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Abstract
Supervised machine learning is often applied to identify system dynamics where first principle
methods fail. When combining learning with control methods, probabilistic regression is typically
applied to increase robustness against learning errors. Although this combination of probabilis-
tic regression and control theory allows to formulate performance guarantees for many control
techniques, the bounds are usually conservative, and cannot be employed for efficient control pa-
rameter tuning. Therefore, we reformulate the parameter tuning problem using robust optimization
with performance constraints based on Lyapunov theory. By relaxing the problem through scenario
optimization, we derive a with high probability optimal method for control parameter tuning. We
demonstrate its flexibility and efficiency on parameter tuning problems for a feedback linearizing
and a computed torque controller.
Keywords: data-driven control, control parameter tuning, scenario optimization, probabilistic ma-
chine learning, safe learning-based control

1. Introduction

Due to its flexibility, supervised machine learning is increasingly used to model systems that are
difficult to describe using first principle methods. However, these regression methods often suffer
from modeling errors, e.g., because of a lack of training data or measurement noise. Deterministic
regression techniques such as feed forward neural networks (Goodfellow et al., 2016) ignore this
issue, which has prevented their widespread use in control applications. Therefore, incorporating
the uncertainty of learned models is a crucial component in model-based learning control (Chua
et al., 2018), and methods such as Gaussian process regression (Rasmussen and Williams, 2006),
Bayesian neural networks (Depeweg et al., 2017) or ensembles of probabilistic neural networks
(Lakshminarayanan et al., 2017) have gained growing attention in system identification for control.

Control laws for these probabilistic models are often designed using model-based reinforce-
ment learning (Sutton and Barto, 2017), which uses interactions with the real system to learn the
probabilistic model and computes controllers to achieve a specified goal. While many approaches
addressing safety (Berkenkamp et al., 2017; Westenbroek et al., 2019) and sample-efficiency (Chua
et al., 2018) have been proposed, guarantees on the achievable performance with a specific controller
have received little attention. Bayesian optimization (Brochu et al., 2010) is a method which is of-
ten used in model-free reinforcement learning problems for tuning control parameters (Marco et al.,
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2016; Duivenvoorden et al., 2017; Schillinger et al., 2017). These controller tuning approaches typ-
ically consider discrete time systems, aim to actively reduce uncertainty in an iterative process, and
learn the relationship between control parameters and the aggregate cost. Therefore, they provide
very limited information about the predicted stationary tracking error and do not allow any state-
ments about stability. Furthermore, the application of these algorithms in an offline setting can lead
to poor control performance due to the active uncertainty reduction. In contrast to these controller
tuning approaches, continuous-time nonlinear control techniques, such as feedback linearization
and backstepping exhibit inherent robustness against model uncertainties, such that performance
bounds can be guaranteed based on uniform regression error bounds (Berkenkamp and Schoellig,
2015; Umlauft et al., 2017; Beckers et al., 2017; Umlauft et al., 2018; Koller et al., 2018; Capone
and Hirche, 2019). However, uniform error bounds are often conservative (Srinivas et al., 2012;
Chowdhury and Gopalan, 2017; Lederer et al., 2019), leading to a poor choice of control parame-
ters, e.g., exceedingly high gains to achieve performance specifications.

In order to mitigate these issues, we address the problem of computing control parameters for
continuous-time systems, such that performance specifications are satisfied and poor choices of
control parameters are avoided. We approach this problem by formulating it as robust optimization
problem, in which we consider the dynamics in Lyapunov stability-based constraints. Moreover,
poor choices of control parameters are penalized through the objective of the robust optimization.
This ensures the satisfaction of the performance satisfaction while minimizing negative effects of
the control parameter choice. By relaxing this problem using scenario optimization (Campi et al.,
2009, 2015), we develop an efficient and nonconservative method to tune control parameters while
considering probabilistic model uncertainties. We show that the optimality of the derived solution
holds with high probability and demonstrate the efficiency of the method with two examples.

The remainder of this article is structured as follows. In Section 2 we formalize the parameter
tuning problem. The uncertainty-aware scenario control parameter tuning algorithm is derived in
Section 3 and evaluated in Section 4, followed by a conclusion in Section 5.

2. Problem Description

2.1. Formal Problem Statement

Consider a control-affine system ẋ = f(x) + G(x)u with state x ∈ X ⊂ Rdx , control in-
put u ∈ U ⊂ Rdu , unknown function f : Rdx 7→ Rdx and potentially unknown matrix func-
tionG : Rdx 7→ Rdx×du . We make the assumptions detailed in the sequel.

Assumption 1 A prior model f̂(·) of the unknown function f(·) is given and noisy training data

y(n) = f(x(n))− f̂(x(n)) + ω(n), ω(n) ∼ N (0, σ2nIdx) i.i.d. (1)

is available in the form of a training data set D = {(x(n),y(n))}Nn=1.

The assumption of state derivative measurements perturbed by Gaussian noise is commonly used
in learning-based control, and is caused, for example, by numerical differentiation (Umlauft et al.,
2017). We apply probabilistic supervised machine learning to the training data set to obtain a com-
pensation of the model error between the prior model f̂(·) and the true model f(·) in the form of a
predictive probability density function p : Rdx×Rdx 7→ R+. The mean function µ : Rdx 7→ Rdx of
this distribution is typically used to improve the prior model f̂(·), while the probability p(·|·) is used
to define confidence regions. Based on the learned system model, the task is to track a continuously
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differentiable and bounded reference trajectory xref(t), which generates a bounded set Xref = {x ∈
X : x = xref(t), t > 0}. In order to address this task, we employ control laws with the structure

u = φf̂ ,µ(x, ẋ,xref , ẋref) + κθ(x,xref) (2)

with feed forward term φf̂ ,µ : Rdx × Rdx × Rdx × Rdx 7→ Rdu and feedback controller κθ :

Rdx× Rdx 7→ Rdu , which is parameterized by θ ∈ S. This control structure is typically robust
against perturbations and captures many frequently used learning-based control laws, e.g., feedback
linearization (Umlauft et al., 2017; Shi et al., 2019), computed torque control (Beckers et al., 2019),
and backstepping controllers (Capone and Hirche, 2019). Robustness is often formalized using
Lyapunov stability theory, which we employ to define our performance specification as follows:

Assumption 2 The performance specification for the tracking error e = x − xref is expressed
through the stability condition V̇ (e) < 0 for all e ∈ Rdx : ‖e‖ ≤ ē, where V : Rdx → R+ denotes
a given Lyapunov function and ē the prescribed upper tracking error bound.

Although the choice of the Lyapunov function plays a crucial role in the performance specification,
many system structures such as feedback linearizable systems or Euler-Lagrange systems allow a
straightforward definition of V (·), which ensures ultimate boundedness (Umlauft et al., 2017; Beck-
ers et al., 2019; Shi et al., 2019). Therefore, Assumption 2 typically allows a simple and flexible
performance specification. In addition to the specification of the tracking error bound, we want
to consider subordinate control design goals, e.g., avoiding exceedingly high control gains. These
additional design goals are formulated in the following form:

Assumption 3 Subordinate control design goals are expressed through a cost function l : S 7→ R+.

The cost function l(·) allows to penalize control parameters leading to an undesired control behavior
in a straightforward way, while the tracking error is specified in the form of a constraint. Therefore,
the problem lies in finding parameters θ that minimize the cost fuction l(·), but also ensure the
satisfaction of the performance specification in the form of Assumption 2.

2.2. Illustrative Example

In order to illustrate the flexibility of the presented problem formulation, we consider a 2-DoF pla-
nar robotic manipulator. The manipulator dynamics are given by H(q)q̈ +C(q, q̇)q = u, where
q ∈ R2 and q̇ ∈ R2 are the joint angles and the joint angle velocities, respectively, and u ∈ R2

are the torque inputs. The angles and velocities are concatenated in the state x = [q q̇]T . Fur-
thermore, we define a reference trajectory xref =[qref q̇ref ]

T and employ a control law formulation
and Lyapunov function based on (Beckers et al., 2019), which employs a Gaussian process to learn
the system dynamics, resulting in a Gaussian predictive distribution p(·|·) with mean function µ(·).
The feedforward and feedback terms of the control law are computed as

φf̂ ,µ(q, q̇, q̈, qref , q̈ref) = Ĥ(q)q̈ref + Ĉ(q, q̇)qref + µ(q, q̇, q̈) (3)

κθ(q, q̇, qref , q̇ref) = −Kp(q, q̇)(q − qref)−Kd(q, q̇)(q̇ − q̇ref) (4)

where Ĥ(q) and Ĉ(q, q̇) represent the prior model f̂(·). We define the diagonal matrices Kp,Kd

as state dependent functions in order to allow uncertainty adaptation of the control gains. The
entries on the diagonals are given by networks of ν radial basis functions each, i.e.,
Ki,i =

(∑ν
k=1 γ

i
k exp(−1/λik(‖q − ζik‖2 + ‖q̇ −ψik‖2))

)2, where γik ∈ R are amplitudes, λik > 0
denote length scales, and ζik,ψ

i
k ∈ R2 are radial basis function centers. All these parameters
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are concatenated into the parameter vector θ, and we employ the cost function
l(θ) =

∑2
i=1

∑ν
k=1(λ

i
k)

2 + (γik)
2 in order to obtain a feedback controller, which exhibits low

gains in large regions of the state space. Finally, we define the performance specification based on
the Lyapunov function

V (eq, ėq) =
1

2
ėT
qĤ(q)ėq +

∫ eq

0
zTKp(z + qref)dz + εeT

qĤ(q)ėq, (5)

with eq = q− qref and ėq = q̇− q̇ref , since it allows to prove ultimate boundedness of the tracking
error (Beckers et al., 2019).

3. Uncertainty-Aware Control Gain Tuning

3.1. Control Parameter Tuning as Robust Optimization Problem

In order to avoid the use of uniform error bounds for tuning, we formulate the problem of determin-
ing optimal control parameters as a robust optimization problem. Hence, we employ the Lyapunov
function V (·) from Assumption 2, and calculate its time derivative as

V̇ (e,θ) = (∇eV (e))T ė = (∇eV (e))T (f(x)− φf̂ ,µ(x,xref , ẋref)− κθ(x,xref)).

By leveraging the probabilistic nature of the model obtained from machine learning, we equivalently
consider the unknown function f(·) as a random process described by f(x) = f̂(x) + µ(x) + ξ,
where ξ ∼ p̃(·|x) and p̃(ξ|x) = p(ξ − µ(x)|x). Hence, we decouple the time derivative of the
Lyapunov function into a nominal component

V̇nom(e,θ) = (∇eV (e))T (f̂(x) + µ(x)− φf̂ ,µ(x,xref , ẋref)− κθ(x,xref)) (6)

and an uncertain component V̇ξ(e) = (∇eV (e))T ξ. The Lyapunov function can often be chosen
such that the nominal derivative V̇nom(e,θ) is negative definite (Umlauft et al., 2017; Beckers et al.,
2019). However, the control parameters θ influence its magnitude. In contrast, the uncertain compo-
nent V̇ξ(e) is independent of the control parameters θ but usually exhibits positive values. Employ-
ing this decoupling, we formulate the performance specification ‖e‖ ≤ ē as V̇ξ(e) < −V̇nom(e,θ),
∀e : ‖e‖ > ē, such that the nominal Lyapunov function derivative magnitude can be interpreted as
a stability margin which is independent of the uncertainty. In order to formulate an optimization
problem that includes the Lyapunov stability condition as a constraint, we define the set of states for
the stability constraint as T(x′) = {x ∈ X : ‖x− x′‖ > ē}. Then, the optimal control parameters
are obtained by solving the robust optimization problem

θ̃∗ = arg min
θ∈S

l(θ) (7a)

such that V̇ξ(x− x′) < −V̇nom(x−x′,θ), ∀ξ∼ p̃(·|x), ∀x∈T(x′), ∀x′∈Xref . (7b)

3.2. Problem Relaxation through Scenario Optimization

Although the parameter tuning problem can be elegantly cast as a robust optimization problem,
it is well known that this type of problem is in general intractable (Calafiore and Campi, 2006).
Scenario optimization (Campi et al., 2009) offers a solution to this problem by considering only a
finite number of sample constraints each with fixed reference states x′ ∈ Xref , states x ∈ T(x′)
and disturbances ξ ∼ p̃(·|x). This contrasts with the single constraint in robust optimization, which
has to hold jointly for all possible realizations of these variables. For this reason, we take a fully
probabilistic point of view by defining an equivalent joint probability distribution p(ξ,x,x′) =
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Algorithm 1 Greedy Optimization Algorithm

Function Optimize(x(1), . . . ,x(M),x′(1), . . . ,x′(M), ξ(1), . . . , ξ(M)):
sM ← 0; tM ← 0; h← h0

repeat
i← arg max

i=1,...,M
V̇ξ(i)(x

(i) − x′(i)) + V̇nom(x(i)−x′(i),θ); sM,i ← 1

solve (10) to update θ using deterministic, numerical optimization algorithm
until V̇ξ(i)(x(i) − x′(i)) < −V̇nom(x(i)−x′(i),θ∗), ∀i = 1, . . . ,M ;

return θ, ‖sM‖1

p̃(ξ|x)p(x|x′)p(x′), with the distributions p(x|x′) = U(T(x′)), p(x′) = U(Xref) and the mean-
free learned predictive distribution p̃(·, ·). Based on these probability distributions, we relax the
robust constraint (7b) to a chance constraint

P
(
ξ∼ p̃(·|x),x∼U(T(x′)),x′∼U(Xref) : V̇ξ(x− x′)<−V̇nom(x−x′,θ)

)
≥ 1−ε̄, (8)

where the parameter ε̄ ∈ [0, 1] measures the allowed violation probability for fixed control pa-
rameters θ. Due to this chance constraint relaxation, a solution θ∗ merely approximately satisfies
the original problem (7a). Hence, it is called ε̄-robust solution (Calafiore and Campi, 2006). In
spite of this relaxation, an optimization problem with constraint (8) is generally infeasible. There-
fore, we sample from the joint probability distribution p(ξ,x,x′) sequentially as x′(i) ∼ U(Xref),
x(i) ∼ U(T(x′(i))) and ξ ∼ p̃(·|x(i)), i = 1, . . . ,M . These samples are used to define scenario
constraints, which yield the scenario control parameter tuning problem

θ∗ = arg min
θ∈S

l(θ) (9a)

such that V̇ξ(i)(x
(i) − x′(i)) < −V̇nom(x(i)−x′(i),θ), ∀i = 1, . . . ,M. (9b)

Since the solution θ∗ depends only on a finite number of constraints with fixed x, x′ and ξ, we
can use gradient based optimization methods to find (local) minima. However, due to the randomly
sampled scenario constraints, θ∗ becomes a random variable itself. Therefore, we can only aim
to obtain a solution θ∗ of (9), which satisfies the chance constraint (8) with probability ε̄ with a
confidence, or risk of failure, β. Furthermore, it is not necessary to consider all constraints during
the optimization, since typically only a small subset of constraints is active, i.e., solving the reduced
scenario optimization problem

θ∗ = arg min
θ∈S

l(θ) (10a)

such that V̇ξ(i)(x
(i) − x′(i)) < −V̇nom(x(i)−x′(i),θ), ∀i = 1, . . . ,M : sM,i = 1, (10b)

where sM is a binary vector with a 1 at active constraints and 0 everywhere else, yields a design
parameter θ∗ satisfying all scenario constraints (9b). Since determining the active constraints a pri-
ori is generally not possible, we propose the greedy optimization in Algorithm 1, which adds the
constraint with highest violation to the active constraints until all scenario constraints are satisfied.
Based on this greedy optimization algorithm, we iteratively generate scenarios until the relationship
between the number of active scenario constraints m and all scenario constraints M is sufficient
given a confidence requirement β that is expressed through a function ε(m,M, β). This procedure
is summarized in Algorithm 2. For suitable choices of ε(m,M, β) and feasible scenario optimiza-
tion problems, the proposed algorithms guarantee satisfaction of the robust constraints (7b) with
high probability as shown in the following theorem.
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Algorithm 2 Scenario control parameter tuning
Function SCPT(ε̄, β):

M ← 0; m← 0
while ε̄ > ε(M,m, β) do

M ←M + 1
sample x′(M) ∼ U(Xref), x(M) ∼ U(T(x′(M))), ξ(M) ∼ p̃(·|x(M))
if V̇ξ(M)(x(M) − x′(M)) ≥ −V̇nom(x(M)−x′(M),θ∗) then

[θ∗, m]←Optimize(x(1), . . . ,x(M),x′(1), . . . ,x′(M), ξ(1), . . . , ξ(M))
end

end
return θ∗

Theorem 1 Define

ε(M,m, β) =

1 if m = M

1− M−m

√
β

M(Mm)
if m 6= M.

(11)

and fix a confidence level β ∈ (0, 1) and violation probability bound ε̄ ∈ (0, 1). If the scenario opti-
mization problem (9) is feasible for all x′(i)∼ U(Xref), x(i)∼ U(T(x′(i))) and ξ∼ p̃(·|x(i)), the op-
timal parameters θ∗ obtained through scenario parameter tuning with Algorithm 2 and greedy opti-
mization in Algorithm 1 satisfy the constraints (7b) ε̄-robustly with probability of at least 1−β, i.e.,

P
(
x′∼U(Xref),x∼U(T(x′)), ξ∼p(·|x) : V̇ξ(x−x′)<−V̇nom(x−x′,θ∗)

)
≥ 1− ε̄ (12)

holds with confidence 1− β.

Proof Since the optimization problem (9) is feasible, Algorithm 2 returns a solution deterministi-
cally. Therefore, it fulfills the requirements of (Campi et al., 2018, Assumption 1). Furthermore,
(11) satisfies the conditions of (Campi et al., 2018, Theorem 1) which yields the ε̄-robust satisfaction
of the constraints (7b) with confidence of at least 1−β.

The condition of feasibility for all possible scenarios basically requires that the magnitude of the
nominal derivative can be increased sufficiently to compensate for the effects of the uncertainties.
Therefore, this condition can be ensured independently of the uncertainty by choosing a control pa-
rameterization which is capable of achieving arbitrarily high magnitudes of the nominal derivative.
It can be easily seen that this condition is satisfied for many well-established control structures such
as feedback linearization (Umlauft et al., 2017) and computed torque control (Beckers et al., 2019).

4. Numerical Evaluation

4.1. PD Control Gain Tuning

We evaluate the proposed method1 for static control gain tuning on an example system introduced
in (Beckers et al., 2019). This system has internal dynamics

f(x) =

[
x2

−1− x2 −
x22 sin(x1−c)−sin(c)

cos(x1−c)− 11
10 cos(x1−c)

]
(13)

1. Code is available at https://gitlab.lrz.de/alederer/pop4lbc
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Figure 1: Left: Performance comparison between scenario tuned control gains θ∗ and constant
gains θ=10 in feedback linearization using Gaussian process models. All values are nor-
malized by the respective value for the fixed gain θ. Right: Example tracking error trajec-
tories of dynamics (13) with c=5.73 controlled with θ∗=5.92 and constant gain θ=10.

with random but fixed c ∼ U [0, 2π] and G(x) =
[
0 1

]T . We ignore the nonlinearity in the

approximate model, which leads to the prior model f̂(x) =
[
x2 −1− x2

]T . For the control of
this system we employ a feedback linearizing controller (Khalil, 2002) described by

φf̂ ,µ(x,xref , ẋref) = ẋ2,ref −
[
0 1

]
f̂(x)− µ(x) (14)

κθ(x,xref) = −θ(x1 − xref,1)− (θ + 1)(x2 − xref,2), θ > 0. (15)

We introduce the filtered state r = e1 + e2 and employ the Lyapunov function V (r) = r2 for
stability analysis, which allows to prove ultimate boundedness of the error e (Umlauft et al., 2017).
Therefore, the nominal and uncertain component of the Lyapuonv function derivative are given by
V̇nom(r, θ) = −θr2 and V̇ξ(r) = rξ. For determining the probabilistic model we employ Gaus-
sian process regression (Rasmussen and Williams, 2006), such that the mean µ(·) corresponds to
the posterior mean function of the Gaussian process, while the uncertainty distribution is zero mean
Gaussian, i.e., p̃(·|x)=N (0, σ2(x)), where σ2(x) is the posterior variance of the Gaussian process.
We train the Gaussian process with 241 data point on a uniform grid over [−1, 1]2 and corresponding
outputs perturbed by zero mean Gaussian noise with σ2n=0.1. The goal is to track the reference tra-
jectory xref =[sin(t) cos(t)]T . We tune the controller gain θ on X=[−1.2, 1.2]2 using Algorithm 1
and Algorithm 2 with the cost function l(θ) = θ2 in order to obtain a low gain controller. We define
the performance specification ē=0.1, which corresponds to the upper bound r̄=

√
2ē for the filtered

state r. Furthermore, we allow a violation probability of ε̄=0.01 with confidence level β=10−9.
We evaluate the performance of our approach for 20 randomly sampled values of c and compare

it to the performance of the augmented computed torque control with fixed control gain θ = 10. The
results are depicted in Fig. 1. The tuned control gain θ∗ is smaller than the fixed gain θ on average.
Although it can lead to higher tracking errors, the specified performance ē = 0.1 is achieved in all
simulations with a maximum observed error of ‖e‖ = 0.0420 for the tuned gains θ∗.

4.2. Neural Network Weight Tuning

We apply the proposed technique to tune the parameters of the radial basis function network as
introduced in Section 2.2. We use ν = 10 radial basis functions and define the unknown dynamics
following (Murray et al., 1994) for manipulator arm masses of m1 = m2 = 1 kg and lengths of
l1 = l2 = 1 m. We define as reference trajectory xref = [sin(t) cos(t) cos(t) − sin(t)]T . The
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Figure 2: Left: Performance comparison between scenario tuned controller and constant gains
Kp,Kd in computed torque control augmented by Gaussian process models. All val-
ues are normalized by the respective value for the fixed gains Kp,Kd. Right: Example
tracking error trajectories of 2-DoF robot controlled by CTC-GP and fixed gains.

components of the time derivative of the Lyapunov function in (5) are given by

V̇nom(eq, ėq,θ) =

[
eq
ėq

]T [ −Kd(q, q̇) + εĤ(q) ε
2(−KT

d (q, q̇) + Ĉ(q, q̇))
ε
2(−Kd(q, q̇) + ĈT(q, q̇)) −εKp(q, q̇)

] [
eq
ėq

]
(16)

V̇ξ(eq, ėq) = (ėq + εeq)
Tξ. (17)

We set the performance specification to ē = 0.1 and use a violation probability bound of ε̄ = 0.01.
Furthermore, we apply our method to 20 different samples of the estimated parameters ηm1 , η

m
2 , η

l
1l1

and ηl2. The performance of the resulting control laws is compared to the one obtained using a con-
troller with static gains Kp =Kd = diag(1, 1) in Fig. 2. Moreover, the tracking error of a sample
control law is shown. As demonstrated in Fig. 2, the scenario optimization allows straightforward
computation of radial basis function network controllers satisfying the desired performance, while
also minimizing the amplitudes γik (average: 1.12) and length scales λik (average: 0.96).

5. Conclusion

We propose a scenario-based approach for tuning parameters of control laws in control-affine set-
tings. The presented technique guarantees any chosen tracking performance with high probability.
In simulation settings, we show that the gains obtained with the scenario-based approach achieve a
performance similar to the one obtained with high control gains. In the future, we want to extend
our approach to allow its application in an iterative fashion with exploration objectives.
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