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Abstract
Understanding the reasons behind the exceptional
success of transformers requires a better analysis
of why attention layers are suitable for NLP tasks.
In particular, such tasks require predictive models
to capture contextual meaning which often de-
pends on one or few words, even if the sentence is
long. Our work studies this key property, dubbed
word sensitivity (WS), in the prototypical setting
of random features. We show that attention lay-
ers enjoy high WS, namely, there exists a vector
in the space of embeddings that largely perturbs
the random attention features map. The argument
critically exploits the role of the softmax in the
attention layer, highlighting its benefit compared
to other activations (e.g., ReLU). In contrast, the
WS of standard random features is of order 1/

√
n,

n being the number of words in the textual sample,
and thus it decays with the length of the context.
We then translate these results on the word sen-
sitivity into generalization bounds: due to their
low WS, random features provably cannot learn
to distinguish between two sentences that differ
only in a single word; in contrast, due to their
high WS, random attention features have higher
generalization capabilities. We validate our theo-
retical results with experimental evidence over the
BERT-Base word embeddings of the imdb review
dataset.

1. Introduction
Deep learning theory has provided a quantitative description
of phenomena routinely occuring in state-of-the-art mod-
els, such as double-descent (Nakkiran et al., 2020; Mei &
Montanari, 2022), benign overfitting (Bartlett et al., 2020;
Belkin, 2021), and feature learning (Ba et al., 2022; Damian
et al., 2022). However, most existing works focus on archi-
tectures given by the composition of matrix multiplications
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and non-linearities, which model e.g. fully connected and
convolutional layers. In contrast, the recent impressive re-
sults achieved by large language models (Brown et al., 2020;
Bubeck et al., 2023) are largely attributed to the introduc-
tion of transformers (Vaswani et al., 2017), which are in
turn based on attention layers (Bahdanau et al., 2015; Kim
et al., 2017). Hence, isolating the unique features of the
attention mechanism stands out as a critical challenge to
understand the success of transformers, thus paving the way
to the principled design of large language models.

Recent work tackling this problem characterizes the sam-
ple complexities required by simplified attention models
(Edelman et al., 2022; Fu et al., 2023). However, learning
is limited to a specific set of targets, such as sparse func-
tions (Edelman et al., 2022) or functions of the correlations
between the first query token and key tokens (Fu et al.,
2023). This paper takes a different perspective and starts
from the simple empirical observation that one or few words
can change the meaning of a sentence. Think, for example,
to the pair of sentences “I love her much” and “I love her
smile”, where replacing a single word alters the meaning of
the text. This is captured by the BERT-Base model (Devlin
et al., 2019), which shows a different attention score pat-
tern over these two sentences (see Figure 1, left). Another
example can be found in the table on the right of Figure 1,
where changing one word in the prompt would require a
well-behaved model (in this case, Llama2-7b (Touvron et al.,
2023)) to modify its output. In general, language models
need to have a high word sensitivity to capture semantic
changes when just a single word is modified in the context,
which motivates the following question:

Do attention layers have a larger word sensitivity
than fully connected architectures?

To formalize the problem, we represent the textual data
with X ∈ Rn×d, where the n rows represent the word
embeddings in Rd. Then, we define the word sensitivity
(WS) in (4), as a measure of how changing a row in X
modifies the embedding of a given feature map. We focus
our study on the prototypical setting of random features, i.e.,
where the weights of the layers are random. In particular,
we consider (i) the random features (RF) map (Rahimi &
Recht, 2007), defined in (1), and (ii) the random attention
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i love her much

i

love

her

much

i love her smile

i

love

her

smile

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Prompt Output
Reply with ”Yes” if the review I will pro-
vide you is positive, and ”No” otherwise.
Review: Sorry, gave it a 1, which is the
rating I give to movies on which I walk out
or fall asleep.

No

Reply with ”Yes” if the review I will pro-
vide you is negative, and ”No” otherwise.
Review: Sorry, gave it a 1, which is the
rating I give to movies on which I walk out
or fall asleep.

Yes

Figure 1. Left. Average attention scores for the word embeddings of the two sentences “I love her much” and “I love her smile”. The
embeddings are computed with the BERT-Base model, the scores are averaged over the 12 heads and displayed without the [CLS] token.
Right. Output of the Llama2-7b-chat model for two prompts differing only in a single word.

features (RAF) map (Fu et al., 2023), defined in (3). The
former models a fully connected architecture, while the
latter captures the structure typical of attention layers.

Our contributions can be summarized as follows:

• Theorem 4.1 shows that an RF map has low WS, specif-
ically of order 1/

√
n, where n is the context length.

This means that changing a single word has a negligi-
ble effect on the output of the map. In fact, to have
a significant effect, one needs to change a constant
fraction of the words, see Remark 4.2. Furthermore,
increasing the depth of the architecture does not help
with the word sensitivity, as shown by Theorem 4.3.

• Our main result, Theorem 5.1, shows that a RAF map
has high WS, specifically of constant order which does
not depend on the length of the context. This means
that changing even a single word can have a signifi-
cant effect on the output of the map, regardless of the
context length. The argument critically exploits the
role of the softmax in the attention layer, and numeri-
cal simulations show its advantages compared to other
activations (e.g., ReLU).

• Section 6 exploits the bounds on the word sensitivity
to characterize the generalization error when the data
changes meaning after modifying a single word in the
context. In particular, we consider generalized linear
models trained on RF and RAF embeddings, and we
establish whether a fine-tuned or retrained model can
learn to distinguish between two samples that differ
only in one row. While the answer is provably negative
for random features (Theorems 6.2 and 6.3), random
attention features are capable of generalizing.

Most of our technical contributions require no distribu-
tional assumptions on the data, and the generality of
our findings is confirmed by numerical results on the

BERT-Base embeddings of the imdb dataset (Maas et al.,
2011), and on the pre-trained BERT-Base model itself.
Our code is publicly available at the GitHub repository
simone-bombari/attention-sensitivity.

2. Related work
Fully connected layers. Several mathematical models
have been proposed to understand phenomena occurring
for fully connected architectures. A prototypical example
is the RF model (Rahimi & Recht, 2007; Pennington &
Worah, 2017; Louart et al., 2018; Mei & Montanari, 2022),
which can be thought of as a two-layer neural network with
random hidden weights. Its feature learning capabilities
have been recently studied in settings where one gradient
step on the hidden weights is performed before the final
training of the outer layer (Ba et al., 2022; 2023; Damian
et al., 2022; Moniri et al., 2024). Other popular approaches
involve the neural tangent kernel (Jacot et al., 2018; Lee
et al., 2019; Ghorbani et al., 2020; 2021) and a mean-field
analysis (Mei et al., 2018; Sirignano & Spiliopoulos, 2020;
Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018;
Javanmard et al., 2020; Shevchenko et al., 2021). Deep
random models have also been considered by Hanin (2019);
Bosch et al. (2023); Schröder et al. (2023).

Attention layers. Attention layers (Bahdanau et al., 2015;
Kim et al., 2017) and transformer architectures (Vaswani
et al., 2017) have attracted significant interest from the the-
oretical community: Yun et al. (2020); Ben-Shaul et al.
(2023) study their approximation capabilities; Edelman et al.
(2022); Trauger & Tewari (2023) provide norm-based gen-
eralization bounds; Tian et al. (2023) analyze the training
dynamics; Wu et al. (2023) provide optimization guaran-
tees; Jelassi et al. (2022); Li et al. (2023) focus on computer
vision tasks and Oymak et al. (2023) on prompt-tuning. The
study of the attention mechanism is approached through
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the lens of associative memories by Bietti et al. (2023); Ca-
bannes et al. (2024). More closely related to our setting is
the recent work by Fu et al. (2023), which compares the
sample complexity of random attention features with that
of random features. We highlight that Fu et al. (2023) focus
on an attention layer with ReLU activation, while we unveil
the critical role of the softmax.

Sensitivity of neural networks. We informally use the
term sensitivity to express how a perturbation of the input
changes the output of the model. Previous work explored
various mathematical formulations of this concept (e.g., the
input-output Lipschitz constant) in the context of both ro-
bustness (Weng et al., 2018; Bubeck & Sellke, 2021) and
generalization (Bartlett et al., 2017). Sensitivity is gen-
erally referred to as an undesirable property, motivating
research on models that reduce it (Miyato et al., 2018; Prach
& Lampert, 2022). In this work, however, high sensitivity
represents a desirable attribute, as it reflects the ability of
the model to capture the role of individual words in a long
context. This is a stronger requirement than having large
Lipschitz constant, hence earlier results on the matter (Kim
et al., 2021) cannot be applied.

3. Preliminaries
We consider a sequence of n tokens {xi}ni=1, with xi ∈ Rd
for every i, where d denotes the token embedding dimension,
and n the context length. These tokens altogether represent
the textual sample X = [x1, . . . , xn]

⊤ ∈ Rn×d. We denote
by flat(X) ∈ RD, with D = nd, the flattened (or vector-
ized) version of X . Given a vector x, ∥x∥2 is its Euclidean
norm. Given a matrix A, ∥A∥2 := ∥flat(A)∥2 ≡ ∥A∥F is
its Frobenius norm. We indicate with ei the i-th element
of the canonical basis, and denote [n] := {1, . . . , n}. All
the complexity notations Ω(·), ω(·), O(·), o(·) and Θ(·) are
understood for sufficiently large context length n, token
embedding dimension d, number of neurons k, and number
of input samples N . We indicate with C, c > 0 numerical
constants, independent of n, d, k,N . Throughout the paper,
we make the following assumption, which is easily achieved
by pre-processing the raw data.

Assumption 3.1 (Normalization of token embedding). For
every token xi, we assume ∥xi∥2 =

√
d.

Random Features (RF). A fully connected layer with
random weights is commonly referred to as a random fea-
tures map (Rahimi & Recht, 2007). The map acts from
a vector of covariates to a feature space Rk, where k de-
notes the number of neurons. Thus, we flatten the context
flat(X) ∈ RD before feeding it in the layer, and the RF
map φRF : Rn×d → Rk takes the form

φRF(X) = ϕ(V flat(X)), (1)

where ϕ : R → R is a non-linearity applied component-
wise and V ∈ Rk×D is the random features matrix, with
Vi,j ∼i.i.d. N (0, 1/D). This scaling of the variance of V
ensures that the entries of V flat(X) have unit variance, as
∥flatX∥2 =

√
D by Assumption 3.1. We later consider

a similar model with several random layers, referred to as
deep random features (DRF) model and recently considered
by Bosch et al. (2023); Schröder et al. (2023).

Random Attention Features (RAF). We consider a
single-head sequence-to-sequence self-attention layer with-
out biases φQKV(X) (Vaswani et al., 2017), given by

φQKV(X) = softmax

(
XW⊤

QWKX⊤
√
d′

)
XW⊤

V , (2)

where the softmax is applied row-wise and defined as
softmax(s)i = esi/

∑
j e
sj ; WQ,WK ,WV ∈ Rd′×d are

respectively the queries, keys and values weight matrices.
As in previous related work (Fu et al., 2023), we sim-
plify the above expression with the re-parameterization
W := W⊤

QWK ∈ Rd×d, and by removing the values
weight matrix. This is for convenience of presentation, and
our results can be generalized to the case where queries,
keys and values are random independent features, see Re-
mark 5.2 at the end of Section 5. Thus, we define the random
attention features layer φRAF : Rn×d → Rn×d as

φRAF(X) = softmax

(
XWX⊤

√
d

)
X, (3)

where Wi,j ∼i.i.d. N (0, 1/d). We refer to the argument of
the softmax with the shorthand S(X) := XWX⊤/

√
d ∈

Rn×n. The scaling of the variance of W ensures that the en-
tries of S(X) have unit variance. Differently from (Fu et al.,
2023), we do not consider the biased initialization discussed
in (Trockman & Kolter, 2023), designed to make the diag-
onal elements of W positive in expectation. As remarked
in (Trockman & Kolter, 2023), this initialization is aimed at
replicating the final attention scores of vision transformers,
and its utility on language models is less discussed. Further-
more, we remark that our simplified model does not include
any of the architectural tweaks introduced to allow trans-
former models to process longer contexts (Bertsch et al.,
2023; Beltagy et al., 2020), as it aims to capture the specific
properties of a single attention layer.

Word sensitivity (WS). The word sensitivity (WS) mea-
sures how the embedding of a given mapping φ(X) is
impacted by a change in a single word. Given a sample
X = [x1, . . . , xn]

⊤ ∈ Rn×d, the perturbed sample Xi(∆)
is obtained from X by setting its i-th row to xi+∆ and keep-
ing the remaining rows the same. Here, ∆ ∈ Rd denotes
the perturbation of the i-th token, and its magnitude does
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not exceed the scaling of Assumption 3.1, i.e., ∥∆∥2 ≤
√
d.

Formally, given a mapping φ, we are interested in

Sφ(X) = sup
i∈[n], ∥∆∥2≤

√
d

∥∥φ(Xi(∆))− φ(X)
∥∥
2

∥φ(X)∥2
. (4)

In words, Sφ(X) denotes the highest relative change of
φ(X), upon changing a single token in the input. Our goal
is to study how Sφ(X) behaves for the RF and RAF models,
with respect to the context length n. Informally, if Sφ(X) =
o(1) for any X , the mapping φ has low word sensitivity. On
the contrary, if Sφ(X) = Ω(1), φ has high word sensitivity.

We remark that, in language models, tokens are elements
of a discrete vocabulary. However, working directly in the
embedding space (as in definition (4)) is common in the
theoretical literature (Kim et al., 2021), and critical steps
of practical algorithms for language models also take place
in the embedding space (Ebrahimi et al., 2018; Shin et al.,
2020; Zou et al., 2023).

The definition of WS recalls similar notions of sensitivity in
the context of adversarial robustness (Dohmatob & Bietti,
2022; Bubeck & Sellke, 2021; Wu et al., 2021; Bombari
et al., 2023), as well as the literature that designs adversarial
prompting schemes for language models (Ebrahimi et al.,
2018; Guo et al., 2021; Zou et al., 2023). However, in
contrast with the definition in (4), these works consider a
trained model and, therefore, the results implicitly depend
on the training dataset. Our analysis of the WS dissects
the impact of the feature map φ, and it does not involve
any training process. The consequences on training (and
generalization error) will be considered in Section 6.

4. Low WS of random features
We start by showing that the word sensitivity for the RF
map in (1) is low, i.e., SRF = o(1).

Theorem 4.1. Let φRF be the random features map de-
fined in (1), where ϕ is Lipschitz and not identically 0. Let
X ∈ Rn×d be a generic input sample s.t. Assumption 3.1
holds, and assume k = Ω(D). Let SRF(X) denote the word
sensitivity of φRF defined in (4). Then, we have

SRF(X) = O
(
1/
√
n
)
= o(1), (5)

with probability at least 1− exp(−cD) over V .

Theorem 4.1 shows that the RF model has a low word sen-
sitivity, vanishing with the length of the context n. This
means that, regardless of how any word is modified, the
RF mapping is not sensitive to this modification, when the
length of the context is large. The proof follows from an
upper bound on the numerator of (4), due to the Lipschitz
continuity of ϕ, and a concentration result on the norm at
the denominator. The details are deferred to Appendix B.
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Figure 2. Numerical estimate of the WS for the RF (left)
and DRF (right) map, with a ReLU activation function.
We estimate Sφ looking for the perturbation ∆∗ =
arg sup∥∆∥2≤

√
d

∥∥φ(X1(∆))− φ(X)
∥∥
2
, where we fix the first

token for symmetry. We find ∆∗ by optimizing our objective
with constrained gradient ascent. For RF, we consider d ∈
{192, 384, 768}, as n increases (taking the first d dimensions
of the embeddings of the first n tokens). For DRF, we repeat the
experiment for different depths L ∈ {2, 4, 8} and fixed d = 768,
as n increases. As textual data X , we use the BERT-Base token em-
beddings of samples from the imdb dataset, after a pre-processing
to adapt the dimensions and fulfill Assumption 3.1. We plot the
average over 10 independent trials and the confidence band at 1
standard deviation. In the figure on the left, we intentionally dash
the plotted lines to ease the visualization, as they overlap.

Remark 4.2. Theorem 4.1 is readily extended to the case
where the number of words m that can be modified in the
context is o(n). In fact, to achieve a sensitivity of constant
order, a constant fraction of rows in X must be changed, i.e.
m = Θ(n). This extension of Theorem 4.1 is also proved in
Appendix B, and it further illustrates that a fully connected
architecture is unable to capture the change of few (namely,
m = o(n)) semantically relevant words in a long sentence.

We numerically validate this result in Figure 2 (left), where
we estimate the value of SRF for different token embedding
dimensions d, as the context length n increases. Clearly, SRF
decreases as the context length increases, regardless of the
embedding dimension d. In fact, the curves corresponding to
different values of d (in different colors) basically coincide.

Deep Random Features (DRF). As an extension of The-
orem 4.1, we show that the word sensitivity is low also for
deep random features. We consider the DRF map

φDRF(X) := ϕ(VLϕ(VL−1(...V2ϕ(V1 flat(X))...))), (6)

where ϕ : R → R is the component-wise non-linearity, k is
the number of neurons at each layer, and Vl ∈ Rk×k are the
random weights at layer l, with [V1]i,j ∼i.i.d. N (0, β/D)
and [Vl]i,j ∼i.i.d. N (0, β/k) for l > 1. We set β according
to He’s initialization (He et al., 2015), which ensures

Eρ∼N (0,β)

[
ϕ2(ρ)

]
= 1, (7)

as done in (Hanin, 2018) to avoid the problem of vanish-
ing/exploding gradients in the analysis of a deep network.
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Theorem 4.3. Let φDRF be the deep random feature map
defined in (6), where ϕ is Lipschitz and β is chosen s.t. (7)
holds. Let X ∈ Rn×d be a generic input sample s.t. As-
sumption 3.1 holds, and assume k = Θ(D), L = o(log k).
Let SDRF(X) denote the word sensitivity of φDRF defined in
(4). Then, we have

SDRF = O
(
eCL√
n

)
, (8)

with probability at least 1− exp(−c log2 d) over {Vl}Ll=1.

Theorem 4.3 shows that, as in the shallow case, the word
sensitivity decreases with the length of the context n. The
proof requires showing that ∥φDRF(X)∥2 concentrates to√
k, which is achieved via (7). The strategy to bound the

term
∥∥φDRF(X

i(∆))− φDRF(X)
∥∥
2

is similar to that of the
shallow case. The details are deferred to Appendix C.

The exponential dependence on L comes from our worst-
case analysis of the Lipschitz constant of the model, and it
does not fully exploit the independence between the Vi’s.
Thus, we expect the actual dependence of the WS on L to be
milder. This is confirmed by the numerical results of Figure
2 (right), where we numerically estimate SDRF for different
depths L as the context length n increases. For all values of
L, the word sensitivity quickly decreases with n.

5. High WS of random attention features
In contrast with random features, we show that the word
sensitivity is high for the RAF map in (3), i.e., SRAF = Ω(1).

Theorem 5.1. Let φRAF be the random attention features
map defined in (3). Let X ∈ Rn×d be a generic input
sample s.t. Assumption 3.1 holds, and assume d/ log4 d =
Ω(n). Let SRAF(X) denote the word sensitivity of φRAF
defined in (4). Then, we have

SRAF(X) = Ω(1), (9)

with probability at least 1− exp(−c log2 d) over W .

Theorem 5.1 shows that the RAF model has a high word
sensitivity, regardless of the length of the context n, as long
as d/ log4 d = Ω(n). This requires a number of tokens n
that grows slower than the embedding dimension d. Models
such as BERT-Base or BERT-Large have an embedding
dimension of 768 and 1024 (Devlin et al., 2019), which
allows our results to hold for fairly large context lengths. In
fact, we prove a stronger statement: for any index i ∈ [n],
there exists a perturbation ∆∗ (possibly dependent on i)
s.t. the RAF map changes significantly when evaluated in
Xi(∆∗). The proof of Theorem 5.1 is deferred to Appendix
D, and a sketch follows.

Proof sketch. The argument is not constructive, and the
difficulty in finding a closed-form solution for the perturba-
tion ∆∗ is due to the lack of assumptions on the sample X ,
which is entirely generic. We follow the steps below.

Step 1: Find a direction δ∗ aligned with many words xj’s.
Using the probabilistic method, we prove the existence of a
vector δ∗ ∈ Rd, with ∥δ∗∥2 ≤

√
d, s.t. its inner product with

the tokens embeddings xj’s is large for a constant fraction
of the words in the context. In particular, Lemma D.1 shows
that

(
x⊤
j δ

∗)2 = Ω(d2/n) for at least Ω(n) indices j ∈ [n].

Step 2: Exhibit two directions ∆∗
1 and ∆∗

2 both aligned with
many words in the feature space {W⊤xj}nj=1. Exploiting
the properties of the Gaussian attention features W , we
deduce the existence of two vectors ∆∗

1 and ∆∗
2 that (i) are

far from each other, and (ii) ensure a constant fraction of the
entries of XW∆∗

k/
√
d, k ∈ {1, 2}, to be large. In particular,

by exploiting our assumption d/ log4 d = Ω(n), Lemmas
D.2 and D.3 show that [XW∆∗

k/
√
d]j = Ω

(
log2 d

)
for at

least Ω(n) indices j ∈ [n], with ∥∆∗
1 −∆∗

2∥2 = Ω(
√
d).

Step 3: Show that the attention concentrates towards the per-
turbed word. Recall that s(X) := softmax(XWX⊤/

√
d)

denotes the attention scores matrix. Then, Lemma D.4
proves that the attention scores [s(Xi(∆∗

k))]
⊤
j: are well ap-

proximated by the canonical basis vector ei, for k ∈ {1, 2}
and an Ω(n) number of rows j ∈ [n]. This intuitively means
that a constant fraction of tokens xj moves all their atten-
tion towards the i-th modified token xi + ∆∗

k. This step
critically exploits the softmax function in the RAF map: if
one entry in its argument is Ω

(
log2 d

)
, then the attention

scores concentrate as described above.

Step 4: Conclude with at least one perturbation between
∆∗

1 and ∆∗
2. Finally, exploiting the fact that ∥∆∗

1 −∆∗
2∥2 =

Ω(
√
d), Lemma D.5 proves that at least one of them gives a

∆∗ s.t.
∥∥φRAF(X)− φRAF(X

i(∆∗))
∥∥
F

= Ω(
√
dn). This,

together with the upper bound ∥φRAF(X)∥F = O(
√
dn),

concludes the argument.

In Figure 3 (first plot), we estimate the value of SRAF for
different token embedding dimensions d, as the context
length n increases. In contrast with the random features map,
even for large values of n, the WS remains larger than 1. In
the same figure, in the second plot, we repeat the experiment
for the ReLU-RAF map, which replaces the softmax with
a ReLU activation. SReLU-RAF(X) seems to decrease with
the context length n, and has in general smaller values than
SRAF(X). This highlights the importance of the softmax
function, as discussed in Step 3 of the proof sketch above.
The condition d/ log4 d = Ω(n) is required to allow step 2
to go through. We believe this to be a reasonable assumption,
as the maximum context length tends to be smaller than the
embedding dimension. Popular examples include BERT-
Base (n = 512, d = 768), BERT-Large (n = 512, d =
1024), and the Llama-2 family (n = 4096, d = 5120).
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Figure 3. Numerical estimate of the WS for the RAF (first plot) and ReLU-RAF (second plot) map. The ReLU-RAF map is defined as the
RAF one, but the softmax is replaced with a ReLU activation over the entries of S(X), followed by a re-normalization to ensure that the
attention scores sum up (on every row) to 1, as in the softmax case. We consider d = 192, 384, 768, as n increases. The rest of the setup
is equivalent to the one described in Figure 2. In the third plot, we present the relative change of the pre-trained BERT-Base model layer
embeddings, evaluated on the abstract of this paper (∼ 200 tokens), when the 42nd token is modified in embedding space with a vector ∆.
The 0-th layer represents the input itself and, as a comparison, we report the results when the perturbation is chosen to be Gaussian noise
with the same norm. In the fourth plot, we present the attention scores in the first head of the first layer of BERT-Base model, evaluated on
the title of this paper, when the 6th token is modified in embedding space with a vector ∆. In the third and fourth plots, ∆ is chosen to be
a perturbation that attracts all the attention on the perturbed key token, which follows the proof idea of Theorem 5.1.

Remark 5.2. The re-parameterization of the attention layer
through the features W , which removes the dependence
on queries, keys and values, does not substantially change
the problem. In fact, Step 2 of the argument uses that W
acts as an approximate isometry on δ∗. This would also
hold for the product of two independent Gaussian matrices
W⊤
QWK . Similarly, introducing the independent Gaussian

matrix WV would not interfere with our conclusion in Step
4. Additionally, the results obtained on the RAF model seem
to extend to realistic, pre-trained, transformer architectures.
In fact, in the third plot of Figure 3, we provide a lower
bound on the sensitivity of the BERT-Base architecture,
evaluated on the abstract of this paper, when the 42nd token
is modified by a perturbation ∆. The blue line shows how
after the first layer the embeddings are heavily modified,
and how this change increases deeper in the architecture. In
this case, the perturbation ∆ follows from the proof idea
of Theorem 5.1, as it is chosen to move all the attention
towards xi (see the fourth plot in Figure 3). To do so, we set
∆ to be aligned with the right singular vector of W⊤

QWK

associated with the largest singular value. We do this on all
the heads in the first layer separately, and then average and
re-normalize.

6. Generalization on context modification
The study of the word sensitivity is motivated by understand-
ing the capabilities of a model to learn to distinguish two
contexts X and Xi(∆) that only differ by a word. In fact, in
practice, modifying a single row/word of X can lead to a sig-
nificant change in the meaning, see Figure 1. We formalize
the problem in a supervised learning setting, and character-

ize whether a generalized linear model (GLM) induced by a
feature map φ generalizes over a sample (Xi(∆), y∆), after
being trained on (X, y). Crucially, the index i ∈ [n] and the
perturbation ∆ are s.t. the label y∆ is different from y (e.g.,
y ∈ {−1,+1} and y∆ = −y), namely, perturbing the i-th
word changes the meaning of the context.

Supervised learning with generalized linear models
(GLMs). Let (X ,Y) be a labelled training dataset, where
X = (X1, . . . , XN ) contains the training data Xi ∈ Rn×d
and Y = [y1, . . . , yN ]⊤ ∈ {−1, 1}N the correspond-
ing binary labels. The sample (X, y) does not belong to
(X ,Y), and it is introduced later in the training set. Let
φ : Rn×d → Rp be a feature map, and consider the GLM

fφ(·, θ) = φ(·)⊤θ, (10)

where θ ∈ Rp are trainable parameters of the model. We de-
fine the feature matrix as Φφ := [φ(X1), . . . , φ(XN )]⊤ ∈
RN×p, and focus on the quadratic loss

L(θ) := 1

N

N∑
j=1

(
φ(Xj)

⊤θ − yj
)2

. (11)

Minimizing (11) with gradient descent gives (see equation
(33) in (Bartlett et al., 2021))

θ∗ = θ0 +Φ+
φ (Y − Φφθ0), (12)

where θ∗ is the gradient descent solution, θ0 is the initializa-
tion, and Φ+

φ is the Moore-Penrose inverse of Φφ.

Our goal is to establish whether the additional training on
the sample (X, y) allows the model fφ to generalize on

6
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(Xi(∆), y∆), with y∆ = −y. Thus, we do not focus on the
case where fφ(X, θ∗) = y and fφ(X

i(∆), θ∗) = y∆, i.e.,
fφ(·, θ∗) already generalizes well on the two new samples.
Instead, we look at how fφ(·, θ∗) extrapolates the informa-
tion contained in the pair (X, y) to the perturbed sample
Xi(∆). This motivates the following assumption.

Assumption 6.1. There exists a parameter γ ∈ [0, 2) s.t.∣∣fφ(Xi(∆), θ∗)− fφ(X, θ∗)
∣∣ ≤ γ. (13)

The parameter γ captures the degree over which the trained
model fφ(·, θ∗) can distinguish between X and Xi(∆). If
γ = 0, fφ(·, θ∗) does not recognize any difference be-
tween X and Xi(∆); instead, if fφ(·, θ∗) correctly clas-
sifies the two samples X and Xi(∆) (i.e., fφ(X, θ∗) = y
and fφ(X

i(∆), θ∗) = y∆ = −y), then γ = 2, which is
beyond the scope of our analysis.

We consider training on (X, y) in the following two ways.

(a) Fine-tuning. First, we look at the model obtained after
fine-tuning the solution θ∗ defined in (12) over the new
sample (X, y). This means that θ∗ is the initialization of a
gradient descent algorithm trained on this single sample. As(
φ(X)⊤

)+
= φ(X)/ ∥φ(X)∥22, the fine-tuned solution is

given by

θ∗f = θ∗ +
φ(X)

∥φ(X)∥22

(
y − φ(X)⊤θ∗

)
. (14)

(b) Re-training. Second, we re-train the model from
scratch, after adding the pair (X, y) to the training set.
The new training set is denoted by (Xr,Yr), where Xr =
(X1, . . . , XN , X) contains the training data and Yr =
[y1, . . . , yN , y] the binary labels. Thus, denoting by Φφ,r :=
[φ(X1), . . . , φ(XN ), φ(X)]⊤ ∈ R(N+1)×p the new feature
matrix, the re-trained solution θ∗r takes the form

θ∗r = θ0 +Φ+
φ,r(Yr − Φφ,rθ0). (15)

The quantity of interest is the test error on (Xi(∆), y∆):

Errφ(Xi(∆), θ) :=
(
fφ(X

i(∆), θ)− y∆
)2

, (16)

where θ ∈ {θ∗f , θ∗r} is the vector of parameters obtained
either after fine-tuning or re-training.

6.1. Random features do not generalize
By exploiting the low word sensitivity of random features,
we show that both the fine-tuned and retrained solutions
generalize poorly.

Theorem 6.2. Let φRF be the random features map de-
fined in (1), with ϕ Lipschitz and not identically 0, and
let fRF(·, θ∗f ) = φRF(·)⊤θ∗f be the corresponding model

fine-tuned on the sample (X, y), where X ∈ Rn×d sat-
isfies Assumption 3.1 and θ∗f is given by (14). Assume
k = Ω(D), |fRF(X, θ∗)| = O (1), and that Assumption
6.1 holds with γ ∈ [0, 2). Let ErrRF(X

i(∆), θ∗f ) be the test
error of fRF(·, θ∗f ) on (Xi(∆), y∆) as defined in (16). Then,
for any ∆ s.t. ∥∆∥2 ≤

√
d and any i ∈ [n], we have

ErrRF(X
i(∆), θ∗f ) > (2− γ)2 −O

(
1/
√
n
)
, (17)

with probability at least 1− exp(−cD) over V .

Proof sketch. The idea is to use (14) to obtain that

fRF(X
i(∆), θ∗f )− fRF(X

i(∆), θ∗)

=
φRF(X

i(∆))⊤φRF(X)

∥φRF(X)∥22
(y − fRF(X, θ∗)) .

(18)

Next, we note that∣∣∣∣∣φRF(X
i(∆))⊤φRF(X)

∥φRF(X)∥22
− 1

∣∣∣∣∣ ≤ SRF(X). (19)

Theorem 4.1 gives that the RHS of (19) is small, which
combined with (18) implies that fRF(X

i(∆), θ∗f ) is close to

y + fRF(X
i(∆), θ∗)− fRF(X, θ∗). (20)

By upper bounding fRF(X
i(∆), θ∗) − fRF(X, θ∗) via As-

sumption 6.1, we obtain that (20) cannot be far from y. This
implies that fRF(X

i(∆), θ∗f ) cannot be close to the correct
label y∆ = −y. The complete proof is in Appendix B.

Theorem 6.3. Let φRF be the random features map defined
in (1), with ϕ Lipschitz and non-linear, and let fRF(·, θ∗r) =
φRF(·)⊤θ∗r be the corresponding model re-trained on the
dataset (Xr,Yr) that contains the pair (X, y), thus with θ∗r
defined in (15). Assume the training data to be sampled i.i.d.
from a distribution PX s.t. EX∼PX

[X] = 0, Assumption 3.1
holds, and the Lipschitz concentration property is satisfied.
Let N log3 N = o(k), N log4 N = o(D2) and k = Ω(D).
Assume that |fRF(X, θ∗)| = O (1) and that Assumption 6.1
holds with γ ∈ [0, 2). Let ErrRF(X

i(∆), θ∗r) be the test
error of fRF(·, θ∗r) on (Xi(∆), y∆) defined in (16). Then,
for any ∆ s.t. ∥∆∥2 ≤

√
d and any i ∈ [n], we have

ErrRF(X
i(∆), θ∗r) > (2− γ)2 −O

(
1/
√
n
)
, (21)

with probability at least 1− exp
(
−c log2 N

)
over V,Xr.

Proof sketch. The idea is to leverage the stability analysis
in Bombari & Mondelli (2024), which gives

fRF(X
i(∆), θ∗r)− fRF(X

i(∆), θ∗)

= FRF(X,Xi(∆)) (fRF(X, θ∗r)− fRF(X, θ∗)) ,
(22)

7
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where

FRF(X,Xi(∆)) :=
φRF(X

i(∆))⊤P⊥
Φ φRF(X)∥∥P⊥

Φ φRF(X)
∥∥2
2

(23)

is the feature alignment between X and Xi(∆)
induced by φRF and PΦ the projector over
Span{φRF(X1), . . . , φRF(XN )}. After some manipu-
lations, we have∣∣FRF(X,Xi(∆))− 1

∣∣ ≤ SRF(X)
∥φRF(X)∥2√
λmin (KRF,r)

, (24)

where KRF,r := ΦRF,rΦ
⊤
RF,r is the kernel of the model. A

lower bound on its smallest eigenvalue λmin (KRF,r) fol-
lows from the fact that the kernel is well-conditioned (see
Lemma B.2), which crucially relies on the assumptions on
the data (i.i.d. and Lipschitz concentrated) and the scalings
N log3 N = o(k), N log4 N = o(D2). As the word sensi-
tivity SRF(X) is upper bounded by Theorem 4.1, from (24)
we conclude that FRF(X,Xi(∆)) is close to 1.

Since KRF,r is invertible, the re-trained model fRF(·, θ∗r)
interpolates the dataset (Xr,Yr), giving that f(X, θ∗r) = y.
Thus, as FRF(X,Xi(∆)) ≈ 1, fRF(X

i(∆), θ∗r) is close to
(20), and we conclude from the same argument used for
Theorem 6.2. The complete proof is in Appendix B.

In a nutshell, by exploiting the low word sensitivity of ran-
dom features, Theorems 6.2-6.3 show that, after either fine-
tuning or re-training, the model does not learn to “separate”
the predictions on the samples X and Xi(∆). As a conse-
quence, the test error is lower bounded by (2−γ)2. In fact, γ
is the distance between the predictions on X and Xi(∆) be-
fore fine-tuning/re-training (see (13)), and the ground-truth
labels have distance 2 (y∆, y ∈ {−1, 1} and y∆ = −y).

While Theorem 6.2 does not require distributional assump-
tions on the data, Theorem 6.3 considers i.i.d. training data,
satisfying Lipschitz concentration. This property corre-
sponds to having well-behaved tails, and it is common in
the related theoretical literature (Bubeck & Sellke, 2021;
Nguyen et al., 2021; Bombari et al., 2022), see Appendix A
for the formal definition and a discussion.

We remark that Assumption 6.1 requires the model
fRF(·, θ∗) to give a similar output when evaluated on the
two new samples X and Xi(∆). Thus, we are asking if
the model generalizes on Xi(∆) only from the additional
training on X . Now, one could design an adversarial ∆ s.t.
f(Xi(∆), θ∗r) and f(X, θ∗r) are different from each other
(so that fRF(X

i(∆), θ∗r) = y∆ while fRF(X, θ∗r) = y), by
exploiting the adversarial vulnerability of random features
(Dohmatob & Bietti, 2022; Dohmatob, 2022; Bombari et al.,
2023). However, if we restrict the possible ∆’s to those that
satisfy Assumption 6.1, Theorems 6.2 and 6.3 prove that
such adversarial patch cannot be found. We finally note that,

when the context length n is comparable or larger than the
number of training samples N , the model becomes adver-
sarially robust to any token modification and Assumption
6.1 automatically holds, see Appendix E for details.

6.2. Random attention features can generalize
Next, the behavior of random features is contrasted with
that of random attention features. Let us consider the RAF
model fRAF(·, θ) := flat(φRAF(·))⊤θ, where φRAF(·) is de-
fined in (3). Theorem 5.1 proves that the word sensitivity
of φRAF(·) is large. This suggests that the RAF model is
capable of extrapolating the information contained in (X, y)
to correctly classify the perturbed sample Xi(∆). While
proving a rigorous statement on a fine-tuned/re-trained RAF
model remains challenging, we provide experimental evi-
dence of this generalization capability.

Figure 4 (first row) shows that, after fine-tuning on (X, y),
fRAF(X

i(∆), θ∗f ) can be close to the perturbed label y∆ =
−y, even if the model before fine-tuning was unable to
distinguish between X and Xi(∆). Specifically, the two
central sub-plots consider the RAF model for two values
of the context length n ∈ {40, 120}: here, the loss on the
perturbed sample can be close to 0, even when the param-
eter γ in (13) is close to 0, i.e., X and Xi(∆) were indis-
tinguishable before fine-tuning; in general, the test error
ErrRAF(X

i(∆), θ∗f ) is often smaller than the lower bound of
(2 − γ)2 (dashed black line), which holds for random fea-
tures. The left sub-plot considers the RF model for n = 40:
here, the loss on the perturbed sample is close to 0 only if
the model before fine-tuning was already able to perfectly
distinguish between X and Xi(∆), i.e., γ is not far from 2;
in general, the test error ErrRF(X

i(∆), θ∗f ) always respects
the lower bound of (2−γ)2 proved in Theorem 6.2. Finally,
the right sub-plot considers the ReLU-RAF model (which
replaces the softmax with a ReLU activation, as described
at the end of Section 5) for n = 120: here, even if the
lower bound of Theorem 6.2 is often violated, the model
still cannot reach small error unless γ is large, i.e., X and
Xi(∆) could be distinguished already before fine-tuning.
This confirms the impact of the softmax on the capability
of attention layers to understand the context. Analogous
results hold when models are re-trained (instead of being
fine-tuned), as reported in the second row of the same figure.

In a nutshell, our results show that, when a RAF model is
not able to distinguish two points with opposite labels (that
only differ in one word), fine-tuning or retraining on one
of these points allows the loss on also the other point to
decrease. In contrast, this is not the case for the RF model,
where the loss on the second point can be lower bounded
according to Theorems 6.2 and 6.3. This is shown in Figure
4, where most of the points for the RAF model are below the
dashed line representing the lower bound for the RF model.
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Figure 4. Test error (as defined in (16) taking i = 1) for the RF (left subplot), RAF (two central sub-plots) and ReLU-RAF (right subplot)
maps, as a function of the smallest γ s.t. Assumption 6.1 holds. The first (resp. second) row considers the fine-tuned solution θ∗f (resp.
re-trained solution θ∗r ). Every sub-plot has a fixed embedding dimension d = 768, and context length n ∈ {40, 120}, taking the first n
token embeddings for each sample. Different colors correspond to a different number of training samples N ∈ {100, 700, 1300}. Every
point in the scatter-plots is an independent simulation where (X, y) and (X ,Y) are the BERT-Base embeddings of a random subset
of the imdb dataset (after pre-processing to fulfill Assumption 3.1). Circular markers correspond to obtaining ∆ via gradient descent
optimization of the losses in (25); cross markers correspond to minimizing directly the test error in (16).

6.3. Experimental details
The experiments of Figure 4 are performed on multiple in-
dependent trials, for different choices of the training data.
We report in cross markers the results obtained by choos-
ing ∆ after optimizing the test error in (16) via gradient
descent. While this approach directly minimizes the metric
of interest, it results in low test error only when γ is rather
large, regardless of the model taken into account (RF, RAF,
or ReLU-RAF). In contrast, optimizing a different loss con-
trols the value of γ, while still achieving small error for RAF
(and, to a smaller extent, ReLU-RAF). We report in circular
markers the results obtained by minimizing the following
two losses (respectively, for fine-tuning and re-training):

ℓθ∗f (∆) :=

(
φRAF(X

i(∆))⊤φRAF(X)

∥φRAF(X)∥22
+ 1

)2

,

ℓθ∗r (∆) :=
(
FRAF(X,Xi(∆)) + 1

)2
.

(25)

This choice is suggested by (18) and (22) which, after assum-
ing for simplicity that fRAF(X

i(∆), θ∗) = fRAF(X, θ∗) =
0, can be re-written as

fRAF(X
i(∆), θ∗f ) =

φRAF(X
i(∆))⊤φRAF(X)

∥φRAF(X)∥22
y,

fRAF(X
i(∆), θ∗r) = FRAF(X,Xi(∆)) y.

(26)

Achieving small error means that the LHS of (26) is close to
−y, which corresponds to making the losses in (25) small.
Further numerical results and comparisons between different
optimization algorithms for finding ∆ are in Appendix F.

7. Conclusions
This work provides a formal characterization of the funda-
mental difference between fully connected and attention
layers. To do so, we consider the prototypical setting of
random features and study the word sensitivity, which cap-
tures how the output of a map changes after perturbing a
single row/word of the input. On the one hand, the sensitiv-
ity of standard random features decreases with the context
length and, in order to obtain to a significant change in the
output of the map, a constant fraction of the words needs
to be perturbed. On the other hand, the sensitivity of ran-
dom attention features is large, regardless of the context
length, thus indicating the suitability of attention layers for
NLP tasks. These bounds on the word sensitivity translate
into formal negative generalization results for random fea-
tures, which are contrasted by positive empirical evidence
of generalization for the attention layer.

Our analysis allows the perturbations to be any (bounded)
vector in the embedding space. Taking the tokenization pro-
cess (and, hence, the discrete nature of the textual samples)
into account offers an exciting avenue for future work.
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A. Additional notation
Given a sub-Gaussian random variable, let ∥X∥ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}, see Section 2.5 of Vershynin
(2018). Given a sub-exponential random variable X , let ∥X∥ψ1

= inf{t > 0 : E[exp(|X|/t)] ≤ 2}, see Section 2.7 of
Vershynin (2018)). We recall the property that, if X and Y are scalar random variables, then ∥XY ∥ψ1

≤ ∥X∥ψ2
∥Y ∥ψ2

,
see Lemma 2.7.7 of Vershynin (2018).

We use the term standard Gaussian vector in Rd to indicate a vector ρ such that ρi ∼i.i.d. N (0, 1). We recall that the
maximum of n Gaussian (not necessarily independent) random variables is smaller than log n with probability at least
1− exp(c log2 n), see, e.g., Section 1.4 of (Rigollet & Hütter, 2023).

Given a vector u ∈ Rd, we denote by ui its i-th component. Given a matrix A ∈ Rn×d, we denote by [A]i: its i-th row, by
[A]:j its j-th column, and by [A]ij its entry at position (i, j).

We say that a random variable or vector respects the Lipschitz concentration property if there exists an absolute constant
c > 0 such that, for every Lipschitz continuous function φ : Rd → R, we have E|φ(X)| < +∞ and for all t > 0,

P (|φ(x)− EX [φ(x)]| > t) ≤ 2e−ct
2/∥φ∥2

Lip . (27)

The family of Lipschitz concentrated distributions covers a number of important cases, e.g., standard Gaussian (Vershynin,
2018), uniform on the sphere and on the unit (binary or continuous) hypercube (Vershynin, 2018), or data obtained via a
Generative Adversarial Network (GAN) (Seddik et al., 2020).

B. Proofs for random features
In this section, we provide the proofs for our results on the random features model. Thus, we will drop the sub-script
“RF” in all the quantities of this section, for the sake of a cleaner notation. We consider a single textual data-point
X = [x1, x2, ..., xn]

⊤ ∈ Rn×d that satisfies Assumption 3.1. We consider the random features model defined in (1), i.e.,

φ(X) = ϕ(V flat(X)), (28)

where Vi,j ∼i.i.d. N (0, 1/D), D = nd and ϕ is the activation function, applied component-wise to the pre-activations
V flat(X).

Further in the section, we will investigate the generalization capabilities of the RF model f(·, θ) := φ(·)⊤θ on token
modification. We use the notation (X ,Y) to indicate the original labelled training dataset, with X = (X1, . . . , XN ),
Xi ∈ Rn×d and Y = [y1, . . . , yN ]⊤ ∈ {−1,+1}N . We will use the short-hand Φ := [φ(X1), ...φ(XN )]⊤ ∈ RN×p for the
feature matrix and K := ΦΦ⊤ for the kernel. According to (12), minimizing the quadratic loss over this dataset returns the
parameters

θ∗ = θ0 +Φ+(Y − Φθ0). (29)

We consider the test error on the modified sample Xi(∆) given by (see also (16))

Err(Xi(∆), θ) :=
(
f(Xi(∆), θ)− y∆

)2
. (30)

We will investigate this quantity for both the fine-tuned and the re-trained model. In particular, the new solution obtained
after fine-tuning over the sample (X, y) gives

θ∗f = θ∗ +
φ(X)

∥φ(X)∥22

(
y − φ(X)⊤θ∗

)
, (31)

while retraining the model with initialization θ0 on the new dataset (Xr,Yr) returns

θ∗r = θ0 +Φ+
r (Yr − Φrθ0), (32)

where we denote by Φr := [φ(X1), ...φ(XN ), φ(X)]⊤ ∈ R(N+1)×p the new feature matrix. The corresponding kernel is
denoted by Kr = ΦrΦ

⊤
r .

The outline of this section is the following:
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1. We use Lemma B.1 to upper bound the numerator of the word sensitivity S(X) defined in (4), which readily allows to
prove the desired result Theorem 4.1.

2. We prove Theorem 6.2, where we lower bound Err(Xi(∆), θ∗f ) for the fine-tuned solution θ∗f as a function of γ.

3. We prove Theorem 6.3, where we lower bound Err(Xi(∆), θ∗r) for the retrained solution θ∗r as a function of γ. This
result requires additional assumptions and analysis:

• We report in our notation Lemma 4.1 from (Bombari & Mondelli, 2024), which defines the feature alignment
F(X,Xi(∆)) between the two samples X and Xi(∆).

• In Lemma B.2, we exploit the additional assumptions to prove a lower bound on the smallest eigenvalue of the
kernel λmin (Kr) = Ω(k).

• In Lemma B.3, we show that
∣∣F(X,Xi(∆))− 1

∣∣ = O (1/
√
n) with high probability. This step is useful as here

this term assumes the role previously taken by S(X).

Lemma B.1. Let φ(X) be the random feature map defined in (1), with ϕ Lipschitz and k = Ω(D). Let ∆ ∈ Rd be such
that ∥∆∥2 ≤

√
d. Then, for every i ∈ [n], we have

∥∥φ(Xi(∆))− φ(X)
∥∥
2
= O

(√
k

n

)
, (33)

with probability at least 1− exp(−cD) over V .

Proof. Let’s condition on the event

∥V ∥op = O

(√
D + k

D

)
, (34)

which happens with probability at least 1− exp(−c1D) over V , by Theorem 4.4.5 of (Vershynin, 2018). Thus, for every i,
we have ∥∥φ(Xi(∆))− φ(X)

∥∥
2
=
∥∥ϕ(V flat (Xi(∆)))− ϕ(V flat (X))

∥∥
2

≤ M
∥∥V (flat (Xi(∆))− flat (X))

∥∥
2

≤ M ∥V ∥op ∥∆∥2

≤ C1

√
D + k

D

√
d

= C1

√
D + k

n

≤ C2

√
k

n
,

(35)

where the first inequality comes from the Lipschitz continuity of ϕ, and the last step is a consequence of k = Ω(D).

Theorem 4.1 Let φ(X) be the random feature map defined in (1), where ϕ is Lipschitz and not identically 0. Let
X ∈ Rn×d be a generic input sample s.t. Assumption 3.1 holds, and assume k = Ω(D). Let S(X) denote the the word
sensitivity defined in (4). Then, we have

S(X) = O
(
1/
√
n
)
= o(1), (36)

with probability at least 1− exp(−cD) over V .

Proof. As ϕ is Lipschitz and non-0, we can apply the result in Lemma C.3 of (Bombari & Mondelli, 2024), getting

∥φ(X)∥2 = Θ(
√
k), (37)

with probability at least 1− exp(−c1D) over V . Thus, the thesis readily follows from Lemma B.1.
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Proof of Remark 4.2. The only difference with respect to the argument for Theorem 4.1 is in (35). Now, ∆ is replaced by a
new set of m perturbations ∆1, . . . ,∆m. Thus, the modified context takes the form

X (∆1, . . . ,∆m) = X +

m∑
j=1

eij∆
⊤
j , (38)

where {eij}j∈[m] represent different elements of the canonical basis. Thus, we have

∥flat (X (∆1, . . . ,∆m))− flat (X)∥2 =

∥∥∥∥∥∥flat
 m∑
j=1

eij∆
⊤
j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑
j=1

eij∆
⊤
j

∥∥∥∥∥∥
F

. (39)

Since the eij ’s are all distinct (as we are modifying m different words), we obtain∥∥∥∥∥∥
m∑
j=1

eij∆
⊤
j

∥∥∥∥∥∥
2

F

=

m∑
j=1

∥∆j∥22 ≤ md, (40)

where in the last step we use that ∥∆j∥2 ≤
√
d for all j ∈ [m].

This allows to replace the
√
d in the fourth line of (35) with

√
md, increasing the final bound in the statement of Lemma B.1

by a factor
√
m. Thus, the upper bound on the sensitivity is given by

√
m/n = o(1), which concludes the proof.

Theorem 6.2 Let f(·, θ∗f ) be the RF model fine-tuned on the sample (X, y), where ϕ in (1) is Lipschitz and not identically 0,
X ∈ Rn×d is a generic sample s.t. Assumption 3.1 holds and θ∗f is defined in (14). Assume k = Ω(D), |f(X, θ∗)| = O (1),
and that Assumption 6.1 holds with γ ∈ [0, 2). Let Err(Xi(∆), θ∗f ) be the test error of the model on the sample Xi(∆)

defined in (16). Then, for any ∆ such that ∥∆∥2 ≤
√
d and any i ∈ [n], we have

Err(Xi(∆), θ∗f ) > (2− γ)2 −O
(
1/
√
n
)
, (41)

with probability at least 1− exp(−cD) over V .

Proof. We have

f(Xi(∆), θ∗f ) = φ(Xi(∆))⊤θ∗f = φ(Xi(∆))⊤θ∗ +
φ(Xi(∆))⊤φ(X)

∥φ(X)∥22

(
y − φ(X)⊤θ∗

)
, (42)

where the second step is justified by (14). As
∣∣φ(X)⊤θ∗ − φ(Xi(∆))⊤θ∗

∣∣ =
∣∣f(X, θ∗)− f(Xi(∆), θ∗)

∣∣ ≤ γ by
Assumption 6.1, we can write

∣∣f(Xi(∆), θ∗f )− y
∣∣ = ∣∣∣∣∣f(Xi(∆), θ∗)− f(X, θ∗) +

(
φ(Xi(∆))⊤φ(X)

∥φ(X)∥22
− 1

)
(y − f(X, θ∗))

∣∣∣∣∣
≤ γ +

∣∣∣∣∣φ(Xi(∆))⊤φ(X)

∥φ(X)∥22
− 1

∣∣∣∣∣ |y − f(X, θ∗)| .
(43)

By Cauchy-Schwartz inequality, we have∣∣∣∣∣φ(Xi(∆))⊤φ(X)

∥φ(X)∥22
− 1

∣∣∣∣∣ =
∣∣∣∣∣
(
φ(Xi(∆))− φ(X)

)⊤
φ(X)

∥φ(X)∥22

∣∣∣∣∣ ≤
∥∥φ(Xi(∆))− φ(X)

∥∥
2
∥φ(X)∥2

∥φ(X)∥22
≤ S(X). (44)

By Theorem 4.1, we have that S(X) = O (1/
√
n) with probability at least 1− exp(−cD) over V . Conditioning on such

high probability event, we can write∣∣f(Xi(∆), θ∗f )− y∆
∣∣ ≥ |y∆ − y| −

∣∣f(Xi(∆), θ∗f )− y
∣∣

≥ |y∆ − y| − γ − S(X) |y − f(X, θ∗)|
= 2− γ − S(X) |y − f(X, θ∗)|
= 2− γ −O

(
1/
√
n
)
,

(45)
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where the third step is a consequence of |y| = |y∆| = 1, with y = −y∆, and the fourth step comes from |f(X, θ∗)| = O (1).
Thus, we can conclude

Err(Xi(∆), θ∗f ) =
(
f(Xi(∆), θ∗f )− y∆

)2 ≥
(
2− γ −O

(
1/
√
n
))2

> (2− γ)2 −O
(
1/
√
n
)
. (46)

Lemma 4.1 (Bombari & Mondelli, 2024) Let the kernel Kr ∈ R(N+1)×(N+1) be invertible, and let PΦ ∈ Rk×k be the
projector over Span{rows(Φ)}. Let us denote by

F(X,Xi(∆)) :=
φ(Xi(∆))⊤P⊥

Φ φ(X)∥∥P⊥
Φ φ(X)

∥∥2
2

(47)

the feature alignment between X and Xi(∆). Then, we have

f(Xi(∆), θ∗r)− f(Xi(∆), θ∗) = F(X,Xi(∆)) (f(X, θ∗r)− f(X, θ∗)) . (48)

Notice that ∥∥P⊥
Φ φ(X)

∥∥2
2
≥ λmin (Kr) > 0 (49)

is directly implied by the invertibility of Kr, as shown in Lemma B.1 from (Bombari & Mondelli, 2024).

Lemma B.2. Let ϕ be a non-linear, Lipschitz function. Let all the training data in Xr be sampled i.i.d. according to a
distribution PX s.t. EX∼PX

[X] = 0, Assumption 3.1 holds, and the Lipschitz concentration property is satisfied. Let
N log3 N = o(k) and N log4 N = o(D2). Then, we have

λmin (Kr) = Ω(k), (50)

with probability at least 1− exp
(
−c log2 N

)
over V and Xr.

Proof. The desired result follows from Lemma D.2 in (Bombari & Mondelli, 2024). Notice that for their argument to go
through, they need their Lemma D.1 to hold, which requires our assumptions on the data distribution PX , and Assumption
3.1. They further require the scalings N = o(D2/ log4 D) and N log4 N = o(D2), which are both given by our assumption
N log4 N = o(D2). Finally, in their Lemma D.2 they require the activation function ϕ to be Lipschitz and non-linear, and
the over-parameterized setting N log3 N = o(k).

Lemma B.3. Let ϕ be a non-linear, Lipschitz function. Let all the training data in Xr be sampled i.i.d. according
to a distribution s.t. EX∼PX

[X] = 0, Assumption 3.1 holds, and the Lipschitz concentration property is satisfied. Let
N log3 N = o(k), N log4 N = o(D2) and k = Ω(D). Let F(X,Xi(∆)) be defined as in (47). Then, we have

∣∣F(X,Xi(∆))− 1
∣∣ = O

(
1√
n

)
, (51)

with probability at least 1− exp
(
−c log2 N

)
over Xr and V .

Proof. By Cauchy-Schwartz inequality, we have

∣∣F(X,Xi(∆))− 1
∣∣ = ∣∣∣∣∣

(
φ(Xi(∆))− φ(X)

)⊤
P⊥
Φ φ(X)∥∥P⊥

Φ φ(X)
∥∥2
2

∣∣∣∣∣
≤
∥∥φ(Xi(∆))− φ(X)

∥∥
2

∥φ(X)∥2
∥φ(X)∥2∥∥P⊥
Φ φ(X)

∥∥
2

≤ S(X)
∥φ(X)∥2√
λmin (Kr)

,

(52)
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where the last step is a consequence of (49). As ϕ is Lipschitz and non-0, we can apply the result in Lemma C.3 of (Bombari
& Mondelli, 2024), getting

∥φ(X)∥2 = Θ(
√
k), (53)

with probability at least 1− exp(−c1D) over V . Due to Lemma B.2, we can also write

λmin (Kr) = Ω(k), (54)

with probability at least 1− exp
(
−c2 log

2 N
)

over V and Xr. Thus, (52) promptly gives

∣∣F(X,Xi(∆))− 1
∣∣ ≤ S(X)

∥φ(X)∥2√
λmin (Kr)

= O (S(X)) = O
(

1√
n

)
, (55)

where the last step comes from Theorem 4.1, and holds with probability at least 1− exp(−c3D). This gives the desired
result.

Theorem 6.3 Let f(·, θ∗r) be the RF model re-trained on the dataset (Xr,Yr) that contains the pair (X, y), thus with
θ∗r defined in (15). Let ϕ in (1) be a non-linear, Lipschitz function. Assume the training data to be sampled i.i.d. from
a distribution PX s.t. EX∼PX

[X] = 0, Assumption 3.1 holds, and the Lipschitz concentration property is satisfied. Let
N log3 N = o(k), N log4 N = o(D2) and k = Ω(D). Assume that |f(X, θ∗)| = O (1) and that Assumption 6.1 holds
with γ ∈ [0, 2). Let Err(Xi(∆∗), θ∗r) be the test error of the model on the sample Xi(∆) defined in (16). Then, for any ∆
s.t. ∥∆∥2 ≤

√
d and any i ∈ [n], we have

Err(Xi(∆∗), θ∗r) > (2− γ)2 −O
(
1/
√
n
)
, (56)

with probability at least 1− exp
(
−c log2 N

)
over V and Xr.

Proof. Let’s condition on Kr being invertible, which by Lemma B.2 happens with probability at least 1− exp
(
−c1 log

2 N
)

over V and Xr. Then, by (48), we have

f(Xi(∆), θ∗r)− f(Xi(∆), θ∗) = F(X,Xi(∆)) (y − f(X, θ∗)) , (57)

since f(·, θ∗r) fully interpolates the training data, thus giving f(X, θ∗r) = y. As
∣∣φ(X)⊤θ∗ − φ(Xi(∆))⊤θ∗

∣∣ =∣∣f(X, θ∗)− f(Xi(∆), θ∗)
∣∣ ≤ γ by Assumption 6.1, we can write∣∣f(Xi(∆), θ∗r)− y

∣∣ = ∣∣f(Xi(∆), θ∗)− f(X, θ∗) +
(
F(X,Xi(∆))− 1

)
(y − f(X, θ∗))

∣∣
≤ γ +

∣∣F(X,Xi(∆))− 1
∣∣ |y − f(X, θ∗)| .

(58)

By Lemma B.3 we have that
∣∣F(X,Xi(∆))− 1

∣∣ = O (1/
√
n) with probability at least 1− exp

(
−c log2 N

)
over Xr and

V . Conditioning on such high probability event, we can write∣∣f(Xi(∆), θ∗r)− y∆
∣∣ ≥ |y∆ − y| −

∣∣f(Xi(∆), θ∗r)− y
∣∣

≥ |y∆ − y| − γ −
∣∣F(X,Xi(∆))− 1

∣∣ |y − f(X, θ∗)|
= 2− γ −

∣∣F(X,Xi(∆))− 1
∣∣ |y − f(X, θ∗)|

= 2− γ −O
(
1/
√
n
)
,

(59)

where the third step is a consequence of |y| = |y∆| = 1, with y = −y∆, and the fourth step comes from |f(X, θ∗)| = O (1).
Thus, we can conclude

Err(Xi(∆), θ∗r) =
(
f(Xi(∆), θ∗r)− y∆

)2 ≥
(
2− γ −O

(
1/
√
n
))2

> (2− γ)2 −O
(
1/
√
n
)
. (60)
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C. Proofs for deep random features
In this section, we provide the proofs for our results on the deep random features model. We consider a single textual
data-point X = [x1, x2, ..., xn]

⊤ ∈ Rn×d that satisfies Assumption 3.1. We consider the deep random features model
defined in (6), i.e.,

φDRF(X) := ϕ(VLϕ(VL−1(...V2ϕ(V1 flatX)...))), (61)

where ϕ : R → R is the non-linearity applied component-wise at each layer, and Vl ∈ RD×D are the random weights at
layer l, sampled independently and such that [V1]i,j ∼i.i.d. N (0, β/D) and [Vl]i,j ∼i.i.d. N (0, β/k) for l > 1. We set β
according to He’s (or Kaiming) initialization (He et al., 2015), i.e.,

Eρ∼N (0,β)

[
ϕ2(ρ)

]
= 1. (62)

Thus, we require the activation function ϕ to guarantee at least one value β for which the previous equation is respected. We
will consider β to be a positive constant dependent only on the activation ϕ.

Let’s introduce the shorthands
φ0(X) = flat(X),

φl(X) = ϕ (Vl φl−1(X)) , for l ∈ [L].
(63)

The outline of this section is the following:

1. In Lemma C.1, we prove that at every layer, the norm of the features ∥φl(X)∥2, with l > 1, concentrates to
√
k. This

is the step where He’s initialization is necessary.

2. In Lemma C.2, we show that
∥∥φl(Xi(∆))− φl(X)

∥∥
2

can be upper bounded by a term that grows exponentially with
the depth of the layer l.

3. In Theorem 5.1, we upper bound SDRF, concluding the argument.

Lemma C.1. Let φl(X) be defined in (63), and let ϕ be a Lipschitz function such that (7) admits at least one solution β. Let
X ∈ Rn×d be a generic input sample such that Assumption 3.1 holds, and let k = Θ(D). Then, for every l > 0, we have∣∣∣∥φl(X)∥2 −

√
k
∣∣∣ ≤ eCl logD, (64)

with probability at least 1− 2L exp(−c log2 D) over {Vl}Ll=1.

Proof. By Assumption 3.1 the statement trivially holds for l = 0, if we replace
√
k with

√
d. Let’s consider this the base

case of an induction argument to prove the statement for l ∈ [L].

Thus, using the notation k0 = D and kl = k for l ∈ [L], the inductive hypothesis becomes∣∣∣∥φl−1(X)∥2 −
√
kl−1

∣∣∣ ≤ eC(l−1) logD, (65)

with probability at least 1− 2(l − 1) exp(−c log2 D) on {Vm}l−1
m=1. Let’s condition on this high probability event and on

∥Vl∥op ≤ C1 until the end of the proof. By Theorem 4.4.5 of (Vershynin, 2018) and since k = Θ(D), there exists C1 large
enough and independent from l, such that this holds with probability at least 1− 2 exp(−c1k) over Vl. We therefore aim to
prove the thesis for

eC := max (1,MC1 + 1) , (66)

where we denote by M the Lipschitz constant of ϕ. (66) explicitely shows that C is a natural constant dependent only on the
activation function ϕ.

We have

φl(X) = ϕ(Vl φl−1(X)) = ϕ

(
Vl

√
kl−1 φl−1(X)

∥φl−1(X)∥2
+ Vl

(
φl−1(X)−

√
kl−1 φl−1(X)

∥φl−1(X)∥2

))
, (67)

which gives ∥∥∥∥∥φl(X)− ϕ

(
Vl

√
kl−1 φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

≤ MC1

∣∣∣∥φl−1(X)∥2 −
√
kl−1

∣∣∣ ≤ MC1e
C(l−1) logD, (68)
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where the first step is true since ϕ is M -Lipschitz, and the last step is a direct consequence of the inductive hypothesis (65).

Let’s now consider the second term in the left hand side of (68). Let’s define the shorthand ρ = Vl

√
kl−1 φl−1(X)

∥φl−1(X)∥2
∈ RD. In

the probability space of Vl, ρ is distributed as a Gaussian random vector, such that all its entries ρi are i.i.d. Gaussian with
variance β. Thus, we have

EVl

∥∥∥∥∥ϕ
(
Vl

√
kl−1 φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

2

 = Eρ
[
∥ϕ (ρ)∥22

]
= klEρ1

[
ϕ2 (ρ1)

]
= k, (69)

where the last step is a consequence of (62), and of kl = k for l ∈ [L].

As the ρi’s are independent and ϕ is Lipschitz, the random variables
(
ϕ2 (ρi)− 1

)
are independent, mean-0, and sub-

exponential, such that
∥∥ϕ2 (ρi)− 1

∥∥
ψ1

≤ C2. Thus, by Bernstein inequality (cf. Theorem 2.8.1. in (Vershynin, 2018)), we
have

Pρ

(∣∣∣∣∣
k∑
i=1

(
ϕ2 (ρi)− 1

)∣∣∣∣∣ ≥ √
k log k

)
≤ 2 exp(−c2 log

2 k), (70)

which gives ∣∣∣∣∣∣
∥∥∥∥∥ϕ
(
Vl

√
k φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

2

− k

∣∣∣∣∣∣ ≤ √
k log k, (71)

with probability at least 1− 2 exp(−c2 log
2 k) over Vl. We will condition on such high probability event until the end of the

proof.

Thus, we have∥∥∥∥∥ϕ
(
Vl

√
k φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

≤
√

k +
√
k log k =

√
k

√
1 +

log k√
k

≤
√
k

(
1 +

log k√
k

)
=

√
k + log k, (72)

and ∥∥∥∥∥ϕ
(
Vl

√
k φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

≥
√

k −
√
k log k =

√
k

√
1− log k√

k
≥

√
k

(
1− log k√

k

)
=

√
k − log k. (73)

Putting together the last two equations gives∣∣∣∣∣
∥∥∥∥∥ϕ
(
Vl

√
k φl−1(X)

∥φl−1(X)∥2

)∥∥∥∥∥
2

−
√
k

∣∣∣∣∣ ≤ log k. (74)

Applying (68), (74) and the triangle inequality gives∣∣∣∥φl (X)∥2 −
√
k
∣∣∣ ≤ MC1e

C(l−1) log k + log k ≤
(
MC1e

C(l−1) + eC(l−1)
)
log k ≤ eCl log k, (75)

where the second and the third step are both consequences of (66). This inequality, performing a union bound on the
high probability events we considered so far, holds with probability at least 1− 2(l − 1) exp(−c log2 k)− 2 exp(−c1k)−
2 exp(−c2 log

2 k) ≥ 1− 2l exp(−c log2 k) over {Vm}lm=1, as soon as we consider c = min(c1, c2).

Lemma C.2. Let φl(X) be defined in (63), let ϕ be a Lipschitz function and X ∈ Rn×d a generic input sample such
that Assumption 3.1 holds. Assume k = Θ(D). Then, for every l ≥ 0, for every i ∈ [n] and for any ∆ ∈ Rd such that
∥∆∥2 ≤

√
d, we have ∥∥φl(Xi(∆))− φl(X)

∥∥
2
≤

√
deCl, (76)

with probability at least 1− 2L exp(−ck) over {Vl}Ll=1.
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Proof. Let’s prove the statement by induction over l. The base case l = 0 is a direct consequence of∥∥flat(Xi(∆))− flat(X)
∥∥
2
= ∥∆∥2 ≤

√
d, which makes the thesis true for any C ≥ 0.

In the inductive step, the inductive hypothesis becomes∥∥φl−1(X
i(∆))− φl−1(X)

∥∥
2
≤

√
deC(l−1), (77)

with probability at least 1 − 2(l − 1) exp(−ck) on {Vm}l−1
m=1. Let’s condition on this high probability event and on

∥Vl∥op ≤ C1 until the end of the proof. By Theorem 4.4.5 of (Vershynin, 2018) and since k = Θ(D), there exists C1 large
enough and independent from l, such that this holds with probability at least 1− 2 exp(−c1k) over Vl.

We aim to prove the thesis for eC = MC1, and c = c1, where M is the Lipschitz constant of ϕ. We have∥∥φl(Xi(∆))− φl(X)
∥∥
2
=
∥∥ϕ(Vlφl−1(X

i(∆)))− ϕ(Vlφl−1(X))
∥∥
2

≤ MC1

∥∥φl−1(X
i(∆))− φl−1(X)

∥∥
2

≤ MC1

√
deC(l−1)

≤
√
deCl,

(78)

with probability at least 1 − 2(l − 1) exp(−ck) − 2 exp(−c1k) = 1 − 2l exp(−ck) over {Vm}lm=1, which gives the
thesis.

Theorem 4.3. Let φDRF(X) be the deep random feature map defined in (6), and let ϕ be a Lipschitz function, such that (7)
admits at least one solution β. Let X ∈ Rn×d be a generic input sample s.t. Assumption 3.1 holds, and assume k = Θ(D),
L = o(log k). Let SDRF(X) be the the word sensitivity defined in (4). Then, we have

SDRF = O
(
eCL√
n

)
, (79)

with probability at least 1− exp(−c log2 k) over {Vm}lm=1.

Proof. By Lemma C.1 (for the case l = L) and since L = o(log k), we have

∥φDRF(X)∥2 = Θ(
√
k), (80)

with probability at least 1− 2L exp(−c1 log
2 k) ≥ 1− exp(−c2 log

2 k) over {Vl}Ll=1.

By Lemma C.2 (for the case l = L), we have that, for every i ∈ [n], we have

sup
∥∆∥2≤

√
d

∥∥φDRF(X
i(∆))− φDRF(X)

∥∥
2
≤

√
deCL, (81)

with probability at least 1− 2L exp(−c3k) ≥ 1− exp(−c4 log
2 k) over {Vl}Ll=1.

Then, putting together (80), (81), and (4), and recalling that k = Θ(D), we get the thesis.

D. Proofs for random attention features
In this section, we provide the proofs for our results on the random attention features model.

We consider a single textual data-point X = [x1, x2, ..., xn]
⊤ ∈ Rn×d that satisfies Assumptions 3.1. We assume

d/ log4 d = Ω(n). We consider the random attention features model defined in (3), i.e.,

φRAF(X) = softmax

(
XWX⊤

√
d

)
X, (82)

where Wi,j ∼i.i.d. N (0, 1/d) sampled independently from X . We define the argument of the softmax as S(X) ∈ Rn×n
given by

S(X) =
XWX⊤

√
d

, (83)
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and its evaluation on the perturbed sample as

S(Xi(∆)) =
Xi(∆)WXi(∆)⊤√

d
. (84)

The attention scores are therefore defined as the row-wise softmax of the previous term, i.e.,

[s(X)]j: = softmax ([S(X)]j:) , (85)

which allows us to rewrite (3) as
φRAF(X) = s(X)X. (86)

Through this section, we will always consider this notation and assumptions, which will therefore not be repeated in the
statement of the lemmas before our final result Theorem 5.1.

The outline of this section is the following:

1. In Lemma D.1, we prove the existence of a vector δ∗ ∈ Rd, such that its inner product with the token embeddings xi’s
is large for a constant fraction of the words in the context.

2. In Lemma D.2, we show that the result in the previous Lemma can be extended to two different vectors δ∗1 and δ∗2 , that
are very different from each other, i.e., ∥δ∗1 − δ∗2∥2 =

√
d. The reason why we would like this statement to hold on two

vectors will be clear in Lemma D.5.

3. In Lemma D.3, exploiting the properties of the Gaussian attention features W , we show that there exist two different
vectors ∆∗

1 and ∆∗
2, that are very different from each other, i.e., ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d), such that a constant fraction

of the entries of the vector XW∆∗
k/
√
d, k ∈ {1, 2}, is large.

4. In Lemma D.4, we prove that, for the two vectors ∆∗
1 and ∆∗

2 and an Ω(n) number of rows j ∈ [n], the attention scores
[s(Xi(∆∗

k))]
⊤
j: are well approximated by the canonical basis vector ei for k ∈ {1, 2}. This intuitively means that a

constant fraction of tokens xj puts all their attention towards the i-th modified token xi +∆∗
k.

5. In Lemma D.5, using an argument by contradiction, we prove that at least one between ∆∗
1 and ∆∗

2 is such that∥∥φRAF(X)− φRAF(X
i(∆∗))

∥∥
F
= Ω(

√
dn).

6. In Theorem 5.1, we upper bound ∥φRAF(X)∥F , concluding the argument.

Lemma D.1. There exists a vector δ∗ ∈ Rd, such that

∥δ∗∥2 ≤
√
d, (87)

and (
x⊤
i δ

∗)2 = Ω

(
d2

n

)
, (88)

for at least Ω(n) indices i ∈ [n].

Proof. Let X⊤ = UDV ⊤ the singular value decomposition of X⊤, where U ∈ Rd×d, D ∈ Rd×n, and V ∈ Rn×n, and let
Ur ∈ Rd×r be the matrix obtained keeping only the first r = rank(X) columns of U . Let δε be defined as follows

δε :=

√
d

n
Urε, (89)

where we consider ε ∈ Rr uniformly distributed on the sphere
√
r Sr−1 of radius

√
r. By definition we have U⊤

r Ur = I ,
which implies

∥Urε∥2 = ∥ε∥2 =
√
r. (90)

As r ≤ n, we have that
∥δε∥2 ≤

√
d, (91)

for every ε. Let’s call Zεi the random variable x⊤
i δε.
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By contradiction, let’s assume the thesis to be false. Then, in particular, by (91), there is no ε such that δε respects the
second part of the thesis. This implies that, for every ε, there are at least ⌈n/2⌉ values of i such that (Zεi )

2
< 0.01 d2/n.

Let’s define the indicators

χi =

{
1, if (Zεi )

2
< 0.01 d2/n,

0, if (Zεi )
2 ≥ 0.01 d2/n.

(92)

Thus, by contradiction, we have ∑
χi ≥

⌈n
2

⌉
≥ n

2
, (93)

for every ε. Thus, by the probabilistic method,

n

2
≤ Eε

[∑
χi

]
=
∑

Eε [χi] = nEε [χ1] = nPε
(
(Zε1)

2 ≤ 0.01 d2/n
)
, (94)

where the second equality is true as the Zεi are identically distributed, and the last step comes from the definition of the
indicators in (92). This implies, for every i,

Pε
(
(Zεi )

2 ≤ 0.01 d2/n
)
≥ 0.5. (95)

Let ρ ∈ Rr be a standard Gaussian vector and define ρr = ∥ρ∥2 /
√
r. We have that E[ρ2r] = 1 and Var(ρ2r) = 1/r. Thus,

for every r, by Chebyshev’s inequality, we can write

Pρr
(
ρ2r ≤ 3

)
≥ 0.75 ≥ 0.5. (96)

By rotational invariance of the Gaussian measure, we have that ρrε is distributed as a standard Gaussian vector. In particular,
we have

ρrZ
ε
i = ρrx

⊤
i δε =

(√
d

n
U⊤
r xi

)⊤

(ρrε) . (97)

As U⊤
r xi is a fixed vector independent from ε and ρr, we have that ρrZεi is a Gaussian random variable (in the probability

space of ε and ρr), with variance d
∥∥U⊤

r xi
∥∥2
2
/n = d2/n, as xi ∈ Span{rows(U⊤

r )} by construction. Thus,
√
nρrZ

ε
i /d is

distributed as a standard Gaussian random variable gi.

Therefore, putting together (95) and (96) gives

Pgi
(
g2i ≤ 0.03

)
≥ 0.25. (98)

However, we can upper-bound the left hand side of the previous equation exploiting the closed form of the pdf of a standard
Gaussian random variable. This gives

Pgi
(
|gi| ≤

√
0.03

)
<

1√
2π

· 2 ·
√
0.03 < 0.14 < 0.25, (99)

which leads to the desired contradiction.

Lemma D.2. There exist two vectors δ∗1 ∈ Rd and δ∗2 ∈ Rd such that

∥δ∗1∥2 ≤
√
d, ∥δ∗2∥2 ≤

√
d, ∥δ∗1 − δ∗2∥2 =

√
d, (100)

and x⊤
i δ

∗
1 > 0, x⊤

i δ
∗
2 > 0, and

x⊤
i δ

∗
1 = Ω

(√
d log2 d

)
, (101)

x⊤
i δ

∗
2 = Ω

(√
d log2 d

)
, (102)

for at least Ω(n) indices i ∈ [n].
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Proof. By Lemma D.1, we have that there exists a vector δ∗, with ∥δ∗∥2 ≤
√
d such that

(
x⊤
i δ

∗)2 = Ω

(
d2

n

)
, (103)

for at least Ω(n) indices i ∈ [n]. This also implies (up to considering −δ∗ instead of δ∗) that

x⊤
i δ

∗ = Ω

(
d√
n

)
= Ω

(√
d log2 d

)
, (104)

where the last step is justified by d/ log4 d = Ω(n).

Let’s now define

δ∗1 =
δ∗

2
+

v

2
, (105)

and
δ∗2 =

δ∗

2
− v

2
, (106)

where v ∈ Rd is a generic fixed vector such that ∥v∥2 =
√
d, and ∥Xv∥2 = 0, i.e. v ∈ Span{rows(X)}⊥. This is

again possible because of d/ log4 d = Ω(n). As ∥δ∗∥2 ≤
√
d by Lemma D.1, the first part of the thesis follows from a

straightforward application of the triangle inequality.

Since v⊤xi = 0 for every 1 ≤ i ≤ n, we also have

x⊤
i δ

∗
1 = x⊤

i δ
∗
2 = x⊤

i δ
∗/2, (107)

which readily gives the desired result.

Lemma D.3. Let’s define σ(∆) ∈ Rn as

σ(∆) :=
XW∆√

d
, (108)

where ∆ ∈ Rd. Then, with probability at least 1− exp(−c log2 d) over W , there exist ∆∗
1 and ∆∗

2 such that,

∥∆∗
1∥2 ≤

√
d, ∥∆∗

2∥2 ≤
√
d, ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d), (109)

and
σ(∆∗

1)i = Ω
(
log2 d

)
. (110)

σ(∆∗
2)i = Ω

(
log2 d

)
. (111)

for at least Ω(n) indices i ∈ [n].

Proof. Let’s set
∆ = CW⊤δ, (112)

where δ ∈ Rd is independent from W , and C is an absolute constant that will be fixed later in the proof. For every i, we can
write

δ =
δ⊤xi

∥xi∥22
xi + δ⊥i , (113)

with δ⊥i being orthogonal with xi by construction. Let’s for now suppose
∥∥δ⊥i ∥∥2 ̸= 0. Let a(δ)i := δ⊤xi. We have

σ(∆)i ≥ C
a(δ)i√
d ∥xi∥22

∥∥W⊤xi
∥∥2
2
− C

∣∣∣∣x⊤
i WW⊤δ⊥i√

d

∣∣∣∣
= C

a(δ)i√
d ∥xi∥22

∥∥W⊤xi
∥∥2
2
− C

∥∥δ⊥i ∥∥2
d

∣∣∣∣∣x⊤
i WW⊤

√
d δ⊥i∥∥δ⊥i ∥∥2

∣∣∣∣∣ .
(114)
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In the probability space of W , as the entries of W are i.i.d. and Gaussian N (0, 1/d), we have that W⊤xi and W⊤
√
d δ⊥i

∥δ⊥i ∥2

are two independent standard Gaussian vectors, namely, ρ1 and ρ2. This implies

∥∥W⊤xi
∥∥2
2
= Ω(d),

∣∣∣∣∣x⊤
i WW⊤

√
d δ⊥i∥∥δ⊥i ∥∥2

∣∣∣∣∣ =:
∣∣ρ⊤1 ρ2∣∣ = O

(√
d log d

)
, (115)

with probability at least 1− exp(−c1 log
2 d), over the probability space of W . The first statement holds because of Theorem

3.1.1. of (Vershynin, 2018), and the second one because, in the probability space of ρ1, ρ⊤1 ρ2 is a Gaussian random variable
with variance ∥ρ2∥22, which in turn is O (d) with probability at least 1− exp(−c2d) over ρ2. Using ∥xi∥22 = d, we get, for
two positive absolute constants C1 and C2,

σ(∆)i ≥ C1
a(δ)i√

d
− C2

∥∥δ⊥i ∥∥2 log d√
d

≥ C1
a(δ)i√

d
− C2

∥δ∥2 log d√
d

. (116)

Notice that the previous equation would still hold even in the case
∥∥δ⊥i ∥∥2 = 0, which is therefore a case now included in our

derivation.

By Lemma D.2, we can choose two vectors δ∗1 and δ∗2 , independently from W such that, for k ∈ {1, 2}, ∥δ∗k∥2 ≤
√
d and

a(δ∗k)i = Ω(
√
d log2 d) for Ω(n) indices i ∈ [n]. This gives, for another absolute positive constant C3,

σ(∆∗
1)i ≥ C3 log

2 d− C2 log d = Ω(log2 d), (117)

σ(∆∗
2)i ≥ C3 log

2 d− C2 log d = Ω(log2 d), (118)

for Ω(n) indices i ∈ [n].

Let’s now verify that ∥∆∗
1 −∆∗

2∥2 = C
∥∥W⊤(δ∗1 − δ∗2)

∥∥
2
= Ω(

√
d). As δ∗1 − δ∗2 is independent on W , and ∥δ∗1 − δ∗2∥2 =√

d, we have that W⊤(δ∗1 − δ∗2) is a standard Gaussian random vector, in the probability space of W . Thus, by Theorem
3.3.1 of (Vershynin, 2018), we have

∥∆∗
1 −∆∗

2∥2 = C
∥∥W⊤(δ∗1 − δ∗2)

∥∥
2
= Ω(

√
d), (119)

with probability at least 1− exp(−c3d), on the probability space of W .

We are left to verify that, for k ∈ {1, 2}, ∥∆∗
k∥2 = C

∥∥W⊤δ∗k
∥∥
2
≤

√
d. This is readily implied by Theorem 4.4.5 of

(Vershynin, 2018), which gives ∥W∥op = O (1) with probability at least 1− exp(−c4d). Taking the intersection between
this high probability event and the ones in (115) and (119), and setting C small enough to have C ∥W∥op ≤ 1, we get the
thesis.

Lemma D.4. For every i ∈ [n], with probability at least 1− exp(−c log2 d) over W , there exist ∆∗
1 and ∆∗

2 such that,

∥∆∗
1∥2 ≤

√
d, ∥∆∗

2∥2 ≤
√
d, ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d), (120)

and ∥∥[s(Xi(∆∗
1))]

⊤
j: − ei

∥∥
2
= o

(
1√
d

)
, (121)

∥∥[s(Xi(∆∗
2))]

⊤
j: − ei

∥∥
2
= o

(
1√
d

)
, (122)

for at least Ω(n) indices j ∈ [n], where ei represents the i-th element of the canonical basis in Rn.

Proof. As we can write Xi(∆) = X + ei∆
⊤, we can rewrite (84) as

√
dS(Xi(∆)) = Xi(∆)WXi(∆)⊤ = XWX⊤ +XW∆e⊤i + ei∆

⊤WX + ei∆
⊤W∆e⊤i . (123)

Let’s look at the j-th row of S(Xi(∆)), with j ̸= i. We have

[S(Xi(∆))]j: =
x⊤
j WX⊤
√
d

+
x⊤
j W∆e⊤i√

d
. (124)
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With probability at least 1− exp(−c1 log
2 d) over W , we have that all the n entries of the vector x⊤

j WX⊤/
√
d are smaller

than log d, as they are all standard Gaussian random variables. By Lemma D.3, we have that there exist ∆∗
1 and ∆∗

2 such
that ∥∆∗

1∥2 ≤
√
d, ∥∆∗

2∥2 ≤
√
d, ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d) and

x⊤
j W∆∗

k√
d

= Ω(log2 d), k ∈ {1, 2}, (125)

for Ω(n) indices j ∈ [n], with probability at least 1− exp(−c2 log
2 d) over W . Let’s consider this set of indices until the

end of the proof, where we have that, for k ∈ {1, 2}, [S(Xi(∆∗
k))]ji = Ω(log2 d).

After applying the softmax function to the row in (124) as indicated in (85), we get, for every index k ∈ [n] and k ̸= i

[s(Xi(∆∗
1))]jk = softmax

(
[S(Xi(∆∗

1))]j:
)
k

=
exp

(
[S(Xi(∆∗

1))]jk
)∑

l exp ([S(X
i(∆∗

1))]jl)

≤ d

exp ([S(Xi(∆∗
1))]ji)

≤ d

Cdlog d
= o

(
1

d

)
,

(126)

and
[s(Xi(∆∗

1))]ji = softmax
(
[S(Xi(∆∗

1))]j:
)
i

= 1−
∑
l ̸=i exp

(
[S(Xi(∆∗

1))]jl
)∑

l exp ([S(X
i(∆∗

1))]jl)

≥ 1− nd

exp ([S(Xi(∆∗
1))]ji)

≥ 1− nd

Cdlog d
= 1− o

(
1

d

)
,

(127)

where the last step is justified by the fact that d/ log4 d = Ω(n).

Thus, for the same reason, we have

∥∥[s(Xi(∆∗
1))]

⊤
j: − ei

∥∥2
2
=
∑
k ̸=i

[s(Xi(∆∗
1))]

2
jk +

(
1− [s(Xi(∆∗

1))]ji
)2

= no

(
1

d2

)
= o

(
1

d

)
. (128)

As (128) can be written also with respect to ∆∗
2, the thesis readily follows.

Lemma D.5. For every i ∈ [n], with probability at least 1− exp(−c log2 d) over W , there exist ∆∗ such that ∥∆∗∥2 ≤
√
d,

and ∥∥φRAF(X)− φRAF(X
i(∆∗))

∥∥
F
= Ω(

√
dn). (129)

Proof. By (86), we have that,
φRAF(X

i(∆)) = s(Xi(∆))Xi(∆), (130)

By Lemma D.4, we have that there exists ∆∗
1, with ∥∆∗

1∥2 ≤
√
d, such that there are Ω(n) indices j such that

∥∥[s(Xi(∆∗
1))]

⊤
j: − ei

∥∥
2
= o

(
1√
d

)
, (131)

with probability at least 1− exp(−c1 log
2 d) over W . Until the end of the proof, we will refer to j as a generic index for

which the previous equation holds, and we will condition on the high probability event that the equations in the statement of
Lemma D.4 hold.
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As we can write[
φRAF(X

i(∆∗
1))
]
j:
= [s(Xi(∆∗

1))]j:X
i(∆∗

1) = e⊤i X
i(∆∗

1) +
(
[s(Xi(∆∗

1))]j: − e⊤i
)
Xi(∆∗

1), (132)

and e⊤i X
i(∆∗

1) = x⊤
i +∆∗

1
⊤, we have∥∥∥[φRAF(X

i(∆∗
1))
]
j:
− (xi +∆∗

1)
⊤
∥∥∥
2
≤
∥∥[s(Xi(∆∗

1))]j: − e⊤i
∥∥
2

∥∥Xi(∆∗
1)
∥∥

op

≤ o

(
1√
d

)
(∥X∥F + ∥∆∗

1∥2)

= o

(
1√
d

)
O
(√

dn
)
= o

(√
d
)
,

(133)

where the last step follows from our assumption d/ log4 d = Ω(n). By Lemma D.4, there also exists ∆∗
2 such that

∥∆∗
2∥2 ≤

√
d, ∥∆∗

1 −∆∗
2∥2 = Ω(

√
d) and (133) holds.

Let’s now suppose by contradiction that, for some j,∥∥∥[φRAF(X)]j: −
[
φRAF(X

i(∆∗
1))
]
j:

∥∥∥
2
= o

(√
d
)
,

∥∥∥[φRAF(X)]j: −
[
φRAF(X

i(∆∗
2))
]
j:

∥∥∥
2
= o

(√
d
)
. (134)

Then, we have

∥∆∗
1 −∆∗

2∥2 = ∥(xi +∆∗
1)− (xi +∆∗

2)∥2
= ∥

(
(xi +∆∗

1)−
[
φRAF(X

i(∆∗
1))
]
j:

)
+
([

φRAF(X
i(∆∗

1))
]
j:
− [φRAF(X)]j:

)
−
(
(xi +∆∗

2)−
[
φRAF(X

i(∆∗
2))
]
j:

)
−
([

φRAF(X
i(∆∗

2))
]
j:
− [φRAF(X)]j:

)
∥

≤
∥∥∥(xi +∆∗

1)−
[
φRAF(X

i(∆∗
1))
]
j:

∥∥∥
2
+
∥∥∥[φRAF(X

i(∆∗
1))
]
j:
− [φRAF(X)]j:

∥∥∥
2

+
∥∥∥(xi +∆∗

2)−
[
φRAF(X

i(∆∗
2))
]
j:

∥∥∥
2
+
∥∥∥[φRAF(X

i(∆∗
2))
]
j:
− [φRAF(X)]j:

∥∥∥
2

= o(
√
d),

(135)

where the third step holds by triangle inequality, and the last comes from (133) and (134). As ∥∆∗
1 −∆∗

2∥2 = Ω(
√
d) by

Lemma D.4, we get the desired contradiction, and we have that at least one equation in (134) doesn’t hold.

Let’s therefore denote by ∆∗ the vector with ∥∆∗∥2 ≤
√
d such that∥∥∥[φRAF(X)]j: −

[
φRAF(X

i(∆∗))
]
j:

∥∥∥
2
= Ω

(√
d
)

(136)

holds for Ω(n) indices j. Due to the previous conditioning, such a vector exists with probability at least 1− exp(−c1 log
2 d)

over W . Let’s denote the set of these indices by J , with |J | = Ω(n) (where we denote set cardinality by | · |).

Thus, we have ∥∥φRAF(X)− φRAF(X
i(∆∗))

∥∥2
F
≥
∑
j∈J

∥∥∥[φRAF(X)]j: −
[
φRAF(X

i(∆∗))
]
j:

∥∥∥2
2
= Ω(nd), (137)

which concludes the proof.

Theorem 5.1 Let φRAF(X) be the random attention features map defined in (3). Let X ∈ Rn×d be a generic input sample
s.t. Assumption 3.1 holds, and assume d/ log4 d = Ω(n). Let SRAF(X) be the the word sensitivity defined in (4). Then, we
have

SRAF(X) = Ω(1), (138)

with probability at least 1− exp(−c log2 d) over W .
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Proof. We have φRAF(X) = s(X)X , which implies

[φRAF(X)]j: = [s(X)]j: X, (139)

and ∥∥∥[φRAF(X)]j:

∥∥∥
2
=

∥∥∥∥∥
n∑
k=1

[s(X)]jk xk

∥∥∥∥∥
2

≤
n∑
k=1

[s(X)]jk ∥xk∥2 =
√
d, (140)

where the second step follows from triangle inequality, and the last step holds as
∑n
k=1 [s(X)]jk = 1, and ∥xk∥2 =

√
d for

every k. This readily implies
∥φRAF(X)∥F ≤

√
nd. (141)

By Lemma D.5, we have that, with probability at least 1− exp(−c log2 d) over W , there exist ∆∗ such that ∥∆∗∥2 ≤
√
d,

and ∥∥φRAF(X)− φRAF(X
i(∆∗))

∥∥
F
= Ω(

√
dn). (142)

This, together with (141), concludes the proof.

E. Assumption 6.1 and adversarial robustness
Assumption 6.1 requires the perturbation ∆ to be such that the model fRF(·, θ∗) gives a similar output when evaluated on
the two new samples X and Xi(∆). This assumption is necessary to understand the different behaviour of the RF and the
RAF model in our setting, as there in fact exists an adversarial patch ∆ such that, for example, f(Xi(∆), θ∗r) and f(X, θ∗r)
are very different from each other (e.g., fRF(X

i(∆), θ∗r) = y∆ while fRF(X, θ∗r) = y).

This conclusion derives from the adversarial vulnerability of the RF model, extensively studied in previous work (Dohmatob
& Bietti, 2022; Dohmatob, 2022; Bombari et al., 2023). We remark that this vulnerability depends on the scalings of the
problem, i.e., n, d and N . In fact, (using the re-trained solution as example) we can write (assuming θ0 = 0 for simplicity)∣∣fRF(X

i(∆), θ∗r)− fRF(X, θ∗r)
∣∣ = ∣∣∣(φRF(X

i(∆))− φRF(X)
)⊤

Φ+
RF,rYr

∣∣∣
≤
∥∥φRF(X

i(∆))− φRF(X)
∥∥
2

∥∥∥Φ+
RF,r

∥∥∥
op
∥Yr∥2 .

(143)

If we bound the three terms on the RHS separately, we get:

•
∥∥φRF(X

i(∆))− φRF(X)
∥∥
2
= O

(√
k/n

)
with probability at least 1− exp(−cD) over V , by Lemma B.1;

•
∥∥∥Φ+

RF,r

∥∥∥
op

= λ
−1/2
min (KRF,r) = O

(√
1/k
)

, with probability at least 1− exp
(
−c log2 N

)
over V and Xr, by Lemma

B.2;

• ∥Yr∥2 =
√
N + 1, as we are considering labels in {−1, 1}.

Thus, we conclude that ∣∣fRF(X
i(∆), θ∗r)− fRF(X, θ∗r)

∣∣ = O

(√
N

n

)
, (144)

with high probability. As a consequence, in the regime where N = o(n), fRF(·, θ∗r) cannot distinguish between the samples
X and Xi(∆), without the additional need for Assumption 6.1. This result is also shown in our experiments, in the left
subplots of Figure 4, where the points approach smaller values of γ and consequently higher values of the error as N
decreases, becoming comparable with n.

F. Further experiments
In Figure 4, we compute ∆∗ by optimizing with respect to it the following two losses (for fine-tuning and re-training,
respectively):

ℓθ∗f (∆) :=

(
φRAF(X

1(∆))⊤φRAF(X)

∥φRAF(X)∥22
+ 1

)2

, (145)
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Figure 5. Errφ(Xi(∆), θ∗f/r) for the RAF (two left sub-plots) and ReLU-RAF (two right subplots) maps, as a function of the smallest γ
for which Assumption 6.1 is satisfied. Every sub-plot has a fixed context length n = {40, 120}, embedding dimension d = 768 and
number of training samples N = 400. Every point in the scatter-plots represents an independent simulation where (X, y) and (X ,Y) are
the BERT-Base embeddings of a random subset of the imdb dataset (after pre-processing to fulfill Assumption 3.1). For every point,
∆ is obtained through constrained gradient descent optimization of ℓErr,p(∆), defined in (147), for different values of the penalty term
p = {1, 0.1, 0.01}.

ℓθ∗r (∆) :=
(
FRAF(X,Xi(∆)) + 1

)2
, (146)

subject to the constraint ∥∆∗∥ ≤
√
d. We also report with cross markers the points obtained optimizing the loss ℓErr(∆) :=

ErrRAF(X
i(∆), θ∗f/r), showing that this method provides less interesting results, as the error tends to be minimized at the

expenses of a large value of γ.

An alternative approach is to still optimize with respect to the errors directly, but after introducing a penalty term p on the
value of γ. In particular, we consider the following penalized loss

ℓErr,p(∆) := ErrRAF(X
i(∆), θ∗f/r) + p

(
fRAF(X

i(∆), θ∗)− fRAF(X, θ∗)
)2

. (147)

We perform new experiments with this optimization algorithm, for different values of p, and we report the results in Figure
5. In this case, compared to the loss ℓErr(∆), we can more easily obtain points that lie below the lower bound. However, it
remains difficult to find points where both the error and γ are small.

Another optimization option is to introduce a penalty term to the losses in (145) and (146):

ℓθ∗f ,p(∆) :=

(
φRAF(X

1(∆))⊤φRAF(X)

∥φRAF(X)∥22
+ 1

)2

+ p
(
fRAF(X

i(∆), θ∗)− fRAF(X, θ∗)
)2

(148)

and
ℓθ∗r ,p(∆) :=

(
FRAF(X,Xi(∆)) + 1

)2
+ p

(
fRAF(X

i(∆), θ∗)− fRAF(X, θ∗)
)2

, (149)

for the fine-tuning and re-training case respectively. We perform new experiments with this optimization algorithm, for
different values of p, and we report the results in Figure 6. In this case, it is easier to obtain final points that respect
Assumption 6.1 with a lower value of γ.

Finally, we consider swapping the losses ℓθ∗f and ℓθ∗r defined above, i.e., employ the former for re-training and the latter for
fine-tuning. Given the heuristic nature of these losses, it is a priori not obvious that they perform their best on the respective
setting, as they could be interchangeable. In Figure 7, we report the results of this investigation. We report in deep-blue the
points resulting from the optimization of ℓθ∗f , and in yellow the points resulting from the optimization of ℓθ∗r , for both the
fine-tuned and re-trained setting. We note that ℓθ∗f performs better on the fine-tuned solution, and ℓθ∗r better on the re-trained
one.
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Figure 6. Errφ(Xi(∆), θ∗f/r) for the RAF (two left sub-plots) and ReLU-RAF (two right subplots) maps, as a function of the smallest γ
for which Assumption 6.1 is satisfied. For every point, ∆ is obtained through constrained gradient descent optimization of ℓθ∗r ,f (∆) in
the fine-tuned case, and ℓθ∗r ,p(∆) in the re-trained case, defined in (148) and (149) respectively, for different values of the penalty term
p = {1, 0.1, 0.01}. The rest of the setup is equivalent to the one described in Figure 5.
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Figure 7. Errφ(Xi(∆), θ∗f/r) for the RAF (two left sub-plots) and ReLU-RAF (two right subplots) maps, as a function of the smallest γ
for which Assumption 6.1 is satisfied. We consider fixed embedding dimension d = 768, context length n = 120, and number of training
samples N = 400. Every point in the scatter-plots represents an independent simulation where (X, y) and (X ,Y) are the BERT-Base
embeddings of a random subset of the imdb dataset (after pre-processing to fulfill Assumption 3.1). For every point, ∆ is obtained through
constrained gradient descent optimization of either ℓθ∗

f
, defined in (145), or ℓθ∗r , defined in (146).
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