BiDoRA: Bi-level Optimization-Based
Weight-Decomposed Low-Rank Adaptation for
Overfitting-Resilient Fine-Tuning of Biological

Foundation Models

Peijia Qin Ruiyi Zhang Pengtao Xie
University of California, San Diego
{pgqin,ruz048,plxie}Qucsd.edu

Abstract

Biological foundation models (e.g., protein language models) are typically fine-
tuned on small and noisy datasets, making overfitting a central challenge. We
present BiDoRA, an overfitting -resilient parameter-efficient fine-tuning (PEFT)
method tailored for foundation models. BiDoRA builds on weight-decomposed
low-rank adaptation (DoRA) but addresses its over-expressiveness by decoupling
magnitude and direction optimization within a bi-level optimization (BLO) frame-
work: the direction is learned on a training split with magnitudes fixed, while
magnitudes are updated on a validation split via hypergradient descent. This design
reduces overfitting and yields update patterns that better mimic full fine-tuning un-
der the same parameter budget. On a broad suite of biological and natural language
tasks, BIDoRA matches or surpasses strong PEFT baselines. Code is available at
https://github.com/t2ance/BiDoRA

1 Introduction

Biological foundation models (such as protein language models) are often adapted to tasks where
labeled data is scarce and noisy, making overfitting particularly severe. Parameter-efficient fine-
tuning (PEFT) methods (Houlsby et al., 2019; Hu et al., 2022b) adapt foundation models—including
biological foundation models and LLLMs by updating only a small subset of parameters, achieving
performance close to full fine-tuning (FT) at much lower cost. A leading PEFT approach is low-rank
adaptation (LoRA, Hu et al. (2022b)), which adds and updates low-rank matrices on top of pre-trained
weights. Liu et al. (2024a) build on LoRA with DoRA, which explicitly decomposes each weight
matrix into magnitude and direction. While this increases expressiveness, it also adds parameters and
can worsen overfitting, especially in biological settings with limited data. Moreover, DoRA optimizes
both components simultaneously, coupling their updates and constraining the learning pattern.

Our goal is an overfitting-resilient PEFT approach that preserves parameter efficiency while improving
generalization on small biological datasets. We propose BiDoRA, a Bi-level Optimization-Based
Weight-Decomposed Low-Rank Adaptation method for PEFT. BiDoRA uses a bi-level optimization
(BLO) framework to decouple optimization of the two components: the direction is updated on the
training split with a tentatively fixed magnitude, while the magnitude is updated on the validation
split via hypergradient descent. These steps alternate until convergence. This approach reduces
overfitting and enables more flexible updates that better track FT. Fig. 1 provides an overview of
BiDoRA. Our design is inspired by DARTS-style NAS that optimizes architecture and weights on
disjoint splits; see the discussion in Section I for details. Intuitively, we treat the magnitude vector
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Figure 1: Overview of BiDoRA. The downstream training data is split into an inner training split Dy,
and an outer validation split D,,q;. Search phase : the lower level updates the direction components
V (low-rank LoRA-style updates AV = BA) by minimizing the training loss L. on Dy, with
the orthogonality regularizer, while keeping magnitudes M fixed; the upper level updates M by
descending the hypergradient of the validation loss L,4; on D,4;, computed via a one-step unrolled
inner update and a finite-difference approximation. These steps alternate until convergence to yield
M* . Retraining phase: with M* fixed, the direction V is retrained on Dy,. U D,,; to obtain V*. The

final adapted weight is W/ = m %. Decoupling magnitude (upper) and direction (lower)

mitigates overfitting and produces update patterns closer to full fine-tuning.

as an architecture-like selector and the direction matrices as subnetworks; validating magnitudes on
held-out data penalizes overfitting and, together with decoupled updates, improves generalization.

Empirically, on biological foundation models, BiDoRA achieves superior performance across a
broad suite of protein tasks (Section 4) and NLP benchmarks (Section C). Analyses including weight
decomposition, ablation studies, and a train-test gap comparison support the effectiveness of the BLO
design, and training efficiency remains competitive.

2 Related Work

Parameter-efficient fine-tuning (PEFT) methods aim to reduce the high costs associated with full
fine-tuning large-scale models by updating only a relatively small subset of pre-trained parameters,
rather than the entire model, to adapt to downstream tasks. Existing PEFT methods can be mainly
categorized into three types: adapter-based methods (Houlsby et al., 2019; He et al., 2022; Xu et al.,
2023; Bi et al., 2024; Yi et al., 2024), prompt tuning methods (Lester et al., 2021; Razdaibiedina et al.,
2023), and low-rank adaptation (Hu et al., 2022a; Zhang et al., 2023, 2024b; Kopiczko et al., 2024;
Liu et al., 2024b; Gao et al., 2024; Azizi et al., 2024; Shen et al., 2025b,a; Liu et al., 2024a). This
work belongs to the third category. Bi-level optimization (BLO) has been widely applied in various
machine learning tasks, including meta-learning (Finn et al., 2017; Rajeswaran et al., 2019), neural
architecture search (NAS) (Liu et al., 2019; Zhang et al., 2021), and hyperparameter optimization
(Lorraine et al., 2020; Franceschi et al., 2017). Our method is related to both lines of work as a
bilevel-optimization-based low-rank adaptation method. Owing to space constraints, the complete
review is provided in Section A.

3 Methods

Preliminaries. LoRA (Hu et al., 2022b) involves attaching the product of two low-rank matrices
to the pre-trained weights and fine-tuning these low-rank matrices on downstream datasets with
the pre-trained weights frozen. Formally, given a pre-trained weight matrix W € R4** LoRA
attaches a low-rank update matrix AW € R?** to the pre-trained weight. This update matrix
can be decomposed as AW = BA, where B € R*7 and A € R"** are two low-rank matrices,
with r < min(d, k). Consequently, the weight matrix W' is represented as W/ = Wy + AW =
Wy + BA, with only AW updated. Liu et al. (2024a) propose weight-decomposed low-rank
adaptation (DoRA) to further reparameterize the weight matrices by explicitly decomposing them

into learnable magnitude and direction components as W/ = m H\\’/IAA\\’,H = mWotBA_ where
c

[Wo+BA[.’
AV is a product of two learnable low-rank matrices, B and A, while the magnitude component
m € R is a learnable vector. Here, || - || represents the vector-wise norm of a matrix computed
across each column, using the Ly norm.



Overview. BiDoRA optimizes the trainable parameters in DoRA layers by solving a BLO problem.
Let M = {m;, my, ..., m,} denote the set of magnitude components for all » DoRA modules, and
V = {AV;,AV,, ..., AV} denote the set of corresponding direction components. Specifically,
we first learn the direction components V* (M) on the training split of the downstream dataset D, at
the lower level. The magnitude component M is tentatively fixed at this level; thus, the resulting
optimal direction component V*(M) is a function of M. At the upper level, we determine the
optimal magnitude component M* by optimizing the loss on a validation split D,,;. In practice, Ds,
and D, are typically created by splitting the original training set without using additional data. This
BLO problem is solved using an efficient gradient-based algorithm, where parameters at two levels
are optimized iteratively until convergence.

Orthogonal regularization. To increase the expressiveness of the low-rank direction compo-
nent AV and mitigate overfitting, we encourage its columns to be diverse. We impose a Gram
regularizer (Xie et al., 2017):

ROV) = |[(Vi + AV T (Vi + AVy) 15 (1)
k=1

where I is the identity and || - || p the Frobenius norm. With unit-normalized columns, R()) promotes
(near-)orthogonal, non-redundant directions, improving generalization (see Table 13).

Lower level. At the lower level, we train the low-rank direction component } by minimizing a
loss Ly, defined on the training set Dy,.. The overall training objective at this level is L.(V, M) =
LV, M;Dy.) + YR(V). Here, L represents the fine-tuning loss, given the low-rank direction
component V, the magnitude component M, and the training split Dy, of the downstream dataset.
R(V) is the orthogonal regularizer defined in Eq. (1), with -y as a trade-off hyperparameter. In this
level, we only update V while keeping M fixed, resulting in the following optimization problem:

V(M) = argmin Ly, (V, M) b
where V*(M) denotes the optimal solution for V in this problem, which is a function of M.

Upper level. At the upper level, we validate the previously fixed magnitudes M on the validation
set Dyqi, using the optimal direction component V* (M) that was learned at the lower level. This
results in a validation loss Lq(V* (M), M) = L(V*(M), M; Dyar). We determine the optimal
magnitude component M by minimizing this validation loss:

n}&ln Lya(V* (M), M) 3)

A bi-level optimization framework. Integrating the two levels of optimization problems, we have
the following BLO framework:

n}\iln Loa(V* (M), M)
st. V(M) =arg m\}n Lir(V, M) “)

Note that these two levels of optimization problems are mutually dependent on each other. The
solution of the optimization problem at the lower level, V* (M), serves as a parameter for the upper-
level problem, while the optimization variable M at the upper level acts as a parameter for the
lower-level problem. By solving these two interconnected problems jointly, we can learn the optimal
magnitude component M* and incremental direction matrices V* in an end-to-end manner.

Optimization algorithm. We solve the BLO with gradient-based updates (Choe et al., 2023b).
Computing the exact hypergradient V a1 L,q;(V* (M), M) is intractable because it would require
fully solving the non-convex inner problem at every step. We therefore adopt a one-step unrolled
approximation (Liu et al., 2019):

VimLya(V (M),M) = VmLyar(V — EVY LY (V, M), M) ©)
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Figure 2: Summary of results across nine tasks (mean + std). A higher value is better for all metrics .

Algorithm 1: BiDoRA

Input: Training dataset D,, and validation dataset D,,;
Initialize trainable magnitude components M = {m;}}'_, and low-rank direction components

V={AVi}i_, = {{As}ic1, 1Bk} }

while do

L

// Retraining Phase
Train V until convergence using Dy,. | ] D,q; and derive the optimal direction V*
Output: V* and M*

where ¢ is the learning rate at the lower level, and the one-step-unrolled model V = V —
EVY Ly (V, M) is used as a surrogate for the optimal solution V*(M). We then compute the
approximated gradient as follows:

v/\/ll:val(v - fvvctr(vy M)7 M)
:v./\/lﬁvalo_)aM) - gv_%\/l,vﬁtr(va)vf}Evalo}aM) (6)
VmLy-(WH M) =V Ly (V™ , M)

“N“vMﬁval(vaM) - f 2

)

Here € is small and V= =V + eVpL’wl(f}, M). The Hessian—vector product in Eq. (6) is approx-
imated via finite differences as in Eq. (7). We alternate gradient steps on M (validation) and V
(training) until convergence, then retrain V on D;,. U D,,,; with M fixed to M*.

We set magnitudes as the upper-level variables for two reasons: (1) the upper level typically has far
fewer parameters than the lower level—here, O (k) for magnitudes versus O(dr + kr) for directions—
which aligns with common BLO practice; and (2) the magnitude vector behaves like an architecture-
selection variable in DARTS (Liu et al., 2019), softly selecting directional subspaces via scaling.

In practice, the convergence of the search phase is determined by the evaluation metric at the upper
level. For the subsequent retraining phase, we adopt a stopping criterion similar to DoRA’s, observing
performance on a separate, held-out test set that is not used during training.



4 Experiments

Table 1: Fine-tuning ESM on the thermostability prediction task (Chen et al., 2023b) (left), the BBP
task (Dai et al., 2021) (middle), and the MIC task (Ledesma-Fernandez et al., 2023) (right). A higher
value is better for all metrics except for MSE. The best results are highlighted in bold.

Methods|#Params|Accuracy Precision Recall F1 fParams|Accuracy Precision Recall F1 [#Params| MSE
FT ‘652.7M‘ 79.8 81.2  79.8 78.4‘652.9M‘ 89.4 89.9 89.4 89‘4‘652.7M‘0.2894

LoRA | 1.5M 75.9 782 759 755 1.9M 86.8 87.7 86.8 86.7| 1.7TM |0.3433
DoRA | 1.6M 76.9 787 769 762 2.0M 89.4 913 894 89.3| 1.8M |0.2918
BiDoRA| 1.6M 78.8 79.1 78.8 78.2| 2.0M 92.1 93.1 92.1 92.0| 1.8M |0.2818

We evaluated BiDoRA across diverse domains, including biological tasks and natural language
processing tasks. BIDoRA does not use any additional data compared to other baselines, as we
create the validation set for upper-level optimization by splitting the original training set with an 8:2
ratio for all tasks. Our implementation is based on the Hugging Face Transformers library (Wolf
et al., 2019) and the Betty library (Choe et al., 2023b).

For comprehensive experimental setup, dataset descriptions, baselines, please see Section B.

Table 1 and Fig. 2 present results from fine-tuning ESM, a transformer-based protein language model
(Rives et al., 2021), across a wide range of datasets, including Type I anti-CRISPR, pathogenic
missense variants, thermostability, blood-brain barrier peptides, umami peptides, antioxidant pep-
tides, antiviral peptides, antiparasitic peptides, tumor T-cell antigens, DPP-IV inhibitory peptides,
neuropeptides, and MIC regression.

The results show that BiDoRA achieves superior or comparable performance to strong baselines
across all datasets with the same number of trainable parameters. This verifies the effectiveness of
the BLO mechanism: by training the magnitude and direction components on two distinct splits,
BiDoRA enhances the flexibility of the learning process and improves learning capacity compared to
DoRA.

Empirically, BiDoRA reduces overfitting and better matches FT’s learning pattern. On GLUE,
the average train-test gap drops from 12.9 (DoRA) to 8.5 (BiDoRA) in Table 5. The weight-
decomposition analysis in Section D shows that BiDoRA yields stronger negative correlations between
magnitude and direction changes—e.g., Query: —8.042 (BiDoRA) vs. —1.784 (DoRA), Value:
—10.547 vs. —5.485—=closer to FT, while LoRA remains positive (Fig. 4). These improvements
are statistically significant (Wilcoxon signed-rank test, p = 2.4 x 10~4; Section I), and the overall
training cost remains competitive (Section E).

5 Conclusion

We presented BiDoRA, a bi-level optimization framework for parameter-efficient fine-tuning that
separates the optimization of magnitudes and directions over disjoint data splits. Our analyses suggest
two takeaways. First, decoupling reduces overfitting and aligns the learning dynamics more closely
with full fine-tuning. Second, the benefits persist across model scales and tasks, and are robust under
standard ablations. Beyond achieving strong accuracy, BiDoRA offers a simple training recipe that
is compatible with existing PEFT/DoRA implementations and requires no architectural changes,
making adoption practical in settings with limited data.
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A Related Work

A.1 Parameter Efficient Fine-Tuning Methods

Parameter-efficient fine-tuning (PEFT) methods aim to reduce the high costs associated with full
fine-tuning large-scale models by updating only a relatively small subset of pre-trained parameters,
rather than the entire model, to adapt to downstream tasks. Existing PEFT methods can be mainly
categorized into three types.

The first category, known as adapter-based methods, injects additional trainable modules into
the original frozen backbone. For instance, Houlsby et al. (2019) suggests adding linear modules
in sequence to existing layers, while He et al. (2022) proposes integrating these modules in parallel
with the original layers to enhance performance. Recent advances include SAN (Xu et al., 2023),
FADA (Bi et al., 2024), and SET (Yi et al., 2024). SAN presents a side adapter network attached to a
frozen CLIP model, which contains two branches for predicting mask proposals and attention biases.
FADA introduces a frequency-adapted learning scheme that uses the Haar wavelet transform to
decompose frozen features into low- and high-frequency components, which are processed separately
to enhance domain generalization. SET proposes a spectral-decomposed token learning framework
that leverages the Fast Fourier Transform to separate frozen features into amplitude and phase
components, enhancing them with spectral tokens and attention optimization.

The second category is prompt tuning methods, which add extra soft tokens (prompts) to the initial
input. During the fine-tuning stage, only these trainable soft tokens are updated, as demonstrated
in works such as Lester et al. (2021) and Razdaibiedina et al. (2023). Unfortunately, the first two
categories lead to increased inference latency compared to fully fine-tuned models.

The third prominent category focuses on low-rank adaptation, pioneered by LoRA (Hu et al.,
2022a). LoRA injects trainable, low-rank matrices into a model’s layers, freezing the original weights.
A key advantage is that these low-rank updates can be merged into the original weights before
inference, thus incurring no additional latency. Subsequent works have aimed to improve LoRA’s
efficiency and performance. For instance, AdaLoRA (Zhang et al., 2023) dynamically reallocates
the parameter budget based on the importance scores of weight matrices. Zhang et al. (2024b) uses
meta-learning to search for the optimal rank of LoRA matrices, further improving its performance on
downstream tasks. Pushing parameter efficiency further, VeRA (Kopiczko et al., 2024) employs a
single pair of shared low-rank matrices across all layers, while AFLoRA (Liu et al., 2024b) freezes a
portion of adaptation parameters based on a learned score. A distinct sub-direction has emerged that
performs adaptation in the frequency domain, including FourierFT (Gao et al., 2024), LaMDA (Azizi
et al., 2024), SSH (Shen et al., 2025b), and MaCP (Shen et al., 2025a). These methods learn updates
in transformed spectral spaces, such as the Fourier, discrete Hartley, or discrete cosine domains,
rather than directly in the weight space. Other research has focused on bridging the performance
gap between LoRA and full fine-tuning. Liu et al. (2024a) found that LoRA’s update patterns differ
significantly from full fine-tuning, potentially constraining its learning capacity. To mitigate this,
they proposed DoRA (Liu et al., 2024a), which decomposes pre-trained weights into magnitude
and direction components and uses LoRA for efficient directional updates, better mimicking full
fine-tuning.

A.2 Bi-level Optimization

Bi-level optimization (BLO) has been widely applied in various machine learning tasks, including
meta-learning (Finn et al., 2017; Rajeswaran et al., 2019), neural architecture search (NAS) (Liu
et al., 2019; Zhang et al., 2021), and hyperparameter optimization (Lorraine et al., 2020; Franceschi
et al., 2017). Despite its wide usage, solving BLO problems can be challenging due to the inherent
nature of nested optimization problems. Several algorithms have been proposed to address this
challenge, including zeroth-order methods such as Bayesian optimization (Cui & Bai, 2019) and
first-order algorithms based on hypergradients (Pearlmutter & Siskind, 2008; Lorraine et al., 2020).
Among these approaches, gradient-based BLO has received significant attention because it can scale
to high-dimensional problems with a large number of trainable parameters.

Inspired by NAS, where a bi-level approach is used to learn an architecture and its subnetwork weights
on separate data splits to prevent overfitting, we adapt the BLO framework to parameter-efficient
fine-tuning (PEFT), specifically for the weight-decomposed adaptation introduced by DoRA. Unlike
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in NAS, where BLO searches for a network architecture, BiDoRA repurposes it to decouple the
optimization of a weight matrix’s two components: magnitude and direction. This approach marks
a significant departure from previous PEFT methods like LoRA and DoRA, which optimize all
trainable parameters simultaneously on a single dataset. In this work, we extend the application
of gradient-based BLO to develop a robust and effective PEFT method for pre-trained models. By
assigning the magnitude and direction components to different optimization levels with distinct data
splits, BIDoRA creates a decoupled, flexible updating pattern that better mitigates overfitting and
more closely resembles the learning behavior of full fine-tuning.

B Datasets, Models, and Baselines

In this section, we present the datasets, models, and baselines used in experiments, and summarize
the statistical data in Table 2.

B.1 Datasets and Models
B.1.1 Natural Language Understanding

The GLUE Benchmark (Wang et al., 2019) comprises a diverse array of tasks that are widely
employed for evaluation in natural language understanding. It encompasses two single-sentence
classification tasks, three tasks assessing similarity and paraphrasing, and four tasks focusing on
natural language inference. Specifically, it includes MNLI (MultiNLI, Williams et al. (2018)), SST-2
(Stanford Sentiment Treebank, Socher et al. (2013)), MRPC (Microsoft Research Paraphrase Corpus,
Dolan & Brockett (2005)), CoLA (Corpus of Linguistic Acceptability, Warstadt et al. (2019)), QNLI
(Question NLI, Rajpurkar et al. (2018)), QQP (Quora Question Pairs, Wang et al. (2017)), RTE
(Recognizing Textual Entailment, Dagan et al. (2005)), and STS-B (Semantic Textual Similarity
Benchmark, Cer et al. (2017)). We summarize the statistical data for all datasets within the GLUE
Benchmark in Table 2. Following existing practices, the development set is used in GLUE as the test
data since the actual test set is not publicly available. We report the overall (matched and mismatched)
accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy
for the other tasks.

The Reuters-21578 (Padmanabhan et al., 2016) dataset is one of the most widely used data collections
for text categorization research. It was collected from the Reuters financial newswire service in 1987
and is used for text classification and natural language processing tasks. Three splits are available:
ModApte, ModHayes, and ModLewis. These documents cover various topics, such as politics,
economics, and sports. F1 score is used as the evaluation metric across all three splits.

B.1.2 Natural Language Generation

In our experiments on natural language generation, we use the E2E (Novikova et al., 2017) dataset,
which was initially introduced as a dataset for training end-to-end, data-driven natural language
generation systems. Multiple references can be associated with each source table used as input. Each
sample input (x,y) consists of a series of slot-value pairs accompanied by an associated natural
language reference text. The E2E dataset comprises approximately 42k training examples, 4, 600
validation examples, and 4, 600 test examples from the restaurant domain.

We use the following five evaluation metrics: BLEU (Papineni et al., 2002), NIST (Lin & Och, 2004),
METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015).

B.1.3 Token Classification

For token classification, we fine-tune the ROBERTa-base and RoBERTa-large models on the BioNLP
dataset (Collier et al., 2004) and the CoNLL2003 dataset (Tjong Kim Sang, 2002). BioNLP (Collier
et al., 2004) is a Named Entity Recognition dataset that contains biological entities such as DNA,
RNA, and protein. It is essentially a token classification task where we want to classify each entity in
the sequence. CoNLL-2003 (Tjong Kim Sang, 2002) focuses on language-independent named entity
recognition. It concentrates on four types of named entities: persons, locations, organizations, and
miscellaneous entities that do not belong to the previous three groups. Accuracy, precision, recall,
and F1 score are used as evaluation metrics.
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Table 2: Summary of datasets used in the experiments

Task Group Dataset Maetrics Train Dev/Val Test
MNLI Accuracy 393k 20k 20k
SST-2 Accuracy 67k 872 1.8k
MRPC Accuracy 3.7k 408 1.7k
Natural Language CoLA Matthews Corr 8.5k 1k 1k
Understanding QNLI Accuracy 108k 5.7k 5.7k
QQP Accuracy 364k 40k 391k
RTE Accuracy 2.5k 276 3k
STS-B Pearson Corr 7.0k 1.5k 1.4k
Text ModApte F1 8.8k - 3k
Classification ModHaye.s F1 18k - 0.7k
ModLewis F1 12k - 5.5k
Natural Language BLEU, NIST, MET,
Generation E2E ROUGE-L, CIDEr 42k 4.6k B
Token BioNLP pocuracy, Precision, 7 1ok 3.9k
. . ecall, F1
Classification Accuracy, Precision
CoNLL2003 Recall Fl ’ 14k 3.3k 3.5k
ecall,
Type I anti-CRISPR  Accuracy, Precision, 182 i 45
(AcrTransAct) Recall, F1, AUC
Pathogenic missense  Accuracy, Precision, 100 i 100
variants (VariPred) Recall, F1, AUC
. Accuracy, Precision,
Biological Thermos.tablht}'/ Recall, F1, AUC 936 - 104
Experiments Blood-brain barrier ACC, BACC, SN, 200 i 38
peptides (BBP) SP, MCC, AUC
Umami peptides ACC, BACC, SN, 353 i 89
(UMAMI) SP, MCC, AUC
Antioxidant peptides ~ACC, BACC, SN, 823 i 89
(Antioxidant) SP, MCC, AUC
Antiviral peptides ACC, BACC, SN,
(Antiviral) SP, MCC, AUC 4,642 - 1,246
Antiparasitic peptides ACC, BACC, SN, 510 i 9
(Antiparasitic) SP, MCC, AUC
Tumor T-cell antigens ACC, BACC, SN, 788 i 197
(TTCA) SP, MCC, AUC
DPP-1V inhibitory ACC, BACC, SN, 1.641 i 1.205
peptides (DPPIV) SP, MCC, AUC ’ ’
. ACC, BACC, SN,
Neuropeptides SP. MCC, AUC 4,506 - 485
MIC regression MSE 3.695 ) 924

(MIC)
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B.1.4 Biological Experiments

We use the ESM (Evolutionary Scale Modeling) model (Rives et al., 2021), a transformer-based
protein language model that captures evolutionary patterns in protein sequences through transformer
architecture. We fine-tune ESM using the Protein Aligner checkpoint (Zhang et al., 2024a) on diverse
datasets, as detailed in the following paragraphs. Protein datasets are typically much smaller than
those in NLP, making large pre-trained models prone to overfitting even with parameter-efficient
fine-tuning (PEFT) methods. With millions of trainable parameters but only thousands (or hundreds)
of available samples, these models are significantly overparameterized, underscoring the value of our
overfitting-resilient approach.

Detection of type I anti-CRISPR activity (Hasani et al., 2023). This binary classification task
determines whether an anti-CRISPR (Acr) protein inhibits a given type I CRISPR-Cas system, using
the Acr-CRISPR-Cas inhibition dataset. The benchmark consists of 227 Acr-Cas pairs (132 positive
cases of experimentally verified inhibition and 95 negative cases), with performance evaluated on
held-out data through binary classification.

Detection of missense variants pathogenicity (Lin et al., 2024; Cheng et al., 2023). Given a
wild-type protein sequence and its single-amino-acid mutant, this task predicts whether the missense
variant is pathogenic or benign. We use a split of 200 labeled examples from VariPred (100 for
training, 100 for testing), where labels reflect clinical and curated pathogenicity annotations.

Prediction of protein thermostability (Chen et al., 2023a). This task classifies proteins into
thermostability categories based on 3D structures. The HP-S2C5 dataset contains 1,040 proteins
divided into five temperature ranges: Cryophilic (—20-5°C), Psychrophilic (5-25°C), Mesophilic
(25-45°C), Thermophilic (45-75°C), and Hyperthermophilic (> 75°C). Following the HotProtein
protocol, we use 936 proteins for training and 104 for testing.

Identification of blood-brain barrier peptides (BBP) (Dai et al., 2021). This task classifies
whether peptides can penetrate the blood-brain barrier. We used the BBPpred dataset, with 100 BBPs
and 100 non-BBPs for training, and 19 BBPs and 19 non-BBPs for testing.

Identification of umami peptides (Charoenkwan et al., 2020c; Zhang et al., 2017). This task
determines whether peptides elicit an umami taste. We used the iUmami-SCM dataset, with 112
umami peptides and 241 non-umami peptides for training, and 28 umami peptides and 61 non-umami
peptides for testing.

Identification of antioxidant peptides (Zou et al., 2016; Olsen et al., 2020). This task classifies
peptides based on their antioxidant properties. We used the AnOxPePred dataset, containing 582
antioxidative peptides and 241 non-antioxidative peptides for training, and 28 antioxidative peptides
and 61 non-antioxidative peptides for testing.

Identification of antiviral peptides (Pinacho-Castellanos et al., 2021; Vilas Boas et al., 2019).
This task predicts whether peptides exhibit antiviral activity against viral infections. We utilized the
ABPDiscover dataset, with 2,321 antiviral peptides and 2,321 non-antiviral peptides for training, and
623 antiviral peptides and 623 non-antiviral peptides for testing.

Identification of antiparasitic peptides (Zhang et al., 2022; Mor, 2009). This task identifies
peptides with antiparasitic activity. Using the PredAPP dataset, we trained on 255 antiparasitic
peptides and 255 non-antiparasitic peptides, and tested on 46 antiparasitic peptides and 46 non-
antiparasitic peptides.

Identification of tumor T-cell antigens (TTCA) peptides (Charoenkwan et al., 2020a,b). This
task classifies peptides capable of inducing a T-cell immune response. We used the iTTCA-Hybrid
dataset, with 470 antigenic peptides and 318 non-antigenic peptides for training, and 122 antigenic
peptides and 75 non-antigenic peptides for testing.
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Identification of dipeptidyl peptidase IV (DPPIV) inhibitory peptides (Rasmussen et al., 2003).
This task identifies peptides that inhibit dipeptidyl peptidase IV (DPP-IV) activity. We used the
iDPPIV-SCM dataset, containing 532 inhibitory peptides and 532 non-inhibitory peptides for training,
and 133 inhibitory peptides and 133 non-inhibitory peptides for testing.

Identification of neuropeptides (Bin et al., 2020). This task classifies peptides as neuropeptides
or non-neuropeptides. We used the PredNeuroP dataset, with 1,940 neuropeptides and 1,940 non-
neuropeptides for training, and 485 neuropeptides and 485 non-neuropeptides for testing.

Prediction of the minimum inhibitory concentration of antimicrobial peptides (Ledesma-
Fernandez et al., 2023). This regression task predicts minimum inhibitory concentration (MIC)
values from peptide sequences, such as against E. coli. We used a curated DeepAMP dataset
with 3,695 training examples and 924 testing examples, where labels represent continuous MIC
measurements in standard concentration units.

B.2 Baselines
Here, we provide a brief introduction to compare baselines in all our experiments.

¢ Full Fine-Tuning (FT): The entire model is fine-tuned, with updates to all parameters.

* Adapter Tuning (Houlsby et al., 2019; Lin et al., 2020; Riicklé et al., 2021; Pfeiffer
et al., 2021): Methods that introduce adapter layers between the self-attention and MLP
modules for parameter-efficient tuning.

* LoRA (Hu et al., 2022a): A method that estimates weight updates via low-rank matrices.

* AdaLoRA (Zhang et al., 2023): An extension of LoRA that dynamically reallocates the
parameter budget based on importance scores.

* DoRA (Liu et al., 2024a): Decomposes pretrained weights into magnitude and direction,
using LoRA for efficient directional updates.

* VeRA (Kopiczko et al., 2024): Employs a single pair of low-rank matrices across all layers
to reduce trainable parameters.

* FourierFT (Gao et al., 2024): Fine-tunes models by learning a subset of spectral coefficients
in the Fourier domain.

* AFLoRA (Liu et al., 2024b): Freezes low-rank adaptation parameters using a learned score,
reducing trainable parameters while maintaining performance.

» LaMDA (Azizi et al., 2024): Fine-tunes large models via spectrally decomposed low-
dimensional adaptation.

* SSH (Shen et al., 2025b): Fine-tunes large models after transforming weight matrices with
the discrete Hartley transformation (DHT).

¢ MaCP (Shen et al., 2025a): Fine-tunes large models by projecting the low-rank adaptation
weight change into the discrete cosine space.

C Experiments on Natural Language Processing

C.1 Experiments on Natural Language Understanding Tasks

In this section, we evaluate the performance of BIDoRA on NLU tasks.

Main results. Table 3 presents the results of fine-tuning the RoOBERTa-base, RoBERTa-large,
and DeBERTa XXL models on the GLUE benchmark with baseline PEFT methods and BiDoRA.
The results show that BIDoRA achieves superior or comparable performance compared to baseline
methods across all datasets with the same number of trainable parameters. The superior performance
of BiDoRA verifies the effectiveness of its BLO mechanism. By training the magnitude and direction
components on two distinct splits, BIDoRA enhances the flexibility of the learning process and
improves learning capacity compared to DoRA, resulting in a performance boost.
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We also evaluate on GLUE with the RoBERTa-base model against a wider set of baselines, following
Shen et al. (2025b,a) and citing their reported baseline results for reference. The results in Table 4
indicate that BIDoRA consistently outperforms all baselines, including DoRA, across these diverse
NLU tasks, demonstrating its robust generalization capability.

Table 3: ROBERTape/1arge (Ro1) and DeBERTaxx;. (Dxxi) with different fine-tuning methods on the
GLUE benchmark (Wang et al., 2019). A higher value is better for all datasets. The best results are
shown in bold.

Method | #Params | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
Ry (FT) ‘125.0M‘ 90.3 94.8 89.3 61.6 86.7 92.8 76.9 91.2 85.5

Ry (Adapter) 09M | 86.5 94.0 884 588 925 89.1 71.2 899 838
Ry(LoRA) 0.15M | 8.8 943 88.0 60.3 93.0 89.6 729 90.1 84.4
Ry(DoRA) 0.17M | 8.8 942 89.2 60.5 929 89.6 73.2 90.2 84.6

Ry(BiDoRA) | 0.17TM | 871 944 894 613 92.7 90.6 76.0 90.1 85.2

Ri(FT) | 355.0M | 90.2 96.4 90.9 68.0 94.7 92.2 86.6 924 889

R;(Adapter) 0.8M | 90.3 96.3 87.7 66.3 947 915 729 915 864
Ri(LoRA) 0.39M | 90.6 963 90.0 66.9 945 91.2 86.3 91.7 884
R;(DoRA) 0.39M | 90.6 964 89.8 65.8 947 91.2 86.6 92.0 88.4

Ri(BiDoRA) | 0.39M | 90.6 96.1 90.1 67.0 94.6 91.7 869 92.0 88.6

Dxxi.(DoRA) | 49M | 91.2 963 923 71.1 953 916 91.8 90.8 90.0
Dxxi.(BiDoRA)| 4.9M | 91.7 963 92.6 723 952 92.0 923 90.8 904

Table 4: Performance of various fine-tuning methods on the GLUE benchmark for the RoBERTa-base
model. The best ones are highlighted by bold and the second ones are highlighted by italic.

Model | SST2 MRPC CoLA QNLI RTE STS-B Avg.

FT 94.8 90.2 63.6 928 787 91.2 8522

BitFit 93.7 92.7 62.0 91.8 81.5 90.8 8542
AdptP 94.7 88.4 62.6 93.0 759 903 84.15
LoRA 95.1 89.7 63.4 93.3 784 915 85.23
AdaLoRA 94.5 88.7 62.0 93.1 81.0 905 84.97
AFLoRA 94.1 89.3 63.5 913 772 90.6 84.33
LaMDA 94.6 89.7 64.9 91.7 782 904  84.92
VeRA 94.6 89.5 65.6 91.8 787 90.7 85.15
FourierFT 94.2 90.0 63.8 922 79.1 90.8  85.02
SSH 94.1 91.2 63.6 924 80.5 909 8546
MaCP 94.2 89.7 64.6 924 80.7 909 8542
DoRA (r = 8) 94.9 89.9 63.7 933 789 915 8537
BiDoRA (r = 8) 95.7 90.2 65.8 934 794 905 85.83
DoRA (r = 16) 94.8 90.4 65.6 93.1 819 90.7 86.08
BiDoRA (r =16) | 95.0 90.8 66.7 933 826 909  86.55

Table 6 presents the results of fine-tuning ROBERTa models on the Reuters21578 datasets, a text
classification task, where BiDoRA outperforms all baseline methods by an even larger margin.
Notably, BiDoRA achieves performance comparable to or even better than full fine-tuning, providing
further evidence of its superiority.

Robustness of BiDoRA towards different rank settings. We explore the impact of different rank
configurations on BiDoRA and DoRA, evaluating them with ranks of 8 and 16 in addition to the
rank of 4 used in Table 3. The average accuracies reported in Table 4 demonstrate that BIDoRA
consistently surpasses DoRA across all rank configurations, highlighting its resilience and superior
performance regardless of the rank setting.
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Table 5: Quantitative performance gap between training and test sets for DoORA and BiDoRA using
the RoBERTa-base model. The gap is calculated as the training metric minus the test metric, where a
smaller value indicates less overfitting.

Method | SST-2 MRPC CoLA QNLI RTE STS-B Avg.

DoRA 2.0 9.5 325 6.6 18.0 8.8 12.9
BiDoRA 1.7 7.0 23.3 0.2 14.0 4.7 8.5

Table 6: ROBERTapqge/1aree (Rp/1) With different fine-tuning methods on the Reuters21578 (Padmanab-
han et al., 2016), BioNLP (Collier et al., 2004), and CoNLL2003 (Tjong Kim Sang, 2002) benchmarks.
A higher value is better for all metrics. The best results are shown in bold.

| | Reuters21578 | BioNLP | CoNLL2003
Method ~ [#Params|ModApte ModHayes ModLewis|Accuracy Precision Recall F1 |Accuracy Precision Recall F1
Ry (FT) ‘125.0M‘ 85.4 77.6 77.1 ‘ 93.9 69.0 78.9 73.6‘ 99.3 95.7  96.3 96.0
Ry (Adapter) | 0.9M 85.3 77.5 76.8 93.9 69.1 78.8 73.7] 99.3 95.7 96.4 96.0
Ry(LoRA) | 0.156M | 84.7 74.3 74.7 93.9 69.0 78.8 73.6| 99.3 95.4 96.3 95.8
Ry(DoRA) | 0.17TM | 84.8 78.2 76.6 94.0 69.2 79.1 73.8] 99.3 95.3 96.2 95.8
Ry(BiDoRA)| 0.17TM 85.3 79.9 77.6 93.9 71.2 78.6 74.7| 99.3 959 96.5 96.2
Ri(FT) ‘355.0M‘ 84.8 77.5 76.6 ‘ 94.0 69.4 79.6 74.1‘ 99.4 96.2 97.0 96.6
Ri(Adapter) | 0.44M | 84.8 77.9 76.7 94.0 69.4 79.7 74.2| 994 96.1 97.0 96.6
Ri(LoRA) | 0.39M | 84.7 7.7 76.7 93.9 69.2 79.3 73.9] 994 96.2 97.0 96.6
Ri(DoRA) | 0.39M | 84.8 77.4 76.7 94.0 69.4 79.7 74.2| 994 96.2 97.1 96.6
Ri(BiDoRA)| 0.39M | 84.9 78.9 77.3 94.0 71.3 793 75.1| 994 96.4 97.1 96.7
= Test: DORA == Train: DORA = Test: BiDORA == Train: BiDORA
095 @
0913
085 e
0.8
0.75 )
0.7 /

Figure 3: Training and test accuracy versus global training steps on the ModHayes split of the
Reuters21578 dataset (Padmanabhan et al., 2016) when fine-tuning a RoBERTa-base model using
DoRA and BiDoRA. The training and test curves for DoRA show a larger gap compared to BiDoRA,
highlighting the effectiveness of our method in reducing overfitting.
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Performance gap between training and testing set. As visualized in Fig. 3, BiDoRA achieves a
smaller gap between the training and test curves. Quantitatively, Table 5 presents this performance
gap on the RoOBERTa-base model. The training set metric is calculated as a moving average of the
per-batch metric with a decay ratio of 0.99. Since BiDoRA has two training loops, its training metric
is a weighted average (0.8 x inner-loop-metric 4+ 0.2 x outer-loop-metric), based on the data split
size, inner : outer = 8 : 2, in our case. The results show that the performance gap for BiDoRA is
consistently lower than that of DoRA across all datasets. This suggests that DoRA is more prone to
overfitting, an issue that BIDoRA effectively addresses.

C.2 Experiments on Natural Language Generation Tasks

In this section, we evaluate BIDoRA'’s performance on the NLG task. Table 7 presents the results of
fine-tuning a GPT-2 model on the E2E dataset with baseline PEFT methods and BiDoRA. The results
show that BiDoRA achieves the best performance across all five evaluation metrics, demonstrating
the superiority of BiDoRA in fine-tuning pre-trained models for NLG tasks.

Table 7: Performance of BiDoRA and baseline methods for fine-tuning GPT2-medium on the E2E
dataset (Novikova et al., 2017). A higher value is better for all metrics. The best results are shown in
bold.

Method | #Params | BLEU NIST MET ROUGE-L CIDEr

FT | 354.9M | 680 861 46.1 69.0 2.38
Adapter | 11.IM | 670 850 452  66.9 2.31
LoRA | 0.39M | 67.1 854 457  68.0 2.33
DoRA | 0.39M | 67.0 848 454  70.1 2.33
BiDoRA | 0.390M | 69.0 872 462 709 2.44

C.3 Experiments on Token Classification

The effectiveness of BiDoRA can also be observed in Table 6, which reports the results of token
classification tasks. Unlike the NLU tasks discussed in the previous section, which involve classifying
entire sentences and focusing on capturing global semantics, token classification requires classifying
each token within a sentence, highlighting the importance of capturing local context. On the BioNLP
dataset, BIDoRA consistently outperforms baseline methods by a large margin in terms of F1 score.
On the CoNLL2003 dataset, BIDoRA either outperforms or matches all baseline methods across all
metrics. Consistent with our previous findings, BiDoRA effectively fine-tunes pre-trained models for
token classification tasks.

C.4 Experimental Settings

In this section, we provide detailed experimental settings. We maintain consistent configurations
across experiments, including LoRA rank, LoRA «, batch size, maximum sequence length, and
optimizer, to ensure a fair comparison. For results other than Table 4, we do not include the bias term
in PEFT linear layers. The hyperparameter tuning for our method is straightforward and convenient.

RoBERTa We summarize the experimental settings for the GLUE benchmark (Table 3) and for the
Reuters21578 dataset and token classification (Table 6) tasks in Table 8.

GPT-2 We summarize the experimental settings for the GPT-2 experiments (Table 7) in Table 9. The
experimental configuration, particularly during the inference stage, follows the approach described
by Hu et al. (2022b).

D Weight Decomposition Analysis
Define the weight decomposition of a weight matrix W € R?*¥ (e.g., query matrix in an attention

layer) as W = mﬁ = ||W||cﬁ, where m € R'** is the magnitude vector, and V € RI**
is the directional matrix, with || - || representing the vector-wise norm of a matrix across each
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Table 8: The hyperparameters used for ROBERTa on the GLUE benchmark (Wang et al., 2019),
Reuters21578 dataset (Padmanabhan et al., 2016), BioNLP dataset (Collier et al., 2004), and
CoNLL2003 dataset (Tjong Kim Sang, 2002).

Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B ModApte ModHayes ModLewis BioNLP CoNLL2003
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank rank = 4
LoRA « 8
Total batch size 32
¢ Global steps 20k 12k 25k 20k 15k 20k 15k 12k 20k 20k 20k 12k 12k
- Lower learning rate 5e-5 le-5 2e5 5S5e-5 25 Se-5 le5 le-5 3e-5 3e-5 3e-5 le-5 2e-5
& Upper learning rate Se-5 le-5 2e-5 5Se-5 2e-5 5e-5 le-5 le-5 3e-5 3e-5 3e-5 le-5 2e-5
% Lower weight decay 0.1 0.1 0.1 01 01 01 01 01 0.1 0.1 0.1 0.1 0.2
%8 Upper weight decay 0.1 0.1 0.1 0.1 0 01 01 o0.01 0.1 0.1 0.1 0.1 0.1
&~ Max Seq Length 512
Regularization Coefficient le-5 1le-5 le-5 le-5 le-5 le-5 le-5 le-5 0 le-5 0 le-5 0
Total batch size 32
& Global steps 50k 20k 30k 20k 60k 40k 15k 10k 20k 20k 20k 12k 15k
= Lower learning rate le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 2e-5 le-5
& Upper learning rate le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5 2e-5 le-5
% Lower weight decay 0.5 0.5 0 02 05 05 05 05 0.2 0.1 0.2 0.02 0.1
A Upper weight decay 0.5 0.05 0 02 05 05 01 05 0.1 0.1 0.1 0.02 0.1
& Max Seq Length 128
Regularization Coefficient 0 0 le-5 le-5 0 le5 0 le5 0 le-5 0 0 le-5
k= —65.816 . k=0.836 k=—1784 k= —8042
Layer 1 * Layer 1 P Layer 1 o Layer 1
25 Layer 2 « e Layer 2 N 20 Layer 2 035 Layer 2
e Layer3 o layer3 e layer3 0| © Laver3
20 Layer 4 . Layer 4 . - Layer 4 Layer 4
e Layers 3 051 o Layer5#. it 151 o Layers 0| e Layers
5. Layer 6 . s Layer6 = = Layers  * . Layer 6
| LR Toaf wt™ * R SET] e .
o . T Inter step 1 ot . » Interstep1 : + Interstep 1 ™1 B + Interstep 1
" m interstep2 032 wa £ m interstep2 03 m Interstep 2 o0 Z, *Ce m Interstep 2
os 40 %1 & nterstep3 M * interstep3 T 4. & interstep3 o] ¢* ¥ @ interstep3
" 4 Interstepd 02 A Interstep 4 00| 4 - A Interstep 4 A Interstep 4
o o sw  m wm S ok s ks e o o o Y e o e
(a) FT (Query) (b) LoRA (Query) (c) DoRA (Query) (d) BiDoRA (Query)
k= —49279 k=2503 k= -5.485 k= - 10547
25 Layer 1 * e Layer 1 i Layer 1 o Layer 1
Layer 2 Layer 2 BN 20 Layer 2 0200 Layer 2
ol @ Loyers ol o Layers o o Loyers ] @ Layers
Layer 4 Layer 4 L't Layer 4 Layer 4
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H = Laye[G - H 03 Layer 6 “. » H » Layer 6 N H oazs{ Layer 6
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40T et e nterstep3 00 & Interstep3 a2l & Interstep3 o001 @ ® Interstep3
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Figure 4: Magnitude and direction updates for query (top row) and value (bottom row) matrices
for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA across different layers and intermediate steps after
fine-tuning the GPT2 model on the E2E dataset (Novikova et al., 2017). Different markers represent
matrices from different training steps, while different colors indicate matrices from each layer. The
values of correlation are shown in the captions, denoted by k.
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Table 9: The hyperparameters we used for GPT-2 on the E2E NLG benchmark (Novikova et al.,

2017).
Settings Training
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank rank, = rank, =4
LoRA « 32
Label Smooth 0.1
Lower learning rate le-3
Upper learning rate le-4
Lower weight decay 1
Upper weight decay 1
Max Seq Length 512
Regularization Coefficient le-5
Settings Inference
Beam Size 10
Length Penalty 0.9
no repeat ngram size 4

column. This decomposition ensures that each column of V /|| V|| remains a unit vector, and the
corresponding scalar in m defines the magnitude of each vector. Liu et al. (2024a) examine the
k n,t n
magnitude and directional variations between Wo and W, defined as AMb. . = Loy [mpp —mi |
k n,t n
and ADL, = Z":l(lfcosk(vﬂ’w” ) Here, AML., and AD% represent the magnitude and
direction differences between Wy and Wy at the ¢-th training step, respectively, with cos(-, -)
denoting cosine similarity. mjy and m{ are the n™ scalars in their respective magnitude vectors,
while V;Tt and Wo" are the n™ columns in V. and Wy. Intuitively, a consistent positive slope
trend across all the intermediate steps implies a difficulty in concurrent learning of both magnitude
and direction, suggesting that slight directional changes are challenging to execute alongside more
significant magnitude alterations. In contrast, a relatively negative slope signifies a more varied
learning pattern, with a more pronounced negative correlation indicating a larger learning capacity.

One important motivation of DoRA is to bridge the inherent differences between LoRA and FT.
Similar to DoRA, we conduct a weight decomposition analysis on the correlation between the change
of magnitudes and that of directions for BiDoRA and baseline methods by fine-tuning a GPT2-
medium model on the E2E dataset. As shown in Fig. 4, FT, DoRA, and BiDoRA all exhibit negative
correlation values, while LoRA shows a positive correlation, consistent with the findings in Liu et al.
(2024a). On the query matrix, BIDoRA achieves a negative correlation of —8.042, closer to FT than
DoRA’s —1.784. This improvement is attributed to the decoupled training process of the two layers,
which allows for a higher learning capacity compared to DoRA. On the value matrix, BiDoRA also
achieves a negative correlation of —10.547, indicating closer alignment with FT (—49.279) compared
to DoRA (—5.485).

E Training Cost

Table 10 compares the training efficiency of LoRA, DoRA, and BiDoRA on the GLUE benchmark
using the RoOBERTa-base model. The table details the total training steps required for convergence
and the per-step computational cost, which is normalized relative to LoRA for reference. For a
fair comparison, all methods were benchmarked on a single NVIDIA A100 GPU. The results show
that BiDoRA converges in fewer steps than LoRA and DoRA, while the per-step cost for BIDoRA
is modestly higher, as its BLO process requires iterative updates between the two levels and the
computation of hypergradients. The total training time for BiDoRA is approximately 1.64 times
that of DoRA, a training cost that remains comparable to the baselines. Given BiDoRA’s superior
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Table 11: Experiment results on different data
Table 10: Average training time cost on the  partitions of BIDoRA.
GLUE benchmark (Wang et al., 2019).

Partition | ModApte ModHayes ModLewis

Method | LoRA | DoRA | BiDoRA

0.6 85.32 79.76 77.69

Per-step cost x1 %x1.36 % 3.54 0.7 85.32 80.01 77.74
Total steps | 27.45k | 27.45k | 17.37k 0.8 85.34 79.93 77.63
Total time x1 x1.36 x2.24 0.9 85.27 79.85 77.64
1.0 85.23 79.59 77.42

performance across various tasks, we argue that this slight increase in computational cost is an
acceptable trade-off, underscoring our method’s practicality.

F The Role of Hyperparameter

The hyperparameter tuning for BiDoRA is simple, convenient, and straightforward. We further
conducted experiments regarding the dataset partition of Dy, and D, to provide insights into its
role in BiDoRA. The dataset partition helps maintain the balance of inner/outer optimization by
assigning different portions of data. The direction component has more trainable parameters, so it is
reasonable to use more data for training the lower level while using the remaining data for training
magnitudes. As shown in Table 11, we varied the inner-level dataset Dy, partition from 0.6 to 1.0
with 0.1 intervals and experimented with RoOBERTa-base on three splits of the Reuters21578 dataset
to examine its influence.

The results indicate that both extremes hurt overall performance. When the inner partition is too small
(£ 0.6), directions are not well-trained, and when the inner partition is 1.0, magnitudes are not trained
at all, leading to a significant performance drop. These findings demonstrate that BLO is effective in
the sense that both levels are necessary for enhancing performance. Although tuning the partition
ratio may further improve overall performance, we maintain a consistent data partition of 8 : 2 in
all the experiments for simplicity. A fixed configuration of data partition already consistently yields
superior performance with BiDoRA, demonstrating that our method is robust to this hyperparameter
within a certain range.

G Comparison with Other General Methods for Addressing Overfitting

Common strategies to curb overfitting include stronger weight decay and higher dropout. We evaluate
both for DoRA by varying one factor at a time while keeping other hyperparameters at their tuned
values. Specifically, we sweep weight decay with fixed dropout, and then sweep dropout with fixed
weight decay, using ROBERTa-base across three datasets. Results are shown in Table 12.

Neither higher weight decay nor dropout alone effectively resolves overfitting or improves general-
ization as much as BiDoRA. In contrast, BIDoRA leverages DoRA’s magnitude-direction structure
and trains the two components on separate splits, which better regularizes learning. Since BiDoRA
does not change the DoRA architecture, it can be combined with these general strategies if desired.

H Ablation Studies

In this section, we perform ablation studies to investigate the effectiveness of individual modules or
strategies in BIDoRA. We fine-tune a RoBERTa-base model on the GLUE benchmark under different
ablation settings, and the results are shown in Table 13.

Retraining. We test the model directly obtained from the search phase to evaluate the effectiveness
of further retraining the direction component. The results show that BIDoRA outperforms BiDoRA
(w/o retraining) on average, highlighting the necessity of retraining. Table 13 also validates that
retraining the direction component leads to superior performance than retraining the magnitude.
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Table 12: Experiment results on different weight decay values and different dropout rates of DoRA.

Method ‘COLA MRPC RTE

DoRA (weight decay = 0) 59.3 88.7 729
DoRA (weight decay = 0.05) | 60.1 89.2 733
DoRA (weight decay = 0.1) 60.5 89.2 732
DoRA (weight decay = 0.2) 60.3 89.0 732

DoRA (dropout rate = 0) 59.2 89.2 72.9
DoRA (dropout rate = 0.1) 60.2 88.9 71.4
DoRA (dropout rate = 0.2) 55.1 87.8 64.2

BiDoRA | 613 894 76.0

Table 13: Ablation studies. We evaluate the performance of BiDoRA without retraining (w/o
retraining), without BLO (¢ = 0), without orthogonal regularization (w/o cst.), and with retraining
magnitude.

Method |MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

BiDoRA (retraining magnitude)| 87.0 94.3 89.1 60.7 92.7 91.0 73.4 89.9 84.8
BiDoRA (w/o retraining) 87.0 94.2 89.0 57.3 924 90.6 71.6 90.0 84.0

BiDoRA (¢ = 0) 86.9 942 89.0 594 90.8 91.2 75.9 90.0 84.7
BiDoRA (w/o cst.) 87.0 944 88.6 61.3 927 90.2 76.0 90.1 85.0
BiDoRA 87.1 944 894 613 927 90.6 76.1 90.1 85.2

Bi-level optimization. We set £ to zero in Algorithm 1 to assess the effectiveness of the BLO
framework. This ablation setting can be interpreted as an alternative learning method where two
optimization steps are carried out alternately on two different splits of the training dataset. Notably,
in the alternative learning method, the updating of each component is unaware of the others, making
the training less stable. In contrast, the hyper-gradient used in BLO avoids this issue by connecting
the two levels in a certain way. The results show that BIDoRA outperforms BiDoRA (£ = 0) on
average, demonstrating the efficacy of the BLO strategy.

Orthogonal regularization. We examine the effectiveness of the orthogonality constraint in Eq. (1)
by setting v to zero. Results show that BiDoRA outperforms BiDoRA (w/o cst.) on average,
indicating the effectiveness of applying the orthogonality regularizer to alleviate overfitting.

I Discussion

The advantage of BiDoRA is supported by both theoretical insights and empirical evidence, as
detailed as follows. We also discuss the limitations of BiDoRA.

Motivation. Theoretically, Liu et al. (2024a) showed that LoRA’s training pattern tends to be
coupled in terms of magnitude-direction correlation, which degrades learning capacity. Their solution
was to introduce a reparameterization that decouples these components in the formulation. We build
upon DoRA following their theory and further decouple magnitude and direction in terms of training
dynamics. Specifically, the two components are trained in separate loops within a bilevel optimization
framework, which is expected to improve performance in an intuition similar to DoRA.

Besides, a similar strategy of combating overfitting based on BLO has been utilized in the well-
established practice of differentiable neural architecture search (DARTS, Liu et al. (2019)), where
architecture and subnetworks are learned using different dataset splits. Optimizing the selection
variables and subnetworks in a single loop can result in an over-expressive network since the selection
variables tend to select all subnetworks to achieve the best expressiveness, which, however, incurs
severe overfitting. In contrast, training the subnetworks with the selection module fixed on the training
split while validating the effectiveness of the selection module on the unseen validation split effectively
eliminates the risk of overfitting. Similarly, we treat the magnitude component as the architecture
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and the direction component as the subnetworks and train these components on separate datasets.
As shown in Table 5, BiDoRA demonstrates better resistance to overfitting compared to DoRA, given
the smaller performance gap between the training set and test set. Furthermore, the asynchronous
gradient update steps at the two optimization levels in BiDoRA facilitate better decoupling of the two
components, leading to a more flexible update pattern that closely resembles FT. As illustrated in
Fig. 4, the updates across different layers using BiDoRA have a correlation value that is closest to
that of FT, highlighting its superior learning capability compared to both DoRA and LoRA.

While this work focuses on the empirical validation of BiDoRA, our choice of optimization strategy is
grounded in established theoretical research. The convergence properties of similar gradient-based bi-
level algorithms have been previously analyzed (Pedregosa, 2016; Rajeswaran et al., 2019), providing
confidence in the stability of our training procedure. Furthermore, the ability of such frameworks to
improve generalization—a core objective of BiDoRA—has also been formally studied (Bao et al.,
2021), supporting the rationale that our approach can mitigate overfitting.

Empirical evidence. We performed a Wilcoxon signed-rank test to compare the performance
of DoRA and BiDoRA. Specifically, we used the results from Table 3. For each PEFT method,
we collected 9 values (8 values from each dataset plus the average performance) from one base
model. We concatenated the results from three base models (RoBERTa-base, RoBERTa-large, and
DeBERTa-XXL) to obtain a list of 27 values. A comparison of these 27 values between DoRA and
BiDoRA reveals that BiDoRA is significantly better than DoRA, with a p-value of 2.4 x 10~%. This
result demonstrates that BiDoRA offers a non-marginal improvement over DoRA.

Additionally, the weight decomposition analysis (Fig. 4), indicates that BIDoRA achieves better
decoupling of the components compared to DoRA. Evaluation metrics across various tasks demon-
strate the superior performance of BIDoRA, confirming that our decoupled optimization loop leads to
improved outcomes.

Limitations. One potential limitation of BiDoRA is its training efficiency (see Section E) in terms
of per-step cost, which could be reduced by using more advanced hyper-gradient estimators, such as
SAMA (Choe et al., 2023a) or MixFlow-MG (Kemaeyv et al., 2025). Furthermore, while we have
empirically shown that BiDoRA induces better decoupling between the magnitude and direction
components (Fig. 4), a formal theoretical analysis of this property is currently lacking and serves for
future work.

J Evidence on Orthogonality of Incremental Matrix

To verify that the orthogonal regularization (OR) proposed in Section 3 encourages the columns of
the direction matrix to be orthogonal, we visualize the normalized eigenvalues of the matrix in Fig. 5.
The results show that, compared to methods without OR (i.e., DoORA and BiDoRA w/o cst.), BIDoRA
with OR produces eigenvalues that are more closely aligned with those of a purely orthogonal matrix,
where all eigenvalues would be one. This effect holds for both the query and value matrices and
verifies the effectiveness of the OR constraint.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1 state our contributions and scope (BiDoRA’s
BLO decoupling, overfitting reduction, and performance). Evidence appears in Sections C
and 4, with ablations in Table 13, gap analysis in Table 5, weight-decomposition analysis in
Section D and Fig. 4, and training cost in Section E.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss limitations in Section I (training efficiency and lack
of formal theory) and quantify compute in Section E. We also note avenues for future
theoretical analysis.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theorems or proofs. It provides algorithmic
details and notation (Algorithm 1 and Eqgs. (1) and (4)) but no theoretical results requiring
assumptions or proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Datasets and models are described in Section B; experimental settings and
hyperparameters in Section C.4; baselines in Section B.2. The BLO split rule and stopping
criteria are in Sections C and E, enabling reproduction of the main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include an anonymized implementation and instructions in the supple-
mental material sufficient to reproduce the main experimental results (see Sections B.2, C
and C.4). Public datasets are cited and accessible; a public repository will be provided after
acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify data splits (e.g., 8:2 train/validation for BLO in Section C), hyper-
parameters and training details in Section C.4, datasets in Section B, and optimizers/libraries
in Section C.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report a Wilcoxon signed-rank test comparing BiDoRA and DoRA (p
=2.4 x 10™%) in Section I. We also summarize results with mean and standard deviation
where applicable (e.g., Fig. 2).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: Section E specifies the hardware (single NVIDIA A100 GPU) and compares
per-step cost, total steps, and total time across methods, allowing estimation of compute
requirements.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use public datasets, do not process personal or sensitive data, and adhere
to standard reproducibility and citation practices. No human subjects are involved and no
privacy-sensitive information is used.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on a foundational fine-tuning method and does not include
a separate broader-impact discussion. Potential risks include easier adaptation of models
that may inherit dataset biases; benefits include improved efficiency and accuracy. We can
add a brief discussion at camera-ready if preferred.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release high-risk datasets or models; we evaluate on existing public
models and datasets.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our implementation is released under the Apache License 2.0. Third-party
libraries (e.g., Transformers) are used under their respective licenses (Apache-2.0 for Trans-

formers), and datasets are used under their original terms with citations provided. We
include a LICENSE file and license notices in the supplemental material.

Guidelines:

¢ The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects.
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Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects; IRB approval is
not required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The core method does not use LLMs as a tool in development; LMs are the
objects of evaluation. No declaration is required under the NeurIPS LLM policy.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We used LLMs only for writing and editing the manuscript; this did not impact
the methodology, experiments, or originality of the research. Per policy, no declaration of
method usage is required.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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