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Abstract

Large Language Models (LLMs) have demon-001
strated impressive performance across various002
tasks. However, current training approaches003
combine standard cross-entropy loss with ex-004
tensive data, human feedback, or ad hoc meth-005
ods to enhance performance. These solutions006
are often not scalable or feasible due to their007
associated costs, complexity, or resource re-008
quirements. This study investigates the use of009
established semantic segmentation loss func-010
tions in natural language generation to create011
a versatile, practical, and scalable solution for012
fine-tuning different architectures. We evaluate013
their effectiveness in solving Math Word Prob-014
lems and question answering across different015
models of varying sizes. For the analyzed tasks,016
we found that the traditional Cross-Entropy017
loss represents a sub-optimal choice, while018
models trained to minimize alternative (task-019
dependent) losses, such as Focal or Lovász,020
achieve a mean improvement of +42% on exact021
match without requiring additional data or hu-022
man feedback. These findings suggest a promis-023
ing pathway for more efficient and accessible024
training processes.025

1 Introduction026

Generative Language Models have shown impres-027

sive capabilities across various scenarios (Raffel028

et al., 2020). Recent advancements in Large Lan-029

guage Models have made this even more evident030

(Liang et al., 2022). However, the performance of031

these models is influenced by three main factors:032

model size, amount of training data, and training033

strategy (Luo et al., 2023; Yue et al., 2024). In-034

creasing model size requires more computational035

resources while training on vast data collections036

is essential to achieve competitive results when in-037

creasing the size. Additional training refinements038

have been introduced recently, some of which in-039

volve human experts providing feedback to en-040

hance model performance, as in Reinforcement041

GSM8K HellaSwag MathQA OpenBookQA
Dataset
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Figure 1: Percentage of improvement using the best
loss (among Focal, Lovász, Generalized Dice, and Self-
Adjusting Dice) for the task with Cross-Entropy com-
pared to model fine-tuned with Cross-Entropy only.

Learning from Human Feedback (RLHF) (Chris- 042

tiano et al., 2023) where human preferences are 043

then used to align the model outputs. 044

Despite the improved performance, develop- 045

ing these models requires massive amounts of 046

resources, power, time, and therefore significant 047

costs, making them accessible only to very few 048

leading companies. The increasing costs and re- 049

source requirements have already led to the devel- 050

opment of solutions aimed at democratizing the 051

training of these models. An example of this is 052

the use of Parameter Efficient Fine-Tuning (PEFT) 053

(Mangrulkar et al., 2022) like Low-Rank Adapta- 054

tion (LoRA) (Hu et al., 2021a) or derived strategies, 055

often combined with quantization techniques, to 056

enable lightweight fine-tuning of these computa- 057

tionally expensive architectures. Some works (e.g., 058

Zephyr (Tunstall et al., 2023)) circumvent the need 059

for human feedback by distilling the knowledge 060

of larger and more powerful models (e.g., GPT-4), 061

leveraging the so-called AI Feedback (AIF). How- 062

ever, this may cause the propagation of potential 063
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biases from the larger model, or the generation of064

unfactual content, potentially resulting in a less065

accurate representation of reality (Liu, 2023; Hosk-066

ing et al., 2024). Although Direct Preference Opti-067

mization (DPO) (Rafailov et al., 2023) and similar068

methods address the instability in reinforcement069

learning training (Rafailov et al., 2023; Liu et al.,070

2022) and the computational requirements, their071

effectiveness is limited by the quality of the prior072

supervised fine-tuning stage (Xu et al., 2024b; Tun-073

stall et al., 2023).074

Supervised fine-tuning still remains the most075

memory-efficient alternative, however the collec-076

tion of fine-tuning and instruction-tuning datasets077

presents similar challenges, as it requires additional078

annotation costs that may not always be accessible,079

especially when dealing with multiple datasets to080

annotate (Yue et al., 2024). While costs can be081

mitigated by relying on weak annotation, similar to082

possible issues of using AIF, the quality of annota-083

tions is not always guaranteed. The need for larger084

models and additional data pertains not only to085

general-purpose systems (e.g., ChatGPT) but also086

to task-specific models for more complex scenar-087

ios, as in the case of Math Word Problems (MWP).088

Specifically, state-of-the-art solutions often employ089

more complex training procedures, involving mul-090

tiple training stages (e.g., supervised fine-tuning,091

instruction tuning, preference-based tuning) (Luo092

et al., 2023; Yue et al., 2024; Azerbayev et al.,093

2024) to achieve improved performance. How-094

ever, similar to general-purpose models, this leads095

to more expensive solutions. Additionally, these096

approaches are also less portable since they are097

tailored to one specific task.098

To tackle the above-mentioned challenges, in099

this work we raise some concerns about the stan-100

dard practice of cross-entropy (CE) loss optimiza-101

tion, which is the usual language modeling objec-102

tive, and we show that a more accurate selection of103

the loss function to optimize can be incredibly ben-104

eficial for model training. Specifically, by using a105

loss function tailored to the task under analysis and106

leveraging LoRA, we effectively fine-tune LLMs107

with small amounts of data. The underlying idea is108

that for certain language tasks, it is desirable to op-109

timize not only for the correctness of the output but110

also for the structural adherence of the generated111

text to a specific format or syntax. This is particu-112

larly relevant for tasks involving formal languages113

or well-defined procedures, such as mathematical114

reasoning, where the intermediate steps and reason-115

ing process must follow a strict structure. Conse- 116

quently, we hypothesize that accounting for these 117

characteristics by employing a more appropriate 118

loss function could lead to improved performance. 119

Our solution does not involve either the imple- 120

mentation of complex training procedures (e.g., 121

(Luo et al., 2023)), further pre-training (e.g., (Azer- 122

bayev et al., 2024)), distilling knowledge from 123

larger models (e.g., (Tunstall et al., 2023)) or col- 124

lecting human preferences (OpenAI, 2023). In con- 125

trast, our approach focuses on selecting a more suit- 126

able loss function based on the task at hand, achiev- 127

ing improvements over the standard cross-entropy 128

loss through a single training stage, as shown in 129

Figure 1. In this work, we focus on mathematical 130

reasoning and closed-question answering, which 131

are common benchmark tasks (Liang et al., 2022; 132

et al, 2023; Hendrycks et al., 2021) that have a 133

clear and well-defined expected output. Further- 134

more, we choose these tasks since we claim that, 135

for both of them, the role of human preferences is 136

secondary since it is difficult to “prefer” one output 137

with respect to another, especially in mathemati- 138

cal reasoning where there could be more than one 139

procedure to get the final solution. 140

Our results show that accurately choosing the 141

right loss function (combined with Cross-Entropy) 142

can improve performance on the analyzed tasks 143

using the same amount of data without adding com- 144

plexity to the training process. 145

The source code to reproduce the exper- 146

iments is available for research purposes 147

at https://anonymous.4open.science/r/ 148

segmentation-losses-nlp-5B73. 149

2 Related Works 150

The evolution of Large Language Models has been 151

driven by various innovative training methods. This 152

section provides an overview of the existing ap- 153

proaches for training LLMs, highlighting the chal- 154

lenges and benefits of each approach. Additionally, 155

we explore the development of alternative loss func- 156

tions beyond cross-entropy in both natural language 157

processing and computer vision fields. 158

2.1 Training methods for Large Language 159

Models 160

The most common approaches to training LLMs 161

are pre-training, instruction tuning, supervised fine- 162

tuning, and tuning by preferences. 163
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Pre-Training. Among these, effective pre-164

training remains a key solution for achieving the165

best results (Azerbayev et al., 2024; Jiang et al.,166

2023; Zhou et al., 2023). However, the need for167

high computational resources and a large amount of168

usable data (e.g., the source license must grant per-169

mission for the intended scope) makes this solution170

not always scalable or feasible in most cases.171

Supervised Fine-tuning and Instruction Tuning.172

Supervised fine-tuning and instruction tuning are173

common solutions to adapt pre-trained models to a174

series of tasks (Xu et al., 2024a; Yue et al., 2024;175

Jiang et al., 2023), as this approach requires less176

data and can exploit efficient solutions like LoRA177

(Hu et al., 2021a) and quantization to scale the train-178

ing. However, there is still a need for large data179

collections since the employed language model-180

ing loss (commonly Cross-Entropy) does not effec-181

tively represent the salient parts of the instructions182

(e.g., it may not correctly represent the token dis-183

tribution (Lin et al., 2017)). In many cases, ad hoc184

collections must be created, and since costs and185

time are still high, many solutions leverage other186

language models to create annotations (Yue et al.,187

2024; Lian et al., 2023; Yu et al., 2023). Although188

this is a more cost-effective solution than human189

annotation, it could lead to biased datasets (Tan190

et al., 2024).191

Human Feedback. RLHF (Christiano et al.,192

2023) and DPO (Rafailov et al., 2023) propose new193

methods to train models using human preferences.194

Human feedback has proven helpful in tasks that195

require evaluating the model’s text generation ca-196

pability (Stiennon et al., 2020; Fan et al., 2019;197

Ethayarajh et al., 2022), where quantitative evalu-198

ation alone cannot cover all aspects of the desired199

output (Chang et al., 2024). However, Zhou et al.200

(2023) highlights the limitations of RLHF, while201

Hosking et al. (2024) argues that preference scores202

under-represent crucial aspects such as factuality,203

which is an objective for question-answering and204

mathematical reasoning.205

Moreover, this approach requires collecting hu-206

man preferences, which is costly. In this case, some207

solutions use distilled feedback to avoid extra costs208

(Tunstall et al., 2023), although this exposes them209

to potential biases of the employed model.210

WizardMath (Luo et al., 2023) proposes a dif-211

ferent approach to include feedback in mathemati-212

cal problems named Reinforcement Learning from213

Evol-Instruct Feedback (RLEIF). Although human214

feedback (with its potential biases) is avoided, 215

RLEIF faces scalability issues due to the need for 216

training two additional models (i.e., Instruction Re- 217

ward and Process-Supervised Reward models) to 218

produce various feedback types. 219

2.2 Loss functions beyond Cross-Entropy 220

Despite the most common approaches involving 221

cross-entropy and the optimization of feedback 222

through RL, other methods exist. Reinforcement 223

learning has already been used to optimize the 224

BLEU metric (Ranzato et al., 2015; Wang et al., 225

2019), before the employment of feedback. How- 226

ever, the training instability and the unclear contri- 227

bution in some settings (Wu et al., 2018) are great 228

drawbacks, coupled with its non-differentiability. 229

EISL loss (Liu et al., 2022) was proposed to op- 230

timize the n-grams matching in a differentiable 231

and more stable way, but it is applicable to non- 232

autoregressive models. Self-Adjusting Dice Loss 233

(Li et al., 2020), a combination of Dice and Focal 234

losses, was proposed to address imbalanced clas- 235

sification tasks in NLP. However, they employed 236

encoder-only architectures, and the benefits depend 237

on the specific task. Dice and Focal losses origi- 238

nate from the computer vision field (in particular 239

semantic segmentation), which is rich in loss func- 240

tions designed to address class imbalance (which 241

translates to token imbalance in NLG) and effec- 242

tively penalize prediction errors. Dice (Milletari 243

et al., 2016), Generalized Dice (Sudre et al., 2017), 244

Focal (Lin et al., 2017), and Lovász (Berman et al., 245

2018) are some established loss functions that aim 246

to address these issues by optimizing objectives 247

other than accuracy (e.g., Dice score, Intersection- 248

over-Union), unlike Cross-Entropy (Li et al., 2020). 249

Additionally, their combination has proven to be 250

more effective than employing them singularly in 251

computer vision (Taghanaki et al., 2019; Yeung 252

et al., 2022; Iantsen et al., 2021; Hu et al., 2021b). 253

Transferring this approach to causal language 254

modeling is particularly appealing since these loss 255

functions are differentiable, stable during training, 256

and generalizable to many tasks. Although existing 257

solutions for causal language modeling have tried 258

to improve the training in different ways, they still 259

suffer from scalability problems in terms of data, 260

training time, and costs. This work aims to propose 261

a simple, generalizable, and scalable approach to 262

improve existing models without involving large 263

data collection or complex training strategies. We 264

show that a better extraction of knowledge from 265
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existing data can already provide relevant results’266

improvements by training only a few parameters267

(using LoRA) and small data collections (between268

500 and 40K samples).269

3 Methodology270

In this section, we formally introduce the loss func-271

tions we employ, shortlisted from the classification272

presented in Ma et al. (2021), and explain their273

rationale. We describe our approach when employ-274

ing them for causal generation. For the sake of275

readability, all loss formulations are reported in276

Appendix A.277

3.1 Distribution-based losses278

This family of loss functions is derived from the279

Kullback-Leibler Divergence. They aim to opti-280

mize the model weights according to the differ-281

ences between the observed and expected distribu-282

tions.283

Cross Entropy Loss. Cross-Entropy (CE) is an284

accuracy-oriented function, i.e., it aims to maxi-285

mize the accuracy (AC) metric globally in the pre-286

dicted tokens (Li et al., 2020). CE is the most287

established loss for pre-training and fine-tuning lan-288

guage models. Cross-entropy does not consider the289

underlying structures of predictions or any differ-290

ences between classes and errors. Class imbalance291

is common in language problems, where classes292

are represented by tokens in the vocabulary, and293

token distributions are rather diversified (see Ap-294

pendix C). Although weighted cross-entropy may295

address this issue, assigning a proper weight to296

each class (i.e., token) can be challenging.297

Focal Loss. Focal Loss (FL) (Lin et al., 2017)298

is a variant of CE that is specifically designed to299

address the class imbalance problem. It aims to300

reduce the relative loss for well-classified exam-301

ples while emphasizing training on hard, misclas-302

sified ones. Although Focal loss does not directly303

consider the class distribution, it automatically dis-304

tinguishes between hard and easy samples. This305

proves beneficial in correctly predicting underrep-306

resented classes. Notably, this solution gives more307

importance to errors (i.e., wrongly predicted to-308

kens) than cross-entropy.309

3.2 Region-based losses310

This family of loss functions optimizes the model311

weights according to the differences between two312

mathematical sets.313

Dice Loss. It is the main representative of the 314

region-based loss family. Dice Loss (DL) (Mil- 315

letari et al., 2016) optimizes the Dice Score (DS) 316

between two sets. DL directly maximizes a soft ver- 317

sion of the Dice Score. It assigns different weights 318

to errors and correct predictions. However, cor- 319

rect predictions are deemed more relevant than 320

wrong predictions; therefore, errors may not be 321

sufficiently penalized. 322

Generalized Dice Loss. A generalization of the 323

Dice score (Crum et al., 2006) and the correspond- 324

ing Generalized Dice Loss (GDL) was proposed 325

to consider each class’s volume. This formulation 326

proposes to self-adjust the weight of each class for 327

each sample to address the class imbalance issue. 328

Lovász Loss. Lovász Loss (LL) (Berman et al., 329

2018) is a surrogate loss deriving from the Jac- 330

card Index (or Intersection-over-Union). LL takes 331

into account both errors and correct predictions. In 332

contrast to Dice loss, which assigns more weight 333

to correctly classified samples, the formulation of 334

Lovász loss allows for an adequate penalty for mis- 335

classifications. In many language tasks, the aim 336

is not only to penalize errors but also to force the 337

system to avoid introducing extra tokens or omit- 338

ting certain tokens. This objective can be reached 339

by optimizing the Jaccard Index. We claim that 340

optimizing this objective can be particularly ben- 341

eficial for the mathematical reasoning task if we 342

ask the model to generate both the final answer 343

and the intermediate reasoning steps. In this case, 344

the intermediate steps must adhere to a stringent 345

structure in terms of syntax (i.e., Math is a formal 346

language) and content (i.e., there are usually not 347

many alternative procedures to get the final answer). 348

This makes the task suitable for optimization using 349

Lovász loss. 350

3.3 Compound Losses 351

Compound losses are created by combining other 352

loss functions, resulting in a more complex (and 353

possibly more representative) objective function. 354

Self-Adjusting Dice Loss. We also evaluate Self- 355

Adjusting Dice Loss (SADL) (Li et al., 2020), 356

which combines the intuitions of Dice and Focal 357

losses. The rationale behind introducing the Focal 358

component in the Dice Loss is to address the im- 359

balance problem between well-classified and mis- 360

classified tokens, which is not adequately covered 361

by Dice loss. 362
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3.4 Loss application to language generation363

Let I and A be the instruction and its correspond-364

ing answer. Let i and a be the number of tokens365

in I and A, respectively. We define the language366

modeling loss as a convex combination (Taghanaki367

et al., 2019) of CE and one of the various loss func-368

tions L under consideration (i.e., FL, DL, GDL,369

SADL, and LL): L = λCEI,A+(1−λ)LA, where370

λ ∈ [0, 1]. CE is applied to both the I’s and A’s371

tokens, while L is applied only to the A’s tokens372

of the answer (i.e., ground truth), as shown in Fig-373

ure 2. This approach emphasizes the actual target374

sequence of interest, which follows a more rigid375

structure. Applying the second component to the376

instruction tokens may wrongly emphasize under-377

represented tokens that are not useful in this case.378

Instruction & Answer Loss CEI,A

Answer Loss LA

IT2 ... ITi AT0 ...IT1IT0 ATa

Figure 2: A graphical sketch of how the combined loss
is applied to instruction I and answer A. ITs are instruc-
tion tokens, ATs are answer tokens.

3.5 Evaluation Metrics379

We employ both standard metrics that consider380

the final result only (i.e., Exact Match (EM)) and381

metrics that are specifically tailored to assess the382

reasoning steps. Since reasoning step metrics are383

suited to MWP only, they will be reported only for384

GSM8K and MathQA datasets.385

Metrics for the reasoning steps. We adopt the386

ROSCOE metrics (Golovneva et al., 2022) and gen-387

eral purpose metrics to evaluate the correctness of388

intermediate reasoning steps, given the systematic389

and precise nature of mathematical language: Jac-390

card Index (or IoU, in short) (see Appendix A),391

and Commutative IoU (C-IoU), which we define392

as a variant of IoU that accounts for the commu-393

tative property of mathematical operations. These394

metrics are calculated between predicted rationales395

and ground truth reasoning steps. Unlike ROSCOE,396

adopting this approach eliminates reliance on ex-397

ternal models, thus circumventing potential limita-398

tions inherent to the models used.399

ROSCOE metrics consider four perspectives: Se-400

mantic Alignment (SA), Semantic Similarity (SS),401

Logical Inference (LI), and Language Coherence402

(LC). Each metric ranges between zero (worst) and 403

one (best). While, for completeness, we evaluate 404

all the proposed metrics, we argue that LC met- 405

rics may not be suitable for assessing mathematical 406

steps, as they are not expressed in natural language. 407

4 Experimental Results 408

We perform an extensive experimental evaluation 409

on two tasks for a total of four datasets, five mod- 410

els, and five loss functions. In the following, we 411

summarize the main results reporting the average 412

across models. Detailed results are available in 413

Appendix E. 414

4.1 Datasets 415

We selected four datasets, each including at least 416

training and validation sets, neglecting those con- 417

taining only the test set (being designed for zero- 418

shot benchmarking). 419

We selected two MWP datasets: GSM8K 420

(Cobbe et al., 2021) and MathQA (Amini et al., 421

2019). We have chosen these datasets since they 422

include both the final result and the operational 423

annotations (i.e., reasoning steps) leading to the 424

final answer. We also selected two multiple-choice 425

datasets included in the HELM benchmark: Open- 426

BookQA (Mihaylov et al., 2018) and HellaSwag 427

(Zellers et al., 2019). We consider these QA 428

datasets since answers are mainly based on reading 429

comprehension rather than relying on prior knowl- 430

edge of the LLM. 431

Detailed information on the considered datasets, 432

including their training/validation/test set splits, are 433

available in Appendix B. 434

4.2 Competitors 435

In our selection of competitors, we considered two 436

key criteria: models with comparable sizes in terms 437

of billions of parameters and open-source solutions 438

rather than closed-source alternatives. As shown in 439

Table 1, we selected open-source solutions trained 440

with different strategies: MAmmoTH (Yue et al., 441

2024), WizardMath (Luo et al., 2023), WizardLM 442

(Xu et al., 2024a), Llemma (Azerbayev et al., 443

2024), MetaMath (Yu et al., 2023), and Mistral 444

(Jiang et al., 2023). For the sake of completeness, 445

we also included a closed-source state-of-the-art 446

model (GPT-4 (OpenAI, 2023)). Some models 447

employ domain-specific training, while other ap- 448

proaches are more generalist. 449

These models employ diverse training strategies, 450

including continual pre-training, instruct-following 451
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Model Training Strategy # Training Samples # Params # Updated Params Generalist Domain

Ours IT ≈ 5K-40K 3B-7B < 1% ✓ –
MAmmoTH (Yue et al., 2024) IT ≈ 260K 7B 100% ✗ Math
WizardMath (Luo et al., 2023) RLEIF ≈ 96K 7B 100% ✗ Math
WizardLM (Xu et al., 2024a) EI ≈ 286K 7B 100% ✓ –
Llemma (Azerbayev et al., 2024) P ≈ 30M 7B 100% ✗ Math
MetaMath (Yu et al., 2023) IT ≈ 395K 7B 100% ✗ Math
Mistral v0.2 (Jiang et al., 2023) IT ? 7B 100% ✓ –
GPT4 (OpenAI, 2023) RLHF ? ? ? ✓ –

Table 1: Competitors details. IT stands for Instruction Tuning, P for pre-training, RLHF for Reinforcement Learning
from Human Feedback, EI for Evol-Instruct, and RLEIF for Reinforcement Learning from Evol-Instruct Feedback.

fine-tuning, Reinforcement Learning From Evol-452

Instruct Feedback, Evol-Instruct, and Reinforce-453

ment Learning from Human Feedback. Conse-454

quently, these approaches often necessitate larger455

datasets or human interventions or rely on other456

language models for training.457

The training data sizes vary significantly, rang-458

ing from a hundred thousand samples to millions459

of samples for models like Llemma. While most460

competitors updated 100% of their parameters dur-461

ing training, our approach involves updating less462

than 1% of the 3-7 billion parameters using LoRA.463

4.3 Models464

We employ the following LLMs with a number of465

parameters ranging from 3B to 7B: RedPajama-466

Incite-3B (Together Computer, 2023), StableLM-467

3B (Tow et al., 2023), RedPajama-Incite-7B (To-468

gether Computer, 2023), Falcon-7B (Almazrouei469

et al., 2023), and Llama-2-7B (Touvron et al.,470

2023). Except for Llama-2 (which is selected471

as one of the most well-known open-source mod-472

els), the other ones are selected with the follow-473

ing criteria: (1) They are open-source; (2) They474

show promising results according to HELM bench-475

mark (Liang et al., 2022); (3) The majority of their476

training datasets are public or clearly stated to avoid477

overlapping with the analyzed datasets; (4) We con-478

sider only the pre-trained version (without any in-479

struction tuning or tuning by human preferences).480

More details about the selected models can be481

found in Appendix D.482

4.4 Experimental settings483

We set the number of training steps to around484

25000 and the batch size to 2. We employ Low-485

Rank Adaptation (Hu et al., 2021a), AdamW op-486

timizer (Loshchilov and Hutter, 2017), and a lin-487

ear learning rate scheduler with a warmup of 500488

steps. Further information about the experimental489

settings and implementation details are given in 490

Appendix G. 491

Loss HellaSwag ↑ OpenBookQA ↑ GSM8K ↑ MathQA ↑ MR ↓

CE 47.36 75.60 15.83 5.12 3.33
FL 71.68 80.88 15.41 5.52 2.43
GDL 47.39 75.08 15.00 5.04 3.93
LL 58.08 82.80 17.76 4.76 1.90
SADL 41.83 67.40 15.91 4.48 3.42

(a) Exact Match

General purpose ROSCOE
Loss IoU ↑ C-IoU ↑ SA ↑ SS ↑ LI ↑ LC ↑

G
SM

8K

CE 15.52 19.27 81.14 65.75 34.91 37.58
FL 15.09 18.71 81.38 66.67 36.74 37.60
GDL 15.15 18.70 81.08 65.73 34.70 37.60
LL 17.39 21.10 81.39 66.33 36.00 37.46
SADL 15.64 19.51 81.33 66.29 35.47 37.62

M
at

hQ
A

CE 36.72 36.78 85.12 68.43 24.21 38.86
FL 33.73 33.79 85.29 68.39 23.75 38.80
GDL 36.30 36.36 85.07 67.05 21.01 38.90
LL 43.25 43.31 85.76 70.03 28.68 38.75
SADL 34.18 34.23 84.97 67.05 20.42 38.95

(b) Reasoning Step metrics

Table 2: Macro-average achieved on analyzed datasets.

4.5 Answer generation results 492

Considering the exact match, as shown in Table 2a, 493

the CE-only setting is a suboptimal choice in every 494

case. Based on the mean rank across all models 495

and datasets (i.e., the average rank of each loss), 496

the best losses for these tasks are the Focal and 497

Lovász losses. They show a difference of 0.9 and 498

1.43, respectively, compared to the CE rank. 499

The effectiveness of the Focal and Lovász losses 500

is likely due to their distinct approaches to handling 501

prediction errors. The Focal loss underestimates 502

the loss contributions of well-predicted samples 503

based on class distribution, while the Lovász loss 504

penalizes wrong predictions without suppressing 505

well-predicted samples according to their distribu- 506

tional behavior. 507
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4.6 Reasoning steps generation results508

On both MWP datasets, considering reasoning met-509

rics, the combination with Lovász loss consistently510

outperforms the CE-only setting as shown in Ta-511

ble 2b. Also in this case, it achieves the best perfor-512

mance, likely thanks to the effect of misclassified513

sample penalties. Specifically, while cross-entropy514

and Focal loss aim to maximize global accuracy, LL515

aims to maximize the global IoU, i.e., it considers516

both the absence of extra tokens and the presence517

of missing tokens.518

The results on MathQA and GSM8K show that519

the final answer tends to be wrong in many cases520

(low EM values), while the reasoning steps tend to521

be quite accurate (high or medium-high reasoning522

step metrics). This highlights that the models gen-523

erally struggle to correctly predict the final result524

despite showing a good capability in formulating525

the mathematical reasoning steps.526

The complete set of results on all datasets for all527

models and metrics are available in Appendix E,528

along with statistical tests for significance between529

cross-entropy and the other loss functions.530

Correlation analysis between reasoning step531

metrics. We investigate the Pearson’s correlation532

between the ROSCOE metrics, EM, and IoU to un-533

derstand if the optimization of this last metric goes534

in the same direction as more complex ones. As ex-535

pected, IoU is positively correlated (values in range536

[0.5, 0.7]) with many Semantic Alignment metrics,537

as Reasoning Alignment, External Hallucination,538

Redundancy, Common Sense Error, Missing Step,539

and with a Sematic Similarity metric, i.e., Semantic540

Coverage Chain. This confirms that optimizing IoU541

(through the Lovász loss) is a reasonable proxy to542

optimize the reasoning step metrics. More details543

are given in Appendix F.544

Error type analysis in MWP. We analyze the545

most common mistakes observed in MWP reason-546

ing steps. We consider the following metrics cover-547

ing complementary types of reasoning errors1:548

• Extra Step (ES): proportion of predicted ra-549

tionales not included in the gold annotations:550

ES = |PS −GTS|/|PS|551

• Missing Step (MS): proportion of gold ratio-552

nales not generated by the model:553

MS = |GTS − PS|/|GTS|554

1To the best of our knowledge, there are no standard met-
rics to evaluate mathematical reasoning.

• Wrong Operators (WO): proportion of pre- 555

dicted rationales with correct operands but 556

wrong sign according to the gold rationales: 557

WO = |PSwo|/|E| 558

• Inverted Operands (IO): proportion of pre- 559

dicted rationales in which the operands 560

have an incorrect position, considering non- 561

commutative operations: IO = |PSio|/|E| 562

where GTS and PS are the ground truth and pre- 563

dicted reasoning steps, PSwo and PSio are pre- 564

dicted steps with a wrong operator and inverted 565

operands, and E is the set of errors, i.e., the set 566

of predicted reasoning steps that do not match the 567

gold rationales. 568

The results are summarized in Table 3. Lovász 569

loss yields the lowest percentages of errors across 570

most error types, particularly in reducing the 571

amount of missing steps. The errors related to 572

wrong operators and inverted operands affect ap- 573

proximately only 4-5% of the reasoning steps for 574

all loss functions. Overall, generating fully ac- 575

curate reasoning chains remains challenging, but 576

losses such as Lovász loss can help mitigate certain 577

types of errors, making it a preferable training loss 578

to cross-entropy. 579

Loss ES ↓ MS ↓ WO ↓ IO ↓

CE 67.60% 67.78% 4.68% 5.13%
FL 67.85% 68.48% 4.22% 4.66%
GDL 68.30% 66.95% 4.57% 5.00%
LL 62.87% 62.83% 4.27% 4.66%
SADL 70.40% 67.32% 4.71% 5.21%

Table 3: Mean errors in mathematical reasoning over all
models and datasets.

4.7 Results on a reduced number of samples 580

We evaluate the effectiveness of the proposed ap- 581

proach on each task and dataset using our best 582

model (i.e., StableLM) by reducing the number of 583

training samples to 40% and 10%, while also re- 584

ducing the training duration by the same amount. 585

In Table 4, we present the average results on each 586

dataset by loss. We show that cross-entropy does 587

not generally yield satisfactory results when the 588

amount of data is reduced. Conversely, losses such 589

as Focal and Lovász demonstrate better capability 590

in extracting desired knowledge even from fewer 591

samples. The trend is the same for both exact match 592

and reasoning step metrics. 593

7



Dataset CE GDL FL LL SADL

10
%

HellaSwag 71.90 70.71 79.80 79.17 77.77
OpenBookQA 80.40 75.00 79.80 75.80 74.00
GSM8K 13.72 13.57 13.57 15.31 13.27
MathQA 5.61 5.54 6.59 6.03 5.95

40
%

HellaSwag 81.72 82.05 90.82 86.78 84.07
OpenBookQA 83.00 83.00 84.60 83.00 82.20
GSM8K 21.68 21.76 23.88 26.08 20.77
MathQA 7.08 5.12 8.29 7.80 3.47

(a) Exact Match

Dataset CE GDL FL LL SADL

10
% GSM8K 13.63 13.55 13.33 14.59 13.24

MathQA 9.37 8.85 10.54 10.66 8.85

40
% GSM8K 18.98 18.72 19.73 21.86 18.11

MathQA 35.70 36.88 37.04 40.01 34.61

(b) Intersection-over-Union

Table 4: Results of the best-performing model on differ-
ent training dataset subsets (10% and 40%).

4.8 Comparison between CE-Only and594

Loss-By-Task Instruction Tuning595

To evaluate the effectiveness of our approach in an596

instruction-tuning scenario (similar to (Yue et al.,597

2024)), we train our model on a combined dataset598

containing task-specific samples from all previ-599

ously mentioned datasets. We compare the results600

achieved by cross-entropy alone and combined601

with the other loss functions considered. Accord-602

ing to previous sections, we selected Lovász for603

MWP and Focal for QA. The results in Table 5604

confirm our strategy is still effective in a dataset605

composed of different tasks.606

Loss HellaSwag OpenBookQA GSM8K MathQA

CE 37.69 41.08 10.06 3.28
Loss-By-Task 66.92 49.31 11.77 3.84

(a) Exact Match

GSM8K MathQA
Loss SS ↑ SA ↑ LI ↑ LC ↑ SS ↑ SA ↑ LI ↑ LC ↑

CE 66.95 81.13 38.25 37.80 72.02 84.76 30.26 39.25
Loss-By-Task 67.02 81.23 38.94 37.66 72.84 84.80 32.09 40.16

(b) ROSCOE metrics

Table 5: Mean performance over all datasets in Instruc-
tion Tuning mode.

4.9 Comparison with the state of the art607

As shown in Table 6, our proposed model achieves608

the best results in 2 out of 4 datasets. In con-609

trast, domain-specific models, such as MAmmoTH610

and Llemma, experience a notable degradation611

in performance when evaluated on closed-ended612

QA datasets. Our proposed approach achieves613

comparable performance to WizardMath according614

Model GSM8K ↑ MathQA ↑ HellaSwag ↑ OpenBookQA ↑ MR ↓

Our Best 28.66 10.06 85.69 87.20 2.33
MAmmoTH 37.76 15.51 7.30 3.60 4.00
WizardMath 46.10 32.43 36.84 60.00 2.25
WizardLM 9.02 3.84 26.81 33.40 5.50
Mistral 19.64 9.76 49.26 74.40 3.50
Llemma ➇ 30.33 9.53 24.47 21.20 5.00
MetaMath 60.27 14.43 14.56 19.20 4.25

GPT4 ✽ 93.20 – 95.30 96.00 –

(a) Exact Match

GSM8K MathQA
Model SS ↑ SA ↑ LI↑ LC ↑ SS ↑ SA ↑ LI ↑ LC ↑ MR ↓

Our Best 66.10 81.76 35.70 24.10 67.03 86.14 24.30 25.93 3.38
MAmmoTH 66.46 81.02 10.29 24.48 64.70 80.02 17.45 23.45 4.88
WizardMath 64.18 80.18 15.18 27.36 63.36 79.71 5.60 27.88 4.00
WizardLM 63.71 80.05 11.44 27.45 64.25 79.94 14.63 27.48 4.75
Mistral 63.56 81.13 13.87 26.26 62.97 80.52 10.58 26.76 4.75
Llemma ➇ 74.50 85.70 46.74 25.36 61.96 79.32 66.59 36.22 3.00
MetaMath 66.71 82.50 35.53 26.04 64.80 80.01 20.50 26.26 3.25

GPT4 ✽ – – – – – – – – –

(b) ROSCOE metrics

Table 6: Competitors results on analyzed datasets.
✽ indicates results taken from other papers (Liang et al.,
2022; OpenAI, 2023) and ➇ indicates model tested in
8-shots. The best, second-best, and third-best results
are indicated in each column.

to the mean rank (MR), proving its effectiveness 615

across various scenarios without employing any 616

additional steps after fine-tuning (e.g., tuning by 617

preferences). Regarding rationale generation, our 618

best model ranks in the top 3 positions according to 619

the mean rank. Although WizardMath and Mistral 620

are the best-performing in terms of exact match, 621

they exhibit the lowest performance according to 622

the ROSCOE metrics. This confirms the fact that 623

providing the right answer does not necessarily 624

imply the correct reasoning. 625

5 Conclusion and Future Work 626

In our work, we applied semantic segmentation 627

losses to improve the fine-tuning of LLMs for 628

mathematical reasoning and closed-ended question- 629

answering. Our results show that using appropriate 630

loss functions during fine-tuning can boost perfor- 631

mance without extra data or human feedback. In 632

practice, this suggest a promising pathway for more 633

efficient and accessible training processes. Future 634

work will focus on designing new task-specific loss 635

functions and exploring other tasks. 636

Limitations 637

We analyzed only English datasets from the mathe- 638

matical reasoning and reading comprehension do- 639

mains. Additional experiments on other languages 640

and tasks would strengthen the generalizability of 641

8



our findings. It is worth noting that we limited our642

analysis to existing loss functions in computer vi-643

sion, which may be suboptimal for the tasks under644

consideration. We focused on tasks with strong645

constraints to verify the effectiveness of the ana-646

lyzed loss functions; however, this approach may647

pose limitations in datasets with more open-ended648

solutions lacking well-defined patterns.649

Our model choice was based on the available650

resources, and we tested only 3B and 7B models.651

Although we could expect similar findings with652

larger models, we cannot confirm this claim.653

Ethics Statement654

From our understanding, the datasets employed in655

this study do not contain any personal information,656

but they can contain some harmful or inappropriate657

content. This claim can be extended to the em-658

ployed models, which could provide non-factual,659

biased, harmful, or inappropriate answers. Their660

usage is subject to the limitations stated in their661

respective technical reports and licenses. The gen-662

erated answers are not intended to offend or harm663

anyone. Language models have environmental im-664

pacts due to the high computing requirements dur-665

ing pre-training and fine-tuning. We have made ef-666

forts to be computationally responsible by reusing667

open-sourced pre-trained models and employing668

efficient fine-tuning methods such as LoRA (Hu669

et al., 2021a). The gains from improved losses670

help amortize the resource costs over higher utility.671

Overall, we have made reasonable efforts to ensure672

the transparency and auditability of our experimen-673

tal methodology.674
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Appendices951

In this supplementary material, we provide addi-952

tional details as follows:953

• Appendix A: Loss Function Formulations954

• Appendix B: Dataset Statistics955

• Appendix C: Token Distribution956

• Appendix D: Model Summary957

• Appendix E: Extended Results958

• Appendix F: Correlation between General pur-959

pose Metrics and ROSCOE Metrics960

• Appendix G: Implementation Details961

• Appendix H: Prompt Examples962

A Loss Function Formulations963

For the sake of simplicity, hereinafter we will con-964

sider the binary formulation. However, the loss965

formulations can be straightforwardly extended to966

the multi-class scenario.967

Cross Entropy Loss Accuracy (AC) and Cross-968

Entropy Loss (CE) are defined as follows:969

AC =
1

N

N∑
i

1(ŷi = yi) (1)970

CE(pt) = − log(pt) (2)971

where N is the total number of samples, ŷi and yi972

are the predicted and ground truth class for sam-973

ple i, respectively, and pt is the probability of the974

sample belonging to the positive class.975

Focal Loss Focal Loss (FL) (Lin et al., 2017) can976

be defined as follows:977

FL(pt) = −(1− pt)
γ log(pt) (3)978

where pt is the probability of the sample belonging979

to the positive class while γ is the Focal suppres-980

sion parameter.981

Dice Loss Dice Score and Dice Loss (DL) (Mil-982

letari et al., 2016) are defined as follows:983

DS =
2|Ŷ ∩ Y |
|Ŷ |+ |Y |

=
2TP

2TP + FP + FN
(4)984

DL = 1−
2
∑

i piyi∑
i p

2
i +

∑
i y

2
i

(5)985

where Ŷ and Y are the prediction and ground truth 986

sets, TP , FP , FN are the numbers of true posi- 987

tives, false positives, and false negatives, respec- 988

tively, pi is the probability of the sample belonging 989

to the positive class, and yi is the ground truth label. 990

Self-Adjusting Dice Loss Self-Adjusting Dice 991

Loss (SADL) (Li et al., 2020) can be expressed as 992

follows: 993

SADL = 1−
2
∑

i(1− pi)piyi∑
i(1− pi)pi + yi

(6) 994

where (1 − pi) is the Focal component in Equa- 995

tion (3). 996

Generalized Dice Loss Generalized Dice Loss 997

(GDL) (Sudre et al., 2017) can be expressed as 998

follows: 999

GDL = 1−
2
∑

l wl
∑

i pilyil∑
l wl

∑
i pil + yil

(7) 1000

where wl = 1/(
∑

i yil)
2 for each class, while pi 1001

and yi have the same meanings as defined in Equa- 1002

tion (5). 1003

Lovász Loss Let Ŷ and Y represent the predic- 1004

tion and ground truth sets, respectively. The Jac- 1005

card Index (or Intersection-over-Union, IoU) is de- 1006

fined as follows: 1007

IoU =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

=
TP

TP + FP + FN
(8) 1008

Lovász surrogate Loss (LL) (Berman et al., 1009

2018) has the following expression: 1010

∆J1 = 1− |{Ŷ = 1} ∩ {Y = 1}|
|{Ŷ = 1} ∪ {Y = 1}|

(9) 1011

HLi(xi, yi) = max(0, 1− xiyi) (10) 1012

LL = ∆J1HL(X,Y ) (11) 1013

where ∆J1 is the Jaccard loss, HL is the hinge 1014

loss, xi ∈ X is the prediction logit associated to 1015

sample i, yi ∈ Y with yi ∈ {−1, 1}, and ∆J1 is 1016

the Lovász extension of the Jaccard loss. 1017

B Dataset Statistics 1018

• GSM8K2 (Cobbe et al., 2021) is a dataset of 1019

8.5K high-quality linguistically diverse grade 1020

2https://huggingface.co/datasets/gsm8k
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school Math Word Problems. The dataset was1021

created to support answering questions on ba-1022

sic mathematical problems requiring multi-1023

step reasoning. It has 7470 samples in the1024

training set and 1320 in the test set. It is re-1025

leased under the MIT license.1026

• MathQA3 (Amini et al., 2019) is a large-scale1027

dataset of Math Word Problems enhancing the1028

AQuA dataset (Ling et al., 2017) by provid-1029

ing fully-specified operational programs for1030

each problem. It comprises 29800, 4480, and1031

2990 samples in the training, validation, and1032

test sets, respectively. It is released under the1033

Apache-2.0 license.1034

• OpenBookQA4 (Mihaylov et al., 2018) con-1035

tains questions that require multi-step reason-1036

ing, use of additional common and common-1037

sense knowledge, and rich text comprehen-1038

sion. OpenBookQA is modeled after open-1039

book exams for assessing human understand-1040

ing of a subject. The training, validation, and1041

test sets contain 4960, 500, and 500 samples,1042

respectively. It is released under the Apache-1043

2.0 license.1044

• HellaSwag5 (Zellers et al., 2019) introduced1045

a task of commonsense natural language in-1046

ference, which consists in selecting the most1047

appropriate conclusion for a sentence from a1048

set of possibilities. It contains 39900 samples1049

in the training set and 10000 in the validation1050

set, which is employed as the test set since the1051

actual test set does not have ground truth. It is1052

released under the MIT license.1053

C Token Distribution1054

We report in Figure 3 the distribution of tokens1055

across the datasets, highlighting the strong imbal-1056

ance in tokens. Before the analysis, we excluded1057

all special tokens (25) from the tokenizer. We plot1058

the density against the token identifier in the log1059

scale to better highlight peaks and differences.1060

D Model Summary1061

Table 7 summarizes the characteristics of the mod-1062

els used in this work: RedPajama-Incite-3B6,1063

3https://huggingface.co/datasets/math_qa
4https://huggingface.co/datasets/openbookqa
5https://huggingface.co/datasets/Rowan/

hellaswag
6https://huggingface.co/togethercomputer/

RedPajama-INCITE-Base-3B-v1

0 10000 20000 30000 40000 50000
Token

10 10

10 9

10 8

10 7

10 6

10 5

10 4

De
ns

ity Dataset
OpenBookQA
GSM8K
HellaSwag
MathQA

Figure 3: Kernel Density Estimation in log scale for
token distributions in GSM8K, MathQA, OpenBookQA,
and HellaSwag datasets.

StableLM-3B7, RedPajama-Incite-7B8, Falcon- 1064

7B9, and Llama-2-7B10. For each of them, the fol- 1065

lowing characteristics are reported: model name, 1066

number of parameters, license, availability of the 1067

pre-training datasets, and mean win rate according 1068

to HELM benchmark (Liang et al., 2022). 1069

D.1 Competitors 1070

The competitors chosen are: MAmmoTH11, Wiz- 1071

ardMath12, WizardLM13, Llemma14, MetaMath15, 1072

Mistral-7B16, and GPT-4. We employed the set- 1073

tings and prompts suggested by the authors of the 1074

original papers. 1075

MAmmoTH is released under the MIT license. 1076

Mistral is released under the Apache 2.0 license. 1077

The other models are released under the Llama 2 1078

license. 1079

E Extended Results 1080

In the following, we report the extended re- 1081

sults for the mathematical reasoning and question- 1082

7https://huggingface.co/stabilityai/
stablelm-3b-4e1t

8https://huggingface.co/togethercomputer/
RedPajama-INCITE-7B-Base

9https://huggingface.co/tiiuae/falcon-7b
10https://huggingface.co/meta-llama/

Llama-2-7b-hf
11https://huggingface.co/TIGER-Lab/MAmmoTH-7B
12https://huggingface.co/TheBloke/

WizardMath-7B-V1.1-GPTQ
13https://huggingface.co/TheBloke/

wizardLM-7B-HF
14https://huggingface.co/EleutherAI/llemma_7b
15https://huggingface.co/meta-math/

MetaMath-7B-V1.0
16https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2
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Model # Parameters License Pre-Training Datasets HELM Win Rate

RedPajama-Incite 3B Apache 2.0 Public 0.311
StableLM 3B CC BY-SA-4.0 Public –
RedPajama-Incite 7B Apache 2.0 Public 0.378
Falcon 7B Apache 2.0 90% Public 0.378
Llama-2 7B Llama-2 Public 0.607

Table 7: Model characteristics.

answering tasks.1083

E.1 Complete results on MWP1084

In Tables 9 and 10, we present the detailed perfor-1085

mance of each model and loss function on MWP1086

datasets. We use McNemar’s test for exact match1087

and t-tests (Dietterich, 1998) for other metrics to1088

determine if differences are statistically significant.1089

According to our metrics in GSM8K, Lovász pro-1090

vides the best mean performance across all mod-1091

els, except on Falcon, where Self-Adjusting Dice1092

yields the best results. However, differences are not1093

statistically significant, likely due to the model’s1094

limitations. On MathQA, Lovász achieves the best1095

performance across most metrics, while for exact1096

match, Focal performs best 2 out of 5 times. The re-1097

sults for ROSCOE metrics in Table 11 across both1098

MWP datasets show that Lovász performs best in1099

most metrics, as highlighted by the mean rank as1100

well.1101

E.2 Complete results on Question Answering1102

In Table 12, we present the detailed performance of1103

each model and loss function on closed-ended QA1104

datasets. We perform McNemar’s test (Dietterich,1105

1998) to assess whether differences compared to1106

cross-entropy loss alone are statistically significant.1107

In 6 cases, Lovász loss provides the best improve-1108

ments, while in 4 cases, Focal loss obtains the best1109

results. The main differences are seen when Lovász1110

fails, whereas Focal still gets improvement. In the1111

opposite case, the results are similar.1112

F Correlation between General purpose1113

Metrics and ROSCOE Metrics1114

In Table 8, we report the Pearson’s correlation1115

analysis between Exact Match (EM), Precision1116

(Prec), Recall (Rec), Dice Score (DS), Intersection-1117

over-Union (IoU), Commutative Intersection-over-1118

Union (C-IoU) and ROSCOE metrics, showing1119

medium-high correlation values. Reasoning Align-1120

ment (RA) and Redundancy (RD) exhibit the1121

strongest correlations with the general-purpose met- 1122

rics. Common Sense Error (CSE) and Semantic 1123

Coverage Chain (SCC) demonstrate moderate cor- 1124

relation values. External Hallucination (EH) and 1125

Missing Steps (MS) show a moderate correlation 1126

as well. 1127

EM IoU Prec Rec DS C-IoU

RA (SA) 0.1615 0.6582 0.6891 0.6076 0.6739 0.6698
EH (SA) 0.1425 0.6058 0.6186 0.5115 0.5919 0.6074
RD (SA) 0.1607 0.6781 0.6911 0.5674 0.6600 0.6828
CSE (SA) 0.1559 0.5583 0.5314 0.5741 0.5596 0.5608
MS (SA) 0.1744 0.6461 0.6138 0.6595 0.6463 0.6523
SCC (SS) 0.1345 0.5403 0.5501 0.5005 0.5484 0.5495

Table 8: Pearson’s correlation between reasoning met-
rics (ROSCOE) and standard ones (EM, IoU, Prec, Rec,
DS, C-IoU) over all samples.

G Implementation Details 1128

Based on preliminary experiments, we set the lan- 1129

guage modeling loss mixing parameter to λ = 0.6. 1130

The Focal suppression parameter was set to γ = 2. 1131

The maximum learning rate was set to 1e− 4 for 1132

all datasets, except in GSM8K, for which it was set 1133

to 1e− 5. 1134

We selected the model checkpoints according to 1135

the best validation loss. We train less than 1% of 1136

the total model parameters using LoRA. During 1137

training, the context size is chosen to include most 1138

samples without truncation according to 75% per- 1139

centiles: 128 for GSM8K, MathQA, OpenBookQA, 1140

and 256 for HellaSwag. We employ gradient accu- 1141

mulation for context size 256. 1142

We employed Transformers and PEFT libraries. 1143

Full requirements, versions, and losses’ licenses 1144

are available in the code repository. For ROSCOE 1145

metrics evaluation, we employed the models sug- 1146

gested in the original paper: SimCSE17 for sen- 1147

tence embedding, RoBERTa18 as word embedding 1148

17https://huggingface.co/facebook/
roscoe-512-roberta-base

18https://huggingface.co/FacebookAI/
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model, DeBERTa19 as NLI model, RoBERTa20 as1149

grammar model, and GPT-221 as perplexity model.1150

We ran our experiments on a machine equipped1151

with Intel® CoreTM i9-10980XE CPU, 1 ×1152

NVIDIA® RTX A6000 48GB GPU, 128 GB of1153

RAM running Ubuntu 22.04 LTS.1154

H Prompt Examples1155

We express the prompts to fine-tune the LLMs con-1156

sidered as follows:1157

Question: [Question Text] (Context: [Context text])1158

Answer: [Answer Text]1159

where Context is optional as not every dataset in-1160

cludes it. The answer format can be either a single1161

letter corresponding to the answer for QA or a se-1162

ries of passages and a final answer for mathematical1163

reasoning problems. In the latter case, we adhere1164

to the format of GSM8K:1165

«[Formula]» ... #### [Final answer]1166

where each Formula comprises operators and1167

operands, which can be numbers or symbols. This1168

is done to better evaluate mathematical steps, which1169

exhibit less ambiguity and adhere to stricter lexical1170

rules than textual reasoning. In the following, we1171

include some example prompts.1172

GSM8K Question: John takes care of 10 dogs.1173

Each dog takes .5 hours a day to walk and take1174

care of their business. How many hours a week1175

does he spend taking care of dogs?1176

Answer: «10*.5=5» «5*7=35» #### 351177

MathQA Question: Sophia finished 2/3 of a1178

book . she calculated that she finished 90 more1179

pages than she has yet to read . how long is her1180

book ?1181

Answer: «divide(n0,n1)» «subtract(const_1,#0)»1182

«divide(n2,#1)» #### 2701183

OpenBookQA Question: Stars are1184

A. warm lights that float1185

B. made out of nitrate1186

C. great balls of gas burning billions of miles away1187

D. lights in the sky1188

Context: a star is made of gases1189

Answer: C1190

roberta-base
19https://huggingface.co/MoritzLaurer/

DeBERTa-v3-large-mnli-fever-anli-ling-wanli
20https://huggingface.co/cointegrated/

roberta-large-cola-krishna2020
21https://huggingface.co/openai-community/

gpt2-large

HellaSwag Question: A female chef in white uni- 1191

form shows a stack of baking pans in a large kitchen 1192

presenting them. the pans 1193

A. contain egg yolks and baking soda. 1194

B. are then sprinkled with brown sugar. 1195

C. are placed in a strainer on the counter. 1196

D. are filled with pastries and loaded into the oven. 1197

Answer: D 1198
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Model Loss EM IoU Prec Rec DS C-IoU

RedPajama 3B

CE 9.33 11.03 14.66 15.51 14.69 14.76
FL 9.55 11.46 15.23 16.16 15.33 15.21
GDL 9.25 11.15 14.81 15.67 14.83 14.92
LL 11.45∗ 12.52∗ 16.66∗ 17.17∗ 16.52∗ 16.53∗
SADL 10.16 11.76 15.80∗ 16.19 15.60 15.73∗

StableLM 3B

CE 24.79 20.96 26.05 26.72 25.93 24.56
FL 24.79 21.81∗ 27.36∗ 27.49 26.95∗ 25.51∗

GDL 24.87 21.01 26.11∗ 26.75 25.98 24.58
LL 28.66∗ 24.02∗ 29.42∗ 30.38∗ 29.38∗ 28.15∗
SADL 26.99∗ 21.08 26.43 27.40 26.39 25.20

RedPajama 7B

CE 16.07 15.39 19.93 20.38 19.76 19.76
FL 14.94 14.93 19.92 19.55 19.32 18.82
GDL 13.19∗ 13.94∗ 18.27∗ 19.24∗ 18.33∗ 17.94∗

LL 16.83 16.66∗ 21.57∗ 21.52 21.13∗ 20.91∗
SADL 13.95∗ 14.94 19.32 20.41 19.44 18.85

Falcon 7B

CE 4.70 11.39 14.00 20.64 16.15 14.16
FL 3.49 9.19∗ 11.25∗ 19.47 13.69∗ 11.92∗

GDL 4.40 11.16 13.65 20.85 15.98 13.98
LL 5.00 11.59 13.93 22.09 16.47 14.08
SADL 5.08 12.04 14.37 23.70 17.18 15.00

Llama-2 7B

CE 24.28 18.85 23.62 23.92 23.35 23.13
FL 24.28 18.07 22.61 23.78 22.76 22.07
GDL 23.29 18.47 23.26 23.64 23.01 22.07
LL 26.86∗ 22.14∗ 27.09∗ 27.74∗ 26.93∗ 25.83∗
SADL 23.37 18.36 22.98 24.03 23.01 22.78

Table 9: Results on GSM8K dataset. ∗ indicates values for which p < 0.05.
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Model Loss EM IoU Prec Rec DS C-IoU

RedPajama 3B

CE 3.47 30.26 34.20 35.32 34.07 30.29
FL 2.79 33.11∗ 37.29∗ 37.87∗ 36.88∗ 33.16∗
GDL 2.45∗ 28.98∗ 32.96∗ 33.96∗ 32.72∗ 29.06∗

LL 2.83 32.83∗ 36.48∗ 38.44∗ 36.69∗ 32.86∗

SADL 2.79 26.54∗ 30.35∗ 32.55∗ 30.49∗ 26.58∗

StableLM 3B

CE 8.21 61.98 64.86 67.39 65.36 62.02
FL 10.06∗ 61.98∗ 65.43∗ 67.47∗ 65.66∗ 62.04∗

GDL 6.86 57.13∗ 60.16∗ 63.61∗ 61.03∗ 57.16∗

LL 7.50 65.73∗ 68.51∗ 70.79∗ 69.06∗ 65.80∗
SADL 7.16 59.79∗ 62.85∗ 65.31∗ 63.33∗ 59.84∗

RedPajama 7B

CE 7.16 40.35 44.32 45.01 43.98 40.41
FL 8.78∗ 43.12∗ 47.72∗ 48.28∗ 47.16∗ 43.17∗

GDL 7.05 41.21∗ 44.87∗ 45.98∗ 44.77∗ 41.27∗

LL 6.82 46.34∗ 49.87∗ 51.27∗ 49.92∗ 46.41∗
SADL 6.10 32.41∗ 39.17 36.75∗ 36.79 32.48∗

Falcon 7B

CE 5.24 11.34 13.80 21.72 15.93 11.44
FL 5.84 10.93∗ 12.98∗ 24.59∗ 15.77∗ 11.00∗

GDL 5.69 11.07∗ 13.21∗ 22.98∗ 15.63∗ 11.14∗

LL 5.35 12.77 15.00∗ 26.07∗ 17.67∗ 12.87
SADL 5.99 10.57∗ 12.62∗ 21.50∗ 14.84∗ 10.63∗

Llama-2 7B

CE 1.51 39.69 44.34 45.45 43.98 39.75
FL 0.15∗ 19.51∗ 22.29∗ 30.48∗ 24.43∗ 19.60∗

GDL 3.17∗ 43.12∗ 45.56 57.74∗ 48.87∗ 43.16∗

LL 1.28 58.56∗ 61.00∗ 66.16∗ 62.28∗ 58.62∗
SADL 0.38∗ 41.57∗ 43.45 58.87∗ 47.77∗ 41.62∗

Table 10: Results on MathQA dataset. ∗ indicates values for which p < 0.05.
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CE FL GDL LL SADL

Faithfulness 81.96 81.97 81.98 82.21 81.96
Informativeness Step 80.61 81.09 81.11 80.82 81.10
Faithfulness WW 91.84 92.61 92.78 91.55 92.77
Informativeness Chain 90.63 90.40 90.50 90.79 90.41
Repetition Word 12.59 13.58 9.80 15.67 10.91
Repetition Step 14.44 16.02 12.30 17.40 13.30
Reasoning Alignment 92.47 92.37 92.67 92.61 92.60
External Hallucination 97.59 97.60 97.57 97.70 97.58
Redundancy 88.71 88.60 88.69 89.06 88.62
Common Sense Error 97.91 97.87 97.96 97.96 97.93
Missing Step 89.47 89.47 89.89 89.82 89.74
Semantic Coverage Step 98.14 98.25 98.31 98.32 98.27
Semantic Coverage Chain 96.21 96.17 96.36 96.35 96.30
Discourse Representation 42.71 42.73 41.50 45.68 40.95
Perplexity Step 0.28 0.27 0.28 0.26 0.27
Coherence Step vs Step 16.41 17.76 14.21 19.00 14.94
Perplexity Chain 6.08 6.42 6.74 5.49 6.84
Perplexity Step Max 0.14 0.13 0.14 0.14 0.15
Grammar Step 94.27 94.18 94.12 94.28 94.18
Grammar Step Max 90.32 90.02 89.95 90.34 90.00

Mean Rank 3.20 3.45 2.80 1.95 3.20

Table 11: Results using ROSCOE metrics aggregated across models and datasets.
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Model Loss HellaSwag OpenBookQA

RedPajama 3B

CE 25.26 66.60
FL 45.91∗ 78.60∗
GDL 25.39 63.80
LL 26.05 77.20∗

SADL 25.79∗ 67.00

StableLM 3B

CE 79.69 84.00
FL 85.69∗ 85.40
GDL 80.00 82.80
LL 82.97∗ 87.20∗
SADL 80.49∗ 82.40

RedPajama 7B

CE 25.16 74.80
FL 73.29∗ 81.60∗

GDL 25.04 75.80
LL 25.08 83.80∗
SADL 25.10 76.60

Falcon 7B

CE 24.59 69.20
FL 68.51∗ 77.20∗

GDL 24.94 69.20
LL 70.72∗ 79.00∗
SADL 26.67∗ 55.00∗

Llama-2 7B

CE 82.12 83.40
FL 85.03∗ 81.60
GDL 81.58 83.80
LL 85.60∗ 86.80∗
SADL 51.10∗ 56.00∗

Table 12: Results on Question Answering datasets. ∗ indicates values for which p < 0.05.
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