2neT

G2 Dy LGy,

T—1
1
Z g(0', 1) — g(6, 21| < + 77"G + 120352 + 21,

t=

where Dy = max;—o.. v E Hét — OH

Proof: From the update rule of the primal variable and the assumptions on the stochastic gradient we
have, that for any 6

Ee: |6 — 6|” =Eq: |6

_ Z vﬂgv

m

=6t - o||* — 2 > (6"~ 05Eer [Vogi(01 X))

i=1

2

+]E§t %Z@ggi(gz A
=1
<||6" — 6] —22 > 7(8" — 6: Vogi (6], X)) +13 G- (31)
=1
=T

Denoting with D = HO_t — 0|| we have that for T, the following holds
o - nt t 3t . Ot t oyt t oyt
Ty = —2 —0: (0 —0: (O \E) — (O
5 (E (6 0;Voygi(0;,\")) + i:E 1<9 0;Voygi(0;,\;) — Vagi(0;, X )>>
Mo S Nt t oyt f\
< 2= 0" — 0; (07, 2n9 LD
< 2" S (6"~ 0: 00, X) + 20, LD
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=t

< —2% > (8" — 015 Vegi (0, A)) + (0] — 0; Vegi (61, X)) + 2ng LD}y | =2
=1

N i S 9 =t

< *QEZ (g,-(@t,)\t) 9i(0,X") — Het 0! ) + 209 LDj || 2

o _ L [=t
— 9l ) t AN t 7]0 r—\t 2 LD )\
m 4 (91(0 aA ) 91(07)\ )) + m + ug 2]

Plugging it back in , rearranging the terms and taking the expectation over the previous iterate we get

E [9(6", A) — (6, \')] :%]E lz (6, A1) — g:(0, A1)

_E|o* — 6| — E[jo""" — o||*

9 ~2

210 5 G
£ =t t E [Et)\]
+ —E[Zf] + LE [Dg] ) — =

Telescoping from ¢t =0 to t =T — 1 and plugging the consensus inequalities and , we get

T—1
1 ~ < Dg Mo LG2 DgLG)\
—E 6t \! 0, )\ ZGE 12— 42
T LZ_gg( X = 9(0,M) | < 5+ G+ 1205 =50+ 2

where Dy = max;—g._ 7 E[D}] = max;—.. v E ||0_t — 0“

|
Lemma A.9. ForT >0 and any X, the sequence {ét, S\t}fzo generated by Algorithm satisfies
1= D A D,\LGo
E ot )\ 0t At A A ~2 an3 o L
[ng( A =90, A) | < 5o S OR -
where Dy = max;—o.. 17 E Hj\t — )\H
Proof The proof follows similarly as in Lemma (|A.8])
m 2
Eeo || A Al =g [[A = A+ 25T 9,0:(0, AL
e | | =E¢ +m;%g(w )
= [ = A" -2 Z (A= X Ee: [Vagi(6L,A)))
- 2
+ Ee ZV,\gl (01,1
=E A" — X A — A5 Vagi (05, AD) 413 G3. 32
Y m; 2 (01, \0) 3G (32)
:=T3

Denoting with D} = Hj\t — Al| we have that for T the following holds

3\:’

(Z (A= X5 Vagi(05,AD) + > (A= A1 Vagi(0], X)) — Vagi (6, )\2)))
1= =1

=t
> (A= X Vagi(6', Af)>)+2mLD§\/“E9

i=1

3\5
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A - t ot \t t 3t ot ¢t t 9
= m (< 2l Ag( 2)> < i Ag( )>) BN m

=1
(N i — 9 =t
< 4%; (gi(Ot,)\) g:(0%, X)) — }|>\t A >+2nALDf\\/T:
2N - ot At \t 2maL ¢ Ete
=-2-= i0,/\ - lO,A = 2n\LD —_—.
m;(g( ) = 6i(8', X)) + =F=E) + 2 LDy [

Plugging it back in , rearranging the terms and taking the expectation over the previous iterate we get

Zgz Ot gz Ot At)]

<E|\>\t - >\||2 —E[AT! — )2
- 2m

E [g(o_t, ) —g(6, )\t

+ P2

L E =
+Lp =4y BE
m
Telescoping from ¢t = 0 to t = T — 1 and plugging the consensus inequalities (29)) and ( we get

D,\LGg

— D ()N
nt nt t 42
§:Oj (8", g(8', X" _QWT+2G+

where Dy = max;—o... 7 E[D}] = max;—o. 7 E H;\t — /\H
A.3 Proof of Theorem Non-convex case

In the case of non-convex functions {f;},, Theorem provides the following e-stationarity guarantee on
the randomized solution of Algorithm [1]:

5 51)|°] <% 9 f 45LK2 DY
T;E [HV@(@ gl } <7 (256 (E[®(6°)] — E[®(67)]) +2A)

2m 4m

Gy 03 n 45/{0/2\>
VT

1
+ —= <5D>\L

G2 kG3 o2
— | —= + 171 -y
+T(42+7 p>+m

The proof is inspired from recent results in (Lin et al., 2020)). Specifically, Lemma |A.10} stated and proved
below, provides a descent inequality of the type

m

ny ( o L) (E[j} 2ET[§3] +2E[5t]) (33)

Setting 1y = w(:ﬁ)g and 7y < ﬁ expression can be simplified thanks to the following chain of
inequalities

Bl6(0)] <E[(@E)] + L0 () B [v)0@ )]

e 1 1 Ie
~— —2npkL) < np(= + 2ngrL) < =2,
16 < (5 — 2nerL) < mo(5 +2merL) < 16
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Telescoping the simplified expression from t = 1 to T" we obtain

— nakLo? 7779
E[®(0")] <E[®(6°)] + T —F — ZE V@@ h)?]
T
9779 E[Et] 2E[Et ] 9779L
L27 %) A ) 4
P (P 2 |34 @
where 8% := H)\*(ét) — S\tHZ represents the squared distance between the optimal value of the dual variable

for the current averaged network belief and the current averaged value of the dual variable.

Lemma reported below, provides a bound on Ethl &% that plugged in yields

B0(67)] <E{0(8°)] + 10 2 3 4 (251 5 ZIE V)o@’

81
779:‘{[/0'9 45/$L77)\0/2\ 4509
T
+4e ( m + dm 2-162m
T - - —=t—1 —=t—1
e E[ZL]  2E[Ef]\ 30xE[E, "] = T70kE[E} ]
22 0 0 A
+16§<m+m+ e (35)
29779 d t—1 1 —t—1
+ L2 > [ 40xDf —E[Z] ) (36)
t=1
Moreover, the relation between the two step-sizes established above ensures that
4,2
456y T < 1
n3 16) = 4
and therefore rearranging terms, dividing by Tine and recalling that k > 1
1 & 1) 4 - ooy ABLK289
=Y E|V[@@ Y] <— (B[e(8")] - E[@(0 DR
7 LB VIO I < 7 (BI2(°) - BRET) + =70
ngnLUS 45HL77)\J§ 4503
4
+ ( m * 4m + 2-162m
9L% ~ (31kE[E5Y) | 7T2E[xZ5Y) .
4T m + m (37)
t=1
9L? 1
+ 7 > <40;~;D§1 mE[E§1]> : (38)
t=1
Exploiting consensus inequalities , and the fact that kK > 1 and 79 = 16(2%)2 < 1/2L we can simplify
and obtain
+1)2 ~ ~ 45LK26%
=Y E|V[e@ ] < "7 E[®(6°)] — E[®(87)]) + —m A
Z ve@ ) (E[2(6°)] — Bl2(67)]) + 57 -
Lo? 45kLo3 4502
2 ~70 ZOEEN 0
+ (77A m i 2m + 162m>
T
9 e kG3
+L24TZ<4O Dt~ 1f2n9—+372n9—+288 USs ) (39)

t=1
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Simplifying and defining Dy = max;—o,...7 D}
T
1 —_ 64(k +1)2 ~ - 45LK26%
=Y E|V]e@O! ——— (E[®(8")] — E[®(0" .
7 2B [VIle@ ] < (Ble@)] - Ble@) + T
Lo? 45kLo2 4503
9 0 by 0
+ (77/\ m s 2m 162m)
Go G2 kG2
2 2459 2
Grouping
T
1 1 ~ ~ 45LK269
- V@07 | <— (256 (E[®(68°)] — E[®(6 —2
r eV ] < (256 (sl ~ Ela@n) + 22
Lo? 45kLo?
+ (IODALQGG + Log  Donkox UA) (41)
c m 2m
L2G2 L2 G2 2
+m( 0 4 684—— )+"9. (42)
c? m
Setting 1)\ = 2L1/T we get
- = = 45LK%59
t—1 0 T A
7 SB[V @] <22 (256 (Bloe")] - El0(@™)) + P52 )
1 Go O'g 45%0/2\
— | 5D L— — 43
+ T ( A + o + I (43)
(44)
G2 kG2 o3
— (=L 112 ) + -2
tr (B2 2
Lemma A.10. For each t =1,...,T the iterates generated by Algorithm[1] satisfies
2 2
5 At myrLo 1o
E[2(8")] <E[@(8' )] + 0 — (L — 2kl ) E [V]|2(8' )

+ 12 (T + 2nxL) (lE[jz] + QEEK] +2E[5f])

Proof: From the 2xL-smoothness of ®(-) (Lemma 4.3 of Lin et al.| (2020)) and the update rule we have
9' — 0" 1)] + kLEg: ||6° — 61|

Ege—1 [@(0")] <@(0' ") + Egemr [(Vo@(0'7 ), 0"
S e

i=1

<BO'Y) —np(Ved(6'71),

2

L
+770’<5 5’ ) Zvogl at 1 At 1)
i=1
<O(6'") + np(VE(0'), V(6 ) nggl 671, A7)
i=1
=Ty
m 2
— V[ ® (6| > Vegi(6; ' AT
i=1
2:T5
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We now turn bounding term Ty

Ty =np(VO(6' 1), VO(6') Zvegz (6,71 A7)

AE|

Vo6t ZV@QZ (ZP V'

e t=1)
! (||V<I>9 )P +

1 m _ _
D Vg8 X (8°7) — Vagi (01 A

i=1
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2 (meét-wu? :

B ) 2 m. ) 9 m B )
o (S SRR oSV

i=1 =1

B

L= 2L :g ! 2L2 .

2

o
2

AE|

qu)(ét—1)“2+ + A% ( 9t 1 Xt—lHQ

_5f 1
and from stochastic gradient assumptions [3.4] we can bound T as follows
2
] :

2
+2[|mvae@h)|’

2

> Vogi(6;7 AT

i=1

Ty =Egi

2
:Egt—l

(67 X) — Vo607 A7) (07 A

Dot 2|30 o611 - Vo (61X (@)

i—1
mag +20%m ) |0 - 0}5*1H2 +202m Y A6 — )‘571”2
i=1 i=1

+om? |[ve@ |

<mod + 2L*mEL "+ ALPmEC +4L%m Y A0 - XY v2m? vt Y|
=1

_st—1
_JA

Recombining, grouping, and taking the expectation over the previous iterates we get the desired result. 0O

Lemma A.11. The sequence of {6{}]_, generated by Algomthml satisfies

T r—~t 1 —t—1
50k 7E[: ]

6 A 5 4Dt 1 '—'t 1 A
> < W+Zn( e =)

t=1

+Z (8"”" %E ([ve@—)]

27))\0)\ 409
5T
+57 (30 + e

where DY~ ! ||)\t 1 )\H
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Proof: From , for b > 0, we have

Egi[0] < <1 + i) Eeeor [[A*(8) = N [P+ (14 b) Been | A*(6Y) — A6 1)

::T()- ::T’7
Bounding T similarly
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m 2
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Estimating T o
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< - 1
§_2%Z<)‘*(9t_1) AL Vg (7 AL 1>+217ALDt 1 EE?l
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_ 2774\2 (g A1) - )\12‘5*1“2 n g At — X;le>
i=1
22 Z et 1 At 1) -(ét—l A*(ét_l)))+2,r})\LDt71 iEt,1
i=1 ’ A m 0
U?nu*—f Si—1112 L+N 2
23 (e X B X))
m
= :W7/\ )\*(Bt 1) xt_lHQ_Q%Zgi(ét_l’)‘*(ét_l))—gi(ét_175\t_1)
i=1
+2L77/\~t S N o ;Lug_l

where the last inequality follows from choosing 1) < 1/(2L). Substituting the expressions we get

< 2 262 L 3L 1 .
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Being A*(+) is k-smooth (Lemma 4.3 (Lin et al., 2020)) we can bound T as follows
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2 2—t—1 2—t—1
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m m
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Recombining and grouping we get
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Setting b = 2 (ﬁ — 1) > 0 we get the following inequalities
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that allows to simplify as follows
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Fixing 7, = 16(;7# we get that
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Taking the expectation over the current iterate and applying recursively the inequality we obtain
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Summing from ¢ = 1 to T and from we get
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