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ABSTRACT

We propose zero order diffusion guidance, a method that allows using a diffusion
model to solve inverse problems without access to the gradients of the process
we seek to invert. Our method employs a zero-order gradient estimator combined
with a novel differentiable dimensionality reduction strategy to approximate true
gradients during guidance while keeping the task computationally tractable in
thousands of dimensions. We apply our method to model inversion and demonstrate
how it can be used to reconstruct high-quality faces in a realistic scenario where the
adversary has only black-box access to face embeddings. Across a range of inverse
problems—including synthetic experiments and JPEG restoration—we show that
access to gradients is not necessary for effective guidance. Our black-box method
matches white-box performance, thus expanding the scope of inverse problems
that can be solved with diffusion-based approaches.

1 INTRODUCTION

Diffusion models have emerged as powerful generative models capable of generating realistic images,
audio, and text (Rombach et al., 2021). Central to their success is their controllability, i.e., their
ability to use gradient information from a differentiable guidance function to steer the output towards
a set of desirable properties (Ho & Salimans, 2022). This capability is important for solving inverse
problems (e.g., colorization (Saharia et al., 2022), MRI processing (Kazerouni et al., 2023), 3D
reconstruction (Anciukevičius et al., 2023)) as well as for generative design (e.g., producing biological
molecules with desired properties) (Chung & Ye, 2022; Rombach et al., 2021; 2022; Lugmayr et al.,
2022; Poole et al., 2022).

However, obtaining gradient information useful for guidance may be challenging. In many inverse
problems, the process that we seek to invert may be complex, non-differentiable, or available only as
a black box. For example, in security applications, we may be working with sensitive information
from data obfuscated by a black-box program (Duong et al., 2020). In generative design settings, the
data we work with may be discrete (e.g., language, proteins, DNA), and thus the underlying guidance
process does not have gradients (Sahoo et al., 2024; Austin et al., 2021).

Here, we introduce zero order diffusion guidance, an algorithm that only assumes input-output
access to a guidance function, and not its gradients. Our key idea is to approximate classifier-based
guidance (Dhariwal & Nichol, 2021) by using zero-order gradient estimators.

Out of the box, zero-order methods are too slow for guidance: we propose two types of estimators
combined with novel dimensionality reduction and error correction strategies that make zero-order
methods practical for classifier-based guidance without an excessive increase in computation time.
The resulting method Zero ORder Optimization for classifier guidance (ZORO) is simple, easy-to-
implement, and matches the performance of white-box guidance.

We demonstrate the applicability of ZORO across two application areas: black-box inverse problems
and non-differentiable guidance. We first use our method to study the security of face recognition
systems and propose a strategy for inverting a black-box face embedding model to recover human
faces from their embeddings (Duong et al., 2020). We show that zero order guidance with a custom
sampler yields an inversion attack that is both effective (i.e., it recovers high-quality images) and
easier to stage than previous, GAN-based, black-box inversion methods, and that sheds light on
vulnerabilities of face embedding models. Additionally, we utilize ZORO for JPEG restoration (Li
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Figure 1: Non-cherry picked images recovered by ZORO from the test set of FFHQ dataset. We
are able to invert the outputs of ElasticFace face embedding models and produce reconstructions
with high embedding-space similarity to the ground-truth images. The numbers at the top denote the
cosine similarity between the embeddings of the reconstructed image and the ground truth image.

& Wand, 2016; Yang et al., 2020; Yu et al., 2022; Si & Kim, 2024)—a task where the underlying
gradient is undefined—and demonstrate that it outperforms all baseline methods.

Contributions In summary, our work makes the following contributions:

1. We introduce ZORO, a method for controlling the output of diffusion models in settings
where we only have black-box access to the guidance process.

2. We propose an effective way to apply zero-order gradient estimators to higher dimensional
data that relies on novel dimensionality reduction and error correction strategies.

3. We demonstrate across a range of inverse problems that exact gradient information is
not required for effective guidance, and that our black-box method matches white-box
performance, including for the task of inverting face embeddings or restoring JPEG images.

2 BACKGROUND

2.1 DIFFUSION MODELS

Given a sample x0 ∈ Rn from the data distribution D, a forward diffusion process is defined as a
Markov chain of latent variables x1, . . . ,xT that progressively add noise to x0. A reverse diffusion
process starts from samples of xT ∼ pT and seeks to recover samples x0 ∼ p0. Examples of forward
processes include Gaussian diffusion, masking diffusion, and uniform noise.

Gaussian Diffusion For example, we may add Gaussian noise of standard deviation σt ∈ R+

(with σt monotonically increasing in t), i.e. pt(x|x0) = N (x0, σ
2
t In) where pt(.) denotes the

distribution of the sample xt at timestep t. The forward diffusion process can be modeled by the

SDE dx =

√
d[σ2

t ]
dt dw, where dw is the standard Wiener process (a.k.a Brownian motion) and dt is

an infinitesimal negative timestep. Anderson (1982) states that the reverse of a diffusion process is
given by the reverse-time SDE:

dx =

[
−d[σ2

t ]

dt
∇x log pt(x)

]
dt+

√
d[σ2

t ]

dt
dw (1)

Once the score of each marginal distribution, ∇x log pt(x), is known for all t, we can derive the
reverse diffusion process from (1) and simulate it to sample from p0. Since∇x log pt(x) is unknown
during the reverse diffusion process, we parameterize it using a neural network sθ(x;σt) : Rn → Rn

trained with the score matching objective (Karras et al., 2022):

L = Ex0∼D,t∼{0,...,T},x̃∼pt(.|x0)∥sθ(x̃;σt)−∇x̃ log pt(x̃|x0)∥22. (2)

Then, samples are drawn from diffusion models by solving the SDE in (1), such as with Euler’s
method, Euler-Maruyama, and higher order SDE solvers (Lu et al., 2022; Karras et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 DIFFUSION MODEL GUIDANCE

Classifier-based guidance To draw samples from the conditional distribution pt(x|c), Dhariwal
& Nichol (2021) seek to train a separate classifier p(c|x) alongside the diffusion model sθ, where c
is defined to be conditional information that guides the generation process. Then the samples from
p(x|c) can be drawn by using the following score function in the reverse process:

∇x log pt(x|c) = ∇x log pt(x) +∇x log pt(c|x)
≈ sθ(x, t) + αc∇x log qϕ(c|x), (3)

where qϕ(c|x) is the probability of attribute c given input x, parameterized by a network with
parameters ϕ and the scalar αc ∈ R+ scales up the strength of the classifier gradients.

Classifier-free guidance Ho & Salimans (2022) show that samples can be drawn from pt(x|c)
without training a separate classifier. For this, they condition the score model sθ on c during training.
Furthermore, they replace c with ∅ randomly with a probability of 10% during training. During
sampling they use the following approximation of the score function:

∇x log p̃t(x|c) ≈ (1− αf)∇x log pθ(x) + αf∇x log pθ(x|c)
= (1− αf)sθ(x, ∅, t) + αfsθ(x, c, t). (4)

Where αf is a hyperparameter that controls the amount of guidance added, ∇x log pθ(x) is the
gradient of the log of the unconditional probability , and ∇x log pθ(x|c) is the gradient of the log of
the conditional probability.

Inverse Problems Inverse problems seek to recover x0 ∈ Rn from a measurement c ∈ Rm

generated by function f : Rn → Rm such that c = f(x0). Let ℓ(c, f(x0)) be the loss between
f(x0) and c (e.g., ∥c − f(x0)∥22); this implicitly defines an energy-based distribution qϕ(c|x0) =
exp (−ℓ(c, f(x0))/Z , with normalizing constant Z . Inverse problems can be solved using classifier-
based guidance (3) with the following conditional score:

∇x log qϕ(c|x) = −Ex̃0∼pθ(.|x)

[
∇x̃0ℓ(c, f(x̃0))

]
, (5)

where x̃0 is computed using the Tweedie’s formula x̃0 = x+ σ2
t (t)sθ(x, t) (Efron, 2011). Note that

if f is not bijective, we simply seek the closest x0 that produced c as defined by our loss.

3 ZERO-ORDER DIFFUSION GUIDANCE

In this paper, we are interested in extending diffusion guidance to functions f for which a gradient
is not available. In security applications, we may be working with sensitive information from data
obfuscated by a black-box program. In other settings, the data may be discrete (e.g., language,
proteins, DNA), and thus the underlying guidance process does not have gradients.

Our key idea is to approximate classifier-based guidance by using zero-order gradient estimators.
Specifically, we approximate the guidance term∇x log qϕ(c|x) in (3) with a zero-order approxima-
tion ∇̂x log qϕ(c|x) in Sec. 3.1. Out of the box, zero-order methods are slow: to make them practical,
we develop novel dimensionality reduction and error correction strategies in Sec. 3.2.

3.1 ZERO-ORDER GRADIENT ESTIMATION

Given a guidance term expressed in the form of a loss function ℓ(x) : Rn → R+ of an input x, we
aim to perform guidance without relying on the gradients of ℓ. Our strategy will be to define an
approximate gradient operator ∇̂x that estimates the true gradient∇x.

One approach to approximate ∇̂xℓ(x) is be to use a scaled random gradient estimator:∇̂xℓ(x) =∑k
i=1

ℓ(x+βu)−ℓ(x)
β u, where k is the number of samples, β > 0 is a smoothing parameter, and u is a

vector drawn from a unit Euclidean sphere. As β → 0+ and k →∞, this quantity tends to the true
gradient, i.e., ∇̂xℓ(x) = ∇xℓ(x), as β → 0+ and k →∞. However, this method is known to suffer
from high variance and slow convergence (Liu et al., 2020).
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In this work we propose using a coordinate-wise gradient estimation technique. Specifically, we
approximate the partial derivative of the i-th component of x, ∂f(x)

∂xi
, individually:

∇̂xℓ(x) =

n∑
i=1

ℓ(x+ δei)− ℓ(x)

δ
ei, (6)

where δ > 0 is a small constant, and ei is a standard basis vector with only the i-th component equal
to 1. It is clear that ∇̂xℓ(x) converges to∇xℓ(x) as h→∞ when ℓ is differentiable. Therefore, this
approach approximates the true gradient with n queries, while the direction-wise approach requires
infinitely many samples to achieve the same accuracy. When x is discrete but admits a continuous
relaxation over Rn, this method also approximates the gradient in the extended space. In Suppl. C.2,
we provide a detailed analysis of both methods and demonstrate the effectiveness of the proposed
coordinate-wise method over the direction-wise gradient approximation technique.

3.2 SCALING UP ZERO-ORDER GRADIENT ESTIMATION

Note that computing ∇̂xℓ(x) using the estimate in (6) requires O(n) queries, one for each coordinate.
This is often impractical; for instance, if the input to ℓ is a 224 × 224 × 3 image, approximating
∇̂xℓ(x) will require≈ 150K queries. Moreover, recall that sampling from a diffusion model involves
T denoising steps. This presents a significant challenge for zero-order guidance, where gradient
guidance is applied at each timestep in the reverse diffusion process, meaning that we would have to
make ≈ 150, 000T queries during sampling.

Surprisingly, we find that a simple differentiable downsampling function can resolve the above
challenge when combined with a novel error correction strategy which we present in Sec. 3.2.2. Prior
works (Tu et al., 2020) have used a deep autoencoder to reduce dimensionality and perform zero-order
guidance in the latent space. In contrast, our approach doesn’t require training an additional neural
network and in Suppl. C.3 we demonstrate that our proposed approach significantly outperforms a
deep autoencoder.

3.2.1 DOWNSAMPLING

Specifically, we use a pair of downscaling and upscaling functions, g : Rn → Rm and h : Rm → Rn,
where g is “bilinear downsampling” and h is “bilinear upsampling” such that x ≈ h(g(x)), where
m < n. The function g reduces the data from n to m dimensions, making zero-order guidance in the
latent space more computationally efficient.

Our proposed downscaling method works in the following manner. We first create a low-resolution
downsampled image, y = g(x). We then approximate the loss gradient, ℓ(h(y)), with respect to
the smaller downsampled image by computing ∇̂yℓ(h(y)) using our zero-order method. The new
gradient approximation formula is given by,

∇̂yℓ(h(y)) =

m∑
i=1

ℓ(h(y + δei))− ℓ(h(y))

δ
ei. (7)

Since, g denotes a differentiable mapping, one can compute ∇̂xℓ(x) by chain rule:

∇̂xℓ(x) =

[
∂y

∂x

]⊤
∇̂yℓ(h(y)). (8)

3.2.2 ERROR CORRECTION

Note that the terms ℓ(h(y)) and ℓ(h(y + δei)) play critical roles in the gradient estimate (7).
However, both h(y) and h(y + δei) are susceptible to artifacts introduced by the lossy upsampling
operation h and the perturbation δei. We found this issue to be particularly problematic in our facial
embedding inversion experiments, where the approximate gradient ∇̂yℓ(y) differed significantly
from the true gradient∇yℓ(h(y)). This discrepancy arises because the loss function—which involves
the embedding model—is especially sensitive to such artifacts.
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While the artifacts introduced by the perturbation δei are unavoidable, we propose a method to
mitigate the artifacts caused by the lossy reconstructions from h. Specifically, we introduce an error
correction term, defined as ∆ = x− h(y). If the upsampling function h can recover x from y, then
∆ = 0. By adding this correction term, we reduce the impact of artifacts introduced by h and improve
the accuracy of our gradient estimates. The modified gradient approximation is then:

∇̂yℓ(h(y)) =

m∑
i=1

ℓ(h(y + δei) + ∆)− ℓ(h(y) + ∆)

δ
ei

=

m∑
i=1

ℓ(h(y + δei) + ∆)− ℓ(x)

δ
ei. (9)

3.3 ZORO: ZERO-ORDER OPTIMIZATION FOR CLASSIFIER-BASED GUIDANCE

Motivating Example. Consider the specific case where c is the output of a face embedding model
f , and x is an unknown image of a face. In this setting, searching for the image with an embedding
that minimizes the loss ℓ(f(x), c) = − cos(f(x), c) should, in theory, let us recover the face from
its embedding. Classifier-based diffusion guidance has been quite successful at solving such inverse
problems (Rombach et al., 2021; Chung et al., 2022a). However, this specific task of facial embedding
inversion is more challenging because (3) isn’t directly applicable. This is due to the intractability of
computing the classifier gradients ∇x log qϕ(c|x) = ∇x cos(f(x), c) when we only have black-box
access to the embedding model f(x).

Zero-Order Classifier Guidance. To address the aforementioned challenge, we propose ZORO,
that uses Zero ORder Optimization for classifier guidance in diffusion models. Our method approxi-
mates the classifier gradients using zero-order methods as detailed in Equation 9. ZORO combines
zero order classifier-based guidance with classifier-free guidance as follows:

∇x log pt(x|c) ≈ αu∇x log pθ(x) + αf∇x log pθ(x|c) + αc∇̂x log qϕ(c|x), (10)

where αu, αf , αc ∈ R denote the strengths of the unconditional, classifier-free, and classifier-
based guidance terms respectively and ∇̂x log qϕ(c|x) denotes the zero order approximation of the
true gradient ∇x log qϕ(c|x). This formulation allows for the simultaneous use of both traditional
classifier-free guidance and our zero order classifier-based guidance, without the need to compute any
gradients. Our approach deviates from the conventional diffusion guidance methods, which typically
use either classifier-based or classifier-free guidance exclusively. As shown in Table 6, we empirically
demonstrate that combining both types of guidance is essential for achieving optimal performance.

4 EXPERIMENTAL SETUP

Our experiments can be divided into three parts: (1) demonstrating our method’s effectiveness in
a suite of synthetic tasks (4.1) and proving its real-world effectiveness in recovering faces from
embeddings (4.2) as well as removing JPEG compression artifacts (4.3).

Main metrics. We measure ground-truth image generations using several classes of metrics. Our
main metric is the cosine similarity cos(c, f(x′)) between the ground-truth embedding c and the
embedding f(x′) of the generated image x′. We also measure PSNR (Peak Signal-to-Noise Ratio),
SSIM (Structural Similarity Index Measure), and LPIPS (Learned Perceptual Image Patch Similarity).
As a measure of algorithm cost, we track query count, the total number of forward passes made with
black-box model f . In gradient estimation experiments we measure the cosine similarity between the
white-box (true) gradient and our black-box estimate.

Baselines. We compare the performance of ZORO to an oracle, where we have white-box access
to the gradient∇xℓ(x) and use (10) to draw samples from the diffusion model. This represents the
upper bound of our method’s performance. ZORO and the oracle share the same configurations for
αf and αc.
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Table 1: Main results for synthetic experiments. We assess our method using PSNR, SSIM, MSE,
and LPIPS, demonstrating that it consistently matches oracle performance.

Corruption Type Method PSNR (↑) SSIM (↑) LPIPS (↓)

Gaussian Blur & Grayscale oracle 18.10±0.11 0.62±0.00 0.12±0.00

ZORO (Ours) 17.84±0.11 0.59±0.00 0.13±0.00

Gaussian Blur & Masking oracle 16.74±0.11 0.59±0.00 0.08±0.00

ZORO (Ours) 16.61±0.10 0.57±0.00 0.08±0.00

Grayscale & Masking oracle 15.60±0.12 0.73±0.00 0.12±0.00

ZORO (Ours) 15.42±0.10 0.66±0.00 0.13±0.00

Diffusion Model. The model architecture is based on the UNet of Song et al. (2020). We train
a diffusion model to approximate x0 in the reverse process using a neural network, Dθ(xt, t) :
[Rn × R+] → Rn, with parameters θ and the corresponding the score function for the Variance
Exploding type diffusion model in consideration is given by sθ(xt, t) = −(xt−Dθ(xt, t))/σ

2
t (Song

et al., 2020) and trained using (2). For more details refer Suppl. B. Given our score function in (10),
we solve (1) using the Heun sampler as proposed in Karras et al. (2022). The exact algorithm of the
sampler is provided in Suppl. A. We set T = 100 for diffusion timesteps during sampling for all our
experiments. More details can be found in Suppl. B.

Training details. We generally follow the training recipe from Karras et al. (2022) for training
a diffusion model on the FFHQ dataset (Karras et al., 2019), which consists of 70, 000 images of
human faces released under the Creative Commons license; as is standard in the literature, we split
our data into 60, 000 train and 10, 000 test images. Note that we do not need paired facial data, only
one face per individual, as we are not training a facial embedding model. We downsample images
from their original resolution of 1024× 1024 to 64× 64 for training. We use a batch size of 256, a
learning rate of 2e− 4 with linear warm-up. We use the AdamW optimizer (Loshchilov & Hutter,
2019) and train for 200M images on 8 NVIDIA V100 GPUs, which takes about six days in total.

ZORO. Unless otherwise stated, ZORO uses Coordinate-Wise Zero-Order estimation with δ =
3.0 (Sec. 3.1) and bilinear-downsampling to 48× 48 resolution for downscaling (Sec. 3.2) as default
configurations. We justify the choice of these hyperparameters in Sec. 4.4. Following Ho & Salimans
(2022), we always set αu = 1− αf and αf, αc are task-specific.

4.1 SYNTHETIC EXPERIMENTS

We begin by evaluating the performance of ZORO on a suite of synthetic tasks. We observe
that ZORO nearly matches the performance of oracle qualitatively and quantitatively as shown
in Sec. 1. Specifically, we focus on simple corruption functions, where each function is a composition
of standard corruptions such as color removal, blurring, and pixel masking. The goal is to recover the
clean input underlying the corrupt input with just a black box access to the corruption function.

For informative experiments, we design the corruption function f(x) to be non-differentiable, and
lacking a trivial inverse f−1(x). Based on these criteria, we construct the following compositional
corruptions: (1) Gaussian Blur & Grayscale, (2) Gaussian Blur & Mask, and (3) Grayscale &
Mask. We implement these corruption functions using Kornia (Riba et al., 2020), which provides a
broad set of differentiable transformations essential for constructing the oracle.

It’s important to note that the diffusion model was not specifically trained to reverse these corruptions,
so we perform guidance with αf = 0. Upon examining the reconstructions, we find that optimal
guidance settings are αf = 500 for corruption types (1) and (2), and αf = 1000 for (3).We provide
visualizations of the ground truth image, the corrupted image, and their reconstructions for corruption
types (1), (2), and (3) in Fig. 8, Fig. 9, and Fig. 7, respectively.
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Table 2: Main results for real-world experiment inverting face embeddings on the test set of FFHQ
dataset. We assess our method using PSNR, SSIM, and LPIPS, demonstrating that it consistently
matches oracle performance. Error bars indicate the standard deviation.

Method Emb (↑) PSNR (↑) SSIM (↑) LPIPS (↓)
oracle 0.84±0.04 11.28±1.76 0.36±0.06 0.151±0.00

EDM (Karras et al., 2022) 0.52±0.12 8.99±1.21 0.14±0.03 0.226±0.00

Vendrow & Vendrow (2021) 0.23 — — —
ID3PM (Kansy et al., 2023) 0.65±0.03 11.28±1.75 0.35±0.05 0.151±0.00

ZORO (Ours) 0.79±0.04 11.28±1.75 0.36±0.06 0.151±0.00

4.2 FACIAL EMBEDDING INVERSION

We next evaluate our method in a real-world scenario, focusing on reconstructing facial im-
ages from their embeddings using a face embedding model. For this experiment, we selected
the ElasticFace-Cos model, referred to as ElasticFace, from Boutros et al. (2022). ElasticFace
is one of the most widely used open-source models for facial recognition and provides both an
open-source implementation and pre-trained model weights. Like other popular models, ElasticFace
is trained to maximize the cosine similarity between embeddings of facial images from the same
individual.

To create our test dataset, we embedded all images from the FFHQ dataset using ElasticFace, resulting
in pairs of original images and their corresponding embeddings (x, f(x)). We train our diffusion
model to generate x conditioned on f(x). Following Ho & Salimans (2022), we replace f(x) with ∅
with 10% probability during training to aid classifier free guidance. In preliminary experiments on
a small batch of images, we found that setting αf = 10 and αc = 1000 in (10) produced the best
cosine similarity.

We compare the performance of our method against several baselines: the oracle, the classifier-based
guidance diffusion approach of Kansy et al. (2023), the unconditional generation from a diffusion
model as in Karras et al. (2022), and the embedding inversion method of Vendrow & Vendrow
(2021), which uses a Generative Adversarial Network (Goodfellow et al., 2014). Detailed metrics are
provided in Table 2. We observe that our method outperforms all the baselines and achieves results
comparable to those of the oracle, even in this challenging setting.

In Table 6, we ablate different components of ZORO. First, we observe that using downsampling +
δ correction (9) as a dimensionality reduction technique outperforms using an autoencoder. Next
we separately analyze the effects of the classifier-free component, regulated by αf, and the classifier-
based component, regulated by αc, in ZORO. Note that setting αf = 0 and αc = 0 corresponds
to generation without guidance, which yields an embedding similarity of 0.52—representing the
worst-case performance. With only classifier-free guidance (CFG), i.e., αf = 10 and αc = 0, the
cosine similarity increases to 0.65. Similarly, with only classifier-based guidance (CBG), i.e., αf = 0
and αc = 1000, we achieve an embedding similarity of 0.72. However, when both CBG and CFG are
combined, we attain the highest embedding similarity score of 0.79.

4.3 JPEG RESTORATION

We consider the ability of ZORO to reverse the JPEG compression algorithm, which is differentiable.
We consider the three JPEG quality factors (QFs) used in Si & Kim (2024)—5, 10, and 20—to
restore degraded images from the FFHQ test set. In Table 3, we report quantitative results on JPEG
restoration, comparing our method against several supervised learning algorithms (Li & Wand, 2016;
Yang et al., 2020; Yu et al., 2022; wai, 2023), all of which are specifically trained for restoring JPEG
images. Our goal in this experiment is to use a pretrained diffusion model trained on uncompressed
FFHQ images and perform guidance using ZORO. In this context, f represents the JPEG compression
function, and we perform guidance by minimizing the mean squared error ℓ(f(x′), c) = ∥f(x′)−c∥22
between the degraded image c and the predicted image x′.

7
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Table 3: Main results for JPEG corruption experiments on the test set of FFHQ. We assess our
method using PSNR, SSIM, and LPIPS, demonstrating that it consistently improves the image quality.
†Reported in Si & Kim (2024). Error bars indicate standard deviation.

PSNR (↑) SSIM (↑) LPIPS (↓)
ESRGAN† (Li & Wand, 2016) 19.76±0.71 0.54±0.00 0.67±0.00

HiFaceGAN† (Yang et al., 2020) 20.59±0.70 0.60±0.00 0.67±0.00

ESDNet-L† (Yu et al., 2022) 17.26±4.31 0.57±0.00 0.62±0.00

waifu2x† (wai, 2023) 20.58±0.47 0.60±0.00 0.64±0.00

Si & Kim (2024) 21.68±1.44 0.68±0.00 0.37±0.00

ZORO (Ours) 25.22±1.42 0.82±0.00 0.04±0.00

Table 4: Ablations for JPEG restoration across different quality factors.

Method Quality Factors
5 10 20

PSNR(↑) SSIM (↑) PSNR(↑) SSIM (↑) PSNR(↑) SSIM (↑)
Si & Kim (2024) 21.61 0.67 21.68 0.67 21.68 0.68

ZORO(ours) 20.46±1.03 0.64±0.04 23.53±1.03 0.77±0.04 25.22±1.3 0.82±0.03

Notably, even though the model used in ZORO has never seen any JPEG images compressed to these
quality factors, it outperforms all the baselines in Table 3, demonstrating the strength of zero-order
guidance in task-agnostic diffusion models. In Table 4, we show that ZORO outperforms Si &
Kim (2024) on QFs 10 and 20, while performing slightly worse on QF 5. Furthermore, we provide
qualitative results in Fig. 2 (cherry-picked examples) and Suppl. 4 (randomly selected examples),
where ZORO convincingly recovers the ground truth images from the degraded inputs.

4.4 GRADIENT ESTIMATION

Table 5: Cosine similarity b/w
black-box and white-box gra-
dients across step sizes δ.

δ Similarity (↑)
0.01 0.006
0.1 0.140
1.0 0.675
3.0 0.778
5.0 0.773
10.0 0.721

In this section, we conduct comprehensive analyses to assess the
behavior and performance of ZORO. Specifically, we examine its
ability to recover the true gradient, its sensitivity to hyperparameters
such as step size and downscaling factor, the diversity of generated
samples, and its query efficiency. For our experiments, we first com-
pute the “true gradients” by backpropagating through the ElasticFace
model using the test set images from the FFHQ dataset. Next, we
estimate the gradients using ZORO under various configurations of
step size and downscaling factor, resulting in black-box gradients.
Finally, we assess the quality of the estimated gradients by measur-
ing the cosine similarity between the “ground truth” gradients and
the “black-box” gradients.

Sensitivity to step size. We vary the noise parameters δ across the factors
{0.01, 0.1, 1.0, 3.0, 5.0, 10.0}. We note that the noise factor must be tuned carefully to en-
sure maximum performance. In Table 5, we find the optimal parameters under our settings to be
δ = 3.0.

Effect of downscaling x. For a given downsampled image, we randomly sample a subset of k
indices and approximate the black box gradient (9). In Fig. 3 we report the cosine similarity with
the white-box gradient on the y-axis with varying k on the x-axis. We observe that for lower query
budgets, lower-resolution images yield the best cosine similarity, whereas for higher query budgets,
higher-resolution inputs lead to a better estimate. For a given query budget k, the highest cosine
similarity is achieved with the smallest resolution that has at least k dimensions. Naturally, the
original image at 64× 64 resolution provides the best estimate of the gradient but requires at least
5, 000 queries to obtain a reasonable approximation. Furthermore, in Table 6, we observe that the
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Figure 2: Results on JPEG restoration. From left
to right: the ground truth image, the compressed
JPEG image, restoration results from ZORO.

Figure 3: Gradient estimation performance when
image is downsampled to a lower resolution.
64× 64 resolution, when the image is not down-
sampled, provides the best gradient approxima-
tion at high query budgets but at low query bud-
gets, yields the worst estimate of∇xℓ(x).

Table 6: Ablations for different components of ZORO, specifically the guidance strengths: αf, αc,
and the downscaling type on the test set of FFHQ. The error bars indicate standard deviation.

ZORO Configuration Metrics
αf αc Downscaling Emb (↑) PSNR (↑) SSIM (↑) LPIPS (↓)
0 0 — 0.52±0.12 8.99±1.21 0.14±0.03 0.23±0.00

10 1000 Auto Encoder 0.56±0.09 10.94±2.31 0.25±0.03 0.23±0.00

10 0 Downsampling 0.65±0.03 10.42±2.19 0.25±0.03 0.181±0.00

0 1000 Downsampling 0.72±0.04 11.28±1.75 0.35±0.05 0.15±0.00

10 1000 Downsampling 0.79±0.04 11.28±1.75 0.36±0.06 0.15±0.00

diffusion model produces significantly better inversions when using our proposed downsampling
technique compared to using an autoencoder (Liu et al., 2020) for dimensionality reduction.

The error correction strategy (Sec. 3.2) plays a significant role in the success of ZORO. As
shown in Suppl. 8, when the input is downsampled to a 16× 16 resolution, both the autoencoder and
bilinear-downsampling methods alone can barely recover the true gradients, achieving gradient cosine
similarities approximately equal to zero. However, when bilinear-downsampling is combined with
error correction, the cosine similarity improves significantly to 0.28. Furthermore, for downsampling
resolutions of 32× 32 and 48× 48, we observe that the error correction strategy greatly enhances the
gradient similarity. Specifically, at the 32× 32 resolution, the cosine similarity increases from 0.01
(without error correction) to 0.59 (with error correction), and at the 48× 48 resolution, it improves
from 0.09 to 80.

Diversity of sampled images. We qualitatively illustrate the diversity of sampled images during
face embedding inversion, showcased in Fig. 1. We see that for different noise initializations, our
model generates remarkably similar faces, with variations in certain features such as background
and accessories. For example, consider the input image in the third row, right column, depicting an
individual wearing a red shirt. Our model generates five different reconstructions of this individual,
all wearing shirts of different colors.

5 RELATED WORK

Diffusion models for inverse problems. Diffusion models have been successfully applied to
solve a variety of inverse problems, such as text-to-image generation (Rombach et al., 2021; 2022),
inpainting (Chung et al., 2022b), colorization (Chung et al., 2022a), and super-resolution (Chung et al.,
2023). Song et al. (2023) use classifier guidance for non-differentiable functions f , but unlike our
method, they require defining a pseudo-inverse f † for the non-invertible function f . However, such a

9
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method is not applicable to tasks like embedding inversion, where the function f is parameterized by
a neural network and defining f † is non-trivial.

Zero-order methods. Zero-order methods have been proposed for generating adversarial examples
for vision classifiers (Chen et al., 2017; Andriushchenko et al., 2020). Tu et al. (2020) show that
downsampling the input with an autoencoder can reduce the number of black-box queries required
without compromising performance. In contrast to these works, we propose the use of zero-order
methods for classifier-based guidance in diffusion models. More recently, zero-order methods
have been proposed for other tasks, such as model stealing (Chen et al., 2019) and training large
models (Chen et al., 2023). We are the first to apply zero-order methods to provide classifier-based
guidance to diffusion models.

Model inversion. Inverting the representations of neural networks has been widely explored,
especially in computer vision (Mahendran & Vedaldi, 2014; Dosovitskiy & Brox, 2016), as discussed
in the general case by Morris et al. (2023). Zhmoginov & Sandler (2016) was the first to attempt
inverting embeddings from facial attribute embedding models specifically. Most recently, diffusion
models with classifier-free guidance have been proposed for solving this problem (Kansy et al., 2023).

6 DISCUSSION AND CONCLUSION

We introduced ZORO, a method that enables classifier guidance for diffusion models when only
black-box access to the classifier is available. ZORO approximates the gradients through the black-
box classifier using zero-order methods. We propose a novel error correction strategy in Sec. 3.2 that
improves the scalability of the zero-order method without the need for additional neural networks,
unlike prior works.

We demonstrate the application of ZORO in two key areas: first, in solving black-box inverse
problems where the gradient ∇xℓ(f(x), c) is defined but inaccessible (e.g., when the model is only
accessible via an API), and second, in providing non-differentiable guidance in JPEG restoration,
where ZORO outperforms all baselines and matches the performance of the oracle. Additionally,
our method could potentially be useful for guiding diffusion models in scenarios where gradients
are undefined—such as with discrete structures like molecules and text (Nisonoff et al., 2024)—as
long as some signal is available to guide the model toward generating better solutions. We leave this
exploration for future work.

REFERENCES

waifu2x. 2023. Available at http://waifu2x.udp.jp/index.ko.html.
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Algorithm 1 Modification of the deterministic Heun sampler proposed in Karras et al. (2022).
1: procedure SAMPLER(Dθ(x; t), c, qϕ(c|x), ti∈{0,...,T}, αf, αc)
2: sample xT ∼ N

(
0, t20 I

)
3: for i ∈ {T − 1, . . . , 0} do
4: sample ϵi ∼ N

(
0, S2

noise I
)

5: u← (1− αf)Dθ(xi; ∅; ti) + αfDθ(xi; c; ti) + αc∇̂x log qϕ(c|x) ▷ Using (10).
6: di ←

(
xi − u

)
/ti ▷ Evaluate dx/dt at ti

7: xi−1 ← xi + (ti−1 − ti)di ▷ Take Euler step from ti to ti−1

8: if ti−1 ̸= 0 then
9: d ′

i ←
(
xi−1 −Dθ(xi−1; ti−1)

)
/ti−1 ▷ Apply 2nd order correction

10: xi−1 ← xi + (ti − ti−1)
(
1
2di +

1
2d

′
i

)
11: return xT

APPENDIX B EXPERIMENTAL DETAILS

We generally follow the training recipe from Karras et al. (2022) for training a diffusion model on the
FFHQ dataset (Karras et al., 2019), which consists of 70, 000 images of human faces released under
the Creative Commons license; as is standard in the literature, we split our data into 60, 000 train and
10, 000 test images. Note that we do not need paired facial data, only one face per individual, as we
are not training a facial embedding model. We downsample images from their original resolution of
1024× 1024 to 64× 64 for training.

The model architecture is based on the UNet of Song et al. (2020). We use a batch size of 256, a
learning rate of 2e − 4 with linear warm-up. We use the AdamW optimizer Loshchilov & Hutter
(2019) and set β1 = 0.9, β2 = 0.999, ϵ = 1e − 8. We train for 200M images on 8 NVIDIA
V100 GPUs, which takes about six days in total. We train a diffusion model to approximate x0 in
the reverse process using a neural network, Dθ(xt, t), with parameters θ. Following Karras et al.
(2022); Song et al. (2020), the score function for the Variance Exploding type diffusion model in
consideration is given by sθ(xt, t) = −(xt − Dθ(xt, t))/σ

2
t . Furthermore, the denoising network

Dθ(x, t) = cskip(t)x+ cout(t)Fθ(cin(t)x, cnoise(t)) where Fθ is the neural network to be trained, we
use the values cskip(t) = 1/(4t2 + 1), cout = t/

√
(4t2 + 1), cin(t) = 2/

√
(4t2 + 1). The scaling

functions are represented by, cskip(t), cout(t), cin(t), cnoise(t) : R+ → R+. The loss function to train
the diffusion model is given by L(xt, t) =

4t2+1
t2 ∥Dθ(xt, t)− x0∥22.

APPENDIX C ADDITIONAL EXPERIMENTS

C.1 JPEG RESTORATION

By enabling differentiation through previously non-differentiable functions, we can now solve
challenging inverse problems, provided we can efficiently sample from them. JPEG restoration
serves as a practical example of such a problem. Images are often corrupted by excessive JPEG
compression, resulting in degradation that is difficult to reverse. While one could train a purpose-built
JPEG decompression algorithm, we propose to instead use a large, powerful, pretrained diffusion
model to undo this corruption.

In fact, we can adapt ZORO to recover the original image by leveraging the natural image prior
embedded within diffusion models. For these experiments, we subtly modify our sampling procedure.
Instead of starting the sampling process from timestep t = T = 100 , we begin by corrupting the
low-quality JPEG image to timestep t = 30 and then run the sampling process with αc = 1. Because
c already contains significant information about the input, it is unnecessary to start the sampling
process from pure Gaussian noise at T = 100.
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Figure 4: Randomly picked examples for JPEG Restoration experiments from the test set of FFHQ.
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C.2 DIRECTION-WISE ZERO-ORDER ESTIMATION

Another approach to approximating ∇̂xℓ(x) may be to use a scaled random gradient estimator:

∇̂xℓ(x) =

n∑
i=1

ℓ(x+ βu)− ℓ(x)

β
u, (11)

where n is the number of samples drawn, β > 0 is a smoothing parameter, and u is a vector drawn
from a unit Euclidean sphere. Note that the value of this quantity tends to the true gradient as β → 0+.

This formulation allows us to smoothly trade queries to ℓ for better approximations of ∇xℓ(x).
However, it is known to suffer from high variance and slow convergence (Liu et al., 2020). We
considered these two estimators in our experiments in Sec. 4, and analyze their performance in-depth
in Sec. 4.4.

Sensitivity to step size. We vary the noise parameters (β for Directional and δ for Coordinate)
across the factors {0.01, 0.1, 1.0, 3.0, 5.0, 10.0}. We note that this factor has a large impact on the
results across the board: regardless of the choice of gradient estimation algorithm, and the noise factor
must be tuned carefully to ensure maximum performance. In Table 7, we find the optimal parameters
under our settings to be β = 0.1 for Direction-Wise estimation and δ = 3.0 for Coordinate-Wise.

Table 7: Gradient estimator comparison across step sizes. We grid search across step sizes (δ for
coordinate-wise estimation or β for direction-wise estimation). Higher is better.

Step size Coordinate Directional

0.01 0.006 0.224
0.1 0.140 0.580
1.0 0.675 0.542
3.0 0.778 0.375
5.0 0.773 0.246
10.0 0.721 0.091

Gradient Estimation Quality Fig. 5 depicts the query efficiency of both methods. We observe that
our proposed coordinate-wise gradient estimator is more efficient in approximating the true gradients
for a given query budget.

Figure 5: Query efficiency of various gradient estimators measured on test-set images embedded with
ElasticFace, using cosine similarity loss. Black lines represent the best hyperparameter configurations
for each method. Coordinate-Wise gradient estimation outperforms Direction-Wise starting around
1000 queries.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Input reconstructions by the autoencoder. The pre-trained model almost accurately
reconstructs the original image. The original input has a 64 × 64 resolution. It is upsampled to
128 × 128 to match the input specification resolution for the autoencoder. We observe that the
autoencoder almost perfectly reconstructs the input.

C.3 AUTOENCODER INPUT DOWNSCALING

Instead of training an autoencoder from scratch we use a pre-trained model provided by Stability AI’s
SDXL-VAE1, a latent diffusion model where the diffusion occurs in the pretrained, learned latent
space of an autoencoder. This specific VAE model was chosen as it outperforms similar models on
various metrics such as rFID, PSNR, SSIM, and PSIM. Furthermore, as a sanity check, we ensure
that the autoencoder almost perfectly recovers the input in Fig. 6.

C.4 SYNTHETIC EXPERIMENTS

We provide visualizations of the ground truth image, the corrupted image, and their reconstructions
for corruption types: (1) Gaussian Blur & Grayscale in Fig. 8, (2) Gaussian Blur & Mask Fig. 9,
and (3) Grayscale & Mask in Fig. 7 respectively.

C.5 ZORO ABLATIONS

FFHQ samples generated by ZORO with only CFG Fig. 10 and w/o any guidance Fig. 11.

1https://huggingface.co/stabilityai/sdxl-vae
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Figure 7: Applying Gaussian Blurring and Masking corruptions.

Figure 10: Samples generated by ZORO with only Classifier Based Guidance αf = 10, αc = 0. The
numbers at the top of each sample denote the cosine similarity between the embeddings of the ground
truth image and the sample.
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Figure 8: Applying Grayscale and Masking corruptions.

Figure 11: Samples generated by ZORO w/o guidance, i.e., αf = 0, αc = 0. The numbers at the top
of each sample denote the cosine similarity between the embeddings of the ground truth image and
the sample.
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Figure 9: Applying Gaussian Blurring and Grayscale corruptions.

C.6 ERROR CORRECTION

Table 8 highlights the importance of error correction (9) in scaling up ZORO.

Table 8: Cosine similarities between white-box and black-box gradients on a batch of 128 FFHQ
images on the test set. Higher is better. The setup for the autoencoder is described in Suppl. C.3.

Downscaling Type 16× 16 32× 32 48× 48

AE 0.01 − −
Downsampling 0.01 0.01 0.09

Downsampling + Error Correction (9) (Ours) 0.28 0.59 0.80
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