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ABSTRACT

Recent advances in long-context large language models (LLMs) have led to the
emerging paradigm of many-shot in-context learning (ICL), where it is observed
that scaling many more demonstrating examples beyond the conventional few-
shot setup in the context can lead to performance benefits. However, despite its
promise, it is unclear what aspects dominate the benefits and whether simply scal-
ing to more examples is the most effective way of improving many-shot ICL. In
this work, we first provide an analysis on the factors driving many-shot ICL, and
we find that 1) many-shot performance can still be attributed to often a few dis-
proportionately influential examples and 2) identifying such influential examples
(“optimize”) and using them as demonstrations to regenerate new examples (“gen-
erate”) can lead to further improvements. Inspired by the findings, we propose
BRIDGE, an algorithm that alternates between the optimize step with Bayesian
optimization to discover the influential sets of examples and the generate step to
reuse this set to expand the reasoning paths of the examples back to the many-shot
regime automatically. On Gemini, Claude, and Mistral LLMs of different sizes,
we show BRIDGE led to significant improvements across a diverse set of tasks
including symbolic reasoning, numerical reasoning and code generation.

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to the emergence of in-context learning
(ICL) as a promising new learning paradigm (Brown et al., 2020). ICL allows LLMs to learn tasks
by simply being presented with a few examples within their context window. A key bottleneck for
ICL has been the supported context length of LLMs, but with advancements in novel model archi-
tectures, computational infrastructures and efficient serving methods, state-of-the-art models such
as Gemini (Reid et al., 2024; Anthropic, 2024) feature context windows of millions of tokens are
overcoming this limitation. Such long-context LLMs open unprecedented avenues for the scaling
of ICL – whereas previous LLMs were limited to processing only up to dozens of examples, cur-
rent LLMs can now accommodate significantly more examples. More importantly, beyond merely
supporting a longer context, it has also been shown that scaling more examples led to substantial
performance improvements across tasks, creating a new promising paradigm known as many-shot
learning (Agarwal et al., 2024; Bertsch et al., 2024).

Despite these advances, as a nascent paradigm, many-shot ICL still faces several challenges. Long
context windows, while powerful, are computationally expensive and introduce significant latency
and cost to serving, making it impractical or uneconomical to fully exploit the maximum context
length and some kind of trade-off decisions have to be made under virtually any realistic settings.
To leverage the expanded context while controlling the cost and latency under an acceptable limit,
existing works typically investigate the experimental setting where as many examples as costs permit
are simply randomly sub-sampled from the pool of all available examples and dumped into the con-
text window. As observed both in prior works (Agarwal et al., 2024) and our investigations (Fig. 1),
using the same number of examples but with different combinations of examples as demonstrations
can lead to dramatically different performance for the same task. Across different tasks, it has also
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Figure 1: It does not always take “many shots” to achieve many-shot performance – with judicious
selection, it is possible to match or exceed many-shot performance achieved with using all available
examples) with much fewer examples: Accuracy on held-out splits against the number of examples
on 3 BBH tasks of 1) overall trendline (fitted with locally weighted smoothing (LOWESS)), 2) using
top-K most positive examples, or 3) using bottom-K least positive examples based on the ranking of
the importance score described in Sec 2. Dotted lines refer to two many-shot baselines: reinforced
ICL: using input, model-generated reasoning and output of all correctly-predicted inputs; All ex-
ample: using all available input-output pairs from the train set. Lines and error bars show mean ±
standard deviation across 3 runs with the ordering of the examples shuffled each trial.

been noted that the model behaves very differently when the number of examples is scaled up, with
some showing a near-monotonic increase in performance as more examples are added, while others
experience performance plateaus (e.g., gray line in the leftmost subfigure of Fig. 1) or even degra-
dation (e.g., red line in the rightmost subfigure of Fig. 4). Understandably, such variability could
pose challenges for practitioners and present obstacles to the application of many-shot learning as
an effective paradigm in practice.

To address these, this paper aims to answer key research questions and proposes an effective novel
approach. First, we analyze the factors driving the many-shot ICL in the reinforced ICL setup com-
mon in challenging reasoning tasks where we are provided with a labeled set of inputs and final
labels, but the intermediate reasoning path has to be model-generated. We find that while ICL
performance often increases with the number of shots, that improvement can often be at least par-
tially attributed to a much smaller subset of examples that highly disproportionately contribute to
the overall task performance – as we scale the number of examples, the probability of including
these examples also increases. In many cases, if, however, we judiciously isolate these influential
examples from the rest, the “many-shot” performance can be matched or even exceeded with this
sometimes extremely small subset of well-chosen examples alone while adding more examples be-
yond this set often provides little benefit or even harms performance. We also argue that the findings
explain some of the phenomena observed. For example, uneven influence can lead to high variance
across different combinations of examples, whereas plateauing performance may occur when we run
out of good examples with positive performance influences. One natural implication of these is the
efficiency gains by reducing redundancy in many-shot ICL and identifying the optimized subsets.
However, the natural next question to ask is whether scaling ICL examples in LLMs can still be ben-
eficial after using up all beneficial examples identified in the previous step. We answer affirmatively
to this: to still leverage LLMs’ long context, these optimized, high-performing examples may serve
as demonstrations to re-generate the more effective reasoning paths rationales on the train set back
into the many-shot regime, which we find to often outperform both the original many-shot examples
and using the optimized examples themselves. Building on these insights, we propose Bayesian
Refinement and Iterative Demonstration Generation for Examples (BRIDGE), a search algorithm
based on Bayesian optimization to improve many-shot ICL and bridges the few- and many-shot
learning paradigms by automating the “optimize” and “generate” steps above iteratively. In the
“optimize” step, it frames the problem as a combinatorial optimization task to discover the optimal
set of demonstrations (i.e., many-to-few), and in the “generate” step, it uses the optimal set as seed
examples to generate more examples for further performance enhancement (i.e., few-to-many). We
demonstrate the effectiveness of BRIDGE on Gemini, Mistral and Claude models across a diverse
range of tasks, including symbolic reasoning, numerical reasoning and text-to-SQL generation.

2 WHAT DRIVES MANY-SHOT IN-CONTEXT LEARNING PERFORMANCE?

Several previous studies on many-shot ICL (Agarwal et al., 2024; Bertsch et al., 2024) have inves-
tigated the presence of performance gains when we scale the number of examples. A key question
that remains unanswered, though, is what exactly leads to this improvement. For example, it is
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unknown whether the benefit is from scaling examples itself due to expanded knowledge in the
context via more examples or because including more examples increases the probability of se-
lecting a small subset of disproportionately positive examples, or a combination of the above with
some task specificity. We argue that answering this question is critical – if the benefit comes from
expanded knowledge from including more examples, it suggests that scaling and addressing long-
context understanding challenges would dominate the end-to-end performance improvements, and
future studies should aim to either include as many examples as practically possible or to imitate
the behavior of the LLM as if many examples are included. If, on the other hand, the performance
is dominated by a small effective subset of examples, more intelligent selection aiming to reduce
redundancies and identify the high-performing subsets should outweigh näively scaling examples.

Prior work on few-shot setup have studied related problems such as the sensitivity to examples in
the context (Zhao et al., 2021; Zhou et al., 2024b). However, it is presently unknown to what extent
the findings still scale to the many-shot ICL setup because 1) in many-shot setup, the influence of
each individual example would get much smaller, and 2) it is unknown whether careful example
selection in the few-shot setup is still necessary if all examples can be included in the context, since
by definition, any high-performing examples are subsets of all examples – if the long-context LLM
is perfectly capable of identifying the most relevant pieces of information. If so, aside from other
practical concerns like cost and latency, the need for users to manually curate examples may no
longer be required.

Setup. We aim to shed insights on these important questions. We use the Gemini 1.5 Pro (Reid et al.,
2024), the state-of-the-art long-context model, to focus on several representative tasks from the BBH
tasks. All three tasks, as shown in by the gray lines in Fig. 1, benefit from increasing number of
examples to varying degrees (in logical deduction, the performance initially increases with
the number of examples before plateauing and decreasing; in the other two tasks, there is a noisy but
near monotonic improvement throughout) – we will test the key findings in a much more extensive
collection of tasks in Sec. 4. Given the increased emphasis of modern LLMs on problem-solving
and reasoning, we primarily focus on these tasks and adopt the reinforced ICL (Agarwal et al.,
2024) setup, where we assume the availability of a labeled set of inputs and final labels to be used
as many-shot demonstrations, whereas any intermediate outputs or rationales leading to the final
answer are model-generated and modifiable (although we also conduct preliminary experiments in
alternative setups such as low-resource machine translation in App. C.4). Lastly, we primarily focus
on the tasks with the number of available labeled data up to 150-200 samples – while modern LLMs
can often accommodate even more examples in the context, we focus on this range because 1)
we believe it is the most practically relevant and fills an important gap that neither few-shot ICL
nor supervised (parameter-efficient) fine-tuning (which usually requires hundreds to thousands of
examples) conventionally address, and 2) while possible and of academic value, scaling beyond
this range typically starts incurring significant latency and computational overhead, which scales
quadratically w.r.t the input length for exact attention and is thus often practically less desired for
most real-world use cases.

Many-shot performance can still be driven by few high-performing examples. A key test that
would distinguish and disentangle the two possible sources of benefits from scaling mentioned at
the beginning of this section is that whether we can attribute, at least to a large extent, the perfor-
mance improvement from scaling examples back to a carefully selected, high-performing subset of
examples with disproportionate influence. Formally, given a set of examples E = {ej}mj=1 and a
performance metric to be maximized g(·) : P(E) → R (in this case, the accuracy on the validation
set In this setup, the goal is to find whether we can construct a subset e∗ = {e∗i }ni=1 ⊂ E , s.t.n� m
such that g(e∗) is much better than a randomly selected set of examples e of similar size and/or can
even be comparable or better than using the full set of examples g(E) in the context.

Whereas a conclusive test would involve enumerating and evaluating g(·) on the power set of E
with |P(E)| = 2|E|, it is clearly computationally intractable, and a natural simplification is whether
we can rank the individual examples in E with some importance scoring function M(e) to con-
struct example subsets based on the example ranking. While many possible formulations of this
are possible, here we define M(e) based on imputed input gradient, which is a concept used in
interpretable machine learning for importance attribution (Simonyan, 2013; Selvaraju et al., 2017;
Sundararajan et al., 2017; Samek et al., 2021). In our context, directly computing input gradient
is impossible as we only assume black-box LLMs without gradient backpropagation and g(·) is
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not necessarily differentiable. To bypass these issues, we use use a sample-efficient Gaussian pro-
cess regressor (GPR) (Williams & Rasmussen, 1995; 2006) to approximate g(·) with ĝ(·), whose
input gradient ∇eĝ(e) is analytically available: we first randomly sample n subsets of E to give
e1:n = [e1, ..., en], where each subset of examples is represented as a m-dimensional binary col-
umn vector ei ∈ {0, 1}m with e

(j)
i = 1 if the j-th example is present or 0 otherwise; we then

evaluate the performance metric of each ei to obtain g1:n = [g(e1), ..., g(en)]. We then compute
and average the input gradient w.r.t. each possible {ej}mj=1 ∈ E to obtain an approximated marginal-
ized importance of each example in E(See App. A for detailed derivation of the input gradient-based
score). Finally, we sort the examples based on M(e) and construct subsets at regular interval from
size 1 to |E| in both ascending and descending directions. Formally, we order {ei}ni=1 such that
M(e1) ≤ M(e2) ≤ ... ≤ M(en); the ascending and descending sets of size t ∈ [1, |E|] are given
by at = e1:t and dt = en−t:n respectively. We then evaluate g(·) on these sets (Fig. 1).
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Figure 2: Good demon-
strations lead to better
re-generated examples:
trendlines between accuracy
and # examples; note that
the re-generated examples by
using top-5 examples sets as
demonstrations outperform
the original examples (gray
line) by at all parts of the
curve.

As shown, while the gray lines (overall trend lines) often show posi-
tive correlation between performance and increasing number exam-
ples, we also observe often large gap between the green (top-k ex-
amples) and the red (bottom-k examples) lines, suggesting that dif-
ferent sampling strategies can lead to performance differences that
far outweigh the effect from naı̈ve scaling – e.g., if we establish an
“exchange rate” between different example sets based on their im-
puted ordering, we can observe that including around top-10 exam-
ples (green lines) examples is as effective as or more effective than
the set containing bottom-30 examples in geometric shapes.
More importantly, in both cases we observe that the green lines,
which represent an intelligent selection strategy more sophisticated
than random sampling, plateau far before the gray line, suggesting
that it is possible to achieve comparable performance with much
fewer number of examples: in disambiguation qa, we find
that using fewer than 20 top examples is almost already as good
as using all 42 examples whereas subsequent additions only led to a
few percent of gain, possibly within the margin of error with reshuf-
fling (denoted by error bars on the figure). In the other tasks, we
find the performance to peak much earlier and adding more exam-
ples to the context actually led to performance deterioration. The
results suggest 1) the fact that it is possible to match or outperform
using all examples with fewer, carefully selected examples means
that intelligent example selection is still relevant even with many-
shot ICL, echoing findings from the recent works (Li et al., 2024b)
that retrieval remains valuable for long-context models in the RAG
setup; and 2) naı̈vely including as many examples as possible can
be suboptimal both in terms of computing cost and performance –
while it is trivially true for the tasks whose performance does not
improve monotonically with the number of examples, we show that
it can even be true when it apparently does: e.g., on geometric shapes, the near monotonic
improvement overall trend (gray line) may lead someone to conclude that it is beneficial to include
as many examples as possible, even though the green line representing intelligent selection saturates
and starts to decline earlier.

Can we still benefit from scaling examples? Experiments above demonstrated the presence of
redundancy in many-shot ICL, revealing that using a smaller subset of examples can often reduce
this redundancy without sacrificing performance. It is, however, a pruning operation that necessar-
ily reduce the input tokens consumed. This leads to a natural question: can we still benefit from
scaling through expanding? For this question, it is important to recognize that under the reinforced
ICL setup, while the inputs and labels in many-shot setups are fixed, the model-generated interme-
diate outputs, which represent reasoning paths, are modifiable. Given that these intermediate roles
are shown to play a critical role in steering model behaviors (Wan et al., 2024), it is possible that
examples previously identified as non-important or non-beneficial may be again beneficial if the
model-generated rationales can be improved.
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Figure 3: Overview of BRIDGE: With a labeled dataset D, exemplified with 6 samples, at the Gen-
eration phase (left half), we generate initial examples by performing LLM inference on the inputs
of D (“Q1-6”) with zero-shot prompting to obtain the initial responses “A1-6”, which include any
intermediate outputs critical for ICL (Step 1). At Step 2, consistent with reinforced ICL in Agarwal
et al. (2024), we filter the responses to retain the subset of D where the LLM predicted correctly
to ensure the examples include correct reasoning steps to build Ek, the pool of examples at round k
which form the search space for the subsequent Optimize step. At the Optimize step (right half),
we initialize the proposed Bayesian optimizer by randomly sampling subsets e(0) ⊆ Ek as demon-
strations to be Step 3 evaluated on a held-out validation dataset (D can be reused for this purpose)
to obtain a performance metric Step 4. The Bayesian optimizer (BO) is then updated with binary
vector representations of e that led to this validation performance as input and the metric itself as
output, and suggests a new subset of examples to be used as demonstrations for the next step Step 5;
Steps 4-5 are repeated (inner loop) until the BO budget is exhausted, after which the best evaluated
set e∗k is returned (Step 6). This set is then be used as demonstrations to generate the example pool
for the next round Ek+1 (Step 7).

To achieve so, we reuse the optimized example set from the previous steps as “seed” demonstrations
for LLMs to re-generate the examples on the train set, the same set from which the optimized
examples are generated. As shown by Fig. 2 where we use example set of different sizes as the
seeds, the regeneration step not only increases the number of shots available but also results in better
performance across the accuracy versus number-of-demonstrations trade-off.

3 METHODOLOGY

The findings presented above highlight a significant need for improvements that extend beyond
simply increasing the number of examples straightforwardly. Instead, identifying the most useful
example subset e∗ is crucial both for effective cost-performance trade-off and for better reason-
ing path generation for more effective examples. Based on these insights, we propose Bayesian
Refinement and Iterative Demonstration Generation for Examples, or BRIDGE in short (described
in Algorithm 1 and depicted in Fig. 3, an optimization algorithm aiming to enhance many-shot ICL
with intelligent example selection and iterative example generation. At a high level, the outer loop of
BRIDGE is structured in two alternating steps of “optimize” and “generate”. In the “optimize” step,
the algorithm focuses on discovering the optimal subset of examples e∗ via a carefully-designed
(for low complexity, robustness to overfitting and budget control) Bayesian optimization algorithm
that naturally leverages the GPR surrogate used in Sec. 2; in the “generate” step, BRIDGE utilizes
the optimized subset as seed demonstrations to align the model with the best performing examples
seen so far to re-generate new reasoning paths as an integral part of more effective examples back
to the many-shot regime to leverage the long context. The two steps are iteratively repeated to
progressively refine the examples.

Optimize step. While effective, directly using the importance scoring approach from Sec. 2 to
identify the e∗ would require us to set the optimal number of examples to select ||e∗|| as a hy-
perparameter, the optimal value of which is task specific. Furthermore, a key motivation for the
importance-based ranking in Sec. 2 is to attribute performance to individual examples; this is, how-
ever, not required if we simply would like to find an optimal subset e∗. To nevertheless use the GPR
surrogate in Sec. 2 which has shown an impressive sample-efficient, modelling capability, we pro-
pose to use Bayesian optimization (BO) (Garnett, 2023; Frazier, 2018), a sample-efficient black-box
optimization algorithm that has recently shown promise in combinatorial problems (Daulton et al.,
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Algorithm 1 BRIDGE.
1: Input: train set Dt, validation set Dv (can be the

same as the train set), number of iteration rounds
K ∈ N (outer-loop), evaluation budget for BO per
iteration neval (inner-loop).

2: Output: Optimized set of examples E∗.
3: [Generate] Generate the pool of initial exam-

ples E0 by predicting the LLM on the train set
with zero-shot prompting or few-shot prompting
(if handwritten few-shot demonstrations are avail-
able). Each instance in E0 is a concatenation of
{input, model-generated reasoning, final outputs}
for the subset of the train set where the model ob-
tained the correct prediction.

4: for k ∈ {1, ...,K} (Outer loop) do
5: [Optimize] Run Bayesian optimization (calling

subroutine Algorithm 2 on the validation set to
obtain e∗k ← BayesOpt(neval=neval, E=Ek).

6: [Generate] Re-generate examples Ek by re-
predicting the LLM on the train set, but with
the optimized examples e∗k from the previous
step as demonstrations; the {inputs, model-
generated reasoning, output}-tuples are con-
catenated to form the new set of examples Ek
for the next [Optimize] step.

7: end for
8: return Optimized example set E∗ afterK rounds.

Algorithm 2 Budget-controlled BO subroutine
with random scalarization (BayesOpt).
1: Input: Evaluation budget for BO per iteration neval

(inner-loop), full set of available samples E , number
of random initializations ninit = min(16, neval/2).

2: Output: Optimized set of examples e∗ ⊆ Et.
3: Randomly generate ninit subsets e1:ninit :=

{e1, ..., eninit} with each e ∼ {0, 1}|Et| s.t. |e| ∼
Uniform(1, |Et|).

4: Evaluate g1:ninit = [g(e1, ..., eninit ]
> and fit a GP

on e1:ninit as inputs and g1:ninit as outputs. Set
D0 ← {e1:ninit ,g1:ninit}

5: for t ∈ {ninit, ..., neval} (Inner loop) do
6: Sample a random scalarization value

βt ∼ Uniform(0, 1) and compute
the scalarized objective of this iteration
ht(e) = TCH(βt, [g(e), |e|]).

7: Compute h1:t for all previously evaluated points
Dt−1, fit a GPR GPt on [e1:t,h1:t] and ob-
tain the next configuration to evaluate by max-
imizing the acquisition function α(·): et =
argmaxe⊆E α(e | GPt).

8: Evaluate g(·) with et and augment Dt ←
Dt−1 ∪ (et, g(et))

9: end for
10: return e∗ = argmaxe∈D g(e).

2022; Wan et al., 2021); it naturally synergizes with the GP surrogate yet automatically strikes a
balance between exploration and exploitation to discover e∗ without requiring us to set ||e∗|| be-
forehand, although BRIDGE is also compatible with alternative methods as drop-in replacement of
the “Optimize” step, which we investigate in detail in App. C.1.

Instead of consuming the entire query budget by sampling randomly, as illustrated by Algorithm 2,
BO only requires some initializing samples to warm-start (Step 3). Afterward, it guides exploration
by iteratively (re)fitting a GPR with the previous observed inputs and outputs so far. Formally,
at iteration t ∈ [1, T ], we have evaluated g(·) t times at e1:t = [e1, ..., et]

> with observed val-
ues g1:t. Whereas a straightforward application of BO would directly train a GP on [e1:t,g1:t] as
inputs-outputs and perform BO with g(·) as the objective function directly, a subtle but important
distinction here is that our goal is to identify a subset e∗ that, when used as demonstrations on the
train set, generates to the most effective examples on the validation set, rather to simply find the
highest-performing e∗ on the validation set. While we expect the two objectives to be correlated
(i.e., e that led to high validation performance is also likely to generate better samples on the train
set), we also empirically find it is desirable to encourage e∗ to have a smaller cardinality akin to a
`0 regularization to reduce overfitting on the validation set and to discourage memorization in sub-
sequent generations from the previous example set Et−1 of which e∗ is a subset. To achieve so, we
augment the performance maximization max g(e) with a sparsity objective which counts the number
of non-zero elements in e: min

∑
j e

(j) – this transforms the problem into a bi-objective optimiza-
tion problem , where instead of maximizing for the validation performance only, we also encourage
sparsity as regularization. Practically, we solve the problem with random scalarization (Paria et al.,
2020; Knowles, 2006). Specifically, as hinted in Step 7 of Algorithm 2, at each BO iteration, we
first sample a random scalar βt ∼ Unif(βLB, βUB) that determines the weight of the performance
objective g(·) of the t-th BO iteration (the weight of the sparsity objective is given by 1 − βt) and
{βLB, βUB} denote the lower and upper bounds of the weight for g(·) which are set to {0.25, 1} by
default. With this βt, we then aggregate the vector objective [g(e),

∑
j e

(j)] back to a scalar ht(e)
via Tchebyshev scalarization (TCH), a theoretically well-founded scalarization scheme common in
multi-objective optimization (Chugh, 2020; Steuer & Choo, 1983; Bowman Jr, 1976) given by:

ht(e) = max
{
βt
(
g(e)−max{g(e1), ..., g(et)}

)
,−(1− βt)

∑
j

e(j)
}
, (1)

where the minus sign before the last term is to cast the sparsity objective as maximization. We
opt for random scalarization that differs step to step instead of a fixed scalarization weight or any
hard constraint on

∑
j e

(j) to retain the flexibility of exploring the entire Pareto front, since the
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Table 1: Test accuracy of gemini-1.5-pro-001 on selected BBH tasks with different prompt-
ing approaches. “All” refers to using the entire labeled set of 75 examples as demonstrations (“Di-
rect”: using all input-final answer pairs without any model-generated content; “CoT”: using all
input-rationale-final answer triplet, where the rationale is model-generated; “Infill”: using all input-
rationale-final answer triplet, where the rationale is filled in by prompting the model to generate the
intermediate steps given the inputs and ground-truth answers); “Reinf. ICL” refers to reinforced
many-shot ICL where we include the subset of train set that the LLM answered correctly under
zero-shot as demonstrations; “Iterative Reinf.” refers to the iterative variant of reinforced many-shot
ICL where we directly use all the generated correct examples from the previous round as demonstra-
tions for the next round without the optimize step, and the different columns of BRIDGE show the
evolution of test accuracy at different milestones: e.g., 1O refers the results with optimized e∗1 from
initial examples E0 as demonstrations (in general, we have e∗k ⊆ Ek−1), and 1G refers to the results
using E1 generated by re-evaluating the train set with e∗1 as demonstrations. All results shown are
averaged across 4 random seeds with the standard deviation (stdev) denoted in the subscript. Best
and second-best results along each row are bolded and underlined, respectively (ties are broken by
favoring the result with lower stdev).

Tasks All Reinf. Iterative BRIDGE
Direct CoT Infill ICL Reinf. (Ours)

# Iterations - 0 0 0 1 2 1O 1G 2O 2G 3O

causal judgement 61.04.7 62.72.1 68.02.8 66.34.8 68.71.9 69.32.7 68.31.5 62.71.6 59.71.5 72.00.0 70.02.0
date understanding 87.22.0 86.02.3 94.81.8 88.82.5 93.01.0 94.91.3 92.21.5 97.00.7 94.81.9 95.01.2 95.51.8
disambiguation qa 74.22.2 63.31.1 72.32.0 76.82.4 74.61.4 75.11.5 71.82.4 77.53.6 80.51.8 81.32.9 78.81.5
dyck languages 16.82.9 39.03.7 24.52.9 55.53.6 64.45.3 74.43.6 49.22.7 76.23.8 80.02.7 77.51.1 76.83.8
formal fallacies 82.83.7 86.81.3 84.32.8 86.21.1 88.10.9 89.41.4 86.02.1 85.02.5 90.82.3 90.82.8 88.22.3
geometric shapes 69.04.1 61.84.2 73.52.3 80.22.8 81.02.5 82.31.7 78.52.1 82.53.6 89.23.8 92.31.1 89.20.8
hyperbaton 70.84.1 93.23.1 89.52.6 90.21.1 91.52.2 86.22.5 96.50.9 94.21.5 94.82.8 96.50.5 97.20.4
logical deduction (7) 56.84.4 63.07.4 69.85.9 65.83.5 68.92.6 69.52.9 70.21.5 70.84.5 71.73.7 71.51.8 69.22.2
movie recommendation 75.01.0 63.72.2 68.02.8 65.21.6 68.82.0 82.01.9 67.01.2 69.50.5 69.33.1 72.81.8 67.01.2
multistep arithmetic two 86.52.2 96.80.8 88.81.8 96.50.5 95.90.8 94.51.3 96.20.8 94.51.1 97.00.7 98.00.7 96.81.8
object counting 92.52.3 84.84.3 95.31.3 95.50.9 95.82.2 95.11.6 96.20.4 96.01.9 94.51.1 94.20.4 95.00.7
ruin names 85.23.1 85.52.1 89.81.6 89.81.9 88.61.5 90.50.9 90.81.1 88.81.7 89.21.5 88.82.4 90.30.8
salient translation error detection 66.02.4 56.21.5 72.50.5 69.01.6 73.81.1 73.41.3 68.80.8 71.00.7 69.52.2 74.00.7 74.51.1
snarks 94.11.8 95.52.3 95.10.6 92.73.2 94.31.9 95.51.5 93.43.0 95.80.0 95.11.6 96.91.5 97.61.8
sports understanding 93.81.3 94.21.3 95.00.7 93.01.4 94.10.9 95.41.2 92.81.9 97.01.2 96.20.8 95.80.4 95.80.8
tracking shuffled objects (7) 76.07.2 52.52.1 64.32.8 62.34.2 64.52.2 65.54.6 95.80.4 95.01.2 100.00.0 97.00.7 99.50.5

Average 74.22 74.06 78.70 79.61 81.61 82.37 82.11 84.61 85.77 87.13 86.33

exact relation between the number of samples and performance can differ across tasks. Since βt is
in general different for each t, we then compute ht = [ht(e1), ..., ht(et)] on previously evaluated
outputs and fit a GP on Ht := [e1:t,ht], which induces a Gaussian posterior predictive distribution
with mean and variance at any e ⊆ E (we use ĥt to denote that it is the GP approximation of the
actual function ht):

Eĥt(e)|Ht
[ĥt(e)] = kt(K+ η2I)−1ht, Vĥt(e)|Ht

[ĥt(e)] = k(e, e)− kt(K+ η2I)−1k>t , (2)

where kt = [k(e, e1), ..., k(e, et)] and k(·, ·) is the covariance function of the GP (we use Matern
2.5 by default) which measures the similarity between two inputs – in our case, it is a function of
the number of overlapping examples between two subsets of examples e, e′ ⊆ E . To select the next
configuration to evaluate ek, the BO optimizes an acquisition function, another key component of
BO that automatically trade off exploration and exploitation. At each inner-loop BO iteration, we
choose the maximizer of the expected improvement (EI) (Zhan & Xing, 2020) for the next iteration
et: et = arg maxe⊆E α(e) = arg maxe⊆E Eĥt(e)|Ht

[
max{0, ĥt(e)−maxt′∈{1,t} ĥt(et′)}

]
.

Generate step. At each outer-loop round k ∈ {1, ...,K}, given the optimized e∗k as demonstra-
tions, we regenerate and replace the example pool with the correct predictions and their generated
rationales Ek ← fLLM(Dt, e

∗
k ⊆ Ek−1) for subsequent optimize step.

4 EXPERIMENTS

Model and evaluation data. We conduct experiments on an extensive collection of tasks requir-
ing different set of skills task difficulty on two Gemini 1.5 models (gemini-1.5-pro-001 and
gemini-1.5-flash-001) while also testing key findings on Mistral family of models: Mis-
tral NeMo (mistral-nemo-12b) and Mistral Large (mistral-large-2407), and Claude
3.5 Sonnet: 1) BIG-Bench Hard (BBH) tasks encompassing a wide range of challenging numerical
reasoning, commonsense problem-solving, logical deduction and tabular reasoning tasks – we par-
ticularly focus on the subset of 16 BBH tasks where the model performances have not saturated; 2)
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Table 2: Test accuracy of gemini-1.5-pro-001 on MATH and GSM-Hard datasets. Refer to
the captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

# Iterations 0 1 2 1O 1G 2O 2G 3O

Hendryck’s MATH 63.750.5 63.600.9 63.601.1 62.601.3 63.001.2 63.851.1 64.650.3 64.400.9
GSM-Hard 69.880.8 69.840.4 69.330.3 71.890.4 71.310.4 71.810.4 73.320.4 72.500.6

Hendryck’s MATH (Hendrycks et al., 2021), a challenging numerical reasoning dataset; 3) GSM-
Hard (Gao et al., 2022), a more challenging variant of the classical grade-school GSM-8K (Cobbe
et al., 2021) with the numbers in the questions replaced with much larger and rarer ones. To fur-
ther probe the utility of many-shot learning and BRIDGE in coding tasks, we also experiment on
4) BIRD (Li et al., 2024a), a challenging large-scale text-to-SQL generation benchmark where the
LLM has to generate sqlite programs from natural language instructions that are executed on real-
world databases. For all datasets, when official train-test split is not available, we randomly split the
data into train and test splits; unless stated otherwise, a single unified train split is used both for the
generation of demonstrations and is reused for validation (i.e., the objective of the optimize step in
Algorithm 1; the test splits are held-out and only used for evaluation of the algorithm. We refer the
readers to App. B for detailed descriptions, prompt templates used and evaluation protocol.

Experimental setup. For all tasks, we run BRIDGE with K = 3 rounds (i.e., the number of outer-
loop iterations in Algorithm 1) and within each round, we allow for neval = 32 evaluations on the
validation set (i.e., the number of inner-loop iterations in Algorithm 2) and we report the results at
the end of each “optimize” and “generate” steps to visualize the iteration process. For baselines, we
consider 1) using all provided examples and we consider three variants: a) using query-target only
without any generated rationales (Direct), b) first prompt the LLM to generate rationales and an-
swers, and use the concatenation of query-rationale-target as demonstrations, regardless of whether
the rationale led to the correct answer (CoT), and c) prompting the LLM with both the query and
the final, ground-truth answer to fill in the rationale – this technique has been variously referred to
as, e.g., infilling (Hu et al., 2023), rationalization (Zelikman et al., 2022), or more generally, teacher
forcing (Chen et al., 2025) due to its conceptual similarity to teacher forcing in recurrent neural net-
work (RNN) training (Lamb et al., 2016) (Infill); 2) reinforced ICL (Agarwal et al., 2024), where all
available input-output pairs from the correct predictions on the train set with zero-shot prompting
are used; and 3) an iterative variant of reinforced ICL which can also be seen as BRIDGE without the
optimize step: while we repeat the generation process on the train set K = 3 times, we do not first
aim to select the optimized subset but instead use the entire generated examples from the previous
step as demonstrations Ek ← fLLM(Dt, Ek−1).

Results and discussions. We show the test accuracy on the BBH tasks in Table 1
(gemini-1.5-pro-001), Table 3 (gemini-1.5-flash), Table 14 (Mistral) and Table 15
(Claude 3.5 Sonnet) (the latter two tables are in App. C.5). On MATH and GSM-Hard datasets, we
show the Gemini 1.5 Pro results in Table 2. We observe that naı̈ve many-shot scaling is in general
ineffective and is outperformed by reinforced ICL; BRIDGE, however, outperforms the base rein-
forced many-shot ICL by more than 7% and 3% on Tables 1 and 3, respectively, and the extent
of outperformance over the “Iterative reinforced ICL”, which leads to moderate improvements on
BBH with Gemini Pro but no significant performance gains on MATH, GSM-Hard and BBH with
Gemini Flash. Both demonstrate that optimize is an integral component of BRIDGE and implicitly
validates the findings in Sec. 3 that many-shot performance can be driven by few disproportionately
influential examples, which constitutes a core motivation for our method. Barring some expected
task-specific fluctuations, in both Tables 1 and 3, we also observe consistent and monotonic perfor-
mance improvement as BRIDGE progresses over the successive optimize and generate steps, even-
tually peaking at 2G on Gemini Pro and 2O on Gemini Flash (although the performance difference
between 2G and 2O on Gemini Flash is negligible and likely within margin of error) – based on
the overall results, we recommend stopping BRIDGE at 2G or 2O. Interestingly, we observe that
in both cases, an additional optimize step (i.e., the 3O column) somewhat degrades performance –
our hypothesis is that as BRIDGE progresses, the generated examples become more aligned with the
optimal behavior and the degree of redundancy as we observed in Sec. 2 reduces, and it becomes
more difficult to squeeze the number of examples without harming task performance – indeed, from
Fig.4 where we concretely analyze the behavior of the LLM in different tasks by evaluating the
LLM under random subsets of E0, ..., E2 as demonstrations in held-out splits, we observe that the
benefit from naı̈vely scaling examples under the base reinforced many-shot ICL (denoted by red
lines) can be highly unstable across tasks: from the different subfigures of Fig. 4, we find the per-
formance to consistently improve with more examples (leftmost), improve then plateau (middle
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Table 3: Test accuracy of gemini-1.5-flash-001 on BBH tasks.
Tasks All Reinf. Iterative BRIDGE

Direct CoT Infill ICL Reinf. (Ours)
# Iterations - 0 0 0 1 2 1O 1G 2O 2G 3O

causal judgement 55.05.0 57.71.1 62.72.7 66.03.6 67.72.0 66.71.6 69.32.7 66.02.0 63.31.5 65.01.6 65.31.5
date understanding 84.84.2 83.31.3 89.30.8 84.52.3 86.80.8 87.30.8 85.01.3 90.50.5 91.50.4 90.80.7 92.50.8
disambiguation qa 68.87.2 54.21.5 69.02.2 75.50.5 77.81.6 78.53.5 77.51.3 79.01.1 77.51.2 76.30.8 74.31.1
dyck languages 46.09.5 19.57.0 31.33.3 66.81.9 61.32.6 60.01.9 63.32.0 62.01.7 64.51.8 62.82.4 61.83.8
formal fallacies 75.81.9 74.01.2 76.31.1 77.30.4 74.81.9 72.51.7 78.31.3 77.31.5 75.51.7 78.31.8 76.30.8
geometric shapes 45.81.5 74.24.1 71.32.4 86.01.9 93.80.8 93.31.5 93.82.5 94.04.2 95.51.1 97.00.0 98.00.0
hyperbaton 87.03.1 88.51.5 93.51.1 88.51.5 95.51.1 93.31.5 86.57.6 95.51.1 95.80.8 94.80.4 93.31.5
logical deduction (7) 37.53.3 41.01.9 57.02.7 59.53.4 61.91.9 57.54.7 61.85.1 57.51.1 70.50.9 66.51.1 75.00.7
movie recommendation 80.53.3 56.20.8 92.01.9 67.01.2 75.81.3 75.82.9 70.32.3 73.32.3 77.31.5 78.82.0 72.83.2
multistep arithmetic two 55.021.3 84.02.9 89.01.9 91.30.8 94.01.4 92.51.8 96.32.3 96.80.4 97.80.4 94.80.8 95.80.4
object counting 66.02.7 91.32.0 87.52.3 93.30.4 93.51.5 92.51.1 92.81.9 93.82.3 95.50.5 93.01.2 93.80.4
ruin names 83.21.3 86.21.3 88.01.9 86.51.8 89.50.9 86.80.8 89.30.4 89.30.8 87.01.2 90.30.8 90.01.2
salient translation error detection 62.03.7 58.82.0 65.31.3 64.81.5 71.52.2 64.02.9 62.80.8 71.00.7 69.82.0 69.00.7 67.30.4
snarks 81.20.7 92.01.2 80.91.2 89.21.8 88.92.2 86.51.5 88.92.0 89.91.8 89.60.7 90.60.6 83.73.5
sports understanding 92.51.5 91.50.5 95.80.4 95.80.8 95.50.5 96.31.1 93.31.1 95.30.4 91.80.4 95.01.2 95.00.0
tracking shuffled objects (7) 63.35.4 72.36.0 32.81.9 92.23.1 83.51.1 80.01.6 98.00.7 93.82.2 98.00.0 97.80.4 97.50.5

Average 67.77 70.29 73.83 80.25 81.91 80.72 81.61 82.79 83.79 83.77 83.25
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Figure 4: Benefits from scaling examples naı̈vely (red lines) is very task specific, but
each iteration of BRIDGE addresses it to a considerable degree by continually improv-
ing upon the previous round: We randomly sample subsets of example pool Ek ∀ k ∈
{0 (i.e., original examples generated with handcraft few-shot or zero-shot), 1, 2} and evaluate them
on a held-out set in four representative tasks exhibiting different model behavior to example scaling.
The trendlines are moving regressions fitted with LOWESS. Refers to additional figures in App. C.3.

two figures) and even simply deteriorate with more examples (rightmost) – whereas the latter two
cases are direct manifestations that not all examples contribute positively to many-shot ICL and
naı̈vely scaling examples is suboptimal, we note that it remains true even in the former case where
there is an apparent strong, positive correlation between number of demos and performance, as we
demonstrated in Sec. 2. Remarkably, BRIDGE alleviate the instability with each round of BRIDGE
continually improving upon the previous round – in cases where scaling examples is already ben-
eficial (geometric shapes, leftmost figure), subsequent rounds of BRIDGE led to much better
performance-cost trade-offs with the blue and green lines dominating over the red, whereas in other
cases, BRIDGE often “delays” the saturation point (e.g., salient translation) or at least
ensure more examples does not lead to deterioration (e.g., tracking shuffled objects).

Table 4: Execution accuracy
on the BIRD dev set with
gemini-1.5-pro-001. {S, M, C}
refer to the accuracy aggregated across
{Simple, Moderate, Challenging}-level
problems based on assigned difficulty.

Method Exec. Breakdown
Acc. S M C

Direct 57.7 64.0 49.4 44.1
CHASE prompt 60.1 67.2 51.9 40.7
CHASE + BRIDGE
Round 0 59.1 65.7 51.3 42.1
Round 1 61.2 68.6 50.6 48.3
Round 2 62.0 68.5 53.0 49.0

PEFT (LoRA)
ntrain = 256 58.2 64.0 52.2 40.7
ntrain = 1024 60.2 66.6 53.0 42.1
ntrain = 4096 61.3 67.5 53.9 46.2
ntrain = 9428 (All) 63.8 68.6 58.8 48.9

On BIRD dataset, we show the results in Table 4. Given
the presence of a large training set (more than 9000 sam-
ples), we also compare against parameter-efficient super-
vised fine-tuning (PEFT) (Han et al., 2024), where we
fine-tune the same target LLM with LoRA (Hu et al.,
2021) on either the entire training set or using a num-
ber of train samples sub-sampled from the full training
set. We observe that whereas the few-shot CHASE prompt
effectively improves upon the baseline zero-shot direct
prompting, additional rounds of BRIDGE led to further
gains. The comparison against LoRA also demonstrates
the potential of BRIDGE as an alternative to PEFT at least
in certain scenarios. When provided with a similar num-
ber of labeled samples (i.e., ntrain = 256), we observe
that LoRA performs much worse, and it only outperforms
BRIDGE when using up the entire train set for training.

5 RELATED WORK

Scaling ICL. Before the advent of the long-context LLMs, early efforts in scaling ICL often study
LLMs customized for long context (Li et al., 2023) or require architectural changes assuming white-
box model access (Hao et al., 2022). However, the tasks considered are often limited, e.g., to conven-
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tional, discriminative tasks like sentiment classification rather than generative tasks as considered in
this work. Furthermore, these often study LLMs that are merely capable with handling many ex-
amples, but their behavior may differ significantly to modern, natively long-context LLMs that may
actively take advantage of the context – indeed, both these works show mixed results, even signif-
icant performance deterioration when scaling up the number of examples, a phenomenon not seen
in modern long-context LLMs like Gemini and Claude. Recent works like Agarwal et al. (2024)
and Bertsch et al. (2024), on the other hand, reported significant gains in scaling ICL to hundreds or
more examples and provided important motivation for our work. However, as mentioned in Sec. 2,
these works primarily demonstrate the existence of the benefit from scaling but did not focus on in-
vestigate the sources of the gain or improving the cost-effectiveness of many-shot ICL. Additionally,
there have also been works focusing on applications of many-shot ICL to multi-modalities (Jiang
et al., 2024), LLM jail-breaking (Anil et al., 2024), detecting the risk of capturing incorrect skills
(Lin & Lee, 2024), and analyzing memorization (Golchin et al., 2024).

Example selection and expansion. BRIDGE combines the “optimize” and “generate” steps, and
there have been existing works sharing similar high-level ideas to each of the components. First,
the “optimize” step can be seen as to improve the data quality with pruning and selection; in this
regard, given that data quality is known to be one of the most influential factors for training LLMs
(Xia et al., 2024), many previous works have utilized some flavor of pruning to remove redundant or
harmful data samples at different stages of training, including pre-training (Marion et al., 2023) and
instruction tuning (Xia et al., 2024). In ICL, as mentioned in Sec. 2, given the sensitivity of LLMs
to examples, there have been works analyzing prompt sensitivity and proposing example selection
techniques (Zhao et al., 2021; Lu et al., 2022; Zhou et al., 2024b; Wan et al., 2024). Recent work
also explored heuristic-based prompt optimization based on similarity (Rubin et al., 2022; Liu et al.,
2022), diversity (Levy et al., 2023; Xu et al., 2024), uncertainty (Wan et al., 2023a;b), fairness (Zhou
et al., 2024a) etc. Our “generate” step, on the other hand, aims to acquire high-quality examples with
the LLM itself. In this area, STaR (Zelikman et al., 2022) first proposes to bootstrap rationales from
LLM with a small number of seed examples, followed by fine-tuning; Self-Instruct (Wang et al.,
2023) bootstraps LLMs to instruction data. The “Reinforced ICL” technique introduced in Agarwal
et al. (2024), upon which this work improves, and several recent works (Chen et al., 2023; Khattab
et al., 2023; Opsahl-Ong et al., 2024) use similar technique to acquire and refine model-generated
examples for ICL. Notwithstanding the similarities described, there are a few crucial differences:
Almost all ICL works mentioned consider the few-shot setup, where selection is made necessary
due to the constraint on the number of examples allowed in the context. However, we show that
even in the many-shot setup where that constraint is relaxed and example selection is no longer a
necessity, it can still be highly beneficial for performance and efficiency. Unlike the few-shot setup,
BRIDGE is tailored for the many-shot setup with design decisions inspired by findings in Sec. 2, such
as the implementation of sparsity regularization in the optimization objective to enable from scaling.

6 CONCLUSION

This paper focuses on understanding and enhancing the core factors underlying scaling ICL. We first
provide an analysis on the nascent paradigm of many-shot ICL in LLMs and show that notwithstand-
ing the long-context abilities of LLMs, the common practice of naı̈vely dumping as many examples
as practically possible into the context can be both inefficient in cost and suboptimal in performance.
Instead, the benefit from scaling examples can often be realized by identifying a subset of influential
examples, and that subset can be used as demonstrations themselves to re-generate even more exam-
ples. Inspired by the findings, we propose BRIDGE by automatically executing the “optimize” and
“generate” steps iteratively. We demonstrate that BRIDGE perform competitively on a wide range of
tasks, significantly outperforming alternatives. We believe that this work builds the foundation for
future research in many-shot ICL. First, we mainly focused on the restrictive black-box LLM setup,
which is the most general and model-agnostic. However, for a more relaxed, white-box setup with
access to LLM weights, it may be possible to perform optimization more efficiently – for example,
it may be possible to take advantage of the internal representations of the model in reducing the
cost of iterative optimization. Second, we currently focus on the “reinforced ICL” setup typical for
reasoning-heavy tasks – while we have conducted experiments (e.g., low resource translation tasks)
beyond this setup, further validations on other types of tasks would be valuable. Lastly, after opti-
mization, the examples generated by BRIDGE are currently static at test time, and it would also be
interesting to combine with a mechanism for sample-dependent ICL optimization to further enhance
performance and reduce cost – we defer these important directions to future work.
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A DERIVATION OF THE APPROXIMATED IMPORTANCE SCORE

In this section, we give detailed derivation of the importance score used in Sec. 2 to rank the ex-
amples. Recalling that we are given a pool of examples E with |E| = m, a collection of T subsets
of ei, each represented as a binary vector ei ∈ {0, 1}m and their corresponding scores on the
validation set g(·) : {0, 1}m → R, we first fit a GP regression with e1:T = [e1, ..., eT ]> and
g1:T = [g(e1, ..., g(eT )]>, as presented in Eq. 2, the mean of the posterior GP ĝ(·) is given by:

Eĝ(e)|GT [ĝ(e)] = k1:T (K + η2I)−1g1:T , (3)

where we define GT as the shorthand of [e1:T ,g1:T ] to denote that the fitted function ĝ(e) is fitted
on the observed input-output pairs; kt = [k(e, e1), ..., k(e, et)] and k(·, ·) is the covariance function
of the GP (we use Matern 2.5 by default). As mentioned in Sec. 2, whereas we do not assume any
differentiability property from g(·) on e, since the approximated function ĝ(·) follows a posterior
GP, its gradient w.r.t e is analytically available and is itself a GP, given by:

∇eg =
∂g(e)

∂e
=
∂k1:T

∂e
(K + η2I)−1g1:T , (4)

noting that the expensive matrix inversion term, (K + η2I)−1 does not have a dependence on e
and can be directly cached from Eq. 3 when we compute the posterior mean. The derivative term
is essentially a differentiation operation of the covariance function to the input, and can be easily
computed either analytically for common kernel choices or via automatic differentiation for popular
GP or BO packages like gpytorch (Gardner et al., 2018) or botorch (Balandat et al., 2020).

With the computed ∇eg ∈ Rm, we can in principle compute the estimated derivative at any e ⊆ E .
However, in practice, we find the derivative estimate to be more reliable at the training points of
the GP (i.e., [e1, ..., eT ]. We then evaluate the derivative at each of the training point, and the final
importance score is marginalized by averaging across the training points:

M(e(j)) =
1

T

T∑
t=1

∇eĝ|(j)e=et
, (5)

where we use the superscript (j) to denote that the estimated importance of the j-th individual
example (note the regular font e ∈ E denoting an individual example instead of the bold-face e
denoting a set of examples in E). We then compute the importance score of all examples in E , which
is then used to generate the assigned ranking in the analysis of Sec. 2 such as the Fig. 4.

B IMPLEMENTATION DETAILS

B.1 DATASETS.

In the section below, we give detailed implementation details for the availability, data splitting pro-
tocol, input prompts and licensing information of the datasets used.

BIG-Bench Hard (BBH). BBH is a collection of 26 challenging reasoning tasks, and a task is
selected if either 1) if it is studied in the seminal work on many-shot ICL (Agarwal et al., 2024) or
2) if the zero-shot performance of gemini-1.5-pro-001 is below 90%, which indicates non-
saturation of performance – these criteria led to a set of 16 tasks that we consider in Sec. 4. For
all tasks, we randomize the data points and reserve 40% (usually 100 samples, but some sub-tasks
of BBH benchmark have fewer data-points) as held-out sets for testing, whose inputs and labels
are not revealed to the model except for final evaluation. For the rest of the dataset, in Sec. 2, we
use 50% (30% of all available data points including the held-out test set) as the “train-set” from
which the examples are generated and the other 50% for validation (i.e., the split where results in
Fig. 4 is generated). In Sec. 4, we do not use the aforementioned validation set and use performance
on the same set that generates the examples as the optimization objective. The BBH dataset is
publicly available at https://github.com/suzgunmirac/BIG-Bench-Hard under an
MIT license. For all BBH tasks, we use the prompt templates below:

1 You will be given a question. Think step by step before giving a final answer to this question
. Show your final answer {{ TASK_SPECIFIC_CONSTRAINTS }} between <answer> and <\answer>

2

16
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3 {{ EXAMPLES }}
4 ==
5
6 {{ QUESTION }}
7 {{ llm() }}

where we use a Jinja2-style syntax and the upper-cased blocks bracketed between double braces
are variables that are replaced at inference time: TASK SPECIFIC CONSTRAINTS denote the
constraint instruction specific to the type of the task. For example, for a multiple-choice task, this is
replaced with “answer option letter only”; for a binary choice question, this is replaced with “Yes or
No only” and for a free-form generation task, this is replaced by an empty string. EXAMPLES denote
the concatenation of any examples e added to the input – for the initial generation step (i.e., Step
3 in Algorithm 1), we use zero-shot prompting and EXAMPLES is an empty string. For subsequent
generation step, this is replaced with the concatenation of the examples selected by BRIDGE; finally,
llm() denotes the place where an LLM response is solicited; the answer is then extracted and
postprocessed to match with a ground-truth answer to measure accuracy.

MATH and GSM-Hard. In MATH and GSM-Hard, we similarly adopt the unified train set
setup as mentioned in the previous paragraph. To minimize the chance of data contamination
where the training inputs and outputs were leaked to the model during pre-training or instruc-
tion finetuning, we randomly sample 128 samples as the official test set as the train set from
which the examples are generated and use the rest of the official test set for testing. The MATH
dataset is available at https://github.com/hendrycks/math and GSM-Hard is available
at https://huggingface.co/datasets/reasoning-machines/gsm-hard. Both
datasets are license under an MIT license. On GSM-Hard, we use the same prompt as the BBH
dataset mentioned above. On MATH, we use the inner monologue prompt consists of human-
annotated few-shot prompt given by Agarwal et al. (2024) with an added preamble to ensure that the
LLM generation follows the style of the examples given, noting that any model-generated examples
will be added to the initial human-annotated examples:

1 You will be given several example math questions and their solutions. At the end, You will be
given another question that you will need to solve. Make sure you follow the examples,
and always finish your answer with ’Final Answer: The final answer is X. I hope it is
correct.’ where X is the correct answer.

2
3 Problem:
4 Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.
5
6 Solution:
7
8 I need to find the domain of this expression.
9

10 This expression has two square root expressions.
11
12 I know the values under each square root must be non-negative.
13
14 So let me start by ensuring that.
15
16 I set $x-2 \ge 0$, which simplifies to $x\ge2$.
17
18 Then, I set $5 - x \ge 0$, which simplifies to $x \le 5$.
19
20 But I need to make sure the denominator is not zero.
21
22 So, $5-x$ must also be greater than zero, which gives me $x<5$.
23
24 Therefore, the domain of the expression is $\boxed{[2,5)}$.
25
26 Answer: $[2,5)$.
27
28 Final Answer: The final answer is $[2,5)$. I hope it is correct.
29 ==
30
31 Problem:
32 If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
33
34 Solution:
35
36 I need to find the determinant of the product of matrices A and B.
37
38 I remember that the determinant of the product of two matrices equals the product of their

determinants.
39

17
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40 So, $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B}) = (2)(12) = \boxed{24}$
.

41
42 Answer: $24$.
43
44 Final Answer: The final answer is $24$. I hope it is correct.""",
45 r"""Problem:
46 Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead,

how many times must Terrell lift them in order to lift the same total weight?
47
48 Solution:
49
50
51 Okay, so Terrell lifts a total of $2\cdot 12\cdot20=480$ pounds of weight with the 20-pound

weights.
52
53 Well, if he switches to 15-pound weights, the total weight lifted will be $2\cdot15\cdot n

=30n$ pounds, where n is the number of lifts.
54
55 I want to find the number of lifts, n, for the total weight lifted to be the same.
56
57 I equate $30n$ to 480 pounds and solve for n.
58
59 \begin{align*}
60 30n&=480\\
61 \Rightarrow\qquad n&=480/30=\boxed{16}
62 \end{align*}
63
64 Answer: $16$.
65
66 Final Answer: The final answer is $16$. I hope it is correct.
67 ==
68
69 Problem:
70 If the system of equations
71
72 \begin{align*}
73 6x-4y&=a,\\
74 6y-9x &=b.
75 \end{align*}
76
77 has a solution $(x, y)$ where $x$ and $y$ are both nonzero, find $\frac{a}{b},$ assuming $b$

is nonzero.
78
79 Solution:
80
81 I’m given a system of two equations.
82
83 I see that if I multiply the first equation by $-\frac{3}{2}$, I’ll get another equation that

has the same left-hand side as the second equation, $6y-9x$.
84
85 Let me try that $$6y-9x=-\frac{3}{2}a.$$
86
87 Ah, I also know that $6y-9x=b$, so I can equate these two equations.
88
89 So, $$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=\boxed{-\frac{2}{3}}.$$
90
91 Answer: $-\frac{2}{3}$.
92
93 Final Answer: The final answer is $-\frac{2}{3}$. I hope it is correct.
94 ==
95
96 {{ EXAMPLES }}
97
98 ==
99 Problem:

100 {{ QUESTION }}
101
102 Solution:
103
104 {{ llm() }}

BIRD On BIRD, we randomly sample 128 samples from the train split as the unified train and
validation set and use the official test set (of 1534 data points) for testing. Since BIRD is a code
generation task, the execution accuracy is computed not via a simple string match between the
predicted and the ground-truth SQLs but by actually executing both SQLs on the database provided,
and a score of 1 is only assigned when the predicted SQL is both executable and if whose results
exactly match the execution results from the ground-truth SQL. All data, including the databases,

18
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schemas and ground-truth gold SQL are available at the official repo: https://bird-bench.
github.io under a CC BY-SA 4.0 licence. With reference to Table 4, use two prompt versions
for different rows. The direct prompt is a standard, zero-shot prompt to elicit the SQL prediction
directly; it is used both for the “Direct” row to directly extract LLM answer and is also used as the
prompt template for finetuning in the different “LoRA” rows:

1 You are a SQL expert tasked with answering user’s questions about SQL tables by generating SQL
queries in the SQLITE dialect.

2
3 Use only the following tables to answer the question:
4
5 {{ SCHEMA }}
6
7 Question: {{ QUESTION }}
8 Hint: {{ HINT }}
9 SQL: {{ llm() }}

where SCHEMA refers to the table schema, which can be generated automatically by querying the
database, QUESITON is the natural language question that we would like the LLM to convert to a
SQL command and HINT is a hint which additionally explains the question provided by the BIRD
dataset. For the CHASE and CHASE + BRIDGE rows, we use the prompt template proposed in
Pourreza et al. (2025) to invoke reasoning and divide-and-conquer before the LLM gives the final
answer:

1 You are an experienced database expert.
2 Now you need to generate a SQL query given the database information, a question and some

additional information.
3 The database structure is defined by the following table schemas (comments after ’--’ provide

additional column descriptions).
4 Note that the "Example Values" are actual values from the column. Some column might contain

the values that are directly related to the question. Use it to help you justify which
columns to use.

5
6 Given the table schema information description and the ‘Question‘. You will be given table

creation statements and you need understand the database and columns.
7
8 You will be using a way called "recursive divide-and-conquer approach to SQL query generation

from natural language".
9

10 Here is a high level description of the steps.
11 1. **Divide (Decompose Sub-question with Pseudo SQL):** The complex natural language question

is recursively broken down into simpler sub-questions. Each sub-question targets a
specific piece of information or logic required for the final SQL query.

12 2. **Conquer (Real SQL for sub-questions):** For each sub-question (and the main question
initially), a "pseudo-SQL" fragment is formulated. This pseudo-SQL represents the
intended SQL logic but might have placeholders for answers to the decomposed sub-
questions.

13 3. **Combine (Reassemble):** Once all sub-questions are resolved and their corresponding SQL
fragments are generated, the process reverses. The SQL fragments are recursively combined
by replacing the placeholders in the pseudo-SQL with the actual generated SQL from the

lower levels.
14 4. **Final Output:** This bottom-up assembly culminates in the complete and correct SQL query

that answers the original complex question.
15
16 Database admin instructions (violating any of the following is punishable to death!):
17 1. **SELECT Clause:**
18 - Only select columns mentioned in the user’s question.
19 - Avoid unnecessary columns or values.
20 2. **Aggregation (MAX/MIN):**
21 - Always perform JOINs before using MAX() or MIN().
22 3. **ORDER BY with Distinct Values:**
23 - Use ‘GROUP BY <column>‘ before ‘ORDER BY <column> ASC|DESC‘ to ensure distinct values.
24 4. **Handling NULLs:**
25 - If a column may contain NULL values (indicated by "None" in value examples or explicitly

), use ‘JOIN‘ or ‘WHERE <column> IS NOT NULL‘.
26 5. **FROM/JOIN Clauses:**
27 - Only include tables essential to answer the question.
28 6. **Strictly Follow Hints:**
29 - Adhere to all provided hints.
30 7. **Thorough Question Analysis:**
31 - Address all conditions mentioned in the question.
32 8. **DISTINCT Keyword:**
33 - Use ‘SELECT DISTINCT‘ when the question requires unique values (e.g., IDs, URLs).
34 - Refer to column statistics ("Value Statics") to determine if ‘DISTINCT‘ is necessary.
35 9. **Column Selection:**
36 - Carefully analyze column descriptions and hints to choose the correct column when

similar columns exist across tables.
37 10. **String Concatenation:**
38 - Never use ‘|| ’ ’ ||‘ or any other method to concatenate strings in the ‘SELECT‘ clause.
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39 11. **JOIN Preference:**
40 - Prioritize ‘INNER JOIN‘ over nested ‘SELECT‘ statements.
41 12. **SQLite Functions Only:**
42 - Use only functions available in SQLite.
43 13. **Date Processing:**
44 - Utilize ‘STRFTIME()‘ for date manipulation (e.g., ‘STRFTIME(’%Y’, SOMETIME)‘ to extract

the year).
45
46 When you get to the final query, output the query string ONLY inside the xml delimiter <

FINAL_ANSWER></FINAL_ANSWER>.
47
48 Here are some examples:
49
50 {{ EXAMPLES }}
51
52 Now is the real question, following the instruction and examples, generate the SQL with

Recursive Divide-and-Conquer approach.
53 **************************
54 [Table creation statements]
55 {{ SCHEMA }}
56
57 **************************
58 [Question]
59 Question: {{ QUESTION }}
60 Hint: {{ HINT }}
61
62 **************************
63 [Answer]
64 Repeating the question and hint, and generating the SQL with Recursive Divide-and-Conquer.
65 {{ llm() }}

Similar to the inner monologue prompt in the MATH dataset, the EXAMPLES in the template above
also include 4 human annotated examples at initialization (an exemplary human-annotated exam-
ple is shown in the code snippet below); any model-generated examples from BRIDGE are again
concatenated to the human annotated examples at inference.

1 **************************
2 [Table creation statements]
3 CREATE TABLE generalinfo
4 (
5 id_restaurant INTEGER not null primary key,
6 food_type TEXT null, -- examples: ‘thai‘| ‘food type‘ description: the food type
7 city TEXT null, -- description: the city where the restaurant is located in
8 );
9

10 CREATE TABLE location
11 (
12 id_restaurant INTEGER not null primary key,
13 street_name TEXT null, -- examples: ‘ave‘, ‘san pablo ave‘, ‘pablo ave‘| ‘street name‘

description: the street name of the restaurant
14 city TEXT null, -- description: the city where the restaurant is located in
15 foreign key (id_restaurant) references generalinfo (id_restaurant) on update cascade on

delete cascade,
16 );
17
18 **************************
19 [Question]
20 Question: How many Thai restaurants can be found in San Pablo Ave, Albany?
21 Hint: Thai restaurant refers to food_type = ’thai’; San Pablo Ave Albany refers to street_name

= ’san pablo ave’ AND T1.city = ’albany’
22
23 **************************
24 [Answer]
25 Repeating the question and hint, and generating the SQL with Recursive Divide-and-Conquer.
26 **Question**: How many Thai restaurants can be found in San Pablo Ave, Albany?
27 **Hint**: Thai restaurant refers to food_type = ’thai’; San Pablo Ave Albany refers to

street_name = ’san pablo ave’ AND T1.city = ’albany’
28
29 **1. Divide and Conquer:**
30
31 * **Main Question:** How many Thai restaurants can be found in San Pablo Ave, Albany?
32 * **Analysis:** The question asks for a count of restaurants, so we’ll use ‘COUNT()‘ for

that. The count should include only Thai restaurants, which we can identify using the ‘
food_type‘ column in the ‘generalinfo‘ table. The location "San Pablo Ave, Albany" spans
two columns (‘street_name‘ and ‘city‘) in the ‘location‘ table, requiring us to join

these two tables.
33 * **Pseudo SQL:** SELECT COUNT(‘T1‘.‘id_restaurant‘) FROM ‘generalinfo‘ AS ‘T1‘ INNER JOIN

‘location‘ AS ‘T2‘ ON ‘T1‘.‘id_restaurant‘ = ‘T2‘.‘id_restaurant‘ WHERE <Thai
restaurant> AND <in San Pablo Ave, Albany>

34
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35 * **Sub-question 1:** Thai restaurant
36 * **Analysis:** This is a straightforward filter on the ‘generalinfo‘ table using the

‘food_type‘ column.
37 * **Pseudo SQL:** ‘T1‘.‘food_type‘ = ’thai’
38
39 * **Sub-question 2:** in San Pablo Ave, Albany
40 * **Analysis:** This location information is spread across two columns in the ‘

location‘ table. We need to combine these conditions with an "AND" operator to ensure
both are met.

41 * **Pseudo SQL:** ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’
42
43 **2. Assembling SQL:**
44
45 * **Sub-question 1 (Thai restaurant):**
46 * **SQL:** ‘T1‘.‘food_type‘ = ’thai’
47
48 * **Sub-question 2 (in San Pablo Ave, Albany):**
49 * **SQL:** ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’
50
51 * **Main Question (count of restaurants):**
52 * **SQL:** SELECT COUNT(‘T1‘.‘id_restaurant‘) FROM ‘generalinfo‘ AS ‘T1‘ INNER JOIN ‘

location‘ AS ‘T2‘ ON ‘T1‘.‘id_restaurant‘ = ‘T2‘.‘id_restaurant‘ WHERE ‘T1‘.‘food_type‘ =
’thai’ AND ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’

53
54 **3. Simplification and Optimization:**
55
56 * The SQL query from step 2 is already quite efficient. We’ve used ‘INNER JOIN‘ to combine the

tables based on their relationship, and the ‘WHERE‘ clause clearly defines our filtering
criteria. There’s no need for nested queries or complex sub-selections in this case.

57
58 **Final Optimized SQL Query:**
59
60 <FINAL_ANSWER>
61 SELECT COUNT(T1.id_restaurant) FROM generalinfo AS T1 INNER JOIN location AS T2 ON T1.

id_restaurant = T2.id_restaurant WHERE T1.food_type = ’thai’ AND T1.city = ’albany’ AND
T2.street_name = ’san pablo ave’

62 </FINAL_ANSWER>

B.2 IMPLEMENTATION DETAILS OF THE INFILLING BASELINE

Infilling is a technique of generating the intermediate outputs given both input queries and the
ground-truth answer – this is used as a baseline in Tables 1 and 3 where we utilize all available
labeled data in the context. Concretely, we use the following prompt adapted from Hu et al. (2023)
to generate the intermediate rationales.

1 You will be given a question and its final, ground-truth correct answer.
2 Given the question and the answer, generate the step-by-step reasoning steps that led to the

correct answer. Write your intermediate reasoning steps (but NOT the final answer)
leading to the final answer between <answer> and </answer>.

3
4 Question: {{ question }}
5 Answer: {{ target }}
6 Steps: {{ llm()) }}

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 ABLATION AND SENSITIVITY STUDIES

Importance of Bayesian optimization. To ablate BRIDGE, in Table 6 and Table 5, we compare
against a simplified variant of BRIDGE with BO replaced with random search consuming the same
evaluation budget (32 per stage) – we find that while random search is a remarkably strong baseline,
BO nevertheless outperformed it consistently at all stages of the BRIDGE pipeline.

Comparison to and combination with heuristic demonstration selection. An alternative to it-
eratively optimize the demonstrations in the “Optimize” step is using heuristics for demonstration
selection which may incur a lower computational cost as we no longer have to repeatedly evaluate
on the labeled validation set m times. In this section, we study two representative demonstration
selection techniques: retrieval based on similarity in the embedding space and diversity, and we
both study them as standalone alternative to the full BRIDGE pipeline and, given that demonstration
selection is not the only component of the BRIDGE framework, it is also straightforward to combine
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Table 5: Comparison between BRIDGE with BO (BRIDGE-BO) and BRIDGE with random search
(BRIDGE-RS) using gemini-1.5-flash-001 on BBH tasks. The BRIDGE-BO results are lifted
from Table 3, and the last row denotes the average improvement due to the use of BO over RS at the
milestone in the progression of BRIDGE. Refers to captions of Table 1 for additional explanations.

Tasks BRIDGE-RS BRIDGE-BO
# Iterations 1O 1G 2O 2G 3O 1O 1G 2O 2G 3O

causal judgement 59.32.0 66.71.6 67.71.5 63.01.1 64.01.6 61.32.7 66.02.0 63.31.5 65.01.6 65.31.5
date understanding 84.81.3 90.50.5 93.30.4 93.00.7 94.50.8 85.01.3 90.50.5 91.50.4 90.80.7 92.50.8
disambiguation qa 73.81.3 74.51.1 74.01.2 75.30.8 70.51.1 77.51.3 79.01.1 77.51.2 76.30.8 74.31.1
dyck languages 64.51.5 62.53.6 65.54.2 64.81.1 68.02.5 63.32.0 62.01.7 64.51.8 62.82.4 61.83.8
formal fallacies 77.31.1 75.02.6 74.51.7 77.51.7 78.32.5 78.31.3 77.31.5 75.51.7 78.31.8 76.30.8
geometric shapes 88.53.8 93.33.0 94.52.1 98.00.0 95.31.9 93.82.5 94.04.2 95.51.1 97.00.0 98.00.0
hyperbaton 94.00.7 94.30.4 95.00.7 95.00.7 88.81.5 86.57.6 95.51.1 95.80.8 94.80.4 93.31.5
logical deduction (7) 62.83.3 54.52.2 67.81.9 64.02.6 66.81.9 61.85.1 57.51.1 70.50.9 66.51.1 75.00.7
movie recommendation 68.54.0 75.32.6 72.51.7 77.51.3 77.51.8 70.32.3 73.32.3 77.31.5 78.82.0 72.83.2
multistep arithmetic two 82.50.5 92.31.3 95.01.4 89.51.5 92.52.6 96.32.3 96.80.4 97.80.4 94.80.8 95.80.4
object counting 92.01.2 92.51.5 92.51.1 93.00.7 92.31.1 92.81.9 93.82.3 95.50.5 93.01.2 93.80.4
ruin names 89.01.2 88.00.7 88.02.4 87.01.2 84.51.1 89.30.4 89.30.8 87.01.2 90.30.8 90.01.2
salient translation error detection 66.32.8 69.32.5 67.02.6 68.51.8 68.82.1 62.80.8 71.00.7 69.82.0 69.00.7 67.30.4
snarks 87.23.0 90.61.2 88.91.7 93.41.5 91.01.6 88.92.0 89.91.8 89.60.7 90.60.6 83.73.5
sports understanding 96.51.1 96.30.4 97.30.4 95.80.4 96.80.8 93.31.1 95.30.4 91.80.4 95.01.2 95.00.0
tracking shuffled objects (7) 98.30.8 89.50.9 96.51.1 92.32.4 98.51.5 98.00.7 93.82.2 98.00.0 97.80.4 97.50.5

Average 80.31 81.55 83.11 82.98 82.97 81.61 82.79 83.79 83.77 83.25
∆(BO - RS) - - - - - +1.30 +1.24 +0.68 +0.79 +0.28

Table 6: Comparison between BRIDGE with BO (BRIDGE-BO) and BRIDGE with random search
(BRIDGE-RS) using gemini-1.5-pro-001 on BBH tasks. The BRIDGE-BO results are lifted
from Table 1, and the last row denotes the average improvement due to the use of BO over RS at the
milestone in the progression of BRIDGE. Refers to captions of Table 1 for additional explanations.

Tasks BRIDGE-RS BRIDGE-BO
# Iterations 1O 1G 2O 2G 3O 1O 1G 2O 2G 3O

causal judgement 66.23.0 68.52.0 70.22.4 69.52.4 70.82.2 68.31.5 62.71.6 59.71.5 72.00.0 70.02.0
date understanding 88.42.3 94.31.0 94.11.2 90.33.3 94.31.3 92.21.5 97.00.7 94.81.9 95.01.2 95.51.8
disambiguation qa 75.52.1 79.02.9 77.41.2 80.62.3 78.44.0 71.82.4 77.53.6 80.51.8 81.32.9 78.81.5
dyck languages 56.95.4 59.64.9 67.54.3 64.94.0 70.42.7 49.22.7 76.23.8 80.02.7 77.51.1 76.83.8
formal fallacies 87.41.5 86.82.3 90.82.1 88.52.2 88.82.2 86.02.1 85.02.5 90.82.3 90.82.8 88.22.3
geometric shapes 77.83.2 82.14.0 81.82.5 86.53.8 85.52.4 78.52.1 82.53.6 89.23.8 92.31.1 89.20.8
hyperbaton 94.31.6 93.12.4 94.21.3 94.91.5 94.01.2 96.50.9 94.21.5 94.82.8 96.50.5 97.20.4
logical deduction (7) 70.93.3 68.32.7 66.62.5 71.93.3 68.92.1 70.21.5 70.84.5 71.73.7 71.51.8 69.22.2
movie recommendation 63.53.2 67.41.8 67.42.1 64.62.3 63.42.9 67.01.2 69.50.5 69.33.1 72.81.8 67.01.2
multistep arithmetic two 97.31.1 97.50.7 96.90.8 96.11.5 97.90.3 96.20.8 94.51.1 97.00.7 98.00.7 96.81.8
object counting 95.32.4 98.11.1 97.31.7 97.31.9 95.42.3 96.20.4 96.01.9 94.51.1 94.20.4 95.00.7
ruin names 86.61.7 86.51.9 88.91.8 89.91.2 87.11.7 90.81.1 88.81.7 89.21.5 88.82.4 90.30.8
salient translation error detection 71.13.2 73.41.6 73.92.2 71.91.5 70.81.6 68.80.8 71.00.7 69.52.2 74.00.7 74.51.1
snarks 93.81.6 95.31.4 96.01.6 96.01.1 95.61.8 93.43.0 95.80.0 95.11.6 96.91.5 97.61.8
sports understanding 93.51.7 94.10.6 95.10.9 95.90.9 96.01.7 92.81.9 97.01.2 96.20.8 95.80.4 95.80.8
tracking shuffled objects (7) 92.43.8 94.41.2 99.90.3 98.40.9 100.00.0 95.80.4 95.01.2 100.00.0 97.00.7 99.50.5

Average 81.86 83.64 84.86 84.81 84.82 82.11 84.61 85.77 87.13 86.33
∆(BO - RS) - - - - - +0.25 +0.97 +0.91 +2.32 +1.51

them with BRIDGE by swapping the BO/random search component in the “Optimize” step with these
heuristics. Below we describe the implementation details of both techniques:

• Retrieval: One popular demonstration selection method is via retrieval (Rubin et al., 2022;
Das et al., 2021). Concretely, we may either use an off-the-shelf pretrained embedding
model (we use the latest Gecko embedding (Lee et al., 2024) for this purpose) or tune
a customized retriever to obtain the nearest examples from an example store, typically
by computing the vector embedding for each of the test queries and each of the cached
demonstrations followed by a maximum inner product search (MIPS) to retrieve the top-k
demonstrations based on cosine similarity. Unlike the optimization-based approach where
the number of examples in the context can be determined automatically, k here is a key
hyperparameter that needs to be set by the user. In this case, consider 3 different k val-
ues: k = {10, 25} where the number of examples is fixed, or k = All, where we use all
available, correctly predicted examples – this essentially uses the same set of examples as
Reinforced ICL but in a specific, input-dependent order: the examples are sorted in an as-
cending order based on the cosine similarity between the embedding of the test input and
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the example store and the most similar examples appears as the final demonstration that is
directly concatenated to the test input.

• Diversity: Another popular learning-free demonstration selection method is by selecting
diverse examples. While multiple ways to measure diversity exist, here we use the tech-
nique similar to the one used in Zhang et al. (2023) by 1) computing the embedding of
all the available demonstrations and 2) run the k-means clustering algorithm and select the
k examples whose vector embeddings are nearest to each of the k centroids. Unlike re-
trieval, there is no input dependency as the clustering algorithm does not depend on the
input query but similar to retrieval, k here is also a hyperparameter to be set and we again
use k = {10, 25}. Note that we omit k = All, as otherwise the number of clusters would
be equal to the number of examples and we would be essentially be running Reinforced
ICL with all available examples as demonstrations.

Since these demonstration selection baselines purely perform selection (i.e., the “optimize” step of
BRIDGE) but neither the subsequent generations nor the iterative process, we first compare the BO
demonstration selection (i.e., BRIDGE at Step 1O) against these baselines and we show the results
in Table 8. Overall, we find that “Diversity” and “Retrieval”, regardless of their hyperparame-
ters, perform on par or slightly worse than Reinforced ICL. While the hyperparameter choice can
sometimes lead to significant differences on a per-task level, we also observe that when aggregated
across the tasks, it does not lead to significant differences. On the other hand, the BO selection
in BRIDGE outperform all these baselines. We believe there are two possible explanations leading
to this out-performance. Firstly, while the heuristic-based methods have lower computational cost,
key hyperparameters, such as the number of demonstrations to retrieve, need to be determined a-
priori. However, as we have shown in the main text at, for example, Fig. 4, the optimal number of
demonstrations can be highly task-specific, and while iterative optimization-based selection incurs
a higher cost, it is also capable of optimizing the number of demonstrations. Secondly, a key find-
ing we have in Sec. 2 is that not all examples are equally helpful and removing some examples as
in-context demonstrations can sometimes lead to performance improvement during the “Optimize”
stage. Again, while the heuristic-based approaches do not necessarily use all demonstrations, it
makes the selection choice purely from heuristic metric (e.g., similarity to test query) rather than
from a validation metric, and hence is incapable of removing these potentially “harmful” demon-
strations from the pool of candidate examples.

However, beyond a simple comparison between a single stage of BRIDGE against these methods,
it is also worth noting that BRIDGE is more than a demonstration selection method. As such, it is
also possible to combine these methods with BRIDGE by using them as a drop-in replacement of
the BO-based demonstration selection, effectively changing the implementation of the “Optimize”
step only. To test this, we test two other variants of BRIDGE, named BRIDGE-RETRIEVAL and
BRIDGE-DIVERSITY, where we replace the “Optimize” step in each round with the heuristic-driven
demonstration selection mentioned above and the aggregated results are shown in Table 9 whereas
the task-specific breakdown of the best method in Table 10 – for conciseness, we only show the
per-task breakdown for the best BRIDGE variant (BRIDGE-RETRIEVAL using all examples), which
show that BRIDGE also works well with alternative demonstration selection method, although the
advantage of optimization-based selection as shown in Table 8 carries over when we use the selection
as a component in the overall BRIDGE pipeline.

Additional comparisons against iterative reinforced ICL in a restricted setup. To provide fur-
ther evidence emphasizing the need for the “Optimize” step and to make sure that the additional
gain of BRIDGE does not simply comes from the fact that BRIDGE may take advantage of more
correctly predicted demonstrations in the validation set due to repeated sampling in the later iter-
ations, we conduct a further experiment comparing BRIDGE and iterative reinforced ICL, but in a
restricted setup with the support set restricted to the subset of the train set where the model pre-
dicted correctly initially, instead of the entire train set. In other words, in subsequent iterations of
BRIDGE and iterative reinforced ICL, both methods are restricted to make use of the subset of train
set initially predicted correctly only as examples; we term these approaches “iterative reinforced ICL
(restricted)” and “BRIDGE (restricted)” respectively, and we show the results in Table 7. On a high
level, we found the result provides further evidence on the importance of selection: Iterative Reinf
ICL (restricted) without the ”optimize” step actually did not meaningfully improve over standard
Reinf ICL (average accuracy: 79.6%); BRIDGE (restricted), however, still meaningfully improves
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Table 7: Comparison of BRIDGE and iterative reinforced ICL in the restricted setup where the
methods may only use the subset of the train set that the model initially predicted correctly. Experi-
ments performed on gemini-1.5-pro-001.

Tasks Restricted Iterative Restricted BRIDGE
Reinf. (Ours)

# Iterations 1 2 1O 1G 2O 2G 3O

causal judgement 69.71.1 65.01.5 67.72.7 65.01.1 66.01.5 67.01.1 65.02.0
date understanding 92.51.5 94.01.0 92.51.7 93.01.6 92.51.1 93.51.7 89.31.5
disambiguation qa 74.00.7 75.83.0 70.52.7 72.31.5 75.53.2 71.82.4 76.53.8
dyck languages 59.06.5 53.02.9 55.05.2 52.35.4 56.53.4 57.51.7 60.33.8
formal fallacies 86.83.3 90.52.2 85.31.5 90.51.1 83.03.2 83.50.9 85.52.3
geometric shapes 75.31.8 78.33.1 75.02.6 80.54.5 81.34.5 85.02.6 80.02.6
hyperbaton 85.34.0 84.53.4 94.01.6 95.80.8 91.81.3 93.02.6 97.00.7
logical deduction (7) 67.51.8 69.02.5 69.52.7 71.53.2 66.82.1 70.52.3 70.82.2
movie recommendation 64.82.7 63.32.2 68.33.3 62.04.1 63.01.2 63.31.3 61.82.2
multistep arithmetic two 95.01.2 95.50.5 97.80.8 95.30.8 95.51.8 95.81.3 95.81.5
object counting 94.52.9 94.52.1 96.01.6 94.80.8 94.31.3 96.00.7 96.31.1
ruin names 87.31.3 88.80.8 91.50.9 89.51.8 88.52.1 90.00.0 89.81.8
salient translation 68.02.1 67.31.5 70.02.2 69.83.3 72.82.4 73.52.7 75.82.2
snarks 93.81.2 93.82.1 93.82.3 95.51.2 95.10.7 95.50.6 94.82.1
sports understanding 94.01.4 95.01.0 92.81.1 95.51.5 97.00.0 96.00.7 94.80.8
tracking shuffled objects (7) 66.83.1 67.31.9 99.00.0 96.31.5 98.50.5 97.51.5 100.00.0

Average 79.62 79.70 82.40 82.45 82.37 83.08 83.32

with the subsequent optimize and generate steps, although the gain is less than the original BRIDGE
which utilizes more examples via the larger train set support.

Table 8: Comparison between BRIDGE with (one step of demonstration optimization only) against
Retrieval, Diversity and Reinforced ICL baselines using gemini-1.5-pro-001. Note that the
BRIDGE (1O) and Reinforced ICL results are taken from Table 1.

Tasks Diversity Retrieval Reinf. BRIDGE
Details / hyperparams k = 10 k = 25 k = 10 k = 25 All ICL 1O

causal judgement 66.71.6 66.32.4 63.01.5 67.72.4 66.72.5 66.34.8 68.31.5
date understanding 93.21.3 93.02.7 87.03.5 93.31.5 93.01.9 88.82.5 92.21.5
disambiguation qa 72.23.0 77.80.8 76.50.9 71.20.8 77.51.1 76.82.4 71.82.4
dyck languages 54.015.7 38.52.6 39.54.4 33.23.1 47.85.2 55.53.6 49.22.7
formal fallacies 85.51.5 85.01.9 88.50.5 88.23.0 84.21.9 86.21.1 86.02.1
geometric shapes 71.24.4 69.31.6 69.82.8 68.54.2 79.23.3 80.22.8 78.52.1
hyperbaton 95.01.2 92.22.5 96.51.1 97.21.3 95.21.9 90.21.1 96.50.9
logical deduction (7) 65.83.0 67.54.4 69.24.4 66.32.9 67.32.4 65.83.5 70.21.5
movie recommendation 67.32.6 65.02.5 68.53.4 68.01.4 67.33.3 65.21.6 67.01.2
multistep arithmetic two 92.81.3 96.20.4 95.50.9 94.81.6 94.31.9 96.50.5 96.20.8
object counting 95.81.1 95.20.8 97.22.4 95.21.9 91.22.2 95.50.9 96.20.4
ruin names 87.81.3 89.81.3 87.80.8 91.52.1 90.52.2 89.81.9 90.81.1
salient translation error detection 68.52.3 69.52.1 68.23.3 58.22.8 61.02.1 69.01.6 68.80.8
snarks 94.82.3 96.21.2 94.41.7 97.61.2 95.51.2 92.73.2 93.43.0
sports understanding 95.01.2 95.81.1 95.50.9 95.80.8 95.01.9 93.01.4 92.81.9
tracking shuffled objects (7) 55.84.5 56.85.5 60.24.3 67.89.7 60.22.4 62.34.2 95.80.4

Average 78.83 78.38 78.59 78.41 79.12 79.61 81.61

Table 9: Average test accuracy on BBH tasks using gemini-1.5-pro-001 by combining
BRIDGE with different variants of the heuristic demonstration selection methods. Bold text in this
table shows the best algorithm variant at each round of BRIDGE.

Method 1O 1G 2O 2G 3O

BRIDGE-DIVERSITY (k = 10) 77.10 79.47 78.58 81.89 79.50
BRIDGE-DIVERSITY (k = 25) 78.15 80.86 78.74 80.63 79.68
BRIDGE-NEAREST (k = 10) 79.07 81.80 81.40 81.35 80.39
BRIDGE-NEAREST (k = 25) 78.36 79.49 80.16 81.09 80.10
BRIDGE-NEAREST (All) 79.65 82.91 82.01 83.20 84.14
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Table 10: Task-specific test accuracy on BBH tasks using gemini-1.5-pro-001 with BRIDGE-
NEAREST (All) (best method from Table 9).

Task 1O 1G 2O 2G 3O

causal judgement 73.01.1 62.31.5 64.70.7 65.72.2 63.32.7
date understanding 94.31.3 92.01.6 95.01.4 92.22.3 92.80.4
disambiguation qa 76.80.4 75.85.0 72.01.0 82.02.7 82.80.8
dyck languages 58.82.3 75.04.3 75.03.3 78.53.0 82.01.2
formal fallacies 84.20.8 88.51.7 90.50.9 89.51.8 90.00.7
geometric shapes 75.82.5 86.23.3 79.80.8 84.02.1 84.51.1
hyperbaton 96.00.7 93.82.3 97.00.0 92.53.2 98.80.4
logical deduction seven objects 65.83.7 73.82.3 68.03.7 70.01.9 71.21.8
movie recommendation 67.01.2 69.51.7 63.21.1 70.02.5 73.80.8
multistep arithmetic two 92.50.5 97.01.2 96.70.8 97.50.9 94.00.0
object counting 91.81.5 95.01.2 97.00.7 96.51.7 100.00.0
ruin names 88.80.4 92.00.7 88.52.1 89.20.8 88.21.1
salient translation error detection 63.21.5 70.01.6 70.20.4 70.01.2 70.50.5
snarks 95.81.7 94.81.2 93.71.2 96.51.2 95.80.0
sports understanding 94.00.7 96.51.5 93.80.4 95.51.5 94.20.4
tracking shuffled objects seven objects 56.81.6 64.50.9 67.01.0 61.54.4 64.21.6

Average 79.65 82.91 82.01 83.20 84.14

C.2 NUMBER OF EXAMPLES

We show the number of examples used for each experiment corresponding to Table 1 in Table 11.

Table 11: Number of examples for each experiment corresponding to Table 1
(gemini-1.5-pro-001 on BBH tasks). Note that the “All” columns always use all 75
examples provided.

Tasks Reinf. Iter. BRIDGE-BO
ICL Reinf.

# Iterations 1 2 3 1O 1G 2O 2G 3O

causal judgement 36 40 43 11 43 4 39 39
date understanding 61 67 72 57 73 44 73 57
disambiguation qa 42 66 69 28 61 60 68 65
dyck languages 15 40 52 9 45 42 59 20
formal fallacies 60 69 69 2 63 30 67 57
geometric shapes 42 59 68 40 59 19 71 70
hyperbaton 70 75 75 4 75 69 75 59
logical deduction seven objects 46 60 62 11 54 51 64 61
movie recommendation 42 53 54 39 49 36 51 41
multistep arithmetic two 65 74 74 38 74 28 72 38
object counting 65 75 75 60 75 48 75 14
ruin names 58 70 71 51 70 69 69 21
salient translation error detection 44 59 60 13 58 7 59 41
snarks 47 50 51 19 49 5 48 39
sports understanding 64 75 75 52 75 74 74 68
tracking shuffled objects seven objects 58 60 53 2 75 1 75 22

Average 50.94 62.00 63.94 27.25 62.38 36.69 64.94 44.50

C.3 ADDITIONAL VISUALIZATIONS

In this section, we show analysis similar to Fig. 4 on tasks not represented in the figure of the main
text.

C.4 USING BRIDGE FOR LOW-RESOURCE TRANSLATION

While we have primarily considered the reinforced ICL setup suitable for reasoning and general
problem-solving tasks, it is worth noting that the BRIDGE framework may also generalize to other
practical settings that benefit from many-shot ICL with some modification on the “optimize” and the
“generate” steps. In this section, we conduct a preliminary analysis on the applicability of BRIDGE
in the context of machine translation (MT) for low-resource languages.
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Figure 5: Additional visualization of the task performance at different rounds. Note that in most
datasets, additional rounds of BRIDGE led to performance improvement, and some of the exceptions
(e.g., multi arithmetric two) are possibly caused by visualization artefacts of the extremely
small performance variation as shown by the small y-axis ranges.

As noted in Agarwal et al. (2024) and Reid et al. (2024), low-resource machine translation (MT)
is one of the task types where many-shot in-context learning (ICL) has demonstrated remarkable
performance. In these tasks, there is often a nearly monotonic improvement in translation quality
as more source-target language pairs are incorporated into the context – as a notable exception to
our observations in Sec. 2 that primarily involve reasoning tasks, in low resource MT, we often
observe “more is better” given the information-dense nature of translation tasks – indeed, for trans-
lation tasks, barring glaring human errors in the annotation process, the provided data is generally
assumed to be of high quality and problems like false positive in model-generated reasoning paths
in reasoning tasks are generally negligible for tasks like low resource MT with high quality anno-
tated data. However, in low-resource languages, the model’s inherent knowledge is often weak or
non-existent due to the lack of exposure to target languages during pre-training or fine-tuning, which
can lead to a bottleneck in data availability especially for extremely low-resource languages, where
1) the model lacks zero-shot translation abilities due to insufficient exposure to target languages,
and 2) the scarcity of annotated data becomes a critical limiting factor – to address these, previous
works often attempt to augment ground-truth translation data with model-synthesized translations
(Han et al., 2021; Patel et al., 2022).

26



Published as a conference paper at ICLR 2025

In this section, along this line of work, we investigate the applicability of BRIDGE as a method to
iteratively improve the model-synthesized translation so that they can act as more effective augmen-
tations to the scarce ground-truth data. Specifically, we assume the following in our setup:

• Availability of some ground-truth source-target sentence pairs – this pair will both act as
the train set from which ground-truth examples are generated and also as the validation set
for machine-generated translations.

• Abundant source language text – this is almost always true. For example, if we are inter-
ested in translating from English to a low-resource language, it is extremely easy to obtain
abundant text in English whereas the difficulty is to obtain the corresponding tranlsaiton in
the target language.

• LLM for “pseudo-labelling” – we assume the availability of a (strong) LLM that can be
queried to generate synthesized data.

Algorithm 3 BRIDGE with pseudo-labelling.
1: Input: train set D, unlabeled set with source language sentence, U , number of iteration rounds K ∈ N

(outer-loop), evaluation budget for BO per iteration neval (inner-loop), Generator model used to synthesize
examplesMg .

2: Output: Optimized set of model-synthesized examples E∗.
3: Partition D into two disjoint sets Dt and Dv via random sampling.
4: [Generate] Generate the pool of initial examples E0 by predicting Mg on the unlabeled set, using the

entire train set D as the demonstrations in the context: E0 ←Mg(U|D).
5: for k ∈ {1, ...,K} (Outer loop) do
6: [Optimize] Run Bayesian optimization (calling subroutine Algorithm 2 on the Dv to obtain e∗k ←

BayesOpt(neval=neval, E=Ek).
7: [Generate] Re-generate examples Ek by re-predicting the LLM on the unlabeled set, but with the

optimized examples e∗k from the previous step and Dt as demonstrations; the {inputs, output}-pairs are
concatenated to form the new set of examples Ek for the next [Optimize] step.

8: end for
9: return Optimized example set E∗ after K rounds.

To approach the problem, we propose to retain the high-level framework of BRIDGE but modify
the “optimize” and “generate” steps to accommodate the low-resource MT setup. With reference
to Algorithm 3 where we have marked the key differences in blue, the main difference lies in the
“generate” step: instead of generating examples with model-generated reasoning paths in the case
presented in the main text, here we synthesized examples on the unlabeled set U that we assumed
to be available. Since we no longer have access to the ground-truth translation of the sentences in
U , we optimize for the optimal subset e∗ by evaluating different combinations of the synthesized
examples on the partition of the labeled dataset Ev .

To test BRIDGE on the MT setup, we consider the English-Bemba translation task in the Flores
dataset (Guzmán et al., 2019) that was also considered in Agarwal et al. (2024). We assume the
access to 100 labeled examples asD and 50 unlabeled examples U , and hold out another 400 samples
as the test set. We use Gemini Flash as the target model and Gemini Pro as the generator model
in Algorithm 3, and we show the result in Table 12. Overall, we observe that running iterative
optimization also improves performance on this task, both exemplified by improvement on the test
and validation chrf score, although it seems that additional optimization round in this case led to a
small performance degradation. While a more comprehensive evaluation is required, we believe the
preliminary result is promising for future effort on this direction.

C.5 EXPERIMENTS ON ADDITIONAL MODELS

In this section, we report BBH results on two additional models: Mis-
tral Large (mistral-large-2407) (Table 13), Mistral Nemo (Table 14)
(mistral-nemo-instruct-2407) (Jiang et al., 2023) and Claude 3.5 Sonnet (Anthropic,
2024) (Table 15). For both models, we use the versions served on Google Cloud Vertex AI
platform. We find that while the base capabilities of the tested models differ slightly (e.g., Claude
3.5 Sonnet has a higher accuracy across the board), the high-level findings primarily derived from
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Table 12: Test chrf score of gemini-1.5-flash-001. “Gold-only” refers to the result obtained
by only using the 100 labeled examples in the context; “All” refers to the result with 100 labeled
examples + 50 initially generated examples from gemini-1.5-pro-001. Refers to captions of
Table 1 for additional explanations.

Tasks Gold-only All BRIDGE-MT
# Iterations - 0 1O 1G 2O 2G 3O

en bem 37.78 38.46 38.33 39.11 39.30 38.90 39.29

Table 13: Test accuracy of Mistral Large (mistral-large-2407) on BBH tasks. Refer to
captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

# Iterations 0 1 2 1O 1G 2O 2G 3O

causal judgement 69.3 66.7 72.0 68.0 65.3 69.3 64.0 73.3
date understanding 92.0 92.0 96.0 93.0 94.0 95.0 92.0 96.0
disambiguation qa 82.0 82.0 79.0 81.0 87.0 87.0 84.0 86.0
dyck language 56.0 62.0 56.0 70.0 59.0 70.0 63.0 71.0
formal fallacies 90.0 82.0 86.0 89.0 89.0 90.0 83.0 85.0
geometric shapes 87.0 80.0 93.0 88.0 85.0 95.0 71.0 94.0
hyperbaton 99.0 96.0 100.0 100.0 98.0 100.0 100.0 99.0
logical deduction (7) 81.0 85.0 76.0 82.0 88.0 90.0 86.0 92.0
movie recommendation 74.0 71.0 74.0 77.0 66.0 78.0 80.0 79.0
multistep arithmetic two 88.0 92.0 93.0 91.0 89.0 88.0 86.0 93.0
object counting 99.0 99.0 99.0 98.0 98.0 98.0 100.0 98.0
ruin names 88.0 90.0 92.0 86.0 89.0 87.0 89.0 89.0
salient translation error detection 66.0 68.0 70.0 78.0 69.0 75.0 72.0 73.0
snarks 95.8 95.8 97.2 94.4 95.8 95.8 95.8 93.1
sports understanding 94.0 97.0 98.0 93.0 95.0 96.0 97.0 96.0
tracking shuffled objects (7) 96.0 68.0 100.0 100.0 73.0 100.0 57.0 100.0
Average 84.82 83.22 87.08 86.65 83.70 88.07 82.80 88.52

Table 14: Test accuracy of Mistral NeMo (mistral-nemo) on BBH tasks. Refer to captions of
Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

# Iterations 0 1 2 1O 1G 2O 2G 3O

causal judgement 53.3 65.3 62.7 60.0 58.7 62.7 64.0 64.0
date understanding 66.0 71.0 68.0 69.0 69.0 78.0 70.0 75.0
disambiguation qa 58.0 60.0 64.0 63.0 60.0 61.0 66.0 72.0
dyck languages 17.0 21.0 22.0 18.0 27.0 26.0 22.0 30.0
formal fallacies 64.0 55.0 53.0 63.0 59.0 52.0 51.0 59.0
geometric shapes 65.0 65.0 69.0 72.0 72.0 60.0 69.0 68.0
hyperbaton 77.0 72.0 65.0 80.0 81.0 83.0 75.0 86.0
logical deduction seven objects 47.0 54.0 53.0 45.0 49.0 62.0 44.0 51.0
movie recommendation 59.0 45.0 54.0 68.0 61.0 63.0 64.0 70.0
multistep arithmetic two 36.0 50.0 20.0 47.0 20.0 66.0 12.0 77.0
object counting 81.0 81.0 82.0 83.0 79.0 85.0 75.0 87.0
ruin names 69.0 60.0 57.0 76.0 57.0 72.0 57.0 70.0
salient translation error detection 47.0 47.0 45.0 59.0 49.0 53.0 49.0 48.0
snarks 69.4 76.4 79.2 72.2 75.0 72.2 73.6 77.8
sports understanding 86.0 75.0 69.0 91.0 72.0 91.0 74.0 93.0
tracking shuffled objects seven objects 70.0 69.0 70.0 91.0 88.0 94.0 81.0 93.0

Average 60.30 60.42 58.30 66.08 61.04 67.56 59.16 70.05

Gemini results in the main text largely hold. On Claude 3.5 Sonnet, we observe an almost identical
high-level trend to Gemini, where each round of BRIDGE incrementally improves performance up
to 2G. On the other hand, while Mistral models seemingly benefit less from scaling demonstrations
especially in the smaller Mistral NeMo (e.g., sometimes the generate step leads to drops in
performance) directly, the improved quality of the generated demonstrations still enables successive
optimize step to improve on the preceding round, demonstrating the effectiveness of BRIDGE even
when the model does not benefit from scaling examples directly.

C.6 TRANSFERRING LEARNED DEMONSTRATIONS FROM GSM-HARD TO GSM-8K

In this section, we investigate whether the BRIDGE-discovered demonstrations can transfer across
related but distinct datasets. Specifically, we investigate the extent to which the demonstrations
found on GSM-Hard (Table 2) generalize to the original GSM-8K and we show the result in Ta-
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Table 15: Test accuracy of Claude 3.5 Sonnet (claude-3-5-sonnet@20240620) on BBH
tasks. Refer to captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

# Iterations 0 1 2 1O 1G 2O 2G 3O

causal judgement 64.0 68.0 65.3 62.7 69.3 73.3 70.7 65.3
date understanding 94.0 95.0 96.0 97.0 94.0 95.0 96.0 95.0
disambiguation qa 73.0 82.0 79.0 81.0 87.0 87.0 84.0 86.0
dyck language 68.0 68.0 65.0 74.0 85.0 90.0 92.0 87.0
formal fallacies 93.0 94.0 97.0 96.0 95.0 98.0 96.0 95.0
geometric shapes 92.0 94.0 98.0 88.0 90.0 85.0 96.0 89.0
hyperbaton 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
logical deduction (7) 92.0 96.0 96.0 89.0 95.0 97.0 91.0 93.0
movie recommendation 87.0 90.0 92.0 89.0 90.0 88.0 93.0 90.0
multistep arithmetic two 99.0 99.0 99.0 99.0 99.0 99.0 100.0 100.0
object counting 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ruin names 93.0 93.0 94.0 91.0 94.0 94.0 92.0 94.0
salient translation error detection 71.0 71.0 73.0 71.0 72.0 73.0 73.0 73.0
snarks 97.2 97.2 97.2 95.8 95.8 98.6 98.6 97.2
sports understanding 92.0 91.0 94.0 93.0 94.0 94.0 93.0 91.0
tracking shuffled objects (7) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 88.45 89.89 90.35 89.16 91.26 92.00 92.20 90.97

ble 16, where we compare the performance of the demonstrations directly transferred from GSM-
Hard at different stages of BRIDGE against directly optimizing on GSM-8K. We find that whereas
the demonstrations generated from (iterative) reinforced ICL led to small deterioration of GSM-8K
performance, we found the transferred demonstrations from BRIDGE led to small improvement even
though the Gemini 1.5 Pro performance on GSM-8K has been rather saturated. While optimizing
directly on GSM-8K unsurprisingly led to the highest performance given that there is no distribution
shift, we also find that the GSM-Hard demonstrations exhibit considerable generalizability.

Table 16: Comparison of the transferred BRIDGE-generated demonstrations on GSM-Hard vs. di-
rectly running BRIDGE on GSM-8K. Runs with performance deteriorations w.r.t. the 0-shot results
are marked in red in the table.

Tasks 0-shot Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

# Iterations - 0 1 2 1O 1G 2O 2G 3O

Direct 91.92 93.81 93.06 92.68 93.81 93.18 94.70 94.19 93.94
Transferred - 90.66 91.79 91.16 93.81 92.55 93.81 93.18 91.16

D COMPUTATIONAL COST ANALYSIS

In this section, we provide a computational cost analysis of BRIDGE. In general, since BRIDGE
consists of multiple rounds of “Optimize” and “Generate” steps, here we analyze each step in detail.

• Optimize: The cost of the “optimize” step depends on the budget allocated (neval in Line
5 of Algorithm 2), which is user-configurable. If we opt for iterative optimization (such
as using Bayesian optimization in the main section of the paper, or random search in App.
C.1), each “optimize” step thus entails neval LLM inferences on the validation set. As
shown in the App. C.1, it is also possible to use non-iterative method based on retrieval
or embedding diversity, in which case each “optimize” step entails a single round of LLM
inferences on the validation set (or the train set, if we use the dataset for both training and
validation).

• Generate: The “generate” step always involves a single round of LLM inferences on the
train set where we simply use the optimized examples from the “optimize” step above as
demonstrations and run inference again on the train set.
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