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ABSTRACT

We introduce Discovering Conceptual Network Explanations (DCNE), a new ap-
proach for generating human-comprehensible visual explanations to enhance the
interpretability of deep neural image classifiers. Our method automatically finds
visual explanations that are critical for discriminating between classes. This is
achieved by simultaneously optimizing three criteria: the explanations should be
few, diverse, and human-interpretable. Our approach builds on the recently intro-
duced Concept Relevance Propagation (CRP) explainability method. While CRP
is effective at describing individual neuronal activations, it generates too many
concepts, which impacts human comprehension. Instead, DCNE selects the few
most important explanations. We introduce a new evaluation dataset centered on
the challenging task of classifying birds, enabling us to compare the alignment of
DCNE’s explanations to those of human expert-defined ones. Compared to ex-
isting eXplainable Artificial Intelligence (XAI) methods, DCNE has a desirable
trade-off between conciseness and completeness when summarizing network ex-
planations. It produces 1/30 of CRP’s explanations while only resulting in a slight
reduction in explanation quality. DCNE represents a step forward in making neu-
ral network decisions accessible and interpretable to humans, providing a valuable
tool for both researchers and practitioners in XAl and model alignment.

1 INTRODUCTION

What are the most important

Deep learning solutions are more likely to be
features for discrimination?

trusted if their decisions are understandable to
both expert and non-expert users
(2020); |[Yu & Ali| (2019). Motivated by this
goal, the European Union has adopted regula-
tions advocating an individual’s right to an ex-
planation in automated decision-making
man & Flaxman| (2017). As deep learning

systems find application in high-stakes do-

mains such as medicine (2020);

Tschandl et al.| (2020); Rajpurkar et al.| (2022)
and autonomous driving (Greenblatt| (2016);

let al.| (2020); [Kun et al.| (2018]) there is increas-
ing interest into the topic of eXplainable Artifi-
cial Intelligence (XAI).

A first approach to XAI is to develop deci-
sion algorithms that are more transparent by

design (2019). A second approach is

to compute post-hoc explanations on decisions

Figure 1: Concise visual explanations. What are
the most important visual features to discriminate
between Bohemian Waxwings (left) and Cedar
Waxwings (right)? In this work, we explore if
fine-grained features that align with those used by
humans can be discovered from a trained neural
network using XAI methods. Our method auto-
matically extracts a concise set of explanations for
individual images or at the class level.

made by already trained algorithms (2019). In this work, we pursue the second approach
and focus our attention on image classifiers. Explaining predictions of existing models has the ad-
vantage of not imposing constraints on the types of models practitioners develop. Solutions to this
problem can be broadly divided into local methods that explain a model’s decision at the instance
level (e.g., a specific patient’s x-ray image) or global methods that explain a model’s decisions at the

class level (e.g., a white spot in a lung x-ray is indicative of a disease) |Das & Rad|(2020). Recently,
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a family of glocal methods has been introduced to combine the best of both perspectives |Schrouff]
et al.[|(2021));/Achtibat et al. (2023)).

A crucial concern for XAI methods is the ability of humans (experts or lay users) to digest the ‘ex-
planation’ that a method provides. Humans have a limited ‘perception budget’ (famously posited
as seven concepts in |Miller| (1956))). Thus, explanations must be simple enough to be understood
and sufficiently few to comprehend. However, many methods generate a single attribution map that
attempts to contain all the important visual features in one output [Selvaraju et al.| (2017); [Lund-
berg & Lee| (2017); [Shrikumar et al.| (2017). Such explanations tend to be too complex — humans
are better at processing individual elements sequentially [Pollock et al.| (2002). In contrast, the re-
cently proposed CRP |Achtibat et al.|(2023) method generates conditional attributions for individual
neurons, yielding highly specific and spatially focused attribution maps that are relatively easy to
understand. However, these maps are created for each neuron of the network. Thus, without any
attempt to reduce the overall number of attribution maps, there are simply too many for a human to
comprehend.

We propose a novel method called Discovering Conceptual Network Explanations (DCNE) that is
both local and global and aims to produce concise explanations while retaining as much explana-
tory power as possible. We build upon CRP’s |Achtibat et al.| (2023)) conditional attribution maps
by aggregating them across layers and reducing their dimensionality using Non-Negative Matrix
Factorization (NNMF) [Lee & Seung (1999). This enables us to reduce the number of explanations
extracted from a model to 1/30 of its original size to a total of 10. This number is much closer to the
‘perception budget’ of humans.

To measure the quality of DCNE’s explanations, we compared them to expert-defined feature masks
that localize the important discriminative features of a species. We collect an annotated dataset with
a subset of challenging bird species from the CUB dataset Wah et al.| (2011) as a contribution of
our study. We perform quantitative comparisons with a number of prominent existing XAI methods
and find that our method’s explanations are very concise while retaining most of the important
information.

2 RELATED WORK

There are two main approaches to eXplainable Al (XAI) for deep neural networks, networks that
are designed to be interpretable |Chen et al.[(2019); |Koh et al.| (2020); [Poulin et al.|(2006); Lin et al.
(2014); Brendel & Bethge| (2019); Bohle et al.| (2021); |Bohle et al.| (2022); |Donnelly et al.| (2022);
Koh et al.|(2020) and methods that explain the network Bau et al.|(2017); Fong et al.|(2019)); Morch
et al.|(1995); Sundararajan et al.|(2017);|Bach et al.|(2015)); Selvaraju et al.|(2017); Lundberg & Lee
(2017); [Kim et al.| (2018)); |\Ghorbani et al.| (2019); |(Ghorbani & Zou! (2020); |Goldstein et al.| (2015));
Akula et al.| (2020); |Chattopadhay et al.| (2018)); |Srinivas & Fleuret (2019)); [Fu et al.| (2020); Binder,
et al.[(2016). Next, we discuss the most relevant existing XAl approaches through the lens of local,
global, and glocal methods.

2.1 LOCAL METHODS

Local methods explain the important features in the input image that resulted in the network’s pre-
diction. Methods in this category use gradients (Selvaraju et al.|(2017); Sundararajan et al.[(2017);
Simonyan & Zisserman| (2015)); [Shrikumar et al.| (2017))), modified gradients (Zeiler & Fergus
(2014);|Landecker et al.|(2013); Bach et al.|(2015)); Montavon et al.|(2017)), or perturbations (Lund-
berg & Lee|(2017); Ribeiro et al.| (20165 [2018))) to generate attribution maps on an individual input
image (Guidotti et al.| (2018))). Most of these methods generate only a single attribution map. It
has been demonstrated that humans process complex information better when it is presented as indi-
vidual elements |Pollock et al.|(2002). Single attribution maps are thus difficult to interpret because
different, independent concepts are grouped together.

2.2 GLOBAL METHODS

Akula et al.|(2020)); \Goldstein et al.|(2015));/Ghorbani et al.|(2019); Kim et al.|(2018)) aim to discover
concepts encoded within a model and explain how they relate to a class. These methods do not
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explain individual images but rather the features that describe a class broadly (e.g., stripiness is
a feature that describes zebras). |Kim et al.| (2018); Schrouff et al.| (2021); (Goyal et al.| (2019)
require annotation in the form of user-defined sets of images that share concepts. |Akula et al.
(2020); |Ghorbani et al.| (2019); |Goldstein et al| (2015) tried to remove this dependency by using
clustering to group similar activation patterns. While global explanations provide a better conceptual
understanding of model decisions, they do not generally provide explanations for specific images.

2.3 GLOBAL + LOCAL (GLOCAL) METHODS

Recently, Schrouff et al.| (2021); |/Achtibat et al.| (2023)); Zhang et al.| (2023); [Fel et al.| (2023)) have
attempted to combine both of the above families to understand network behavior better. |Schrouff]
et al|(2021) introduced a method based on integrated gradients to measure a concept’s importance
in predicting a specific image instance. However, they do not have a method to visualize these
concepts on the original image and require a curated set of images that define a concept to compute a
concept activation vector.|Achtibat et al.|(2023)) treat each neuron as an independent semantic feature
detector and introduce the idea of conditional masks on the relevance flow to generate neuron-
specific attribution maps on specific images. They also show how to use relevance scores to visualize
the maximally relevant images for a specific neuron, thus showing the global concept a neuron
encodes across several images. CRP has high explanation complexity, exceeding vastly the human
“perception budget” Miller| (1956). In this work, we improve upon CRP by using non-negative
matrix factorization to discover a concise set of important features for each image and relate the
features that make up a class across images.

3 METHOD

3.1 PROBLEM FORMULATION

Our goal is to develop a method that can explain all of the important semantic features in an image
that a trained convolutional neural network uses to make its predictions at inference time. In addi-
tion, this method should be able to correlate these features across images while maintaining a low
explanation complexity such that human users can understand the explanation with less effort. We
describe the methodological details in the following section while leaving all the implementation
details to the appendix.

For a given image z, a trained neural network F' combines the outputs of many feature activations
(i.e., neuron outputs) to produce an output, F(x) = 7. We denote each neuron in a network as F},
where k is the layer and ¢ is the neuron within the layer. We also denote G as a local XAI method.
For a given image and network, G produces a local attribution for the image a(x) = G(F(x)).
Some local XAI methods, e.g., |Achtibat et al.| (2023)); [Selvaraju et al.| (2017); (Ghorbani & Zou
(2020), are able to condition their explanations on the layer and/or neuron. For these methods, we
define a set of tuples S¢ = {(k, )}, which contains all the tuples of layers and neurons that G is
capable of producing attributions for. We generalize our notation for this setting such that

G(sz(w)) = {a(wv (kvz)) € Rth}’ (D

where ¢ is ignored for settings where the method is only layer-specific. We define the final explana-
tion for image x as the set of all attributions

g(w) = {a(wa (k,l))V(k,Z) € SG} (2

The sets of image-specific explanations are aggregated into a final explanation, which is denoted as
E={&x)Vx}. (3)

We let Q(E) represent the quality of an explanation £ (see Sec. d| for details). We also define the
explanation complexity as the total number of attribution maps produced by a method, i.e., |£]. Our

goal is to produce a simpler, concise explanation &, such that Q(&s) = Q(E), while also having a
reduced explanation complexity size |Es| << |€].
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Figure 2: Discovering concise attribution maps. To create concise instance-level attribution maps,
our method passes an image through a pre-trained CNN backbone (e.g., ResNet-34) and (1) gener-
ates the conditional attributions for the whole network through conditional masking (see appendix
for details on CRP). (2) We reduce the many attribution maps produced by CRP to a smaller number
using NNMEF. (3) We then compute the cosine similarity of the concise attribution maps to the base
attribution maps using cosine similarity. Since each base attribution map is generated from a neu-
ron, the concise maps can be related back to a semantically tuned neuron. (4) We flatten the matrix
along the image and attribution map dimension, and (5) perform clustering on the resulting matrix
to generate global/class-level attribution maps, in which semantically similar image and attribution
map pairs are grouped together.

3.2 CONCISE INSTANCE-LEVEL ATTRIBUTION MAPS

From here on, G will refer to XAI methods capable of neuron (or layer) attributions. The set of
conditional attribution maps £(x) produced by G are able to indicate what image features different
neurons (or layers) attend to in the original input image «. Depending on network size, £(x) can be
prohibitively large and prevent users from being able to search through them, i.e., the explanations
can be of high complexity. This can hinder our ability to formulate a clear understanding of the
important features being used by the network. For example, if F' is a ResNet-34 He et al.| (2016),
given the number of neurons in the network, for a single image, we would obtain |E(x)| =~ 8, 000.

We address the size issue by using non-negative matrix factorization (NNMF) [Lee & Seung
(2000) on the attribution maps in £(z) to produce &(x) (Fig. 2). Specifically, each attribution
map a(x, (k,i)) € R" ™ is flattened into a vector of length d = h x w, producing a matrix
Mez) € RIE@)xd We use NNMF with z components to decompose Mg (,) and keep the re-
sulting z x d coefficient matrix. This coefficient matrix is reshaped back into images to produce
each element of £;(x), where |Eq(x)| = z. We refer to the reshaped coefficient matrix as the con-
cise attribution maps. In Fig. [6] we explore different numbers of concise attribution maps. We use
|€s(x)| = 10 in all plots in the main paper. In practice, running NNMF on the complete set of at-
tribution maps & () is costly, so we rank each attribution map by the sum attribution and select the
top n maps. In our experiments, we use CRP as the base method to generate conditional attribution
maps. CRP is an explanation method that produces neuron-specific attributions by restricting rel-
evance flow specifically through the neuron(s) of interest, generating disentangled neuron-specific
attributions.

While on the surface related, our method is distinct from DFF [Collins et al.| (2018). In DFF, the
authors pass n images (from various classes) through a network and store the activations from the
last convolutional layer of the network. This results in a tensor of size n X ¢ x b’ x w’ which is
reshaped into a (n x b’ X w’) X ¢ matrix. Note that b’ and w’ here are not the original image size, but
the output size of the last convolutional layer, which has ¢ channels. They perform NNMF on this
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matrix to produce a reduced matrix with only k components (n x h’' x w’) X k. As later convolutional
layers encode more semantic information, the pixels of equivalent semantic parts in different images
share activity patterns in the same channels c. NNMF discovers this structure, producing coarse
correspondence for shared parts between objects of different categories, for example heads, torsos,
arms and legs across different people. In contrast, our method is focused on identifying diverse
features from a large explanation set £(x) for a single image. We perform NNMF directly on the
attribution maps of an explanation method rather than the network’s activations, operating directly
in the attribution space, not in the feature space.

3.3 CONCISE CLASS-LEVEL ATTRIBUTION MAPS

The explanations outlined in the previous section are specific to individual image instances. We
would also like to discover common features of a class that appear in many images. Let X, be the
set of images all containing the same semantic class. Consider two images (1, x2) € X2, how can
we relate the features discovered in a; to features discovered in x5? Since the concise attribution
maps are generated from a specific image x1, they retain the spatial structure of the object in that
image and as the images x; and x5 are different, we cannot directly compare the concise attribution
maps with each other. In order to compare these attribution maps, the spatial information must
be removed, and the attributions must be ‘transferred’ into a semantic space. For example, two
attribution maps identifying a white wing patch on a bird should be clustered together irrespective of
the spatial orientation of the birds. Neurons are semantically tuned, but the concise attribution maps
are no longer directly related to any individual neuron. However, the base conditional attributions
&(x) are neuron-specific and also image-specific. If we can relate the attributions from & () to
&(x), we effectively project our image-specific concise attributions back into neuron space, making
them comparable across images.

For an image x, we compute the cosine similarity between explanation sets & (x) and £ () produc-
ing a similarity matrix A(zx) € RI% @) < [€@)| \where the entries are

Az)i; = cos(E(), & (x))

and where i denotes the i'" attribution map in () and j denotes the ;' attribution map in
E(x). We repeat this process for every image * € X, to produce a similarity tensor 7' €
RI¥elx [€:(@)[x |€()] - A visual depiction is available in Figure

We flatten the first two dimensions of this tensor to produce a 2d matrix containing similarity scores
between the concise attributions over all images and the neuron-specific conditional attribution in
E(x). We then use a clustering objective on this similarity matrix to discover clusters (in practice,
we run DBSCAN [Ester et al.|(1996)) over pairs of images and attribution maps. Concise attribution
maps between and within an image can be clustered together according to how similar they are in
neuron space, which is more semantically aligned than image space (Fig. [2).

Importantly, this operation is distinct from maximum reference sampling in CRP. In that setting,
maximum reference samples (typically eight) can be computed for all the neurons in a network,
which results in a highly complex explanation. In contrast, our method produces a set of clusters
for each class, each defining a discriminative feature used by the network. We define a cluster
feature score to qualitatively assess a cluster’s specificity to a particular feature. Since clusters are
computed within a class, all the attribution maps are compared to the same set of ground truth
features. For each concise attribution map in a cluster, we simply average the mean IoU computed
for each expert-defined feature in a class. This score reflects how specific a cluster is to one or more
features. The number of clusters can be tuned by modifying the parameters of DBSCAN. In our
experiments, DBSCAN produced at most seven clusters when using an epsilon value of 1.4 and a
minimum cluster size of five. DBSCAN naturally detects and removes outliers, further reducing the
noise in our clusters.

4 EVALUATION

Evaluating explainable methods is challenging, as many evaluation criteria can be subjective and
prone to confirmation bias [Kim et al.| (2022)); [Hoffman et al.| (2018); Hesse et al.|(2023)). Moreover,
commonly used evaluation criteria are defined via testing on naive, i.e., non-expert, subjects. Our
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application is a highly specialized task in which the interpretability of a network with expert-level
performance should be assessed by an expert, in our case, ornithologists, who understand the im-
portant features of the classes of interest. In order to address this problem, we use expert-defined
features that allow us to repeatably evaluate many methods and images through the lens of a domain
expert in a robust and relatively unbiased way. However, our evaluation does have limitations, which
we discuss in[5.3] The next sections explain our evaluation methodology in detail.

4.1 FINE-GRAINED EXPLANATIONS DATASET

We evaluate our method on images from the CUB-200-2011 (CUB) dataset Wah et al.|(2011). The
original dataset consists of images from 200 different species of birds. While there are part-level
and attribute-based annotations available in CUB that denote semantic parts and their state (e.g.,
the shape of a beak), these annotations alone are not sufficient to discriminate between very similar
species pairs (e.g., like the birds in Fig. [I).

In order to generate a suitable evaluation set from CUB, we determine the discriminative semantic
features for a subset of species using expert knowledge from the Cornell Lab of Ornithology’s |Al-
1AboutBirds|website. We annotated five classes from the CUB dataset: Bohemian Waxwings, Cedar
Waxwings, White-Throated Sparrows, White-Crowned Sparrows, and Song Sparrows. For each
species, we annotate 2-4 discriminative features based on the expert-generated identification guide
from |AllAboutBirds. For each image of a given class, we performed manual, pixel-level segmen-
tation for each discriminative feature that is visible in that image, generating several feature masks
per image. In total, we annotated 300 images, 60 images each for each of the five classes. We define
Vi (z) to be the set of expert-defined feature masks for an image @ in class X, where f represents
the index of the discriminative feature (Figs. [7]]1 T).

4.2 MATCHING EXPERT FEATURES WITH ATTRIBUTION MAPS

To evaluate the quality of an explanation, Q (&) for a specific image, at a specific threshold ¢, we
compute the Intersection-over-Union (IoU) for each attribution map in £(x) against each feature
mask in V() and take the maximum score for each feature,

@E@),t) = max  loUla(z) >t Vi(z)) )
Qr(E(z)) = max Qr(E(x), 1) (5)

We search for the best mean IoU for each attribution method on a held-out subset of the data over
five threshold values of 0, 30, 50, 100, 150, 200, and 250 (masks are stored in uint8 format). The
specific threshold used for each method and feature is presented in the appendix[I] We average over
all images « to produce the final feature score for an explanation,

Qs(€) = ﬁ S Qs(E(=)). ®)

X,

Under our evaluation protocol, increasing the number of attributions would most likely improve
Q7(&), but would increase |£|. Our method aims to find a balance between a diverse set of attribu-
tions and a low explanation complexity.

5 RESULTS

We evaluate DCNE on five bird species with semantic-level mask annotations based on expert
knowledge described in Sec.[d] We compare the mean IoU scores for the features discovered by
our method to the CRP |Achtibat et al.[ (2023) baseline, Fullgrad [Srinivas & Fleuret (2019), Grad-
cam |Selvaraju et al.[|(2017), Layercam [Jiang et al.| (2021, and XGradCAM [Fu et al.| (2020). Since
these methods do not perform neuron-specific attribution, to create a more comparable baseline, we
generate attribution maps for each method conditioned on every convolutional layer in the network.

For Fullgrad, which naturally computes an attribution map for each layer, we simply include each of
these attribution maps in the final set. For CRP, we include two variations on the explanation com-
plexity: CRP-300 uses the attributions produced for each image by the 300 most relevant neurons
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Figure 3: Benchmarking instance-level attribution maps with expert-based features. We intro-
duce a new XAI benchmark for bird species expert feature matching. Each image is annotated with
masks highlighting the birds’ most important visual features, as defined by experts. Each subplot
represents a different bird species. On the x-axis, we indicate the important features of that bird.
On the y-axis, we show the mean IoU between that feature and our instance-level attribution maps
(higher is better). The explanation complexity is indicated in the bottom right subplot. We compare
our method against multiple baselines for five different bird species. In the bottom right plot, we see
that our method has the second-highest mean IoU across all features and classes but maintains the
lowest complexity.

(on average, over all the images of the class), and CRP-10 uses attributions from the top 10. Results
are presented in Fig[3]

On average, we find that CRP-300 has the highest mean IoU. This is not surprising since CRP-300
has access to the largest number of feature maps and is more likely to find a strong match to the
expert-defined feature masks. However, there are several instances where CRP is worse than other
methods. For example, in the whitish-mustache stripe of the song sparrow, the white throat patch
of the white-throated sparrow, and the white-undertail region of the cedar waxwing, CRP-300 is
outperformed by a CAM variant. The mean IoU for all these features tends to be on the lower
side, implying that the network may not detect them at all or that they may always be encoded
together with another feature, resulting in larger unions and lower mean IoUs. In particular, the
white undertail of the Cedar Waxwing has low mean IoUs for all the methods we compare, implying
the network is not detecting this feature at all. In addition, our method outperforms CRP-300 on the
brown-striped head of the White Crowned Sparrow and the yellow belly of the Cedar Waxwing. It
is possible that components produced by NNMF are entangling or disentangling features that can
result in both increases or decreases in mean IoU (see Sec. [5.2]for details).

We also include results for CRP-10, which is constructed in the same way as CRP-300, but only
uses the top 10 most relevant neurons and is directly comparable to the 10 components produced
by NNMF. We observe that CRP-10 is significantly worse in all classes and features. Qualitatively,
one can see that the top most relevant neurons tend to produce redundant attributions that fixate on
the same feature in the image (Fig.[T2). We find that our method has the second-highest mean IoU
(averaged across all classes) while requiring only 1/30 of its explanation complexity.
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Figure 4: Selected clusters. We select several of the clusters (rows) generated by our method to
demonstrate interesting properties of the global concepts discovered. For each cluster, we select five
image and attribution map pairs that are closest to the centroid of the cluster (left-to-right). Cluster O
of the Bohemian Waxwing (BW), Cluster 4 of the Cedar Waxwing, and Cluster 6 of the White
Throated Sparrow (WTS), align well with several expert-defined features. However, our method
discovers other semantically consistent features that do not match with any of the selected expert-
defined features. We use expert descriptions from |AllAboutBirds|to evaluate whether these features
are sensible. For Cluster 0 of CW, we find a description that indicates “foraging birds often perch
acrobatically at the tips of thin branches to reach fruit” and for Cluster 8 of WTS we find “two white
wingbars on rich reddish brown wings”.

5.1 CLASS-LEVEL FEATURES VIA CLUSTERING

We take all of the components produced by NNMF (for all images in a class), compute the compo-
nents’ cosine similarity to the neuron attribution maps, and use DBSCAN to cluster the components
based on this similarity matrix (see Sec. [3.3|for details). For each class, we find that 1-2 clusters are
well-aligned with our expert-defined features. We show all of the cluster similarity matrices in the
appendix.

After computing the feature clusters, we measure the average IoU score of each image in a cluster
for each feature (see Fig. E]A and B for examples). The cluster feature scores (see details in Sec.|3.3)
indicate which expert-defined features best align with the cluster. Qualitatively, we find that some
discovered clusters align well with the expert-defined features that are present in the dataset (see
Fig.[). Cluster 0 of the Bohemian Waxwing aligns with the “White wing stripes” expert-feature for
that class. Cluster 4 of the Cedar Waxwing aligns with the ”Yellow belly” expert-feature for that
class. Cluster 6 of the White Throated Sparrow aligns with the “Black head stripes” expert-feature
for that class. We notice that the features in each cluster are very diverse. The "White wing stripes”
feature is small in scale and can be spread across multiple non-linked masks, while the ”Yellow
belly” feature is comparatively large in scale. Since we have more clusters per class than expert-
based features, we end up with clusters that do not match any of the expert-based features. After
inspecting these closely, we find, to our surprise, that some of them encode semantically meaningful
features that are described on|AllAboutBirds/ but we did not annotate for.

5.2 (DIS-)ENTANGLED ATTRIBUTION MAPS

Since the network is trained only on the class labels, there is no guarantee that the features it uses
for classification align with the expert-based masks. Fig.[5]A illustrates this case with the Bohemian
Waxwing feature "White wing stripes”. This expert-based feature consists of two masks for the
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Figure 5: Entangled and disentangled fea-
Bohemian Waxwing tures. (Left) We show the confusion matrix be-
tween the discovered clusters and the features
we annotate. (Right) we show attribution maps
generated by our method. In panel A, we show
features that are grouped together in the ‘expert’
feature masks but are disentangled in our expla-
nations. We can see that the explanation method
separates the white wing stripes into two sep-
arate concepts. In panel B, we show features
that are consistently entangled. The orange beak
and the black-striped crown are treated as sepa-
rate features in the evaluation based on the ex-
pert’s description, but the explanation suggests
they are encoded together.

two white stripes on the wing of the bird combined together. While this expert-based feature is
generally discovered well, it is disentangled into two attributions, one per white stripe. In this case,
our intersection would be lower, decreasing the IoU, even though the network is discovering all of
the important pixels. Fig. [5| B shows the reverse, where Cluster 1 entangles two features of the
White Crowned Sparrow, the orange beak and the black-striped crown. In this case, our union with
the expert-based masks would be higher, decreasing the resulting IoU.

5.3 LIMITATIONS

Our evaluation methodology has some limitations. For methods to be interpretable to humans, the
explanation of the model’s predictions should align with the visual features humans use. However,
there is no guarantee that networks use human-aligned concepts to process information. Addition-
ally, the concise attribution maps may dis/entangle expert-based features, causing a decrease in IoU
(see Sec.[3). This limitation may be partially overcome by either advancing the underlying models
by explicitly decomposing the attributions into disentangled components.

To evaluate our method, we introduced a new dataset and task, which we deem appropriate for the
problem we are describing. Nonetheless, we would like to include classical interpretability bench-
marks in future studies as well, such as justified trust and explanation satisfaction |Hoffman et al.
(2018), pointing games Zhang et al.[(2018)), or HIVE Kim et al.| (2022)). Moreover, future work could
include additional datasets and other neural network architectures, e.g., visual transformers [Doso-
vitskiy et al.|(2021).

6 CONCLUSION

We presented DCNE, a new approach for generating a concise set of semantic visual features from
a trained deep image classifier. DCNE reduces explanation complexity while retaining explana-
tion quality. To quantify this, we created a new evaluation dataset by annotating closely related
bird species with expert-defined discriminative feature masks. We measured the alignment between
the features produced by different XAI methods and the human expert-defined feature masks. We
found that DCNE achieved the best trade-off between performance and complexity, with the second-
highest performance after the CRP-300 method, at only 1/30 of the complexity. We then described a
clustering-based method that creates class-level features and demonstrated that many of the clusters
match the expert-based annotations. Surprisingly, we also found unannotated discriminative features
as well, all while maintaining a low explanation complexity.

InMac Aodha et al.|(2018), the authors showed that visual explanations are useful aids for teaching
concepts to human learners, but only used simple methods to generate single local explanations. In
the future, we would like to evaluate whether our method, which balances explanation complexity
and quality, can improve on their results and potentially be used to teach more complex visual
categorization tasks. Finally, our evaluation dataset could be used to measure the alignment between
model-learned concepts and human expert concepts.
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A APPENDIX

A.1 ABLATION EXPERIMENTS
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early stopping if it converges. We Figure 6: Paramater Sweeps. We explore a range of pa-

observe that the number of compo- rameters for the number of NNMF components and the CRP

nents does matter. For most classes, 2S¢ Size.

increasing the number of components up to 25 improves the fit. Beyond that, the alignment between
the components and human-defined features decreases. We use 10 components in our work since it
is near the perceptual budget Miller| (1956).

e
o

Base Size. In Fig.[f|B we sweep over the base set size. We evaluate 10 (comparable to our method),
50 (comparable to CAM per convolutional layer methods), 100, 150, 200, 250 and 300 attribution
maps in an explanation set £(x) for an image. We run NNMF with 10 components on all of these
base sets. We find that increasing the base set size improves mean loU performance for all classes.

A.2 TERMINOLOGY

In the main text, we use several different terms. In this section, we elaborate on their meaning and
give visual examples.

Expert-defined feature masks. We use the term expert-defined feature masks to describe the
ground truth segmentation masks produced by the annotator (Fig.[7). These binary masks are based
on features defined by experts as important diagnostic attributes for each bird species. We use the
word ‘masks’ as these annotations are binary (attribution maps are not).

White wing stripe Red undertail feathers Gray belly

Figure 7: Expert-defined feature masks. Visualizations of the annotators’ ground truth masks for
the Cornell Lab of Ornithology specified features.

Activations. Activations are computed on the forward pass and are the outputs of a given layer of
the network (Fig. [8). In 2D convolutional networks, they are known as both activations and feature
maps. For example, in a ResNet-34, the last layer produces an activation map (or feature map) of
size Nx512x14x14.

Attributions. Attribution maps indicate what the network used in making its decisions and are
computed in the backward pass (Fig.[9). In all the algorithms compared in this work, the attribution
maps are generated on the input space and are equal in width and height to the input image.
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Channel 10 Channel 150 Channel 350

Figure 8: Activation maps for ResNet-34. Visualizations of the outputs of the last convolutional
layer. There are 512 channel activation maps of 14x14 pixels. We show three activation maps,
upsampled to the original input image resolution (448, 448): channel 10, channel 150, and channel
350. Each channel is activated differently, capturing different features of the original image.

LayerCAM GradCAM Fullgrad

Figure 9: CAM variant attributions. CAM attributions are generated by upsampling the
importance-weighted activations from the last layer of a network. Therefore, the CAM attributions
tend to be significantly coarser than CRP’s. The importance weights are usually computed using
some form of modified gradients.

Conditional Attributions. Concept Relevance Propagation introduces the idea of conditional attri-
butions and is a generalization of Layer-wise Relevance Propagation (Fig.[I0). Conditional attribu-
tions visualize the attribution maps conditioned on a set of neurons the user is interested in. To do
this, they modify the relevance flow with a conditional mask such that it is only passed through the
neurons of interest in a given layer. Further details can be found in |Achtibat et al.| (2023).

B IMPLEMENTATION DETAILS

B.1 MODEL TRAINING

We train a ResNet-34 on the CUB dataset. We randomly split the data into training (70%), validation
(15%), and test sets (15%). We train for 95 epochs using stochastic gradient descent with learning
rate le-4, weight decay le-4, and momentum 0.9. We select the model with the lowest validation
loss. The final model had a test accuracy of 0.818% over all 200 classes. We choose several classes
that humans commonly misidentify, according to the iNaturalist website iNaturalist. The classes and
their class-specific test accuracies are Bohemian Waxwing (89.4%), Cedar Waxwing (100%), Song
Sparrow (77.3%), White-crowned Sparrow (100%), and White-throated Sparrow (93.3%).

B.2 ATTRIBUTION METHODS

To generate the CAM-based visualizations, we use |Gildenblat & contributors| with a slight modifi-
cation to the code for FullGrad |Srinivas & Fleuret (2019)) to save every layer’s output. To generate
the CRP attribution maps, we use the repository published by the authors |Achtibat et al.| (2023)). We
use the sklearn |Pedregosa et al.| (2011) implementation for non-negative matrix factorization with 3,
5, 10, or 20 components to generate the concise attribution maps. For 10 components and 300 base
attribution maps, NMF roughly takes 45 seconds on an AMD Ryzen 7 3700X 8-Core Processor. We
use an NVIDIA GeForce TitanX for training the model and generating attributions. We search a list
of thresholds 0, 25, 50, 100, 150, 200, and 250 for each method and each species that maximizes
that method’s mean IoU on a held-out subset. We indicate these threshold values in Table [T}

B.3 GROUND TRUTH ANNOTATIONS

We used Upwork to hire an experienced annotator at a flat fee of $125 USD to annotate 300 im-
ages (60 images per class). Annotations were performed using the open-source software label-
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Figure 10: Conditional Masking Generates Different Attributions. We show a toy schematic
to demonstrate the concept of conditional masking |Achtibat et al.| (2023). The relevance flow is
restricted through a specific neuron in the second hidden layer, resulting in unique attributions for
that neuron. For example, the first neuron may focus more on the white stripes, whereas the second
focuses on the yellow tags on the wings.

White White
Crowned Throated
Sparrow  Sparrow

Bohemian Cedar Song
Waxwing  Waxwing  Sparrow

CRP-300 50 25 100 50 50
CRP-10 25 0 100 50 100
Ours 50 25 50 25 50
Fullgrad 150 150 200 200 200
GradCAM 150 100 200 200 200
LayerCAM 100 50 150 100 100

Table 1: Thresholds for method and species. We choose a threshold value from a list (0, 25, 50,
100, 150, 200, 250) that maximizes the method’s meanloU on a held-out subset of a particular class.

studio [Tkachenko et al.| (2020), specifically the brush segmentation tool. The annotator was given
clear instructions, developed from the allaboutbirds |AllAboutBirds| guide, to annotate 2-4 parts (de-
pending on the species). The annotator was instructed not to guess its location if the part was not
clearly visible in the image. We reviewed each image and asked for corrections to images where
the annotator made mistakes. After we were satisfied with the results, the work was approved. No
algorithms were tested between the annotation, review, and approval processes.

C FURTHER VISUALIZATIONS

C.1 CoMPARING CRP-10 To DCNE[10]-300

We show visualizations of the top-10 CRP attribution maps compared to the top-10 DCNE attri-
bution maps (Fig. [[2). CRP-10 visualizations are more redundant and do not capture all of the
different features used by the network. We also see a possible limitation of this method: the concise
attributions will sometimes attribute very strongly to the background making them more difficult to
interpret.

C.2  CLUSTER VISUALIZATIONS
One of the benefits of this method is that the explanations are concise. We show that the entire class

can be summarized into 4 - 10 clusters that convey the properties used by the network in predicting
the class of interest (Figures: |13 14115]16417). In general, 1-2 clusters align well with the features we
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annotated. Some remaining clusters have clear semantic meanings but may not have been annotated.
Other clusters are less interpretable.
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Bohemian Waxwing Red undertail White wing stripes Gray belly

1 171 il
Cedar Waxwing

White undertail Yellow belly

Song Sparrow Reddish-brown stripes Stripes meet Whitish
on chest mustache stripe

White-throated sparrow Black head stripes White throat patch Yellow eye spots

White-crowned sparrow  Black head stripes Orange-pink bill Peaked head shape

Figure 11: Sample expert annotations. We show one bird per class and the features that were
annotated for that class.
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Figure 12: Comparing CRP-10 and DCNE-10. In each row, we have an image of a bird from each
class. In the top panel, we show the attribution maps from the top 10 most relevant neurons (on
average over the whole class). We show the 10 concise attribution maps generated from the CRP-
300 set on the bottom panel. The concise attribution maps highlight different features. In contrast,
the top 10 CRP attribution maps are more similar to each other and activate more generally across
the whole bird.
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Figure 13: All the clusters of the Bohemian Waxwing.
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Figure 14: All the clusters of the Cedar Waxwing.
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Cluster

Figure 15: All the clusters of the Song Sparrow.

Figure 16: All the clusters of the White-Crowned Sparrow.
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Figure 17: All the clusters of the White-Throated Sparrow.
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