
Published in Transactions on Machine Learning Research (10/2022)

Simplifying Node Classification on Heterophilous Graphs
with Compatible Label Propagation

Zhiqiang Zhong zhiqiang.zhong@uni.lu
University of Luxembourg

Sergey Ivanov ivanovserg990@gmail.com
Criteo

Jun Pang jun.pang@uni.lu
University of Luxembourg

Reviewed on OpenReview: https: // openreview. net/ forum? id= JBuCfkmKYu

Abstract

Graph Neural Networks (GNNs) have been predominant for graph learning tasks; how-
ever, recent studies showed that a well-known graph algorithm, Label Propagation (LP),
combined with a shallow neural network can achieve comparable performance to GNNs in
semi-supervised node classification on graphs with high homophily. In this paper, we show
that this approach falls short on graphs with low homophily, where nodes often connect to
the nodes of the opposite classes. To overcome this, we carefully design a combination of a
base predictor with LP algorithm that enjoys a closed-form solution as well as convergence
guarantees. Our algorithm first learns the class compatibility matrix and then aggregates
label predictions using LP algorithm weighted by class compatibilities. On a wide variety of
benchmarks, we show that our approach achieves the leading performance on graphs with
various levels of homophily. Meanwhile, it has orders of magnitude fewer parameters and
requires less execution time.

1 Introduction

Following the triumph of deep learning in computer vision and natural language processing, more and more
success stories are coming from message-passing Graph Neural Networks (GNNs) suited for relational data
such as graphs or meshes (Zhang et al., 2020; Wu et al., 2021). The majority of modern deep learning
architectures can be considered as a special case of the GNN with specific geometrical structures (Bronstein
et al., 2021). These models have achieved state-of-the-art performance in tasks such as (semi-)supervised
node classification, common in real-world applications, and crested popular leaderboards such as Open
Graph Benchmark (Hu et al., 2020). The landscape of GNNs is rich, and many new architectures have
been recently proposed to compensate for limited expressivity (Velickovic et al., 2018; Xu et al., 2019; Du
et al., 2019; Azizian & Lelarge, 2020) or to solve specific problems such as over-smoothing, inherent to the
traditional message-passing layers (Li et al., 2018; Zhao & Akoglu, 2020; Min et al., 2020; Yan et al., 2021).
Unfortunately, these models attain desiderata with the extra price of being more complex and less intuitive
during inspection of their performance gains, therefore restricting their applicability in practice.

To address these problems, several models were proposed recently that do not use message-passing algo-
rithm of GNNs but instead are based on well-studied algorithms that show promising results in graph
problems (Tian et al., 2019; Rossi et al., 2020; Huang et al., 2021; Ivanov & Prokhorenkova, 2021). Here, we
resort to a graph algorithm called Label Propagation (LP) (Zhou et al., 2003; Zhu, 2005) – a competitive
algorithm in semi-supervised node classification setup, which was popular for more than a decade. While
GNNs learn mapping functions between node features and class labels, LP algorithm directly incorporates

1

https://openreview.net/forum?id=JBuCfkmKYu

Published in Transactions on Machine Learning Research (10/2022)

class labels of the train nodes to make predictions on the test nodes. As traditional LP algorithm does not
use node features (which may contain significant signal about the class labels of the nodes), it was recently
shown (Huang et al., 2021) that by making “base predictions” by a linear network on the node features
and then substituting the predictions to the LP algorithm, it is possible to boost the performance up to the
results of more complex GNNs. These results, however, are often obtained for the graph datasets that exhibit
only high homophily, i.e. structure where neighbouring nodes are likely to have the same class labels. In
graphs with low homophily, known as heterophily (“opposites attract”), LP and traditional GNNs fall short
and are often outperformed by simple methods such as multi-layer perceptron (Rosenblatt, 1961) (shown in
Section 6.3). In order to give a precise description of the node label relationship of an arbitrary graph, here
we introduce and formally define the homophily ratio of a graph.
Definition 1 (Homophily Ratio h). For an arbitrary graph G = (V, E ,X), its homophily ratio h is determined
by the relationship between node class labels and graph structure encoded in the adjacency matrix. Recent
work commonly use two homophily metrics: edge homophily hedge (Zhu et al., 2021) and node homophily
hnode (Pei et al., 2020). They can be formulated as:

hedge = |{(u, v) : (u, v) ∈ E ∧ yu = yv}|
|E|

hnode = 1
|V|

∑
v∈V

|{u : u ∈ Nv ∧ yu = yv}|
|Nv| (1)

where Nv is the set of adjacent nodes of node v and | · | represents the number of elements of the set.
Specifically, hedge evaluates the fraction of edges in a graph that connect nodes that have the same class
labels; hnode evaluates the overall fraction of neighbouring nodes that have the same class labels. In this
paper, we focus on edge homophily and set h = hedge in the following sections.

Motivated by this limitation, several GNN architectures were proposed to make message-passing paradigm
work on heterophilous graphs (Zhu et al., 2020; Chen et al., 2020; Yan et al., 2021; Bo et al., 2021; Zheng et al.,
2022). These models revolve around modifications of neighbourhoods used for aggregation schemes of GNNs
to enrich the diversity of class labels among neighbours. For example, Zhu et al. (2020) uses multiple-hop
neighbourhoods for the aggregation in GNNs, which in turn provides more complete information about the
connectivity of different classes. While such approaches bridge the gap for traditional GNNs on heterophilous
graphs, they often do so at the expense of more parameters and longer training time.

Instead, in this work, we modify LP algorithm to work well in semi-supervised node classification on het-
erophilous graphs. We start by conducting an experimental investigation over existing models’ micro-level
performance, i.e., evaluating the node classification accuracy for node groups with subgraphs of different
homophily ratios. The investigation results (as shown in Fig. 1) demonstrate that recent GNNs designed for
heterophilous graphs do not outperform simple neural network model that only relies raw on node features,
i.e., multi-layer perceptron, when the subgraph homophily ratio of a node is low. Inspired by this finding, we
propose an efficient framework that relies on base predictions given by a simple neural network and further
ameliorate the base predictions with a compatible LP algorithm. In particular, we propose a simple pipeline
(CLP) with three main steps (Fig. 2): (i) base predictions of all nodes are made by a simple neural network
purely on the node features; (ii) a global compatibility matrix that computes connectivity of different class
labels is estimated; and (iii) smoothing of the predictions across neighbours weighted by the compatibility
of the class labels is performed. Intuitively, step (i) calculates the class probabilities for the test nodes,
while step (ii) defines the weights on edges with which LP algorithm at step (iii) will propagate the class
probabilities for each node. While steps (i) and (iii) have been tried independently for semi-supervised
classification before (Kipf & Welling, 2017; Ivanov & Prokhorenkova, 2021), it is learning the compatibility
matrix at step (ii) that makes a big difference as we show in the experiments. In our theoretical analysis,
we show that our approach can be computed via closed-form solution that provides necessary and sufficient
conditions for convergence. Empirically, extensive experimental results on a wide variety of benchmarks
show the competitive and efficient performance of CLP.

A significant boost in the performance of our method is related to learning a global compatibility matrix
between classes. This idea is not new – before the rise of neural networks for semi-supervised learning
several algorithms such as DCE (P. et al., 2020), ZooBP (Eswaran et al., 2017), LinBP (Gatterbauer et al.,
2015) and FaBP (Koutra et al., 2011) use compatibility matrix for belief-propagation algorithm. However,

2

Published in Transactions on Machine Learning Research (10/2022)

all of these methods are motivated by the regularisation framework, where the labelling function minimises
some energy objective that does not depend on the node features (Gatterbauer, 2014) and were shown to
have suboptimal performance to GNNs (P. et al., 2020). More recently, compatibility matrix was used for
GNNs in the heterophily setting (Zhu et al., 2021) and showed a significant increase in performance. That
being said, we find that learning a compatibility matrix from the node features significantly improves the
performance of LP on heterophilous graphs.

Overall, we generalise LP algorithm to arbitrary heterophily assumption, where the commonly used smooth-
ness assumption (homophily) is a special case with the identity matrix acting as the compatibility matrix. In
this case, LP is orders of magnitude faster than log-likelihood estimators such as GNNs, and it presents new
ways to understand the performance of graph learning through the lens of diffusion-based learning (Koutra
et al., 2011; Gatterbauer, 2014; Zhou et al., 2003; Zhu, 2005). For example, the insights of using compatibility
matrix and class labels as part of the training can be incorporated into existing GNN models. As such, we
hope that the ideas of LP algorithm could be fruitful for other tasks such as node regression, and LP could
become a commonly used baseline of graph learning practitioners.

2 Additional Related Work

GNNs for heterophily regime. The realisation that standard message-passing Graph Neural Network
(GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Battaglia et al., 2018) are suboptimal for graphs
with high heterophily was not immediate. At first, there was rich literature on solving the over-smoothing
problem (Li et al., 2018) which prevents an increasing number of layers of GNNs without loss of performance
(common to deep convolutional nets). After that, with new graph datasets with high heterophily (Pei et al.,
2020; Abu-El-Haija et al., 2019; Lim et al., 2021; Zheng et al., 2022) and new theory that connects the
over-smoothing problem with the tendency of nodes to connect to the opposite classes (Yan et al., 2021),
it has become evident that GNNs must incorporate additional knowledge to be suited for heterophilous
graphs. Several GNNs were proposed to deal with heterophily setting (Chien et al., 2021; Bo et al., 2021;
Zhu et al., 2021); however, usually improved accuracy of these GNNs is traded with an extra computational
cost which makes it hard to scale for large datasets, unlike Label Propagation (LP) algorithm, which is a
simple graph algorithm. Additionally, Wang & Leskovec (2020) use label propagation as regularisation to
assist message-passing GNNs in learning proper edge weights, but their approach is still tailored only for
homophilous datasets. A recent approach CPGNN (Zhu et al., 2021) uses compatibility matrix with message-
passing process; however, there are several notable differences compared to our approach. First, CPGNN
adjusts the weight of the message only based on the class of a sending node and compatibility matrix. In
turn, we additionally consider the class of a receiving node, which significantly improves the results in our
experiments. Second, we provide additional theoretical analysis of our method, giving a closed-form solution
and convergence guarantees, which is not available for CPGNN model.

Label propagation for heterophily regime. Perhaps the closest work to ours is (Gatterbauer, 2014;
Gatterbauer et al., 2015), where a compatibility matrix is used in the Linearised Belief Propagation (LinBP)
algorithm. There, a compatibility matrix is provided or estimated via a closed-form solution to minimise a
convex energy function and does not use the node features that are crucial in the estimation of the right
labelling functions. Several follow-ups aimed to generalise LinBP to various types of heterophily (Peel, 2017)
or Markov Random Fields (Gatterbauer, 2017). It was later shown in the experiments that these methods
are less effective than GNNs in graphs with node features (P. et al., 2020). In contrast, our method combines
two orthogonal sources of information – one from the labelling function learned on the node features and
another from LP algorithm that uses known labels together with the graph structure.

3 Preliminaries

An unweighted graph with n nodes can be formally represented as G = (V, E ,X), where V is the set of nodes,
E ⊆ V × V denotes the set of edges, and X = {x1,x2, . . . ,xn}. xv ∈ Rκ represents node features (κ is the
dimensionality of node features). Y stands for the set of possible class labels for v ∈ V. For subsequent
discussion, we summarise V and E into adjacency matrix A ∈ {0, 1}n×n.

3

Published in Transactions on Machine Learning Research (10/2022)

Problem setup. In this paper, we focus on the semi-supervised node classification task on a graph G,
where TV ⊂ V with known class labels yv for all v ∈ TV . We aim to infer the unknown class labels yu for all
u ∈ V \ TV . In addition, TV is split into two subsets: T t

V and T v
V , where T t

V is training set and T v
V works as

the validation set for early stopping or parameter fine-tune to prevent overfitting.

The homophily ratio h defined in Definition 1 is suitable for measuring the overall homophily level in the
graph. However, the actual homophily level is not necessarily uniform within all parts of the graph. One
typical case is that the homophily level varies among different pairs of classes. To measure the variability
of the homophily level, we further define the compatibility matrix H by measuring the fraction of outgoing
edges from a node in class i to a node in class j.
Definition 2 (Compatibility Matrix H). The compatibility matrix H has entries [H]ij that capture the
fraction of outgoing edges from a node in class i to a node in class j:

[H]ij = |(u, v) : (u, v) ∈ E ∧ yu = i ∧ yv = j|
|(u, v) : (u, v) ∈ E ∧ yu = i|

(2)

0.00 0.25 0.50 0.75 1.00
hv

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

GPRGNN
FAGCN
GCN2
GCN
MLP
H2GCN

(a) Wiki

0.00 0.25 0.50 0.75 1.00
hv

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

GPRGNN
FAGCN
GCN2
GCN
MLP
H2GCN

(b) ACM

Figure 1: Classification accuracy
for different 1-hop subgraph ho-
mophily ratios on Wiki (1a) and
ACM (1b) graphs.

The example of Appendix A gives an intuitive explanation of how H
measures the variability of the homophily level. In the semi-supervised
node classification settings, compatibility matrix H empirically models the
probability of nodes belonging to each pair of classes to connect. Mod-
elling H is crucial for heterophily settings, but calculating the exact H
would require knowledge to class labels of all nodes in the graph, which
violates the semi-supervised node classification setting. Therefore it is not
possible to incorporate exact H. To fill this gap, in Sec. 5.2, we propose
an approach to estimate H based on a sparsely labelled graph, which is
utilised after to assist the label propagation step (Sec. 5.3). An empirical
study in Sec. 6.5 empirically discusses the quality of estimated H and its
influence on the model performances.

4 An Experimental Investigation

In this section, we conduct an empirical study to motivate the design of
our approach. Unlike the classic macro-level node classification evaluation
method, we provide a different way to understand existing models’ micro-
level effectiveness. The main idea of this experiment is to study how
different models perform at the level of an individual node depending on
the homophily ratio of the 1-hop subgraphs. We define homophily ratio
of an individual node hv as follows:

hv = |{(u, v) : (u, v) ∈ Ev ∧ yu = yv}|
|Ev|

(3)

where Ev is the edge set of the induced 1-hop neighbourhood of v.

We take two graphs as examples: a heterophily graph Wiki with h = 0.30
and a homophily graph ACM with h = 0.82. Following the medium
splitting (Sec. 6.2 includes details settings), we train different models on
the training nodes of a graph and compute predictions for the test nodes.
We then aggregate the accuracy of predictions for each level of homophily,
{0, 0.1, . . . , 0.9, 1}, and plot the obtained results in Fig. 1. Global accuracy across all test nodes can be found
in Tab. 2 and Fig. 4.

Results from Tab. 2 and Fig. 4 demonstrate that in general GNNs outperform multi-layer perceptron
(MLP) (Rosenblatt, 1961). However, if we zoom in on local neighbourhoods, as shown in Fig. 1, the results
of MLP are often better than those of GNNs when the homophily ratio of a node’s 1-hop subgraph is low.

4

Published in Transactions on Machine Learning Research (10/2022)

In particular, we can see from Fig. 1 that (i) vanilla GCN has superior accuracy for nodes with strong
subgraph homophily ratio (hv ≥ 0.7) on both graphs; other advanced GNN models mainly improve the
classification accuracy over nodes with low hv, and (ii) MLP is relatively stable across different homophily
ratio hv and is a better model for nodes with low hv compared to other GNNs. For instance, MLP achieves
the best accuracy on nodes with hv ≤ 0.3 on Wiki graph and nodes with hv ≤ 0.6 on ACM graph.

This illustrates that recent GNN models designed for heterophilous graphs do not outperform MLP for
nodes with a considerable fraction of neighbours with opposite class labels; instead, they have better global
accuracy than MLP by having better accuracy on nodes with high homophily ratio hv. Based on this evidence,
we propose a simple but effective approach that mainly relies on the predictions of MLP to maintain its
favourable performance on nodes with low homophily hv and that further ameliorates the classification
results by incorporating the knowledge of the graph structure.

5 Compatible Label Propagation with Heterophily

X Class
matchB

Node features Base predictions Compatibility
matrix

LP+

Graph

MLP H

Compatibility
matrix

H

Step (i) Step (ii)

Step (iii)

Dataset

Labels

Figure 2: Overview of Compatible Label Propagation (CLP) model. Step (i): base predictor, MLP, makes
class predictions for each node using only node features. Step (ii): global compatibility matrix between
classes is computed with Eq. 6. Step (iii): propagate class predictions with LP algorithm and get the classes
for test nodes. Intuitively, compatibility matrix measures the weighted probabilities of any two target classes
being connected, and as such, it defines the edge weights in LP algorithm.

Our approach starts with a simple base predictor on raw node features, which does not rely on any learning
over the topological structure. Any off-the-shelf graph-agnostic model can be plugged in to become a base
predictor, which enables our approach to accommodate any node features. After, we propose an approach
to estimate the compatibility matrix H of the overall graph and apply it to calculate the relation between
each pair of nodes. Finally, we use label propagation algorithm with an estimated compatibility matrix to
smooth the prior prediction probabilities on the weighted graph to get the final predictions.

5.1 Simple Base Predictor

To start, we use a simple base predictor that does not rely on graph structure to learn prior predictions.
Specifically, we train a model fθ to minimise

∑
v∈T t

V
L(fθ(xv), yv), where xv is the available feature of node

v and yv is its true class label, L is a loss function. In this paper, we adopt a simple multi-layer perceptron
(MLP) (Rosenblatt, 1961) as the base predictor, where ℓ-th layer can be formally formulated as following:

D(ℓ) = σ(D(ℓ−1)W(ℓ) + b(ℓ)) (4)

where W(ℓ) are learnable parameters and b(ℓ) is the bias vector. σ is the activation function (e.g. ReLU),
and we initialise D(0) = X.

From fθ, we get a prior prediction D̂ = Softmax(D(L)) ∈ R|V|×|Y|, where ℓ = L is the last layer. Omitting the
graph for the prior predictions brings several benefits: (i) it avoids the sensitivity to homophily/heteriophily

5

Published in Transactions on Machine Learning Research (10/2022)

of the graph (as was shown in Fig. 5, MLP’s performance maintains good stability for graphs with different
homophily ratios); and (ii) it significantly reduces the number of parameters that we need to learn, thus
accelerating the approach (as shown in Fig. 8). Next, we use MLP’s predictions to estimate the weights for
label propagation algorithm.

5.2 Estimation of Compatibility Matrix

The focal idea of compatibility matrix is summarising the relative frequencies of classes between neighbours.
Under the semi-supervised node classification settings, we only know the class labels of a small fraction of
nodes (T t

V). We derive the preliminary class labels of unknown nodes (V\(TV∪T v
V)) as the base prediction D̂.

Note that we treat validation set nodes as unknown nodes, which will be used to evaluate the performance
of LP step and pick up the better final predictions. More specifically, denote the training mask M as:

[M]i,: =
{

1, if i ∈ T t
V

0, otherwise
. The preliminary knowledge of class labels can be formally represented as:

B̂(0) = M ◦Y + (1−M) ◦ D̂ (5)

where ◦ is the Hadamard (element-wise) product, Y ∈ R|V|×|Y| and Yvj = 1 if yv = j, otherwise Yvj = 0.

Next, we estimate a compatibility matrix Ĥ that calculates the probability that a training node of one class
is connected with a node of another class.

Ĥ = S((M ◦Y)⊤AB̂(0)) (6)

where S is the Sinkhorn-Knopp function that ensures Ĥ is doubly-stochastic (Sinkhorn & Knopp, 1967).

A compatibility matrix Ĥ can be seen as a multiplication of two matrices, (M◦Y)⊤ and AB̂(0). The matrix
(M◦Y)⊤ represents one-hot encoded class labels of training nodes only. In turn, the matrix AB̂(0) computes
the sum of class probabilities across all neighbours of each node. After multiplication of these two matrices,
each entry (i, j) of (M◦Y)⊤AB̂(0) represents a score that a class i among training nodes is connected with a
node of class j estimated with prior probabilities D̂. A function S converts these scores back to probabilities
such that each entry (i, j) of Ĥ indicates a probability that a class i is connected with class j.

5.3 Compatible Label Propagation

After obtaining the estimation Ĥ, we propagate the knowledge about node class labels with the guide of Ĥ
over the graph. The key idea of our method is that the edge weight of a message u 7→ v in label propagation
algorithm depends on both predicted classes of sending and receiving nodes. That contrasts with previous
works (Gatterbauer et al., 2015; Zhu et al., 2021) where edge weight depends only on the sending node class
probabilities. In particular, for each edge (i, j), we define an edge weight as follows:

[F]ij = ([B̂(0)]iĤ) ◦ [B̂(0)]j (7)

Intuitively, edge weight [F]ij depends on the probabilities that node i is connected with some class k,
([B̂(0)]iĤ), and the probabilities that node j has the same class k. Naturally, we can assign the edge weights
to corresponding positions of adjacent matrix to get AF ∈ Rn×n×|Y|, where [A]Fij = [F]ij .

Let B̂ and D̂ be the final node class prediction matrix and the base prediction, respectively. AF is the fixed
weighted adjacent matrix. Then, the final node classifications are approximated by the equation system:

B̂ = (1− α)D̂ + α AF ⊕ B̂ (8)

where [AF ⊕ B̂]:,k = AF
k [B̂]:,k and AF

k means the weighted adjacent matrix with k-th dimensional edge
weights. α is a hyperparameter, which defines how much update to the previous state each label propagation
step makes.

6

Published in Transactions on Machine Learning Research (10/2022)

Iterative updates. Notice that Eq. 8 gives an implicit definition of the final node classification after
convergence, it can also be used as iterative update equations, allowing an iterative calculation of the final
node classification predictions:

B̂(r+1) ← (1− α)D̂ + αAF ⊕ B̂(r) (9)
Thus, the final node classification predictions can be computed via linear matrix operations. Note that
previous works (Gatterbauer et al., 2015; Zhu et al., 2021) compute the compatibility matrix Ĥ for LP as
follows:

B̂(r+1) ← (1− α)D̂ + αAB̂(r)Ĥ (10)

0

1

Propagation

Instance

0

1

2

𝒢𝒢

2

𝐁𝐁 =
0.4 0.6
0.2
0.7

0.8
0.3

𝐇𝐇 = 0.2 0.8
0.8 0.2

M=
0. 0.

0.4
0.4

0.6
0.6

M=
0. 0.

0.56
0.56

0.44
0.44

M=
0 0

0.18
0.66

0.83
0.34

LP LP with 𝐇𝐇 CLP

Figure 3: Comparison of three propagation
schemes, M represents the received messages af-
ter one propagation iteration. In LP nodes 1 and
2 receive the same message; LP with H overturns
the prior prediction of node 1; CLP adapts the
heterophily of the graph and reassures confident
prior predictions.

Eq. 10 defines an edge weight by the relation between
the sending node and Ĥ. Hence, receiving nodes get
the same message from a sending node regardless of the
class of the receiving nodes. We argue that the proper
weight of a message should be determined by both send-
ing and receiving nodes (Fig. 3). Appendix A presents a
detailed comparison between different LP-related meth-
ods, and we empirically demonstrate the advantages of
CLP in Sec. 6.5.

5.4 Theoretical Analysis of CLP

Eq. 9 allows solving CLP Eq. 8 via iterative updates.
Here, we show an alternative method that provides a
closed-form solution, which in turn sets convergence guar-
antees of CLP for each class k. We start by defining
vectorisation of a matrix X, which stacks columns of X
side-by-side.
Definition 3 (Matrix Vectorisation (H. V. Henderson,
1981)). Vectorisation of an m×n matrix X is an mn×1
vector given by:

vec(X) = [x11, . . . ,xn1,x12, . . . ,xn2, . . . ,x1n, . . . ,xnn]T (11)

Additionally, the Kronecker product of X and Q is the mp× nq matrix is defined by:

X⊗Q =

x11Q x12Q . . . x1nQ
x21Q x22Q . . . x2nQ

...
...

xm1Q xm2Q . . . xmnQ

 (12)

We are now ready to give a closed-form solution to Eq. 8:
Proposition 1 (Closed-form CLP). The closed-form solution for CLP (Eq. 8) for class k is given by:

vec([B̂]:,k) = (I− α (I⊗AF
k))−1(1− α) vec([D̂]:,k) (13)

Proof of Proposition 1 refers to Appendix B.

Therefore, instead of iterative updates Eq. 10, we can compute the final node predictions in a closed-form by
using Eq. 13, as long as the inverse of the matrix exists. Based on this closed-form solution we next establish
necessary and sufficient criteria for convergence.

Convergence of iterative CLP. We remind that spectral radius of a matrix X is the maximum eigenvalue,
i.e. ρ(X) = max({|λ1|, . . . , |λn|}). With Eq. 13 we are now ready to establish convergence guarantees for
CLP.
Proposition 2 (Convergence of CLP). For class k, CLP iterative updates Eq. 13 converge if and only if
ρ(AF

k) < α−1.

7

Published in Transactions on Machine Learning Research (10/2022)

Proof of Proposition 2 refers to Appendix B.

As computing the largest eigenvalue may be too expensive for large graphs, following the Gershgorin circle
theorem (Weisstein, 2003), one can replace the spectral norm with any sub-multiplicative norm that is faster
to compute and give an upper bound to the spectral radius. For ∥ X ∥p= (

∑
i

∑
j |X(i, j)|p)1/p we have

ρ(X) ≤∥ X ∥2≤∥ X ∥1. Hence, one can use Frobenius or 1-induced norm to efficiently check if the sufficient
condition for convergence is satisfied. In our experiments, we found that CLP converges for all datasets.

5.5 Summary

To review our approach, we start with a base predictor, which purely learns from node features to make
node class label predictions. Next, we estimate the global compatibility matrix Ĥ based on the sparsely
labelled graph and base predictions. Ĥ describes the overall possibility of nodes belonging to each pair of
classes to connect, which can be utilised to estimate the relationship between each pair of base prediction
vectors. Finally, we perform an efficient LP step to smooth base predictions and obtain class labels with the
assistance of the relationship between each pair of nodes.

Compared with existing GNN models, CLP similarly benefits from both node features and graph structure,
yet separates them into two processes. It is motivated by the investigation in Sec. 4 that MLP has better
accuracy over other GNN models for nodes with low homophily hv. Hence we would like to maintain MLP’s
advantages and utilise graph structure to improve it to obtain final predictions. Following this way, both
node features and graph structure are appropriately involved in our approach, and it only requires learning
parameters specified by a base predictor. Next, we are going to demonstrate the competitive performances
of CLP on node classification tasks.

6 Experiments

Table 1: Statistics for six synthetic datasets. (Prod) means contextual node features come from Ogbn-
Products, or adopt the statistic features designed by 2D Gaussians.

Benchmark Name #Nodes |V| #Edges |E| #Classes |Y| Homophily h #Avg. Degree
Syn-(Prod)-1 10, 000 49, 446 to 50, 352 10 [0, 0.1, . . . , 1] 4.95 to 5.02
Syn-(Prod)-2 10, 000 99, 556 to 99, 556 10 [0, 0.1, . . . , 1] 9.96 to 10.01
Syn-(Prod)-3 10, 000 149, 090 to 15, 1494 10 [0, 0.1, . . . , 1] 14.91 to 15.15

To validate our approach’s effectiveness, we first empirically demonstrate the performance of CLP and state
of the art (SOTA) models on real-world and synthetic datasets with a wide variety of settings. Second, we
compare the number of required parameters, the quality of compatibility estimation, the models’ execution
time, and their performance on different graphs with different label rates. Third, we empirically show the
advantages of our propagation method compared with the previous design. We also study the influence of
different label rates on the compatibility matrix estimation and classification accuracy and show the efficiency
of CLP in terms of the model size.

6.1 Datasets

Real-world datasets. We use a total of 19 real-world datasets (Texas, Wisconsin, Actor, Squirrel,
Chameleon, USA-Airports, Brazil-Airports, Wiki, Cornell, Europe-Airports, deezer-europe, Twitch-EN,
Twitch-RU, Ogbn-Proteins, WikiCS, DBLP, CS, ACM, Physics) in diverse domains (web-page, citation,
co-author, flight transport, biomedical and online user relation). Note that we use ROC-AUC as the evalua-
tion metric for the class imbalanced datasets, i.e., Twitch-EN, Twitch-RU and Ogbn-Proteins, following Lim
et al. (2021). For other datasets, we use node classification accuracy as our general evaluation metric. See
Appendix C for detailed descriptions, statistics and references.

Synthetic datasets. We generate random synthetic graphs with various homophily ratios h and node
features by adopting a similar approach (Abu-El-Haija et al., 2019; Kim & Oh, 2021) but with some mod-

8

Published in Transactions on Machine Learning Research (10/2022)

ifications. For instance, synthetic graphs (Abu-El-Haija et al., 2019) have no available contextual node
attributes. Specifically, each synthetic graph has 10 classes and 1, 000 nodes per class. Nodes are assigned
random features sampled from 2D Gaussians (Syn) or contextual features from real-world datasets (Hu et al.,
2020) (Syn-Prod). Except for the homophily ratio, we also control the average degree of each graph (around
5, 10 or 15) to investigate the performance with respect to graph sparsity. Here, we give detailed descriptions
of the generation process.

Graph generation. We generate synthetic graph G of |V| nodes with |Y| different class labels, and G has
|V|/|Y| nodes per class. |V| and |Y| are two prescribed numbers to determine the size of G. A synthetic
graph’s homophily ratio h is mainly controlled by pin and pout, where pin means the possibility of existing
an edge between two nodes with the same label and pout is the possibility of existing an edge between
two nodes with different class labels. Furthermore, the average degree of G is davg = |V|/|Y| · δ, where
δ = pin + (|Y| − 1) · pout. Following the described graph generation process, with given |V|, Y and davg,
we choose pin from {0.0001δ, 0.1δ, 0.2δ, . . . , 0.9δ, 0.9999δ}. Note that the synthetic graph generation process
requires both pin and pout are positive numbers, hence we use pin = 0.0001δ and 0.9999δ to estimate h = 0
and h = 1 cases, respectively.

Node features generation. In order to comprehensively evaluate the performances of different models, we
assign each node with statistic features (Syn) or real-world contextual node features (Syn-Prod). For graphs
with statistic node features, the feature values of nodes are sampled from 2D Gaussian (Abu-El-Haija et al.,
2019). The mean of Gaussian can be described in polar coordinates: each means has radius 300 and
angle 2π

10 × (class id). The covariance matrix of each class is 3500 × diag[7, 2], that is rotated by angle
2π
10 × (class id). For datasets with real-world contextual node features, we first establish a class mapping
ψ : Y → Yb between classes in the synthetic graph Y to classes of existing benchmark graph Yb. The only
requirement for the target graph dataset is that the class size and node set size in the benchmark is larger
than that of the synthetic graph, i.e., |Y|b ≤ |Y| and |V| ≤ |V|b. In this paper, we adopt the large-scale
benchmark, Ogbn-Products (Hu et al., 2020).

6.2 Experimental Setup

Baseline methods. We compare our model against state-of-the-art graph neural networks and related node
classification methods for all datasets under fair settings. Specifically, MLP (Rosenblatt, 1961) is the baseline
model that only utilises node attributes, while LINK (Zheleva & Getoor, 2009) only utilises graph structure.
Meanwhile, we also adopt general GNN models with underlying homophily assumption: GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018) and GCN2 (Chen et al., 2020). Moreover, we adopt several
models that are designed for heterophily graphs: Mixhop (Abu-El-Haija et al., 2019), SuperGAT (Kim & Oh,
2021), GPRGNN (Chien et al., 2021), FAGCN (Bo et al., 2021), H2GCN (Zhu et al., 2020) and CPGNN (Zhu
et al., 2021). At last, two LP-based models: LP (Zhu, 2005) and C&S (Huang et al., 2021).

Implementation and splits. We follow the experimental setup of FAGCN and CPGNN with minor
adjustments. Specifically, our experimental setup examines the semi-supervised node classification in the
transductive setting. We consider three different choices for the random split into training/validation/test
settings, which we call sparse splittings (5%/5%/90%), medium splitting (10%/10%/80%) and dense split-
ting (48%/32%/20%), respectively. The sparse splitting (5%/5%/90%) is similar to the original semi-
supervised setting in Kipf & Welling (2017), but we do not restrict each class to have the same number
of training instances since it is the case closer to the real-world application. For a fair comparison, we
generate 10 fixed split instances with different splitting and results are summarised after 10 runs with
random seeds. Note that the Ogbn-Proteins dataset adopts its default splitting settings. Other model
setups and hyperparameter settings can be found in Appendix E. Our implementation is available at
https://github.com/zhiqiangzhongddu/TMLR-CLP.

6.3 Results on Real-world Graphs

Real-world graphs with heterophily. The performance of diverse methods on heterophily graphs under
medium splitting is summarised in Tab. 2, top-2 performances of each graph are highlighted in colour. Ad-
vanced GNN models that are designed for heterophily graphs generally perform better than GNNs designed

9

https://github.com/zhiqiangzhongddu/TMLR-CLP

Published in Transactions on Machine Learning Research (10/2022)

Table 2: Summary of node classification results on heterophily graphs under medium splitting. ‡ indicates the
results from Lim et al. (2021). Top-2 performances per benchmark are highlighted in and , respectively.

Texas Wisconsin Actor Squirrel Chameleon USA-A. Bra.-A. Wiki Cornell Eu.-A. deezer Tw.-EN Tw.-RU O.-Proteins Rank
Hom.R h 0.06 0.17 0.22 0.22 0.23 0.25 0.29 0.30 0.30 0.31 0.53 0.60 0.639 –

MLP 67.94±3.87 69.32±3.33 32.07±0.72 26.18±0.81 35.94±1.47 54.92±2.34 59.52±11.66 70.13±1.18 68.19±4.55 50.41±3.24 63.77±0.30 59.56±0.92 49.33±1.55 73.43±0.12‡ 3
LINK 59.52±4.11 47.79±7.05 24.03±0.61 46.02±0.96 58.28±1.53 24.71±1.17 27.97±4.42 25.07±1.16 46.47±12.28 29.59±3.55 55.95±0.34 55.65±1.02 51.27±1.20 63.49±0.02‡ 10
GCN 54.17±3.18 47.55±3.50 26.82±0.97 24.71±0.86 34.61±2.93 30.88±2.42 26.84±5.84 53.15±1.51 55.81±1.54 31.65±4.61 59.94±0.55 59.79±0.55 51.51±1.05 72.03±0.32‡ 10
GAT 54.12±3.25 48.73±3.32 27.37±1.03 24.55±0.90 36.60±2.30 28.13±4.19 23.76±1.57 47.21±1.60 55.18±2.54 24.34±1.21 56.22±1.17 58.66±0.91 51.65±1.78 OOM‡ 12
GCN2 55.22±6.17 47.63±4.61 27.14±0.65 25.5±2.08 36.26±2.72 36.59±3.01 27.22±5.35 60.29±3.17 53.87±6.38 35.05±5.86 62.33±0.81 59.66±0.45 51.53±2.36 74.10±0.59 8
Mixhop 54.62±3.49 51.63±4.36 27.46±1.39 27.81±1.13 38.14±2.10 52.68±1.56 44.41±8.22 61.74±2.20 51.29±7.12 45.55±3.88 64.16±0.85 60.38±0.99 52.54±1.49 75.60±0.85‡ 5
SuperGAT 54.88±2.84 49.94±3.20 26.69±0.62 24.88±1.05 35.49±2.26 27.02±3.86 23.47±1.97 33.23±1.79 54.47±1.79 24.63±1.21 57.07±0.64 59.66±0.46 50.95±1.88 OOM 13
GPRGNN 55.31±3.29 50.89±4.00 27.72±0.92 25.29±1.15 34.67±2.82 41.83±6.48 24.85±3.43 68.02±1.30 55.03±4.15 31.47±5.43 62.74±0.39 59.42±0.71 51.17±1.50 OOM‡ 9
FAGCN 60.95±4.05 63.08±5.42 32.60±0.85 24.93±1.10 36.68±1.80 56.14±1.34 48.19±12.13 72.12±0.75 62.32±4.32 48.22±3.30 65.04±0.45 60.76±0.74 50.19±2.02 OOM 2
H2GCN 61.29±5.20 65.67±8.51 32.27±0.91 26.95±1.74 36.93±1.73 54.24±1.56 38.95±8.06 70.57±1.23 57.26±6.46 40.56±4.78 62.82±0.68 59.06±0.92 51.22±1.33 OOM‡ 7
CPGNN 62.95±15.24 70.05±7.30 32.42±0.65 28.70±1.41 47.7±2.04 25.21±1.01 27.51±6.56 70.18±1.13 68.04±5.85 34.86±1.90 64.95±0.39 57.07±1.28 52.37±0.34 OOM 4
LP 15.58±5.47 11.40±3.25 17.69±0.57 17.59±1.30 20.62±2.02 24.35±1.31 24.48±3.22 23.89±0.77 18.51±3.19 27.20±1.74 55.44±0.46 54.42±0.81 51.90±1.40 75.14±0.00‡ 14
C&S 66.90±6.60 67.34±7.47 31.94±1.30 26.85±0.94 26.85±0.94 45.26±4.70 55.33±9.31 71.49±1.27 67.04±5.29 37.32±5.50 63.92±0.71 59.36±1.84 52.12±0.83 71.13±0.69‡ 5
CLP (Ours) 69.63±3.75 72.64±5.79 33.1±0.65 31.76±1.03 43.29±1.10 56.3±1.44 63.53±11.00 74.08±2.03 70.36±4.83 53.83±2.63 65.69±0.32 60.81±0.78 52.78±0.79 75.73±0.24 1

with high-homophily assumption. MLP, which only utilises node features, achieves outstanding performances
in several benchmarks. Our model, CLP, inherits the advantage of MLP but also benefits from graph struc-
ture, and it achieves outstanding and stable performance on all heterophily graphs. Moreover, many baseline
methods lead to out-of-memory (OOM) issues on the large dataset, i.e., Ogbn-Proteins, but CLP avoids this
problem, demonstrating its memory efficiency.

WikiCS
DBLP CS

ACM
Physics

Data

60

65

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y

SOTA
C&S
C&S

CLP
CLP

Figure 4: Performance comparison of C&S
and CLP with the best performance of
GNN models (SOTA) on homophily graphs
under medium splitting.

Real-world graphs with homophily. The performance
of representative models on homophily graphs under medium
splitting is summarised in Fig. 4. Inspired by Huang et al.
(2021), we further adopt the spectral and diffusion features as
additional node features to C&S and CLP and compare their
performances with the best performance of SOTA GNN mod-
els. C&S† and CLP† refer to performance with additional node
features and results from the figure demonstrates that CLP†

outperforms or matches the SOTA on homophily graphs.

6.4 Results on Synthetic Graphs

Synthetic graphs without contextual node features.
Most previous work (Kipf & Welling, 2017; Bo et al., 2021;
Zhu et al., 2020) on semi-supervised node classification has fo-
cused only on graphs with contextual features on the nodes.
However, the vast majority of graph data does not have node-
level contextual features in practical applications, which sig-
nificantly limits the utility of methods proposed in prior work.
Besides, several components of our approach depend on node features. For instance, the compatibility matrix
estimation (Ĥ) relies on the prior predictions which are learned from node features. Ĥ plays a crucial role
in the following LP step. Therefore, it is natural to ask how CLP performs over graphs without contextual
node features compared with other competitive models?

To answer this question, we conduct extensive experiments on semi-supervised node classification with sparse,
medium and dense splittings on three synthetic datasets with different average degrees. For instance, the
Syn-1 dataset contains 11 graphs with h from 0 to 1, and the average degree per graph is set to around 5
(4.95 to 5.02). Syn-2 and Syn-3 follow similar settings, but the average degree of each graph is set to 10 and
15, respectively.

We present the results of representative models of three synthetic datasets in Fig. 5-(a, b, c). We observe
similar trends in three figures: CLP has the best trend overall, outperforming SOTA methods in heterophily
settings while matching with other SOTA methods in homophily settings. The performance of vanilla GCN
and GCN2 increases with respect to the homophily level (h → 1). But, while synthetic graphs have no
contextual node features, MLP is more accurate than them under strong heterophily (h→ 0). From Fig. 5,
we can find that the classification accuracy of MLP has been stable at about 45%, a relatively low level.

10

Published in Transactions on Machine Learning Research (10/2022)

0.0 0.2 0.4 0.6 0.8 1.0
h

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(a) Syn-1, Label rate: 5%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(b) Syn-2, Label rate: 10%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(c) Syn-3, Label rate: 48%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(d) Syn-Prod-1, Label rate: 5%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(e) Syn-Prod-2, Label rate: 10%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(f) Syn-Prod-3, Label rate: 48%

Figure 5: Classification accuracy of different methods with different label rates on synthetic datasets. Only
competitive results are presented due to the space limit.

Yet, CLP can still achieve the overall best performance. Overall, it indicates that our approach works for
graphs without contextual features.

Synthetic graphs with contextual node features. We perform extensive experiments on
graphs with contextual features to further validate the performance of CLP under various settings.

0.0 0.2 0.4 0.6 0.8 1.0
h

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

CLP
CLP*

Figure 6: Performance compari-
son of CLP and CLP* on Syn-1
dataset with medium splitting.

Similar to the experiments on synthetic graphs without contextual node
features, there are three synthetic graphs, i.e., Syn-Prod-1, Syn-Prod-2
and Syn-Prod-3, which have the same graph structure as Syn-1, Syn-2
and Syn-3, but with contextual node features. Experimental results are
presented in Fig. 5-(d, e, f). These figures emphasise that CLP is the
best model for most heterophily cases (h→ 1), which again confirms the
effectiveness of our approach. It echoes the results of the real-world graphs
(Tab. 2). Besides, GCN and GCN2, which were proposed with implicit
homophily assumption, are significantly less accurate than MLP (near-flat
performance curve as it is graph-agnostic) under strong heterophily (h ≤
0.4). Such evidence can be found in some cases for other heterophilous
GNN models (H2GCN, FAGCN, GPRGNN). For instance, they perform
significantly better than GCN but are outperformed by MLP on Syn-
Prod-1 under h ≤ 0.3 (Fig. 5d). It reaffirms what we found in Sec. 4, i.e.
MLP could be a better choice for making classification for strong heterophily node groups. Our approach,
CLP, can consistently achieve better performance than MLP in graphs with any heterophily levels and
sparsity levels.

6.5 Additional Analysis

Comparison between two propagation schemes. In Sec. 5.3, we explained the design of our compatible
LP process and discussed its advantages over prior work (Zhu et al., 2020). The messages between two nodes
are adaptively determined by nodes of both ends. Here, we perform extensive experiments to empirically
compare the performance of LP steps with two propagation schemes. We choose one synthetic dataset with
11 graphs under various homophily (Syn-1) under the medium splitting. Other settings follow the common

11

Published in Transactions on Machine Learning Research (10/2022)

setup of CLP as described in Sec. 6.2. The approach that utilises Eq. 10 named CLP*. Their performances
are reported in Fig. 6. We observe that CLP has the better trend overall, outperforming CLP* in most
heterophily settings (h ≤ 0.9) and matching with CLP* in other settings.

5 10 48
Label rate (%)

70

80

90

Te
st

 A
cc

ur
ac

y

0.25

0.50

0.75

1.00

1.25

L2
-d

ist
an

ce
 (H

, H
)

Test Accuracy Wiki
Test Accuracy ACM
L2-distance Wiki
L2-distance ACM

Figure 7: Classification accuracy and L2-
distance between estimated/true compati-
bility matrix with different label rates.

2 4 6 8
loge(# Parameters)

0

20

40

60

Te
st

 A
cc

ur
ac

y

0.40s
0.44s

0.49s

0.62s

0.77s

0.84s

Brazil-Airports

H2GCN
CLP

11.5 12.0 12.5
loge(# Parameters)

0

20

40

60

Te
st

 A
cc

ur
ac

y

2.38s
4.81s

6.50s

6.03s

8.07s

18.88s

Wiki

H2GCN
CLP

Figure 8: Classification accuracy and execution time of different
methods with different layers on heterophily graphs. Execution
time is marked in the plot in terms of seconds (s).

Influence of label rate on test accuracy and quality of compatibility matrix estimation. Another
interesting question under semi-supervised learning to study is the influence of label rates. Fig. 7 presents
the CLP’s test accuracy and the quality of compatibility matrix estimation (Ĥ) with different splittings.

Specifically, the quality of Ĥ is evaluated by dist(H, Ĥ) =
√∑|Y|

i=1
∑|Y|

j=1

(
[H]ij − [Ĥ]ij

)2
. It is not surprising

to find that higher label rates lead to better performance and more accurate compatibility matrix estimation.
Therefore, one of the future directions is to learn better compatibility matrix estimation according to prior
predictions and graph structure.

The number of parameters and execution time comparison. Our approach often requires significantly
fewer parameters than GNN models since only the base predictor has parameters to train, which is less than
GNN models. Moreover, another gain is faster training time because we do not use the graph structure for
our prior predictions, and the LP step is time-efficient (Gatterbauer, 2014; Gatterbauer et al., 2015). As an
example, we plot the number of parameters vs test accuracy of CLP and H2GCN of two heterophily graphs,
i.e., Brazil-Airports and Wisconsin, in Fig. 8. Note that H2GCN similarly contains an MLP component as a
node feature encoder. We endow CLP and H2GCN with Linear, 2-layers and 3-layers MLP models as base
predictors (feature encoder for H2GCN). The hidden dimensions of CLP and H2GCN are the same as the
general settings. Each model’s execution time (average value of 10 runs) under different settings is shown in
Fig. 8. We observe that CLP achieves much better performance with orders of magnitude fewer parameters
and execution time.

7 Conclusion

In this paper, we focused on the graph learning tasks with challenging heterophily settings. Motivated
by an experimental investigation of existing models’ performance, we proposed an approach that extends
LP algorithm to heterophily settings by smoothing the prior predictions across neighbours weighted by the
compatibility matrix. A theoretical analysis shows that CLP has a closed-form solution with mild conditions
on an appropriate matrix and we can thus give a detailed explanation of when CLP will support convergence.
Comprehensive experiments demonstrate the effectiveness and efficiency of our approach on real-world and
synthetic graphs with different settings. In future work, we plan to investigate a better compatibility matrix
estimation approach and generalise CLP to the heterophily setting of regression problems on graphs.

Acknowledgments

This work is supported by the Luxembourg National Research Fund through grant
PRIDE15/10621687/SPsquared.

12

Published in Transactions on Machine Learning Research (10/2022)

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-

yan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In Proceedings of the 2019 International Conference on Machine Learning
(ICML), pp. 21–29. JMLR, 2019.

Waïss Azizian and Marc Lelarge. Characterizing the expressive power of invariant and equivariant graph
neural networks. CoRR, abs/2006.15646, 2020.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Çaglar Gülçehre,
H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen,
Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and
graph networks. CoRR, abs/1806.01261, 2018.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convo-
lutional networks. In Proceedings of the 2021 AAAI Conference on Artificial Intelligence (AAAI), pp.
3950–3957. AAAI, 2021.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In Proceedings of the 2020 International Conference on Machine Learning (ICML). JMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In Proceedings of the 2021 International Conference on Learning Representations (ICLR),
2021.

Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, and Keyulu Xu.
Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Proceedings of the 2019
Annual Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2019.

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, and Mohit Kumar. Zoobp: Belief
propagation for heterogeneous networks. Proc. VLDB Endow., 10(5):625–636, 2017.

Wolfgang Gatterbauer. Semi-supervised learning with heterophily. CoRR, abs/1412.3100, 2014.

Wolfgang Gatterbauer. The linearization of belief propagation on pairwise markov random fields. In Pro-
ceedings of the 2017 AAAI Conference on Artificial Intelligence (AAAI), pp. 3747–3753. AAAI, 2017.

Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Christos Faloutsos. Linearized and single-
pass belief propagation. Proc. VLDB Endow., 8(5):581–592, 2015.

S. R. Searle H. V. Henderson. The vec-permutation matrix, the vec operator and kronecker products: A
review. Linear and multilinear algebra, 9(4):271–288, 1981.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Proceedings of the
2020 Annual Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label propaga-
tion and simple models out-performs graph neural networks. In Proceedings of the 2021 International
Conference on Learning Representations (ICLR), 2021.

Sergei Ivanov and Liudmila Prokhorenkova. Boost then convolve: Gradient boosting meets graph neural
networks. In Proceedings of the 2021 International Conference on Learning Representations (ICLR), 2021.

13

Published in Transactions on Machine Learning Research (10/2022)

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with self-
supervision. In Proceedings of the 2021 International Conference on Learning Representations (ICLR),
2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
Proceedings of the 2017 International Conference on Learning Representations (ICLR), 2017.

Danai Koutra, Tai-You Ke, U Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos Faloutsos.
Unifying guilt-by-association approaches: Theorems and fast algorithms. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference (ECMLPKDD), volume 6912, pp. 437–452. Springer,
2011.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding - design provably more
powerful graph neural networks for structural representation learning. In Proceedings of the 2020 Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the 2018 AAAI Conference on Artificial Intelligence (AAAI), pp.
3538–3545. AAAI, 2018.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser-Nam
Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods.
In Proceedings of the 2021 Annual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2021.

Péter Mernyei and Catalina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks.
CoRR, abs/2007.02901, 2020.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering GCN: overcoming oversmoothness in graph con-
volutional networks. In Proceedings of the 2020 Annual Conference on Neural Information Processing
Systems (NeurIPS). NeurIPS, 2020.

Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. Factorized graph representations for semi-
supervised learning from sparse data. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 1383–1398. ACM, 2020.

Leto Peel. Graph-based semi-supervised learning for relational networks. In Proceedings of the 2017 SIAM
International Conference on Data Mining, pp. 435–443. SIAM, 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In Proceedings of the 2020 International Conference on Learning Representations
(ICLR), 2020.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543. ACL, 2014.

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical
report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. CoRR, abs/2004.11198, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2), 2021.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 1981.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. CoRR, abs/1811.05868, 2018.

14

Published in Transactions on Machine Learning Research (10/2022)

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In Proceed-
ings of the 2009 ACM Conference on Knowledge Discovery and Data Mining (KDD), pp. 807–816. ACM,
2009.

Yu Tian, Long Zhao, Xi Peng, and Dimitris N. Metaxas. Rethinking kernel methods for node representation
learning on graphs. In Proceedings of the 2019 Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 11681–11692. NeurIPS, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In Proceedings of the 2018 International Conference on Learning Representa-
tions (ICLR), 2018.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation.
abs/2002.06755, 2020.

Eric W Weisstein. Gershgorin circle theorem. https://mathworld. wolfram. com/, 2003.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):
4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
Proceedings of the 2019 International Conference on Machine Learning (ICML). JMLR, 2019.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. abs/2102.06462, 2021.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. Network representation learn-
ing with rich text information. In Proceedings of the 2015 International Joint Conferences on Artifical
Intelligence (IJCAI), pp. 2111–2117. IJCAI, 2015.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 2020.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Proceedings of the 2020
International Conference on Learning Representations (ICLR), 2020.

Elena Zheleva and Lise Getoor. To join or not to join: the illusion of privacy in social networks with mixed
public and private user profiles. In Proceedings of the 2009 International Conference on World Wide Web
(WWW), pp. 531–540. ACM, 2009.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Yu Philip S. Graph neural networks for graphs
with heterophily: A survey. CoRR, abs/2202.07082, 2022.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. In Proceedings of the 2003 Annual Conference on Neural Information
Processing Systems (NIPS), pp. 321–328. NIPS, 2003.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. In Proceedings of the 2020 Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

Jiong Zhu, Ryan A. Rossi, Anup B. Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the 2021 AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 11168–11176. AAAI, 2021.

Xiaojin Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2005.

15

	Introduction
	Additional Related Work
	Preliminaries
	An Experimental Investigation
	Compatible Label Propagation with Heterophily
	Simple Base Predictor
	Estimation of Compatibility Matrix
	Compatible Label Propagation
	Theoretical Analysis of CLP
	Summary

	Experiments
	Datasets
	Experimental Setup
	Results on Real-world Graphs
	Results on Synthetic Graphs
	Additional Analysis

	Conclusion

