
POSEIDON: Efficient Foundation Models for PDEs

Maximilian Herde1,∗ Bogdan Raonić1,2,∗ Tobias Rohner1 Roger Käppeli1

Roberto Molinaro1 Emmanuel de Bézenac1 Siddhartha Mishra1,2

1Seminar for Applied Mathematics, ETH Zurich, Switzerland
2ETH AI Center, Zurich, Switzerland
Correspondence to herdem@ethz.ch

Abstract

We introduce POSEIDON, a foundation model for learning the solution operators
of PDEs. It is based on a multiscale operator transformer, with time-conditioned
layer norms that enable continuous-in-time evaluations. A novel training strategy
leveraging the semi-group property of time-dependent PDEs to allow for significant
scaling-up of the training data is also proposed. POSEIDON is pretrained on a
diverse, large scale dataset for the governing equations of fluid dynamics. It is
then evaluated on a suite of 15 challenging downstream tasks that include a wide
variety of PDE types and operators. We show that POSEIDON exhibits excellent
performance across the board by outperforming baselines significantly, both in
terms of sample efficiency and accuracy. POSEIDON also generalizes very well
to new physics that is not seen during pretraining. Moreover, POSEIDON scales
with respect to model and data size, both for pretraining and for downstream tasks.
Taken together, our results showcase the surprising ability of POSEIDON to learn
effective representations from a very small set of PDEs during pretraining in order
to generalize well to unseen and unrelated PDEs downstream, demonstrating its
potential as an effective, general purpose PDE foundation model. Finally, the
POSEIDON model as well as underlying pretraining and downstream datasets are
open sourced, with code being available at https://github.com/camlab-ethz/poseidon
and pretrained models and datasets at https://huggingface.co/camlab-ethz.

1 Introduction

Partial Differential Equations (PDEs) [15] are referred to as the language of physics as they mathemat-
ically model a very wide variety of physical phenomena across a vast range of spatio-temporal scales.
Numerical methods such as finite difference, finite element, spectral methods etc. [59] are commonly
used to approximate or simulate PDEs. However, their (prohibitive) computational cost, particularly
for the so-called many-query problems [58], has prompted the design of various data-driven machine
learning (ML) methods for simulating PDEs, [24, 51] and references therein. Among them, operator
learning algorithms have gained increasing traction in recent years.

These methods aim to learn the underlying PDE solution operator, which maps function space
inputs (initial and boundary conditions, coefficients, sources) to the PDE solution. They include
algorithms which approximate a discretization, on a fixed grid, of the underlying solution operator.
These can be based on convolutions [75, 18], graph neural networks [8, 56, 65] or transformers
[12, 57, 26, 20, 35]. Other operator learning algorithms are neural operators which can directly

*Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/camlab-ethz/poseidon
https://huggingface.co/camlab-ethz

process function space inputs and outputs, possibly sampled on multiple grid resolutions [27, 3].
These include DeepONets [13, 42], Fourier Neural Operator [33], SFNO [7], Geo-FNO [32], Low-
rank NO [34] and Convolutional Neural Operator [60], among many others.

However, existing operator learning methods are not sample efficient as they can require a very large
number of training examples to learn the target solution operator with desired accuracy (see Figure 1
or Figure 3 of [60]). This impedes their widespread use as task-specific training data is very expensive
to generate either with numerical simulations or measurements of the underlying physical system.

incomp. flow

Task-specific
Operator Learning

POSEIDON: Foundation Model for PDEs
pretrain

scOT

finetune on out-of-distribution downstream tasks

NS Comp. Euler
1 64 4096

10−2

10−1

100

R
el

a
ti

ve
er

ro
r

1 64 4096 1 64 4096 1 64 4096

Number of
trajectories

Poseidon-B

FNO

Wave Poisson

...
+ +

compressible
NS

model compressible incomp. flow

Poisson
model

Wave
model

Comp. Euler
model

Figure 1: As opposed to PDE-specific operator learning, our pretrained model POSEIDON is up to
multiple orders of magnitude more sample efficient than a task-specific neural operator while also
being able to transfer to unseen physics during finetuning.

How can the number of training samples for PDE learning be significantly reduced? In this context,
can we learn from language modeling and computer vision where a similar question often arises
and the current paradigm is to build foundation models [6]. These generalist models are pretrained,
at-scale, on large datasets drawn from a diverse set of data distributions. They leverage the intrinsic
ability of neural networks to learn effective representations from pretraining and are then successfully
deployed on a variety of downstream tasks by finetuning them on a few task-specific samples.
Examples of such models include highly successful large language models [10, 72], large multi-
modal models[17, 52] and foundation models for robotics [9], chemistry [4], biology [63], medicine
[64] and climate [54].

Despite very recent preliminary attempts [67, 74, 1, 49, 19, 68, 66], the challenge of designing such
foundation models for PDEs is formidable, given the sheer variety of PDEs (linear and nonlinear,
steady and evolutionary, elliptic, parabolic, hyperbolic and mixed etc.), the immense diversity of data
distributions, wide range of underlying spatio-temporal scales and the paucity of publicly available
high-quality datasets. In particular, the very feasibility of designing PDE foundation models rests on
the fundamental and unanswered science question of why pretraining a model on a (very) small set of
PDEs and underlying data-distributions can allow it to learn effective representations and generalize
to unseen and unrelated PDEs and data-distributions via finetuning?

The investigation of this open question motivates us here to present the POSEIDON family of PDE
foundation models. POSEIDON, see Figures 1 and 2, is based on i) scalable Operator Transformer or
scOT, a multiscale vision transformer with (shifted) windowed or Swin attention [38, 37], adapted
for operator learning, ii) a novel all2all training strategy for efficiently leveraging trajectories of
solutions of time-dependent PDEs to scale up the volume of training data and iii) an open source
large-scale pretraining dataset, containing a set of novel solution operators of the compressible
Euler and incompressible Navier-Stokes equations of fluid dynamics. We evaluate POSEIDON
on a challenging suite of 15 downstream tasks, comprising of well-established benchmarks in
computational physics that encompass linear and nonlinear, time-dependent and independent and
elliptic, parabolic, hyperbolic and mixed type PDEs. All of these tasks are out-of-distribution with
respect to the pretraining data. Moreover, nine out of the 15 tasks even involve PDEs (and underlying
physical processes) which are not encountered during pretraining.

2

Through extensive experiments, we find that i) POSEIDON shows impressive performance across
the board and outperforms baselines on the downstream tasks, with significant gains in accuracy
and order of magnitude gains in sample efficiency. For instance, on an average (median) over the
downstream tasks, POSEIDON requires a mere 20 samples to attain the same error level as the
widely-used FNO does with 1024 samples. ii) These gains in accuracy and sample efficiency are also
displayed on tasks which involve PDEs not encountered during pretraining, allowing us to conclude
that POSEIDON can generalize to unseen and a priori unrelated physical processes and phenomena
with a few task-specific training examples and iii) POSEIDON scales with model and dataset size, both
for the pretraining as well as for downstream tasks and iv) through case studies, we elucidate possible
mechanisms via which POSEIDON is able to learn effective representations during pretraining, which
are then leveraged to generalize to unrelated PDEs downstream. Taken together, these results provide
the first positive answers to the afore-mentioned fundamental question of the very feasibility of PDE
foundation models and pave the way for the further development and deployment of POSEIDON as an
efficient general purpose PDE foundation model. Finally, we also open source the POSEIDON model
and the entire pretraining and downstream task datasets within the PDEGYM database.

2 Approach

Problem Formulation. We denote a generic time-dependent PDE as,

∂tu(x, t) + L
(
u,∇xu,∇2

xu, . . .
)
= 0, ∀x ∈ D ⊂ Rd, t ∈ (0, T),

B(u) = 0, ∀(x, t) ∈ ∂D × (0, T), u(0, x) = a(x), x ∈ D
(1)

Here, with a function space X ⊂ Lp(D;Rn) for some 1 ≤ p <∞, u ∈ C([0, T];X) is the solution
of (1), a ∈ X the initial datum and L,B are the underlying differential and boundary operators,
respectively. Note that (1) accommodates both PDEs with high-order time-derivatives as well as
PDEs with (time-independent) coefficients and sources by including the underlying functions within
the solution vector and augmenting L accordingly (see SM B.2 for examples).

Even time-independent PDEs can be recovered from (1) by taking the long-time limit, i.e.,
limt→∞ u = u, which will be the solution of the (generic) time-independent PDE,

L
(
u(x),∇xu,∇2

xu, . . .
)
= 0, ∀x ∈ D, B(u) = 0, ∀x ∈ ∂D. (2)

Solutions of the PDE (1) are given in terms of the underlying solution operator S : [0, T]× X 7→ X
such that u(t) = S(t, a) is the solution of (1) at any time t ∈ (0, T). Given a data distribution
µ ∈ Prob(X), the underlying operator learning task (OLT) is,

OLT: Given any initial datum a ∼ µ, find an approximation S∗ ≈ S to the solution operator S of
(1), in order to generate the entire solution trajectory {S∗(t, a)} for all t ∈ [0, T].

It is essential to emphasize here that the learned operator S∗ has to generate the entire solution
trajectory for (1), given only the initial datum (and boundary conditions), as this is what the
underlying solution operator S (and any numerical approximation to it) does.

Model Architecture. The backbone for the POSEIDON foundation model is provided by scOT or
scalable Operator Transformer, see Figure 2 (a-c) for an illustrated summary. scOT is a hierarchical
multiscale vision transformer with lead-time conditioning that processes lead time t and function
space valued initial data input a to approximate the solution operator S(t, a) of the PDE (1).

For simplicity of exposition, we set d = 2 and D = [0, 1]2 as the underlying domain. As in a vision
transformer [14], any underlying input is first partitioned into patches and (linearly) embedded into a
latent space. At the level of function inputs a ∈ C(D;Rn), this amounts to the action of the patch
partitioning and embedding operator v = Ê(a), with Ê defined in SM (12). This operator transforms
the input function into a piecewise constant function, which is constant within patches (subdivisions
of the domain D), by taking weighted averages and then transforming these piecewise constant values
into a C-dimensional latent space resulting in output v ∈ C(D;RC). In practice, a discrete version
of this operator is used and is described in SM A.2.

3

++ +

+ +

d T ξt
ξ
0

t
ξ
1

t
ξ
2

t
ξ
3

t
ξ
4

t...a

dt

+

+

Recovery + MixupEmbedding

Input Output

SwinV2
Stage

Patch Expansion

Patch Merging

ConvNeXt Blocks

Value

Attention

+

+

log

MLP

MLP

Softmax

scaled Cosine
Similarity

(Query + Key)

∆x

∆y

time-conditioned Layer Norm

dt time-conditioned Layer Norm

b

c

Sw
in
V
2

B
lo
ck
i

Sw
in
V
2

B
lo
ck
i+
1

Figure 2: (a) scOT, the model underlying POSEIDON; (b) SwinV2 Transformer block; (c) Shifting
Window over patch-based tokens with window (patch) boundaries with black (white); (d) all2all
Training for time-dependent PDEs.

As shown in Figure 2 (a), this patch embedded output is then processed through a sequence of SwinV2
transformer blocks [38, 37], each of which has the structure of SWℓ : C(D;RC) 7→ C(D;RC),

vℓ = SWℓ(vℓ−1) = v′
ℓ + LNαℓ

2,β
ℓ
2
(MLP (v′

ℓ)),

v′
ℓ = vℓ−1 + LNαℓ

1,β
ℓ
1
(W −MSA(vℓ−1)).

(3)

for layer index ℓ = 1, ..., L. The main building block of a SwinV2 transformer block (3) (see Figure
2 (b)) is the windowed multi-head self attention operator defined in SM (14) (see SM A.2 for its
discrete version). In particular, the attention operator acts only inside each window, which is defined
by another (coarser) sub-division of D (see Figure 2 (c)), making it more computationally efficient
than a standard vision transformer [14]. Moreover, the windows are shifted across layers, as depicted
in Figure 2 (c), so that all the points in the domain can be attended to, by iteratively shifting windows
across multiple layers, see SM A.2 for a detailed description of the SwinV2 block.

The MLP in (3) is defined by SM (15). We follow [55] to propose a time-conditioning strategy by
introducing a lead-time conditioned layer norm in (3),

LNα(t),β(t)(v)(x) = α(t)⊙ v(x)− µv(x)

σv(x)
+ β(t),

µv(x) =
1

C

C∑
j=1

vj(x), σ
2
v(x) =

1

C

C∑
j=1

(vj(x)− µv(x))
2,

(4)

Here, α(t) = αt + α and β(t) = βt + β, with learnable α, α, β, β although more general (small)
MLPs can also be considered. This choice of time embedding enables continuous-in-time evaluations.

Finally, as depicted in Figure 2 (a), the SwinV2 transformer blocks (3) are arranged in a hierarchical,
multiscale manner, within a U-Net style encoder-decoder architecture [11], by employing patch
merging (downscaling) and patch expansion (upscaling) operations, (see SM A.2 for a detailed
description). Moreover, layers at the same scale, but within the encoder and decoder stages of scOT,
respectively, are connected through ConvNeXt convolutional layers [39], specified in SM A.2.

Training and Inference. We denote scOT by S∗θ : [0, T] × X 7→ X, with trainable parameters
θ ∈ Θ ⊂ Rp. For scOT to approximate the solution operator S of (1), the parameters θ need to be
determined by minimizing the mismatch between the predictions of scOT and ground truth training
data, given in the form of trajectories {S(tk, ai)}, for 0 ≤ k ≤ K and 1 ≤ i ≤M , with ai ∼ µ and
0 = t0 < t1 < . . . tk < . . . < tK = T , being the time points at which the data is sampled. We
assume that the data is sampled at the same timepoints for each sample ai for simplicity. For training,
it is natural to consider the loss function,

L(θ) := 1

M(K + 1)

M∑
i=1

K∑
k=0

∥S∗θ(tk, ai)− S(tk, ai)∥pLp(D), (5)

4

with the (spatial) integral in (5) being replaced by a quadrature at some underlying sampling points
and p = 1 in our paper. Thus, we use K + 1 samples per trajectory in order to train our model.

Given the fact that scaling up available training data is necessary for successful foundation models
[23], we propose a novel training strategy that further leverages the structure of the time-dependent
PDE (1) to increase the amount of training data. To this end, we consider the modified loss function,

L̂(θ) := 1

MK̂

M∑
i=1

K∑
k,k̄=0,k≤k̄

∥S(tk̄ − tk, ui(tk))− S∗θ(tk̄ − tk, ui(tk))∥pLp(D), (6)

with ui(tk) = S(tk, ai) (approximately) solving (1) and K̂ = (K+1)(K+2)
2 . In other words, we

leverage the fact that the solution operator of (1) possesses a semi-group property and one can realize,

u(t∗) = S(t∗, a) = S(t∗ − t, u(t)) = S(t∗ − t, S(t, a)), ∀ 0 ≤ t ≤ t∗ ≤ T, (7)

and any initial condition a. We term this use of all possible data pairs (u(tk), u(tk̄)) with k ≤ k̄,
see Figure 2 (d) for a visual representation, within a trajectory as all2all training and observe that it
allows us to utilize quadratic O(K2) samples per trajectory, when compared to the linear K samples
used for training corresponding to the vanilla loss function (5). In practice, we consider a relative
form of Equation 6 to balance out different scales of different operator outputs, see SM C for details.

Once scOT has been trained with (stochastic) gradient descent to find a (local) minimum θ∗ of the
all2all loss function (6), the trained model, denoted as S∗θ∗ can be deployed for inference for any initial
condition a ∈ X and for any t ∈ R+ by directly applying S∗θ∗(t, a) to provide continuous-in-time
evaluation of the entire trajectory. However, it might be advantageous to infer using autoregressive
rollouts [36]. To this end, we consider a sequence 0 = t∗0 < t∗1 < . . . < t∗κ = t. Then, the rollout,

S(t, a) ≈ S∗θ∗

(
t∗κ − t∗κ−1, S

∗
θ∗(. S∗θ∗ (t∗2 − t∗1, S

∗
θ∗(t∗1, a))

)
, (8)

of κ successive applications of the trained scOT approximates the solution operator at any time t.

Pretraining. The key point in the development of any foundation model is the pretraining step, in
which the model is trained on a diverse set of data distributions, rather than just on data drawn from
one specific operator. To formulate pretraining and subsequent steps precisely, we introduce index
sets Λ,Ξ and let λ ∈ Λ and ξ ∈ Ξ correspond to indexing the PDE type and the data-distribution,
respectively. To see this, we fix any λ ∈ Λ, ξ ∈ Ξ and tag the differential and boundary operators
L,B in the PDE (1) by Lλ and Bλ. Similarly the initial distribution µ in (1) is tagged by µξ and the
resulting solution operator for PDE (1) with Lλ,Bλ and initial datum a ∼ µξ is denoted by Sλ,ξ. In
other words, Λ,Ξ indexes the entire set of PDEs and data distributions that we consider.

Next, we fix index sets, Λ̂ ⊂ Λ and Ξ̂ ⊂ Ξ and consider a set of PDEs (1), indexed by λ ∈ Λ̂

and with data distributions µξ, indexed by ξ ∈ Ξ̂ as the pretraining dataset, which consists of the
corresponding trajectories, {Sλ,ξ(t, ·)}, for all t and all (λ, ξ) ∈ (Λ̂, Ξ̂).

Let nΞ̂ be the maximum number of components of the solution vectors for all the operators in
the pretraining dataset. By including additional (constant 0 over space and time) components, we
augment the relevant solution operators (for which the number of components is below nΞ̂) such that
for each λ ∈ Λ̂, ξ ∈ Ξ̂, all the input functions have the same number of nΞ̂ components (channels).
These inputs are fed into a scOT model ΠΛ̂,Ξ̂

θ : [0, T̂]×Lp(D;RnΞ̂

) 7→ C([0, T̂];Lp(D;RnΞ̂

)), with
T̂ being the supremum over all the final times in the pretraining dataset. The trainable parameters θ
of this pretrained model are then determined by minimizing the mismatch between model predictions
and ground truth over all PDEs and data distributions in the pretraining dataset resulting in,

ΠΛ̂,Ξ̂
∗ = ΠΛ̂,Ξ̂

θ∗ , with θ∗ = argminθ∈Θ

1

|Λ̂||Ξ̂|
∑
λ∈Λ̂

∑
ξ∈Ξ̂

L̂λ,ξ(θ) , (9)

with L̂λ,ξ obtained by replacing S and S∗θ in (6) with Sλ,ξ and ΠΛ̂,Ξ̂
θ , respectively.

Finetuning. To finetune the pretrained foundation model ΠΛ̂,Ξ̂
∗ for any downstream task, correspond-

ing any specific solution operator Sλ,ξ for any λ ∈ Λ, ξ ∈ Ξ, we decompose the vector of learnable

5

parameters θ ∈ Θ ⊂ Rp as θ = [θ̂, θ̃, θ̃N], with θ̂ ∈ Rp̂, θ̃ ∈ Rp̃, and θ̃N ∈ Rp̃N and p̂+ p̃+ p̃N = p,
with p̃, p̃N ≪ p̂. A gradient descent step for finetuning is then written as,

∀r ≥ 1, [θ̂r+1, θ̃r+1, θ̃
N
r+1] = [θ̂r, θ̃r, θ̃

N
r]− [η̂r, η̃r, η̃

N
r]∇θL̂λ,ξ(θr),

θ̂0 = θ̂∗, θ̃N0 = θ̃N∗ , θ̃0 ∼ P̃ , P̃ ∈ Prob(Rp̃).
(10)

Hence, during finetuning, a subset of parameters θ̃ of the foundation model are trained from scratch
with random initializations, whereas the complementary, much larger subset of θ̂ and θ̃N is initialized
by transferring the corresponding parameters from the pretrained model. When λ /∈ Λ̂, θ̃ consists
of the embedding/recovery parameters. On the other hand, if λ ∈ Λ̂, then all trainable parameters,
including the patch embeddings/recovery, are initialized with the corresponding parameters of the
pretrained model. However, the corresponding learning rate η̃r ≫ η̂r in (10) is much higher. Similarly,
the time embeddings θ̃N , i.e., the trainable parameters in the layer-norm operators (4) are always
initialized from the corresponding time embeddings in the pretrained model but finetuned with a
higher learning rate η̃N .

3 Experiments

Pretraining Dataset. We pretrain POSEIDON on a dataset containing 6 operators, defined on
the space-time domain [0, 1]2 × [0, 1]. 4 of these operators (CE-RP, CE-KH, CE-CRP, CE-Gauss)
pertain to the compressible Euler equations (SM (37)) of gas dynamics and 2 (NS-Sines, NS-Gauss)
to the incompressible Navier-Stokes equations (SM (31)) of fluid dynamics, see SM Table 3 for
abbreviations and SM B.1 for a detailed description of these datasets. These datasets have been
selected to highlight different aspects of the PDEs governing fluid flows (shocks and shear layers,
global and local turbulent features, and mixing layers etc.). The pretraining dataset contains 9640 and
19640 trajectories for the Euler and Navier-Stokes operators, respectively, leading to a total of 77840
trajectories. Each trajectory is uniformly sampled at 11 time snapshots. Within the all2all training
procedure (Section 2), this implies a total of 66 input-output pairs per trajectory, leading to approx
5.11M training examples in the pretraining dataset.

Downstream Tasks. To evaluate POSEIDON (and the baselines), we select a suite of 15 challenging
downstream tasks, see SM Table 4 for abbreviations and SM B.2 for detailed description. Each
of these tasks is a (variant of) well-known benchmarks for PDEs in the numerical analysis and
computational physics literature and corresponds to a distinct PDE solution operator. They have also
been selected for their diversity in terms of the PDE types as they contain linear (4) and nonlinear (11),
time-dependent (12) and time-independent (3), elliptic (2), parabolic (1), hyperbolic (4) and mixed-
type (8). The tasks also cover a wide gamut of physical processes across a range of spatio-temporal
scales. Moreover, we emphasize that each of the downstream tasks is out-of-distribution with respect
to the pretraining data. While 6 of them do pertain to the Euler and Navier-Stokes equations seen
in the pretraining dataset but with very different data distributions, the remaining 9 involve PDEs
not seen during pretraining. These include 3 (NS-Tracer-PwC, FNS-KF, GCE-RT) which add new
physical processes (tracer transport, forcing, gravity) to the Navier-Stokes and Euler equations. 3
more (Wave-Gauss, Wave-Layer, ACE) involve completely new time-dependent PDEs (Wave Eqn.,
Allen-Cahn Eqn.) and the final 3 (SE-AF, Poisson-Gauss, Helmholtz) even consider time-independent
PDEs, which is in stark contrast to the pretraining dataset where only 2 time-dependent PDEs are
covered. For these steady state PDEs, we finetune them by using the interpretation of the PDE
(2) as a long-time limit of the time-dependent PDE (1) with a normalized lead time of 1. Finally,
the tasks have also been selected to probe the ability of the foundation model to handle different
task or operator types. To this end, we point out that all the operators in the pretraining dataset
simply map the initial conditions to the solution at later times in time-dependent fluid flows on the
two-dimensional unit square with periodic boundary conditions. While some of the downstream tasks
(8 out of 15) do pertain to this type of operators, the remaining (7 out of 15) tasks involve different
types of operators which include operators mapping the coefficients or PDE parameters to the PDE
solution (5 out of 15), forcing term to the PDE solution (2) and domain shape to the PDE solution.
Moreover, many of the downstream tasks are with non-periodic boundary conditions while one of
them is even on a non-Cartesian domain. Thus, these downstream tasks deviate from the setup of the
pretraining operators and provide a hierarchy of challenges for any foundation model.

6

Models and Baselines. We consider three different POSEIDON models: i) POSEIDON-T with
≈ 21M parameters, ii) POSEIDON-B with ≈ 158M parameters, and iii) POSEIDON-L with ≈ 629M
parameters. The detailed specifications of each of these models is provided in SM C.1. As baselines,
in addition to the standalone scOT, we use trained from scratch neural operators in the form of the
widely used FNO [33] and recently proposed CNO [60], each augmented with time-conditioned
instance normalizations. Foundation model baselines are provided by MPP-aVIT (MPP) [49] and we
also pretrain a CNO [60] model (see details in SM C.5) on our pretraining dataset, resulting in an
additional foundation model baseline termed CNO-FM, see SM C for details on baselines.

Evaluation Metrics. All the models and baselines are evaluated on each task in terms of the relative
L1 error at the underlying final time. This choice is motivated by the fact that errors tend to grow over
time, making final time prediction harder than any time-averaged quantities, see SM D.6.3. This also
corresponds well to the interpretation of time-independent PDEs as long-time limits of (1). Following
[23] that advocates this approach for LLMs, we evaluate all models in terms of scaling curves which
plot the test error for each task vs. the number of task-specific training examples, see SM D.1. To
extract further information from scaling plots, we introduce two evaluation metrics,

AGS(model) :=
ES(FNO)

ES(model)
, EGS(model) :=

S

s
, where Es(model) = ES(FNO), (11)

with ES(model) being the relative error (at final time) for the model with S trajectories. Thus,
Accuracy Gain AGS measures how accurate the model is w.r.t. FNO for a given number (S) of
samples while Efficiency Gain EGS measures how much fewer (greater) number of samples the
model needs to attain the same error level as FNO trained on S samples. AG is the relevant metric
for the limited compute regime whereas EG is relevant for the limited data regime.

POSEIDON performs very well on all downstream tasks. From the scaling plots SM Figures 7
to 21, we observe that POSEIDON readily outperforms FNO on all the 15 downstream tasks. This
point is further buttressed by Table 1, where the EG and AG (11) metrics are presented (see also
SM Table 8 for these metrics for the POSEIDON-B and -T models). We observe from this table that
POSEIDON requires far fewer task specific samples to attain the same error level as FNO does with
S = 1024 samples for time-dependent PDEs (S = 4096 for time-independent PDEs). In fact, there
are 4 tasks for which a mere 3 task-specific samples suffice for POSEIDON to attain the same error
as FNO with 1024 samples. From SM Table 9, we observe that, on an average (median), only 20
samples are needed for POSEIDON-L to reach the errors of FNO with 1024 samples and in 13 (of the
15) tasks, POSEIDON-L needs an order of magnitude fewer samples than FNO. Similarly from Table
1 and SM Table 9, we see that for the same number (S = 128 for time-dependent, and S = 512
for time-independent PDEs) of samples, POSEIDON-L has significantly lower error than FNO, with
gains ranging from anywhere between 10% to a factor of 25, with the mean gain of accuracy being
an entire order of magnitude.

Among the trained-from-scratch neural operator baselines, CNO and scOT are comparable in perfor-
mance to each other, while both outperform FNO significantly on almost all tasks (see Table 1 and
SM Table 9). However, POSEIDON is much superior to both of them, in terms of gains in sample
efficiency (median gain of an order of magnitude) as well as accuracy (average gain of a factor of 4).

POSEIDON generalizes well to unseen physics. This impressive performance of POSEIDON is
particularly noteworthy as all the downstream tasks are out-of-distribution with respect to the pre-
training dataset. This performance is also consistent across the 9 tasks which involve PDEs not seen
during pretraining. POSEIDON is the best performing model on 8 of these tasks, including all the
time-dependent PDEs. It is only for 1 of the time-indepedent PDEs, which constitute the hardest
generalization challenge, that POSEIDON is outperformed by CNO, but only marginally. These results
underscore the ability of POSEIDON to learn completely new physical processes and contexts from a
few downstream task-specific samples.

Architecture of the foundation model matters. We observe from SM D.1 and Table 1 (see also
SM Table 9) that POSEIDON outperforms CNO-FM clearly on 14 out of 15 downstream tasks. On
average (median over all tasks), CNO-FM requires approximately 100 task-specific examples to
attain the error levels of FNO with 1024 samples, whereas POSEIDON only requires approximately
20. As CNO-FM and POSEIDON have been pretrained on exactly the same dataset, this difference in
performance can be largely attributed to architectural differences as CNO-FM is based on multiscale
CNNs, in contrast to the multiscale vision transformer which is the backbone of POSEIDON.

7

Table 1: Efficiency gain EG ((11) with S = 1024 for time-dependent and S = 4096 for time-
independent PDEs) and Accuracy Gain (AG) ((11) with S = 128 for time-dependent and S = 512
for time-independent PDEs) for all models and downstream tasks.

Pretrained Models Models trained from Scratch

POSEIDON-L CNO-FM MPP-B CNO scOT FNO

EG AG EG AG EG AG EG AG EG AG EG AG

NS-PwC 890.6 24.7 16.6 3.3 7.4 2.3 3.7 1.5 5.4 2.0 1 1

NS-SVS 502.9 7.3 59.6 3.1 34.8 2.2 73.2 3.4 10.2 1.2 1 1

NS-BB 552.5 29.3 10.6 3.9 4.6 2.6 2.7 1.7 3.4 2.1 1 1

NS-SL 21.9 5.5 0.4 0.8 0.3 0.8 0.8 1.2 0.3 0.8 1 1

NS-Tracer-PwC 49.8 8.7 17.8 3.6 8.5 2.7 4.6 1.9 4.6 1.9 1 1

FNS-KF 62.5 7.4 13.2 2.7 2.0 1.6 3.1 1.5 3.3 0.9 1 1

CE-RPUI 352.2 6.5 33.2 2.3 0.0 1.2 12.5 1.8 15.6 2.1 1 1

CE-RM 4.6 1.2 0.6 1.0 0.0 0.2 1.7 1.1 0.4 1.0 1 1

SE-AF 3.4 1.2 4.8 1.3 2.2 1.1 5.5 1.5 1.2 1.0 1 1

GCE-RT 5.3 2.0 1.2 1.0 0.0 0.3 1.2 1.4 1.1 1.1 1 1

Wave-Layer 46.5 6.1 5.6 2.2 0.0 0.9 11.4 3.0 13.0 2.9 1 1

Wave-Gauss 62.1 5.6 6.0 1.8 0.0 0.8 14.0 2.6 9.2 2.1 1 1

ACE 17.0 11.6 1.7 2.0 0.0 0.3 4.5 4.6 6.5 5.2 1 1

Poisson-Gauss 42.5 20.5 25.0 9.2 17.0 7.3 21.1 7.0 9.8 5.3 1 1

Helmholtz 78.3 6.1 54.0 5.1 22.4 3.0 68.9 7.3 60.4 9.0 1 1

The second baseline foundation model, MPP-B of [49], is based on a transformer with axial attention
and is pretrained on the PDEBench dataset [71]. However, it has been trained to predict the next time
step, given a context window of τ previous time steps, with τ = 16 as the default. We emphasize that
this next step prediction, given a context window, does not solve the underlying operator learning task
OLT directly as OLT requires that the entire trajectory needs to be generated, given the initial data.
Hence, we had to finetune the pretrained MPP model with varying context windows (starting with
window size of 1), see SM C.6 for details. We see from Table 1 and SM Table 9 that the finetuned
MPP modestly outperformed FNO on some (8 out of 15) of the downstream tasks but it failed on the
rest of them, where MPP simply could not attain the error levels of FNO, as it did not converge or
even blew up with increasing number of downstream samples (see scaling plots in SM D.1).

In this context, it can be argued that the POSEIDON-L model is larger in size than both CNO-FM and
MPP-B and perhaps, it is this size difference which explains the differential in performance. However,
this is far from the case. As shown in all the scaling plots of SM D.1 and SM Tables 8 and 9, both
CNO-FM and MPP-B are significantly inferior to the POSEIDON-B model, which is comparable in
size. In fact, we can see from these tables that even the POSEIDON-T model, which is an order of
magnitude smaller in size, outperforms CNO-FM and MPP-B handily. It also readily outperforms all
the trained-from-scratch neural operators (CNO, FNO and scOT) which are of comparable size to it,
leading us to conclude that it is the combination of the pretraining dataset as well as the underlying
architecture, rather than just model size, that underpins the superior performance of POSEIDON.

POSEIDON scales with model size. Nevertheless, the model size of POSEIDON does matter. As
seen from SM Figure 22, both the training as well as evaluation (validation) errors on the pretraining
dataset clearly decrease with increasing model size of POSEIDON. However, does this scaling with
model size lead to any impact on the performance of these models, when finetuned on downstream
tasks? We see from the scaling plots in SM D.1 that POSEIDON-L consistently outperforms the
smaller POSEIDON-B on most downstream tasks. This trend is reinforced by SM Tables 8 and 9,
where we find that, on an average, increasing model size correlates with a consistent decrease in test
error as well as an increase in sample efficiency of the pretrained model on downstream tasks.

8

POSEIDON scales with dataset size. In SM Figure 23, we show how by increasing the size of the
pretraining dataset, in terms of the number of trajectories, the training and validation losses for the
pretrained POSEIDON-B model decrease. Moreover, from SM Figures 24 to 38, where we plot the
test error versus number of downstream task-specific samples for 2 different models, POSEIDON-B
trained on the full pretraining dataset and on one-eighth of the pretraining dataset, we find that for
most (9 of the 15) of the downstream tasks, increasing the number of samples in the pretraining
dataset, by an order of magnitude, does lead to significantly greater accuracy even at the downstream
task level. For the remaining tasks, the models trained with less data are either on par or marginally
inferior to the model trained with the full dataset.

The quality/diversity of the pretraining dataset matters. To demonstrate this point, we consider
two different datasets: one in which half the trajectories of the pretraining dataset for POSEIDON-B are
randomly dropped (from every operator), and the other where less diversity of the pretraining dataset
is imposed by dropping all the trajectories corresponding to 3 out of 6 operators, namely CE-CRP,
CE-Gauss and NS-Sines. Thus, the total size of both datasets is the same but one is clearly less
diverse than the other. The respective POSEIDON-B models are then evaluated on all the downstream
tasks. As shown SM Figures 24 to 38, the model trained on less diverse data performs worse than its
counterpart on 10 out of the 15 tasks and is on par on 4 of them. Thus, we demonstrate that in a large
majority of downstream tasks, the quality/diversity of the pretraining dataset matters.

How does POSEIDON generalize to unseen physics? In order to understand the surprising ability
of POSEIDON to generalize so well to unseen and a priori unrelated PDEs and physical processes
downstream, we present three case studies in SM D.4 to uncover some of the inner workings of this
foundation model. In particular, we first consider the CE-RPUI downstream task. This task pertains
to the compressible Euler equations, which are included in the pretraining dataset. However, the
underlying initial data distribution is not seen during pretraining, making the task out-of-distribution.
We show in SM D.4.1, how POSEIDON leverages different features of different operators from
the pretraining dataset to learn this task accurately with very few samples (see SM Figure 39). In
particular, the diversity of the pretraining dataset is more instrumental in ensuring better generalization
to this unseen initial condition than the size of the dataset.

In SM D.4.3, we study the Poisson-Gauss task to understand arguably the most surprising finding
about the POSEIDON foundation models, i.e., their ability to generalize well to PDEs that are
completely unrelated to the Euler and Navier-Stokes equations of fluid dynamics. This task pertains
to the Poisson equation (68) with a forcing term, which is a superposition of Gaussians. The
task is very different from those seen during pretraining in multiple ways, namely the underlying
PDE is not only time-independent (in contrast to the time-dependent PDEs of pretraining) but also
elliptic (whereas the PDEs during pretraining are either hyperbolic or convection-dominated) and
the boundary conditions are Dirichlet (instead of Periodic) leading to very different physics, that
of diffusion and smoothing, being manifested for this task, when contrasted with the physics seen
during pretraining which is dominated by transport, shock wave propagation and fluid mixing. Given
this context, one would not expect POSEIDON to perform well on this task. Yet, from SM Figures
20 and 74, we know that POSEIDON performs exceptionally well, learning the solution operator
accurately with a few samples. As we elaborate in SM D.4.3, POSEIDON does not use the first
few training examples to forget the physics that it has learned during pretraining and learn the new
physics for this task after that. Rather surprisingly, as illustrated in SM Figure 43, already with one
task specific training example, POSEIDON outputs an (approximation of the) input, rather than the
expected dynamic evolution of fluids with Gaussian inputs (see SM Figures 56 and 60) seen during
pretraining. Then, with very few (16) examples, it is able to learn the rudiments of diffusion and
smoothing of features (SM Figure 43), which are characteristics of elliptic equations. To further test
how the foundation model leverages physics representations learned during pretraining, we froze the
latent space by only finetuning the embeddings and freezing the latent space parameters by setting
θ̂r = θ̂∗ for all r, in (10) for finetuning. As shown in (SM Figure 44), even this frozen latent version
of POSEIDON is very effective at learning the underlying solution operator, demonstrating that very
rich physical representations were learned during pretraining.

Further results on the robustness of POSEIDON for different factors and ablations as well as compar-
isons with other foundation models is provided in SM D and details of computational resources are
described in SM E.

9

4 Discussion

Summary. In this paper, we have presented POSEIDON, a family of foundation models for learning
PDEs. The backbone of POSEIDON is scOT, a multiscale vision transformer with shifted-windowed
(SwinV2) attention that maps input functions (initial data, coefficients, sources) etc. to the solution
(trajectory) of a PDE. Lead-time conditioning through a time-modulated layer norm allows for
continuous-in-time evaluation and a novel all2all training strategy enables the scaling up of training
data by leveraging the semi-group structure of solutions of time-dependent PDEs. POSEIDON is
pretrained on a diverse large-scale dataset of operators for the compressible Euler and incompressible
Navier-Stokes PDEs. Its performance is evaluated on a challenging suite of 15 out-of-distribution
downstream tasks covering a wide variety of PDEs and data distributions. POSEIDON displays
excellent downstream performance and is the best performing model on 14 of the 15 tasks. In
particular, it requires orders of magnitude (median of 50) fewer task-specific samples to attain the
same error as the widely used FNO. This large gain in sample efficiency as well as order of magnitude
gains in accuracy also holds for PDEs that are not seen during pretraining, making us conclude that
POSEIDON generalizes well to new physics. POSEIDON also scales with model and dataset size,
with respect to pretraining and even downstream task performance. To the best of our knowledge,
this is the first time that it has been clearly demonstrated that by pretraining on a very small set
of PDEs, a foundation model can generalize to a wider variety of unseen and unrelated PDEs and
data distributions downstream. Thus, we provide an affirmative answer to the very fundamental
question of whether foundation models for PDEs are even feasible. Moreover, we investigate possible
mechanisms via which POSEIDON can effectively leverage representations, learnt during pretraining,
to accurately learn downstream tasks by finetuning on a few task-specific examples. Our case
studies suggest hitherto undiscovered relationships between different PDEs that enable this transfer
to materialize. Finally, all the models are made publicly available, as well as the pretraining and
downstream datasets are open sourced in the PDEGYM collection.

Related Work. Foundation models for PDEs are of very recent vintage. The foundation model
of [67] is limited to very specific elliptic Poisson and Helmholtz PDEs with a FNO backbone
whereas ICON [74] considers a very small 1-D dataset. Neither of these models are comparable in
scope to POSEIDON. Universal physics transformers [1] employs transformers but its focus is on
incompressible fluid flows and the ability to generalize across Eulerian and Lagrangian data. Thus,
a direct comparison with POSEIDON is not possible. On the other hand, MPP [49] and DPOT [19]
are designed to be general purpose foundation models for PDEs that can be compared to POSEIDON.
We have already extensively compared MPP with POSEIDON in Section 3 to demonstrate the very
large superiority of POSEIDON across various metrics. Although DPOT has a different architecture
(Adaptive FNO) and was trained on more datasets than MPP, it follows a similar training and
evaluation strategy of next time-step prediction, given a context window of previous time-steps. As
argued before, this does not solve the operator learning task of generating the entire trajectory, given
initial data. At the time of writing this paper, DPOT was not publicly available but it was released by
the time this paper has been revised, enabling us to modify the fine-tuning procedure of DPOT and to
perform comparisons between it and POSEIDON. While directing the interested reader to SM D.5
for details, we summarize our findings by observing that POSEIDON models are significantly better
performing than DPOT foundation models, both in terms of accuracy and sample efficiency.

Limitations. The range of PDEs and underlying data distributions is huge and POSEIDON was only
trained and evaluated on a few of them. Although the results here clearly demonstrate its ability
to learn unseen physics from a few task-specific training examples, we anticipate that given that
it is scaling with respect to both data quantity and quality, POSEIDON’s performance as a general
purpose PDE foundation model will significantly improve when it is pretrained with even more
diverse PDE datasets in the future. In particular, pretraining with time-independent PDEs (particularly
elliptic PDEs) as well as a larger range of time-scales in time-dependent PDEs will greatly enhance
POSEIDON. The focus here was on Cartesian geometries although POSEIDON displayed the ability
to generalize to non-Cartesian geometries, via masking, on the SE-AF task. We plan to add several
non-Cartesian examples in the pretraining dataset to augment POSEIDON’s performance on general
geometries/boundary conditions. Moreover, given the fact that POSEIDON serves as a fast and
accurate neural PDE surrogate, its extension to qualitatively different downstream tasks such as
uncertainty quantification [45], inverse problems [53] and PDE-constrained optimization [46] is fairly
straightforward and will be considered in future work.

10

https://huggingface.co/collections/camlab-ethz/pdegym-665472c2b1181f7d10b40651

Acknowledgments and Disclosure of Funding

This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under
project ID 1217.

References
[1] B. Alkin, A. Fürst, S. Schmid, L. Gruber, M. Holzleitner, and J. Brandstetter. Universal physics

transformers: A framework for efficiently scaling neural operators, 2024.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization, 2016.

[3] F. Bartolucci, E. de Bézenac, B. Raonic, R. Molinaro, S. Mishra, and R. Alaifari. Representation
equivalent neural operators: a framework for alias-free operator learning. arXiv:2305.19913,
2023.

[4] I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula,
M. Asta, M. Avaylon, W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S. M. Blau, V. Cărare,
J. P. Darby, S. De, F. D. Pia, V. L. Deringer, R. Elijošius, Z. El-Machachi, F. Falcioni, E. Fako,
A. C. Ferrari, A. Genreith-Schriever, J. George, R. E. A. Goodall, C. P. Grey, P. Grigorev,
S. Han, W. Handley, H. H. Heenen, K. Hermansson, C. Holm, J. Jaafar, S. Hofmann, K. S.
Jakob, H. Jung, V. Kapil, A. D. Kaplan, N. Karimitari, J. R. Kermode, N. Kroupa, J. Kullgren,
M. C. Kuner, D. Kuryla, G. Liepuoniute, J. T. Margraf, I.-B. Magdău, A. Michaelides, J. H.
Moore, A. A. Naik, S. P. Niblett, S. W. Norwood, N. O’Neill, C. Ortner, K. A. Persson, K. Reuter,
A. S. Rosen, L. L. Schaaf, C. Schran, B. X. Shi, E. Sivonxay, T. K. Stenczel, V. Svahn, C. Sutton,
T. D. Swinburne, J. Tilly, C. van der Oord, E. Varga-Umbrich, T. Vegge, M. Vondrák, Y. Wang,
W. C. Witt, F. Zills, and G. Csányi. A foundation model for atomistic materials chemistry, 2024.

[5] J. Bell, P. Collela, and H. M. Glaz. A second-order projection method for the incompressible
Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[6] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji,
A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,
J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman,
S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee,
T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani,
E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C.
Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech,
E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz,
J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin,
R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie,
M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou,
and P. Liang. On the opportunities and risks of foundation models, 2022.

[7] B. Bonev, T. Kurth, C. Hundt, J. Pathak, M. Baust, K. Kashinath, and A. Anandkumar.
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere, June 2023.
arXiv:2306.03838 [physics].

[8] J. Brandstetter, D. E. Worrall, and M. Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022.

[9] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,
L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,
K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,
H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao,
P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-2: Vision-language-action models transfer web
knowledge to robotic control, 2023.

11

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners, 2020.

[11] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang. Swin-Unet: Unet-
Like Pure Transformer for Medical Image Segmentation. In L. Karlinsky, T. Michaeli, and
K. Nishino, editors, Computer Vision – ECCV 2022 Workshops, Lecture Notes in Computer
Science, pages 205–218, Cham, 2023. Springer Nature Switzerland.

[12] S. Cao. Choose a transformer: Fourier or galerkin. In 35th conference on neural information
processing systems, 2021.

[13] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale, June 2021. arXiv:2010.11929 [cs].

[15] L. C. Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

[16] U. S. Fjordholm, R. Käppeli, S. Mishra, and E. Tadmor. Construction of approximate entropy
measure valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math.,
17(3):763–827, 2017.

[17] . Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

[18] J. K. Gupta and J. Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling,
2022.

[19] Z. Hao, C. Su, S. Liu, J. Berner, C. Ying, H. Su, A. Anandkumar, J. Song, and J. Zhu. DPOT:
Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training, Mar. 2024.
arXiv:2403.03542 [cs, math].

[20] Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, and J. Zhu. Gnot: A
general neural operator transformer for operator learning, 2023.

[21] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus), 2023.

[22] J. S. Hesthaven. Numerical methods for conservation laws: From analysis to algorithms. SIAM,
2018.

[23] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling Laws for Neural Language Models, Jan. 2020. arXiv:2001.08361
[cs, stat].

[24] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics
informed machine learning. Nature Reviews Physics, pages 1–19, may 2021.

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J. Pappas, and P. Perdikaris.
Learning operators with coupled attention. Journal of Machine Learning Research, 23(215):1–
63, 2022.

[27] N. Kovachki, Z. Li, B. Liu, K. Azizzadensheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481v3,
2021.

[28] R. Käppeli and S. Mishra. Well-balanced schemes for the euler equations with gravitation.
Journal of Computational Physics, 259:199–219, 2014.

12

[29] L. D. Landau and E. M. Lipschitz. Fluid Mechanics, 2nd edition. Butterworth Heinemann,
1987.

[30] S. Lanthaler and S. Mishra. On the convergence of the spectral viscosity method for the
two-dimensional incompressible euler equations with rough initial data. Foundations of Compu-
tational Mathematics, 20(5):1309–1362, 10 2020.

[31] S. Lanthaler, S. Mishra, and C. Parés-Pulido. Statistical solutions of the incompressible euler
equations. Mathematical Models and Methods in Applied Sciences, 31(02):223–292, Feb 2021.

[32] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned deforma-
tions for pdes on general geometries, 2022.

[33] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2021.

[34] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, A. M. Stuart, K. Bhattacharya, and A. Anand-
kumar. Multipole graph neural operator for parametric partial differential equations. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages 6755–6766. Curran Associates,
Inc., 2020.

[35] Z. Li, K. Meidani, and A. B. Farimani. Transformer for partial differential equations’ operator
learning, 2023.

[36] P. Lippe and B. S. Veeling. PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE
Solvers.

[37] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong,
F. Wei, and B. Guo. Swin Transformer V2: Scaling Up Capacity and Resolution, Apr. 2022.
arXiv:2111.09883 [cs].

[38] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows, Aug. 2021. arXiv:2103.14030 [cs].

[39] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A ConvNet for the 2020s,
Mar. 2022. arXiv:2201.03545 [cs].

[40] A. Logg, K.-A. Mardal, and G. N. Wells. Automated solution of differential equations by the
finite element method: The FEniCS book. Springer, 2012.

[41] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[42] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[43] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte, J. Hückelheim, C. Yount, P. H. J.
Kelly, F. J. Herrmann, and G. J. Gorman. Architecture and performance of devito, a system for
automated stencil computation. ACM Trans. Math. Softw., 46(1), apr 2020.

[44] K. O. Lye. Computation of statistical solutions of hyperbolic systems of conservation laws. PhD
thesis, 2020.

[45] K. O. Lye, S. Mishra, and D. Ray. Deep learning observables in computational fluid dynamics.
Journal of Computational Physics, page 109339, 2020.

[46] K. O. Lye, S. Mishra, D. Ray, and P. Chandrasekhar. Iterative Surrogate Model Optimization
(ISMO): An active learning algorithm for PDE constrained optimization with deep neural
networks. Computer Methods in Applied Mechanics and Engineering, 374:113575, Feb. 2021.
arXiv:2008.05730 [cs, math].

[47] A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2001.

13

[48] D. A. Masters, N. J. Taylor, T. Rendall, C. B. Allen, and D. J. Poole. Geometric comparison of
aerofoil shape parameterization methods. AIAA Journal, pages 1575–1589, 2017.

[49] M. McCabe, B. R.-S. Blancard, L. H. Parker, R. Ohana, M. Cranmer, A. Bietti, M. Eickenberg,
S. Golkar, G. Krawezik, F. Lanusse, M. Pettee, T. Tesileanu, K. Cho, and S. Ho. Multiple
Physics Pretraining for Physical Surrogate Models, Oct. 2023. arXiv:2310.02994 [cs, stat].

[50] S. Mishra, C. Schwab, and J. Šukys. Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys., 231(8):3365–
3388, 2012.

[51] S. Mishra and A. E. Townsend. Numerical Analysis meets Machine Learning. Handbook of
Numerical Analysis. Springer, 2024.

[52] D. Mizrahi, R. Bachmann, O. F. Kar, T. Yeo, M. Gao, A. Dehghan, and A. Zamir. 4M: Massively
Multimodal Masked Modeling, Dec. 2023. arXiv:2312.06647 [cs].

[53] R. Molinaro, Y. Yang, B. Engquist, and S. Mishra. Neural inverse operators for solving pde
inverse problems, 2023.

[54] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover. Climax: A foundation model
for weather and climate, 2023.

[55] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with
a general conditioning layer. CoRR, abs/1709.07871, 2017.

[56] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning Mesh-Based
Simulation with Graph Networks, June 2021. arXiv:2010.03409 [cs].

[57] M. Prasthofer, T. De Ryck, and S. Mishra. Variable input deep operator networks. arXiv preprint
arXiv:2205.11404, 2022.

[58] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential
equations: an introduction, volume 92. Springer, 2015.

[59] A. Quarteroni and A. Valli. Numerical approximation of Partial differential equations, vol-
ume 23. Springer, 1994.

[60] B. Raonić, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, and
E. de Bézenac. Convolutional Neural Operators for robust and accurate learning of PDEs, Dec.
2023. arXiv:2302.01178 [cs].

[61] R.Krasny. A study of singularity formation in a vortex sheet with a point vortex approximation.
J. Fluid Mech., 167:65–93, 1986.

[62] T. Rohner and S. Mishra. Efficient computation of large-scale statistical solutions to incompress-
ible fluid flows. In Proceedings of the Platform for Advanced Scientific Computing Conference,
PASC ’24. ACM, June 2024.

[63] Y. Rosen, Y. Roohani, A. Agarwal, L. Samotorcan, S. R. Quake, and J. Leskovec. Universal
cell embeddings: A foundation model for cell biology. bioRxiv, 2023.

[64] K. Saab, T. Tu, W.-H. Weng, R. Tanno, D. Stutz, E. Wulczyn, F. Zhang, T. Strother, C. Park,
E. Vedadi, J. Z. Chaves, S.-Y. Hu, M. Schaekermann, A. Kamath, Y. Cheng, D. G. T. Barrett,
C. Cheung, B. Mustafa, A. Palepu, D. McDuff, L. Hou, T. Golany, L. Liu, J. baptiste Alayrac,
N. Houlsby, N. Tomasev, J. Freyberg, C. Lau, J. Kemp, J. Lai, S. Azizi, K. Kanada, S. Man,
K. Kulkarni, R. Sun, S. Shakeri, L. He, B. Caine, A. Webson, N. Latysheva, M. Johnson,
P. Mansfield, J. Lu, E. Rivlin, J. Anderson, B. Green, R. Wong, J. Krause, J. Shlens, E. Domi-
nowska, S. M. A. Eslami, K. Chou, C. Cui, O. Vinyals, K. Kavukcuoglu, J. Manyika, J. Dean,
D. Hassabis, Y. Matias, D. Webster, J. Barral, G. Corrado, C. Semturs, S. S. Mahdavi, J. Got-
tweis, A. Karthikesalingam, and V. Natarajan. Capabilities of gemini models in medicine,
2024.

14

[65] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning
to Simulate Complex Physics with Graph Networks. In Proceedings of the 37th International
Conference on Machine Learning, pages 8459–8468. PMLR, Nov. 2020. ISSN: 2640-3498.

[66] J. Shen, T. Marwah, and A. Talwalkar. Ups: Efficiently building foundation models for pde
solving via cross-modal adaptation, 2024.

[67] S. Subramanian, P. Harrington, K. Keutzer, W. Bhimji, D. Morozov, M. Mahoney, and A. Gho-
lami. Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and
Transfer Behavior, May 2023. arXiv:2306.00258 [cs, math].

[68] J. Sun, Y. Liu, Z. Zhang, and H. Schaeffer. Towards a foundation model for partial differential
equations: Multi-operator learning and extrapolation. arXiv preprint arXiv:2404.12355v2, 2024.

[69] E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM Journal on
Numerical Analysis, 26(1):30–44, 1989.

[70] E. Tadmor. Burgers’ Equation with Vanishing Hyper-Viscosity. Communications in Mathemati-
cal Sciences, 2(2):317 – 324, 2004.

[71] M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, and
M. Niepert. PDEBENCH: An Extensive Benchmark for Scientific Machine Learning, Mar.
2023. arXiv:2210.07182 [physics].

[72] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and
efficient foundation language models, 2023.

[73] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, C. Ma, Y. Jernite,
J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers:
State-of-the-Art Natural Language Processing. pages 38–45. Association for Computational
Linguistics, Oct. 2020.

[74] L. Yang, S. Liu, T. Meng, and S. J. Osher. In-context operator learning with data prompts
for differential equation problems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, Sept. 2023. Publisher: Proceedings of the National Academy of Sciences.

[75] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 336:415–447,
2018.

15

Supplementary Material for:
POSEIDON: Efficient Foundation Models for PDEs.

Table of Contents
A Architecture of the scalable Operator Transformer (scOT) 17

A.1 Operator Learning with scOT . 17
A.2 Computational Realization of scOT . 17

B Datasets 21
B.1 Pretraining Datasets . 21
B.2 Downstream Tasks . 24

C Models and Baselines 34
C.1 POSEIDON Models . 34
C.2 scOT . 37
C.3 CNO . 37
C.4 FNO . 39
C.5 CNO-FM . 40
C.6 MPP . 41

D Results 43
D.1 Performance on Downstream Tasks . 43
D.2 Scaling with respect to Model Size . 51
D.3 Scaling with respect to Pretraining Dataset Size and Quality 52
D.4 Case Studies . 58
D.5 Results with DPOT . 63
D.6 Further Ablations and Results . 65

E Computational Resources 72

F Pretrained Models, Datasets, and Source Code 72

G Visualizations 73

16

A Architecture of the scalable Operator Transformer (scOT)

A.1 Operator Learning with scOT

First, we describe how scOT (Section 2 of Main Text and Figure 2) transforms function space inputs
into function outputs below.

For simplicity of exposition, we set d = 2 and specify D = [0, 1]2 as the underlying domain. On
this domain, an uniform computational grid, with grid spacing ∆, of J2 equally spaced points
xjx,jy = (jx∆, jy∆), with J = 1/∆, is set. Let 1 < p < J such that Jmodp = 0 and set P = J/p.
We divide the domain D = ∪P 2

ρ=1Dρ into a set of P 2 non-overlapping and equal (in measure)
patches. Any underlying input function a ∈ C(D;Rn) is then partitioned into a function, that is
piecewise constant on patches and embedded into a C-dimensional latent representation by applying
the operator,

v(x) = Ê(a)(x) =

J2∑
ρ=1

F

∫
Dρ

W (x)a(x)dx

 IDρ
(x), (12)

with F ∈ RC×n is a learnable matrix and the weight function W is defined in terms of the underlying
computational grid as, W (x) =

∑
1≤jx,jy≤J

Wijδxjxjy
, with δ denoting the Dirac measure, and the

shared (across all patches) learnable weights given by,

Wjxjy =

{
ωjxjy if 1 ≤ jx, jy ≤ p

ωjxmodp,jymodp, otherwise.
(13)

The (patched and embedded) output function v of (12) is then processed through a sequence of SwinV2
transformer blocks [38, 37], each of which has the structure of SWℓ : C(D;RC) 7→ C(D;RC), for
layer index ℓ = 1, · · · , L, formulated in Main Text (3).

The main building block of a SwinV2 transformer block (3) is the windowed multi-head self attention
operator,

W −MSAℓ(v)(x) =

H∑
h=1

Wh
ℓ

∫
Dℓ

qx

e(cos(Q
h
ℓ v(x),K

h
ℓ v(y))+Bh

ℓ (x,y))∫
Dℓ

qx

e(cos(Q
h
ℓ v(z),K

h
ℓ v(y))+Bh

ℓ (z,y))dz
Vh

ℓ v(y)dy, (14)

for any v ∈ C(D;RC). Here, h denotes the h-th attention head, Wh
ℓ ∈ RC×m be the output matrix

and Qh
ℓ ,K

h
ℓ ,V

h
ℓ ∈ Rm×C be the query, key and value matrices, respectively. For any two vectors

α, β, the cosine similarity is defined as ⟨α, β⟩ = |α||β| cos(α, β) and Bh
ℓ : D ×D 7→ R is a general

form for positional encodings. To be more specific, we use relative log position encodings by setting
the inputs to Bh

ℓ to be the logarithm of the relative positions (k, k̄) within the window and the function
Bh

ℓ itself to be a small MLP. Finally, the domain of integration Dℓ
qx is simply the window where the

point of interest x lies, i.e., 1 ≤ qx ≤ M2 such that x ∈ Dℓ
qx . Underlying (14), is the partition of

the domain into windows such that D = ∪M2

q=1D
ℓ
q, with 1 ≤ ℓ ≤ L indexing the underlying layer

within a SwinV2 transformer block and with M2, denoting the number of windows. Moreover, the
windows are shifted across layers, as depicted in Figure 2 (c), so that all the points can be attended to,
by iteratively shifting windows across multiple layers/blocks.

The MLP in Main Text (3) is of the form, MLP : C(D;RC) 7→ C(D;RC) with

MLP (v)(x) = W̄σ
(
Wv(x) + B̂

)
, (15)

for learnable weight matricesW ∈ RC̄×C , W̄ ∈ RC×C̄ , bias vector B̂ ∈ RC̄ and nonlinear activation
function σ : R 7→ R. The Layer Norm LN in Main Text (3) is given by Main Text (4). The remaining
operations in scOT (see Main Text Figure 2) are described in their discrete form below.

A.2 Computational Realization of scOT

The scalable Operator Transformer (scOT), forming the underlying model architecture for POSEIDON,
is constructed as an encoder-decoder architecture. Starting from patching and embedding, embedded

17

tokens are inputted into multiple stages of SwinV2 transformer blocks, each followed by a patch
merging. The encoder is connected at every level to the decoder through ConvNeXt [39] blocks,
whereas the bottleneck is convolution-free. Finally, through patch recovery and mixup, the output is
assembled. We refer to Figure 2 (a) in the Main Text for an illustration of the overall architecture
and concrete computational realizations by presenting discrete versions of the continuous operators
described in the subsection above as well as elaborating on other operators used in scOT.

Patch Partitioning. The encoder consists of the patch partitioning operation, creating visual tokens
from n discretized (on the uniform computational grid described in Section A.1) input functions
ai ∈ RJ×J , i ∈ {1, ..., n}. Each ai is divided into non-overlapping patches of size p × p (with

p ≪ J) such that P 2 =
⌈
J
p

⌉2
patches arise. For an illustration, we refer to Figure 2 (c) of the

Main Text where P = 8. Patches are combined for every ai such that a sequence of apj ∈ Rp×p×n,
j ∈ {1, ..., P 2} visual tokens can be fed to the embedding operation.

Embedding. Each of these patches is linearly embedded using a shared learnable weight WE ∈
RC×n×p×p (∈ Θ̃) and bias bE ∈ RC (∈ Θ̃),

(vj)i = (bE)i +
c∑

k=1

p∑
u,v=1

(WE)i,k,u,v(a
p
j)k,u,v (16)

where (·)i denotes the i-th component (for all 1 ≤ i ≤ C) and C > n is the embedding dimension. It
is straightforward to observe that (16) is a discretization of the operator (12), with an additional bias
term. The resulting embedding is then passed through a (time-conditioned) layer norm (see Main
Text Equation 23).

SwinV2 Stage. At each level i ∈ {0, ..., L− 1} of the U-Net-style architecture, a SwinV2 stage Si

is employed consisting of ti chained SwinV2 transformer blocks Tti ,
Si = Tti ◦ Tti−1 ◦ ... ◦ T1. (17)

This is done in both encoder and decoder, and the same number ti of SwinV2 transformer blocks is
used on each level.

SwinV2 Transformer Block. A SwinV2 transformer block T is built as follows

v′(v) = (N ◦ A)(v) + v (18)

T (v) = (N ◦M)(v′(v)) + v′(v) (19)

where v ∈ RP 2/4i×C·2i is the sequence of embedded tokens, A the shifted-window multi-head
self-attention operation, N the (time-conditioned) Layer Norm, M a MLP. The attention mechanism
A acts only on windows of size M ×M patches/tokens that shift from block Tl to block Tl+1 by
doing a cyclic displacement of M/2 ×M/2 tokens (when the sequence is interpreted in 2D; see
Figure 2 (c) of Main Text). So, with an input window v ∈ RM2×C·2i ,

A(v) = Concat[A1(v), ...,Ahi(v)]WO + b⊤
OI (20)

where Al, 1 ≤ l ≤ hi is attention in head l with the maximum number of heads depending on the
stage i, with WO ∈ RC·2i×C·2i , bO ∈ RC·2i being learnable parameters (∈ Θ̂). Al is then given by

Al(v) = Softmax

(
Bl(v) +

cos((vWl
Q + 1M2 · bl⊤

Q)⊤, (vWl
K)⊤)

τl

)
·
(
vWl

V + 1M2 · bl⊤
V

)
(21)

with Wl
V ,W

l
Q,W

l
K ∈ RC·2i×C·2i/hi and bl

Q,b
l
V ∈ RC·2i/hi , τl ∈ R (all learnable ∈ Θ̂), cos(·, ·)

the cosine similarity, 1M2 ∈ RM2

a vector of ones, Bl(v) ∈ RM2×M2

the relative position bias
matrix generated from the (logarithmic) relative positions of each patch [∆x,∆y]⊤ within a window,
parametrized through a shared MLP P for all heads:

P(∆x,∆y) = ReLU([sign(∆x) log(1+|∆x|), sign(∆y) log(1+|∆y|)]⊤WB,1+bb,1)WB,2 (22)

18

WB,1 ∈ R2×512, bb,1 ∈ R512, WB,2 ∈ R512×hi are all learnable (∈ Θ̂). Note that (21) is a
discretization of the operator (14) by replacing the spatial integrals therein with uniform quadrature.

The tokens, coming from the attention module are then fed to a layer norm [2] if the PDE to be
learned is time-independent; if it is time-dependent (also in the case of POSEIDON), it goes through a
time-conditioned layer norm [55] N

µ(v) =
1

C · 2i
C·2i∑
l=1

(v)l (23)

σ2(v) =
1

C · 2i
C·2i∑
l=1

((v)l − µ(v))2 (24)

N (v, t) = α(t)⊙ v − µ(v) · 1C·2i

σ2(v)
+ β(t) (25)

with v ∈ RC·2i be a token resulting from the attention module, t ∈ R≥0, 1C·2i ∈ RC·2i a vector of
ones, and α(t) = Wαt+bα, β(t) = Wβt+bβ being learnable gain and bias (Wα,Wβ ,bα,bβ ∈
RC·2i , all ∈ Θ̃′).

The last building block of the SwinV2 transformer block is a single-hidden-layer MLP with GeLU
[21] as pointwise activation function and four times the width of the latent dimension C · 2i

M(v) = GeLU(vW1 + b1)W2 + b2 (26)

with W1 ∈ RC·2i×4·C·2i , b1 ∈ R4·C·2i , W2 ∈ R4·C·2i×C·2i , b2 ∈ RC·2i all learnable parameters
(∈ Θ̂).

Patch Merging. At each (resolution) level i of the architecture, after each SwinV2 stage in the
encoder, a linear downsampling operation Di is performed on the output of the stage added to
its input (additional residual connection) such that the resolution halves. This amounts to a linear
transformation on four non-overlapping, stacked patches/tokens at a time v ∈ R4·C·2i

Di(v, t) = N (WDiv, t) (27)

with learnable WDi
∈ RC·2i+1×4·C·2i such that the latent dimension doubles. Here, an additional

(time-conditioned) layer norm is applied.

ConvNeXt Block. Outputs from each encoder stage Si, 0 ≤ i ≤ L− 2 are fed to nc chained (time-
conditioned) ConvNeXt blocks [39] Qi; for that, the token sequence is reshaped to a two-dimensional
grid of tokens v ∈ RP/2i×P/2i×C·2i and transformed by

Qi(v, t) = (GeLU(N (DwConv(v), t)WQ,1 + bQ,1)WQ,2 + bQ,2)⊙WQ,3 + v (28)

WQ,1 ∈ RC·2i×4·C·2i , bQ,1 ∈ R4·C·2i , WQ,2 ∈ R4·C·2i×C·2i , bQ,2 ∈ RC·2i , WQ,3 ∈ RC·2i all
learnable parameters (∈ Θ̂) and DwConv is a depthwise convolution with kernel size 7 (and a padding
of 3) and bias.

Patch Expansion. Similar to patch merging, after a SwinV2 stage in the decoder, each output token
v ∈ RC·2i+1

is linearly upsampled through Ui to double the resolution and half the latent dimension,

Ui(v, t) = N (Reshape(WUi,1v), t)WUi,2 (29)

where WUi,1 ∈ RC·2i+2×C·2i+1

, WUi,2 ∈ RC·2i×C·2i are both learnable (∈ Θ̂), and Reshape(·) an
operation that reshapes a vector of size C · 2i+2 into a matrix of size 4× C · 2i.

Patch Recovery and Mixup. Having passed through the last stage of the decoder, every patch/visual
token vj ∈ RC is linearly transformed back from the latent space to form patches of the discretized
output function up

j ∈ Rp×p×cu ,

(up
j)i = (bR)iI+

C∑
k=1

(WR)i,k,∗,∗(vj)k (30)

19

where (·)i denotes the i-th component (for all 1 ≤ i ≤ cu) and cu is the number of components of
the discretized output function. WR ∈ Rcu×C×p×p and bR ∈ Rcu are shared across tokens and
learnable (∈ Θ̃). These outputs are assembled on a grid to form ũ ∈ RJ×J×cu which is transformed
to the final output u with a convolution with kernel size 5 (and padding 2 to keep the dimensionality),
without bias, with all parameters being in Θ̃.

Summary of Hyperparameters. In Table 2, we give an overview of the hyperparameters to
instantiate a scOT. To reduce the number of hyperparameters, we fix p = 4, M = 16, L = 4,
[h1, h2, h3, h4] = [3, 6, 12, 24], and nc = 2 in this work.

Table 2: Hyperparameters of scOT.
Hyperparameter Description

p patch size

M window size

C embedding/latent dimension

L number of levels (L− 1 downsampling/upsampling operations)

ti number of SwinV2 transformer blocks in level i

hi number of attention heads in level i

nc number of ConvNeXt blocks at each level

20

B Datasets

We describe the various datasets used for pretraining and for the downstream tasks
below. All these datasets are publicly available with the PDEGYM collection
(https://huggingface.co/collections/camlab-ethz/pdegym-665472c2b1181f7d10b40651).

B.1 Pretraining Datasets

Table 3: Abbreviations/Summary for all the pretraining datasets. IC refers to initial conditions.
Abbreviation PDE Defining Feature Visualization

NS-Sines Navier-Stokes (31) Sine IC Fig. 55

NS-Gaussians Navier-Stokes (31) Gaussians (in Vorticity) IC Fig. 56

CE-RP Euler (37) 4-Quadrant Riemann Problem IC Fig. 57

CE-CRP Euler (37) Multiple Curved Riemann Problems Fig. 58

CE-KH Euler (37) Shear IC Fig. 59

CE-Gauss Euler (37) Gaussians (in Vorticity) IC Fig. 60

We pretrain POSEIDON models and CNO-FM on a dataset containing 6 operators, defined on the
space-time domain [0, 1]2 × [0, 1]. We include 2 operators governed by the Navier-Stokes equations
(NS-Sines, NS-Gauss) and 4 operators governed by the Compressible Euler equations. The pretraining
datasets encompass problems that exhibit a wide range of scales and complex, nonlinear dynamics.

The Incompressible Navier-Stokes equations of fluid dynamics are given by

ut + (u · ∇)u+∇p = ν∆u, div u = 0, (31)

in the domain D = [0, 1]2 with suitable boundary conditions. Here, u : [0, T] × D 7→ R2 is the
velocity field and p : [0, T]×D 7→ R+ is the pressure. In this work, a small viscosity ν = 4× 10−4

is only applied to high-enough Fourier modes to approximate the inviscid limit.

To generate the pretraining data, all the benchmarks for the Navier-Stokes equations are simulated
until the time T = 1. Furthermore, we store 21 snapshots of the numerically simulated velocity
field u, uniformly spaced in time. Each snapshot has a spatial resolution of 128× 128. The initial
conditions are drawn from various distributions, which we will describe later. The distribution of
these initial conditions is crucial for determining the complexity of the samples and the overall
dynamics.

All the Navier-Stokes experiments, both for the pretraining dataset and the downstream tasks, are
simulated with the following spectral method. Fix a mesh width ∆ = 1

N for some N ∈ N. We
consider the following discretization of the Navier-Stokes equations in the Fourier domain

∂tu
∆ + PN (u∆ · ∇u∆) +∇p∆ = εN∆(QN ∗ u∆)

∇ · u∆ = 0

u∆|t=0 = PNu0

(32)

where PN is the spatial Fourier projection operator mapping a function f(x, t) to its first N Fourier
modes: PN =

∑
|k|∞≤N f̂k(t)e

ik·x. The artificial viscosity term we use for the stabilization of the
solver consists of a resolution-dependent viscosity εN and a Fourier multiplier QN controlling the
strength at which different Fourier modes are dampened. This allows us to not dampen the low
frequency modes, while applying some diffusion to the problematic higher frequencies. The Fourier
multiplier QN is of the form

QN (x) =
∑

k∈Zd,|k|≤N

Q̂ke
ik·x. (33)

In order for the solver to converge, the Fourier coefficients of QN need to fulfill [69, 70, 31]

Q̂k = 0 for |k| ≤ mN , 1−
(
mN

|k|

) 1
θ

≤ Q̂k ≤ 1 (34)

21

https://huggingface.co/collections/camlab-ethz/pdegym-665472c2b1181f7d10b40651

where we have introduced an additional parameter θ > 0. The quantities mN and εN are required to
scale as

mN ∼ Nθ, εN ∼ 1

N
, 0 < θ <

1

2
. (35)

For the experiment described here, we choose mN =
√
N , εN = 0.05

N , and N = 128. This gives rise
to the viscosity ν ≈ 4 · 10−4 mentioned above. The Fourier multipliers Q̂N are chosen according to
[30] and are equal to

Q̂Smooth
k = 1− exp

(
−
(|k|
k0

)α)
. (36)

The Navier-Stokes simulations were performed with the AZEBAN spectral hyperviscosity code [62].

The Compressible Euler equations of gas dynamics are given by

ut + div F (u) = 0, u = [ρ, ρv,E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥, (37)

in the domain [0, 1]2 with suitable boundary conditions, with density ρ, velocity v = [vx, vy], pressure
p and total Energy E related by the ideal gas equation of state:

E =
1

2
ρ|u|2 + p

γ − 1
, (38)

where γ = 1.4. All the trajectories are simulated until time T = 1. The simulations for the
compressible Euler equations were performed with the ALSVINN [44] code, which is based on a
high-resolution finite volume scheme with piecewise quadratic WENO reconstructions and HLLC
Riemann solvers.

During pretraining, our goal is to predict four variables: [ρ, vx, vy, p], where ρ represents density, vx
is the horizontal velocity, vy is the vertical velocity, and p is the pressure. As in the Navier-Stokes
benchmarks, all the trajectories for compressible Euler are simulated until time T = 1. Furthermore,
we store 21 snapshots of the numerically simulated solution, uniformly spaced in time. Each snapshot
has a spatial resolution of 128× 128, though being generated on 512× 512 and downsampled.

Next we describe each constituent of the pretraining dataset (summarized in Table 3)

B.1.1 NS-Sines

This dataset considers the incompressible Navier-Stokes equations (31) with the following initial
conditions,

u0x(x, y) =

p∑
i,j=1

αi,j√
2π(i+ j)

sin(2πix+ βi,j) sin(2πjy + γi,j)

u0y(x, y) =

p∑
i,j=1

αi,j√
2π(i+ j)

cos(2πix+ βi,j) cos(2πjy + γi,j)

(39)

where the random variables are chosen as αi,j ∼ U[−1,1], βi,j ∼ U[0,2π], and γi,j ∼ U[0,2π]. The
number of modes p is chosen to be p = 10. Thus, the initial conditions amount to a linear combination
of sines and cosines.

The underlying solution operator S(t, ·) is given by S(t, u0x,y) = ux,y(t), with ux, uy solving the
Navier-Stokes equations (31) with periodic boundary conditions.

We generated 20000 NS-Sines trajectories of which the first 19640 belong to the training set, the
next 120 to the validation set, and the last 240 to the test set. Note that we included 11 time steps
in the pretraining dataset, with every other time step selected, starting from step 0 up to step 21. A
visualization of a random sample and the predictions made by POSEIDON-B (trained on 128 training
trajectories) is shown in Figure 55.

B.1.2 NS-Gauss

Given a two-dimensional velocity field u = (ux, uy), its vorticity is given by the scalar ω = curl u =
∂xuy − ∂yux. Note that, for any time t, the velocity can be recovered from the vorticity using the
so-called stream function [47].

22

For this dataset, we specify the initial conditions for the Navier-Stokes equations in terms of the
vorticity given by,

ω0(x, y) =

p∑
i=1

αi

σi
exp

(
− (x− xi)

2 + (y − yi)
2

2σ2
i

)
(40)

where we chose p = 100 Gaussians with αi ∼ U[−1,1], σi ∼ U[0.01,0.1], xi ∼ U[0,1], and yi ∼ U[0,1].
Thus, the initial vorticity field is a superposition of a large number of Gaussians. The initial velocity
field is then recovered from the vorticity.

The underlying solution operator S(t, ·) is given by S(t, u0x,y) = ux,y(t), with ux, uy solving the
Navier-Stokes equations (31) with periodic boundary conditions.

We generated 20000 NS-Gauss trajectories with the same train/validation/test split and time-stepping
as for NS-Sines. A visualization of a random sample and the predictions made by POSEIDON (128
training trajectories) are shown in Figure 56.

B.1.3 CE-RP

The well-known four-quadrant Riemann problem is the generalization of the standard Sod shock tube
to two-space dimensions [22]. It is defined by dividing the domain D = [0, 1]2 into a grid of p× p
square subdomains

Di,j =

{
(x, y) ∈ T2 | i− 1

p
≤ x <

i

p
,
j − 1

p
≤ y <

j

p

}
,

where T2 is the 2d torus. We fix p = 2 for this problem.

The initial data on each of these subdomains is constant and given by,

(ρ0, v
0
x, v

0
y, p0) = (ρi,j , (vx)i,j , (vy)i,j , pi,j).

By sampling ρi,j ∼ U[0.1,1], (vx)i,j ∼ U[−1,1], (vy)i,j ∼ U[−1,1], and pi,j ∼ U[0.1,1], we obtain a
stochastic version of the four-quadrant Riemann problem, which also generalizes the stochastic shock
tubes of [50] to two-space dimensions.

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 10000 CE-RP trajectories where the first 9640 trajectories belong to the training set,
the following 120 to the validation set, and the last 240 trajectories to the test set. The time-stepping
is the same as for NS-Sines and NS-Gauss. A visualization of a random sample and the predictions
made by POSEIDON (128 finetuning trajectories) are shown in Figure 57.

B.1.4 CE-CRP

This dataset corresponds to a curved and multi-partitioned version of the CE-RP dataset. To define it,
we denote the fractional part of x ∈ R as {x} := x− ⌊|x|⌋ sgnx and define the functions

σx(x, y) =

p∑
i,j=1

αx,i,j sin(2πix+ jy + βx,i,j)

σy(x, y) =

p∑
i,j=1

αy,i,j sin(2πix+ jy + βy,i,j).

where αk,i,j ∼ U[−0.1,0.1], and βk,i,j ∼ U[0,1]. These functions are then used to create a partition of
the domain into curved subdomains,

Di,j = {(x, y) ∈ T2 | xmin ≤ {x+ σx(x, y) + 1} < xmax, ymin ≤ {y + σy(x, y) + 1} < ymax}.

with xmin = i
p+1 , xmax = i+1

p+1 , ymin = j
p+1 , and ymax = j+1

p+1 . Finally, the initial conditions are given
by

(ρ, vx, vy, p)|t=0 = (ρi,j , ui,j , vi,j , pi,j) in Di,j

23

where ρi,j ∼ U[0.1,1], (vx)i,j ∼ U[−1,1], (vy)i,j ∼ U[−1,1], and pi,j ∼ U[0.1,1]. A visualization of a
random sample of the initial conditions is shown in Figure 58 and illustrates how this problem is a
curved, multi-partitioned version of the standard stochastic four-quadrant Riemann problem (CE-RP).

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 10000 CE-CRP trajectories with the same train/validation/test split as CE-RP. The
time-stepping is the same as for NS-Sines and NS-Gauss. A visualization of a random sample and
the predictions made by POSEIDON (128 training trajectories) are shown in Figure 58.

B.1.5 CE-KH

This is a well-known benchmark of compressible fluid dynamics that corresponds to the well-known
Kelvin-Helmholtz instability [29]. A modern version is presented, for instance, in [16].

The underlying initial data is,

(ρ, vx, vy, p)|t=0 =

{
(1, 0.5, 0, 2.5) if y < 0.25 + σ0(x) or y > 0.75 + σ1(x)

(2,−0.5, 0, 2.5) otherwise.

The perturbations σ0 and σ1 are given by

σi(x) =
ε∑p

j=1 αi,j

p∑
j=1

αi,j cos(2πj(x+ βi,j))

where ε = 0.05, αi,j ∼ U[0,1], and βi,j ∼ U[0,1].

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 10000 CE-KH trajectories with the same train/validation/test split as CE-RP. The
time-stepping is the same as for NS-Sines and NS-Gauss. A visualization of a random sample and
the predictions made by POSEIDON (128 training trajectories) are shown in Figure 59.

B.1.6 CE-Gauss

As in the NS-Sines dataset, we initialize the curl ω of the initial velocity with a superposition of
Gaussians,

ω0(x, y) =

p∑
i=1

αi

σi
exp

(
− (x− xi)

2 + (y − yi)
2

2σ2
i

)
where we chose p = 100 Gaussians with αi ∼ U[−1,1], σi ∼ U[0.01,0.1], xi ∼ U[0,1], and yi ∼ U[0,1].
Then, the initial field is generated from the vorticity by using the incompressibility condition. The
underlying density and pressure are initialized with constants, ρ = 0.1 and p = 2.5, respectively.

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 10000 CE-Gauss trajectories with the same train/validation/test split as CE-RP. Time-
stepping is the same as for NS-Sines and NS-Gauss. A visualization of a random sample and the
predictions made by POSEIDON (128 training trajectories) are shown in Figure 60.

We remark that out of the 6 operators that consitute the pretraining dataset, 2 of them (CE-KH and
CE-RP) are well known in the literature where as the other four (NS-Sines, NS-Gauss, CE-Gauss,
CE-CRP) are novel to the best of our knowledge.

B.2 Downstream Tasks

Next, we describe the suite of downstream tasks on which POSEIDON and baselines are evaluated.
The list of tasks is summarized in Table 4.

24

Table 4: Abbreviations/Summary for all the downstream tasks. IC and RP stand for initial conditions
and Riemann problem, respectively. Datasets where (*) is checked mark datasets where solutions are
learned depending on PDE parameters/sources/coefficients.

Abbreviation PDE (*) Defining Feature Visualization

NS-PwC Navier-Stokes (31) Piecewise constant vorticity IC Fig. 61

NS-BB Navier-Stokes (31) Brownian Bridge IC Fig. 62

NS-SL Navier-Stokes (31) Shear Layer IC Fig. 63

NS-SVS Navier-Stokes (31) Sine Vortex sheet IC Fig. 64

NS-Tracer-PwC Navier-Stokes + Transport (51) Scalar Advection Fig. 65

FNS-KF Forced Navier-Stokes (53) ✓ Kolmogorov Flow Fig. 66

CE-RPUI Euler (37) RP with uncertain interfaces Fig. 67

CE-RM Euler (37) Richtmeyer-Meshkov Fig. 68

GCE-RT Euler+Gravity (57) ✓ Rayleigh-Taylor Fig. 69

Wave-Gauss Wave Eqn. (64) ✓ Waves in Gaussian medium Fig. 70

Wave-Layer Wave Eqn (64) ✓ Waves in layered medium Fig. 71

ACE Allen-Cahn Eqn. (67) Reaction-Diffusion Fig. 72

SE-AF steady state of Euler (37) ✓ Flow past airfoil Fig. 73

Poisson-Gauss Poisson Eqn. (68) ✓ Stationary diffusion Fig. 74

Helmholtz Helmholtz Eqn (69) ✓ Waves in frequency domain Fig. 75

B.2.1 NS-PwC

This downstream task is based on the Navier-Stokes equations (31) on the space-time domain
[0, 1]2 × [0, 1] with periodic boundary conditions. The initial conditions are based on the vorticity,
which is assumed to be constant along a uniform (square) partition of the underlying domain. To be
more specific, the initial vorticity is given by,

ω0(x, y) = ci,j in [xi−1, xi]× [yj−1, yj] (41)

for xi = yi =
i
p for i = 0, 1, 2, ..., p, and ci,j ∼ U[−1,1]. The number of squares in each direction

was chosen to be p = 10. Thus, this problem is an analogue of multiple Riemann problems, but on
the vorticity. The underlying initial velocity field ux(0), uy(0) is then recovered from the vorticity by
using the incompressibility condition.

The underlying solution operator S(t, ·) is given by S(t, u0x,y) = ux,y(t), with ux, uy solving the
Navier-Stokes equations (31) with periodic boundary conditions.

We generated 20000 NS-PwC trajectories with the same train/validation/test split as NS-Sines. Note
that we included 8 time steps in the training dataset, with every other time step selected, starting from
step 0 up to step 14. The testing error is evaluated at the 14th time step (i.e. t = 0.7). A visualization
of a random sample and the predictions made by POSEIDON-B, CNO and FNO by (128 training
trajectories) are shown in Figure 61.

B.2.2 NS-BB

(Fractional) Brownian Bridges are widely used as an initial conditions for the Navier-Stokes equations
to study statistical properties of turbulent flows in the computational physics literature, see for instance
[31] and references therein.

We generate Brownian Bridges directly in Fourier space with the following method:

W (x) =
∑

|k|∞≤N

1

∥k∥
3
2
2

∑
m,n,ℓ∈{0,1}

α
(mnℓ)
k scm(x)scn(x)scℓ(x) (42)

25

where

sci(x) =
{
sin(x) for i = 0

cos(x) for i = 1
(43)

and the α(mnℓ)
k ∼ U[−1,1]. These Brownian Bridges are propagated through the discretized Navier-

Stokes system (32) from time t = −0.5 to t = 0. The resulting flow fields are then taken as initial
conditions for this dataset.

The underlying solution operator S(t, ·) is given by S(t, u0x,y) = ux,y(t), with ux, uy solving the
Navier-Stokes equations (31) with periodic boundary conditions.

We generated 20000 NS-BB trajectories with the same train/validation/test split as NS-Sines. The
same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step (i.e.
t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO (128 training trajectories) are shown in Figure 62.

B.2.3 NS-SL

The Shear Layer (SL) is a well-known benchmark for the Navier-Stokes equations (31), stemming all
the way from [5], if not earlier, see [31] for a modern (stochastic) version, whose variant we consider
here.

We take as initial conditions the shear layer,

u0(x, y) =

tanh
(
2π y−0.25

ρ

)
for y + σδ(x) ≤ 1

2

tanh
(
2π 0.75−y

ρ

)
otherwise

v0(x, y) = 0

(44)

where σδ : [0, 1] → R is a perturbation of the initial data given by

σδ(x) = ξ + δ

p∑
k=1

αk sin(2πkx− βk). (45)

The parameters are chosen to be p ∼ U{7,8,...12} αk ∼ U[0,1], βk ∼ U[0,2π], δ = 0.025, ρ ∼
U[0.08,0.12], and ξ ∼ U[−0.0625,0.0625].

The underlying solution operator S(t, ·) is given by S(t, u0x,y) = ux,y(t), with ux, uy solving the
Navier-Stokes equations (31) with periodic boundary conditions.

We generated 40000 NS-SL trajectories of which the first 39640 are in the training split, the next
120 in the validation split, and the remaining 240 in the test split. The same time-stepping is used as
for NS-PwC. The testing error is evaluated at the 14th time step (i.e. t = 0.7). A visualization of a
random sample and the predictions made by POSEIDON, CNO and FNO (128 training trajectories)
are shown in Figure 63.

B.2.4 NS-SVS

The Sinusoidal Vortex Sheet (SVS) is another classic numerical benchmark for the Navier-Stokes
equations [61] and references therein. We consider a modern (stochastic) version from [31] here. The
initial datum for this problem is specified in terms of the vorticity, by setting,

ωρ
0 = ψρ ∗ ω0 (46)

26

where

ω0(x) = δ(x− Γ)−
∫
T2

dΓ (47)

ϕρ(x) = ρ−2ψ

(∥x∥
ρ

)
(48)

ψ(r) =
80

7π

[
(r + 1)3+ − 4(r +

1

2
)3+ + 6r3+ − 4(r − 1

2
)3+ + (r − 1)3+

]
(49)

Γ = {(x, y) ∈ T2 | y =
1

2
+ 0.2 sin(2πx) +

p∑
i=1

αi sin(2π(x+ βi))}. (50)

We choose p = 10 and the random variables αi and βi are given by αi ∼ U[0,0.003125], βi ∼ U[0,1].
The parameter ρ is chosen to be ρ = 5

128 .

We generated 20000 NS-SL trajectories with the same training/validation/test split as NS-Sines. The
same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step (i.e.
t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO (128 training trajectories) are shown in Figure 64.

B.2.5 NS-Tracer-PwC

This downstream task is the first of our tasks, where the underlying physics has not been completely
encountered in the pretraining dataset.

In this experiment, we focus on the important problem of transport of a passive tracer, for instance
a pollutant in a river. This tracer is carried along by the Navier-Stokes flow field without feeding
back into the velocity. Let c = c(x, y, t) be the concentration of the passive scalar in the fluid. The
equation that governs c is given by

∂c

∂t
+ u · ∇c = κ∆c, (51)

where u is the velocity field of the fluid, which in turn is governed by the Navier-Stokes equations
(31), and κ is the diffusivity constant. We choose κ to be equal to the the artificial viscosity term used
in the simulation of the flow (see B.1 for clarification).

The fluid velocity field u has the exact same initial data as in the NS-PwC experiment. The tracer
concentration c is initialized as a sphere centered in the center of the domain

c0(x, y) = 1B 1
4
(1
2 ,

1
2)
(x, y). (52)

Thus, the source of stochasticity in this problem is purely the random initial condition driving the
fluid flow.

The underlying solution operator S(t, ·) is now given by S(t, u0x, u
0
y, c0) = [ux(t), uy(t), c(t)], with

ux, uy solving the Navier-Stokes equations (31) with periodic boundary conditions and c solving the
transport equation (51).

We generated 20000 NS-Tracer-PwC trajectories with the same train/validation/test split as NS-Sines.
The same time-stepping is used as for NS-PwC. The testing error is evaluated for the 14th time step
(i.e. t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO (128 training trajectories) are shown in Figure 65.

B.2.6 FNS-KF

Another downstream task which introduces a physical process that has not been encountered in the
pretraining dataset, a two-dimensional version of the well-known Kolmogorov Flow [47] is modeled
by Navier-Stokes equations with a forcing term, namely

ut + (u · ∇)u+∇p− ν∆u = f, div u = 0, (53)

in the domain [0, 1]2 with periodic boundary conditions. The forcing term f is chosen to be constant
in time and is equal to

f(x, y) = 0.1 sin(2π(x+ y)). (54)

27

The fluid velocity field u is initialized in the exact same way as in the NS-PwC experiment. The data
is simulated with the same method as the other flows governed by Navier-Stokes equations (see B.1
for clarification).

We also remark that this problem can be readily recast in the generic form (1) by considering the
augmented solution vector U = [ux, uy, f] and augmenting the PDE (1) with the trivial equation
ft = 0 and augmenting the initial data with (54). The underlying solution operator S(t, ·) is then
given by S(t, U0

x,y) = [ux(t), uy(t), f], with ux, uy solving the forced Navier-Stokes equations (53)
with periodic boundary conditions and f being given by (54).

We generated 20000 FNS-KF trajectories with the same train/validation/test split as NS-Sines. The
same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step (i.e.
t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO (128 training trajectories) are shown in Figure 66.

B.2.7 CE-RPUI

This downstream task considers the compressible Euler equations and is a variant of the uncertain
interface problem considered in [50] as well as a (hard) perturbation of CE-RP, where not just the
amplitude of the jumps for each Riemann problem is randomly varied, but even the location and
shape of the initial interfaces is randomly perturbed. To realize this construction, we denote the
fractional part any x ∈ R as {x} := x− ⌊|x|⌋ sgnx and define the functions

σx(x, y) =

p∑
i,j=1

αx,i,j sin(2π(i+ 2p2)x+ (j + 2p2)y + βx,i,j)

σy(x, y) =

p∑
i,j=1

αy,i,j sin(2π(i+ 2p2)x+ (j + 2p2)y + βy,i,j).

where αk,i,j ∼ U[−0.01,0.01], and βk,i,j ∼ U[0,1]. These functions are then used to create a partitioning
of the domain into subdomains

Di,j = {(x, y) ∈ T2 | xmin ≤ {x+ σx(x, y) + 1} < xmax, ymin ≤ {y + σy(x, y) + 1} < ymax}.
with xmin = i

p+1 , xmax = i+1
p+1 , ymin = j

p+1 , and ymax = j+1
p+1 . Finally, the initial conditions are given

by
(ρ, vx, vy, p)|t=0 = (ρi,j , v

x
i,j , v

x
i,j , pi,j) in Di,j

where ρi,j ∼ U[1,3], vxi,j ∼ U[−10,10], v
y
i,j ∼ U[−10,10], and pi,j ∼ U[5,7].

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 10000 CE-RPUI trajectories with the train/validation/test split being the same as for
CE-RP. The same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th
time step (i.e. t = 0.7). A visualization of a random sample and the predictions made by POSEIDON,
CNO and FNO (128 training trajectories) are shown in Figure 67.

B.2.8 CE-RM

Another well-known benchmark for the compressible Euler equations (37) is the Richtmeyer-Meshkov
problem, see [29]. A modern (stochastic) version is provided in [16]. The compressible Euler
equations are considered with the initial data given by,

p0(x, y) =

{
20 if

√
x2 + y2 < 0.1

1 otherwise.
ρ0(x, y) =

{
2 if |x| < I(x, y, ω)

1 otherwise
vx0 = wy

0 = 0

(55)
We assign periodic boundary conditions on D = [0, 1]2. The interface between the two states is given
as

I(x, y, ω) = 0.25 + ϵ

K∑
j=1

aj(ω) sin(2π((x, y) + bj(ω))), (56)

28

where K = 10, ϵ > 0, and aj and bj (for j = 1, . . . ,K) are uniform random variables on the interval
[0, 1]. We normalize the aj such that

∑
j aj = 1. We simulate up to T = 2.

The underlying solution operator S(t, ·) is given by S(t, ρ0, v
0
x,y, p0) = [ρ(t), vx,y(t), p(t)] solving

the compressible Euler equations (37) with periodic boundary conditions.

We generated 1260 CE-RM trajectories with a train/validation/test split of 1030/100/130. The
approximate solutions where generated with the FISH hydrodynamic code, see [16] and references
therein which implements high-resolution finite volume schemes. We save 21 snapshots, evenly
spaced in time. The testing error is evaluated at the 14th time step (i.e. t = 1.4). A visualization of a
random sample and the predictions made by POSEIDON, CNO and FNO (128 training trajectories)
are shown in Figure 68.

B.2.9 GCE-RT

The compressible Euler equations with gravitation (GCE) are given by,

ut + div F (u) = S, u = [ρ, ρv,E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥,

S = [0,−ρ, 0,−ρvx]
∂φ

∂x
+ [0, 0,−ρ,−ρvy]

∂φ

∂y
,

(57)

with ρ, vx,y, p be as defined in (37) and φ being the gravitational potential.

For this experiment, we follow a well-known benchmark in astrophysics, namely the Rayleigh-Taylor
(RT) instability on a model neutron star, realized as a γ = 2 polytrope in gravitational equilibrium.
Our benchmark is a two-dimensional stochastic variant of the setup of [28], Section 3.2.4, with the
only variation being provided by the random fields used to generate the initial conditions. The domain
is D = [−1/2,+1/2]2 and the pressure and gravitational potential are given by

p(r) = K0

(
ρ0

sin(αr)

αr

)2

, φ(r) = −2K0ρ0
sin(αr)

αr
, (58)

where r =
√
x2 + y2 is the radius, K0 = p0/ρ

2
0 is the polytropic constant,

α =

√
4πG

2K0
(59)

and G = 1 is the gravitational constant. The initial velocity is set to vanish. The density profile is set
as

ρ(r) =

√
K0

K̃(r)
ρ0

sin(αr)

αr
, (60)

where

K̃(r) =

{
K0, r < rRT(

1−A
1+A

)2
K0, r ≥ rRT.

(61)

Here, A is the Atwood number which parameterizes the density jump between the heavier and lighter
fluid, characterizing the Rayleigh-Taylor instability. The interface between the fluids is given as

rRT = 0.25(1 + a cos (atan2(y, x) + b)), (62)
where the amplitude a and phase b are uniform random variables on [−1, 1] and [−π, π], respectively.
Similarly, we perturb the central density ρ0, pressure p0 and Atwood number as

ρ0 = 1 + 0.2c, p0 = 1 + 0.2d,A = 0.05(1 + 0.2e), (63)
where c, d, e are uniform random variables on [−1, 1]. We evolve the initial state up to a final time of
T = 5 and save 11 snapshots, evenly spaced in time.

The new physical phenomena that we add in this case is gravitational forcing and the underlying solu-
tion operator S(t, ·) is given by S(t, ρ0, v

0
x,y, p0, φ) = [ρ(t), vx,y(t), p(t), φ] solving the gravitational

Euler equations (57) with periodic boundary conditions.

We generated 1260 GCE-RT trajectories (with the same train/validation/test split as CE-RM) with
a well-balanced second-order finite volume method, as described in [28], at 2562 resolution, then
downsampled to 1282. The testing error is evaluated at the 7th time step, and we take every snapshot
up to and including the 7th as training data. A visualization of a random sample and the predictions
made by POSEIDON, CNO and FNO (128 training trajectories) are shown in Figure 69.

29

B.2.10 Wave-Gauss

We consider the wave equation with a spatially varying propagation speed, i.e.

utt − (c(x))2∆u = 0, in D × (0, T), (64)

in order to model the propagation of acoustic waves in a spatially varying medium.

The initial condition u0 is given by a sum of several Gaussians whose parameters are drawn uniformly
at random. First, we draw a random integer n from the set {2, 3, 4, 5, 6}. Then, for 1 ≤ i ≤ n, we
draw two locations, xc,i, yc,i ∼ U[1/6,5/6]. We fix the amplitude of the ith Gaussian to 1.0 and draw
the ith standard deviation si ∼ U[0.039,0.156] Note that we restrict any two centers of the Gaussians
to be closer than 2 standard deviations from each other. If this happens, we draw a new point and
discard the old one. The ith Gaussian is defined as

gi(x, y) = exp

(
− (xc,i − x)2 + (yc,i − y)2

2s2i

)
, x, y ∈ (0, 1).

Finally, the initial condition u0 is defined by

u0(x, y) =

n∑
i=1

gi(x, y), x, y ∈ (0, 1). (65)

We use absorbing boundary conditions. The propagation speed c is spatially dependent and is
generated as a sum of Gaussians in several steps. First, a random base speed c0 is generated such
that c0 ∼ U[1500,2500]. Then, we select 4 points in the domain, namely, (x1, y1) = (0.25, 0.25),
(x2, y2) = (0.25, 0.75), (x3, y3) = (0.75, 0.25) and (x4, y4) = (0.75, 0.75). For each point i, we
define a random vector (dxi, dyi), where dxi, dyi ∼ U[−0.3125,0.3125]. We also draw an amplitude
vi ∼ U[1000,2500] of a Gaussian that corresponds to the i-th point, as well as its standard deviation
σi ∼ U[1/12,1/6]. The ith Gaussian is defined by

fi(x, y) = vi · exp
(
− (xi + dxi − x)2 + (yi + dyi − y)2

2σ2
i

)
, x, y ∈ (0, 1).

Finally, the propagation speed is defined by

c(x, y) = c0 +

4∑
i=1

fi(x, y), x, y ∈ (0, 1).

Trajectories are generated with a finite-difference method, similar to the DeVITO code [43] at 1282
resolution. The final time of all the simulations is T = 1. We save 15 snapshots, evenly spaced in
time.

Thus, this benchmark models the propagation of acoustic waves, generated by seismic sources, which
propagate in a smoothly varying medium. The wave equation (64) can be readily recast into the
generic form (1) by adding the time-derivative v = ut and the coefficient c into the solution vector
U = [u(x, t), v(x, t), c(x)]. Thus, the differential operator in (1) can be rewritten as,

ut = v, vt = c2∆u, ct = 0, (66)

and the resulting solution operator is S(t, U0) = [u(t), v(t), c].

We generated 10512 Wave-Gauss trajectories with a train/validation/test split of 10212/60/240. The
same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step (i.e.
t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO are shown in Figure 70.

B.2.11 Wave-Layer

In the Wave-Layer experiment, we also consider the wave equation with spatially dependent propaga-
tion speed (64), initial conditions given by (65). We use absorbing boundary conditions.

30

The propagation speed c varies spatially and is generated as a (vertically) layered medium, with each
layer having a constant propagation speed drawn uniformly at random. To generate one instance of c,
we first draw a random integer n from {3, 4, 5, 6}, where n represents a number of layers in c. Then,
for each 2 ≤ i ≤ n, we generate a x−dependent frontier, defined by

ai(x) =
i

n
+ c0 +

10∑
i=1

ai
i
sin(2πix),

where, first, ai values are drawn uniformly at random from (0, 1) and then c0 is drawn uniformly at
random from (0, 1) and it is rescaled by a constant that depends on i so that the adjacent frontiers
are impossible to intersect. Finally, a point (x, y) ∈ (0, 1)2 is in i-th frontier if and only if ai(x) ≤
y ≤ ai+1(x), with a1 = 0 and an+1 = 0. Each layer i has a constant speed of propagation
ci ∼ U[2000,5000]. Trajectories are generated by a finite-difference method at 1282 resolution. The
final time of all the simulations is T = 1. We save 21 snapshots, evenly spaced in time.

As in the Wave-Gauss benchmark, the resulting solution operator is S(t, U0) = [u(t), v(t), c], with
v = ut and coefficient c. The wave-layer experiment models the propagation of acoustic waves,
generated by seismic sources, inside a layered subsurface medium.

We generated 10512 Wave-Layer trajectories with the same train/validation/test split as Wave-Gauss.
The same time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step
(i.e. t = 0.7). A visualization of a random sample and the predictions made by POSEIDON, CNO and
FNO are shown in Figure 71.

We remark that both the Wave-Gauss and Wave-Layer tasks are very different from the pretraining
dataset as the wave equation is a linear second-order (in time and space) equation that is different
from the compressible Euler and incompressible Navier-Stokes equations that form the pretraining
dataset.

B.2.12 ACE

The Allen-Cahn equation for modeling phase transitions in material science is given by

ut = ∆u− ϵ2u(u2 − 1), (67)

with a reaction rate of ϵ = 220. We consider this equation with periodic boundary conditions and
initial conditions given by

u0(x, y) =
1

K2

K∑
i,j=1

aij · (i2 + j2)−r sin(πix) sin(πjy), ∀x, y ∈ (0, 1),

where K is a random integer drawn uniformly at random from [16, 32], r ∼ U[0.7,1.0] and aij ∼
U[−1,1].

Trajectories are generated by a finite-difference method at 1282 resolution. The final time of all the
simulations is T = 0.0002. We save 20 snapshots, evenly spaced in time.

The corresponding solution operator is S(t, u0) = u(t) and maps the initial concentration to the
concentration at time t.

We generated 15000 ACE trajectories with a train/validation/test split of 14700/60/240. The same
time-stepping is used as for NS-PwC. The testing error is evaluated at the 14th time step. A
visualization of a random sample and the predictions made by POSEIDON, CNO and FNO (128
training trajectories) are shown in Figure 72.

Again, it is essential to emphasize that the Allen-Cahn equation is a nonlinear parabolic reaction-
diffusion equation that is very different from the PDEs used in constructing the pretraining dataset.

B.2.13 SE-AF

This dataset contains the samples that describe the classical computational physics benchmark of flow
past airfoils, modeled by the compressible Euler equations (37). The samples are not time-dependent,
as we are interested in the steady-state solution.

31

Figure 3: Elliptic mesh for the airfoil problem

We follow standard practice in aerodynamic shape optimization and consider a reference airfoil shape
with upper and lower surface of the airfoil are located at (x, yU

ref(x/c)) and (x, yL
ref(x/c)) where c

is the chord length and yU
ref and yL

ref corresponding to the well-known RAE2822 airfoil [46]. The
reference shape is then perturbed by Hicks-Henne Bump functions [48] :

yL(ξ) = yL
ref(ξ) +

15∑
i=1

aL
iBi(ξ), yU(ξ) = yU

ref(ξ) +

15∑
i=1

aU
i Bi(ξ),

Bi(ξ) = sin3(πξqi), qi =
ln2

ln14− lni
, ξ =

x

c
,

aL
i = 2(ψi − 0.5)(i+ 1)× 10−3, aU

i = 2(ψi+10 − 0.5)(11− i)× 10−3, i = 1, ..., 15

with ψ ∈ [0, 1]d. We can now formally define the airfoil shape as S = {(x, y) ∈ D : x ∈ [0, c], yL ≤
y ≤ yU} and accordingly the shape function f = χ[S](x, y), with χ being the characteristic function.

The underlying operator of interest maps the shape function f into the density of the flow ρ at steady
state of the compressible Euler equations.

The equations are solved with the solver NUWTUN, see [45] and references therein, on 243× 43
elliptic mesh (see Figure 3) given the following free-stream boundary conditions,

T∞ = 1, M∞ = 0.729, p∞ = 1, α = 2.31◦.

The data is ultimately interpolated onto a Cartesian grid of dimensions 128× 128 on the underlying
domain D = [−0.75, 1.75]2, and unit values are assigned to the density ρ(x, y) for all (x, y) in the
set S. The shapes of the training data samples correspond to 30 bump functions, with coefficients
ψ sampled uniformly from [0, 1]30. During the training and evaluation processes, the difference
between the learned solution and the ground truth is exclusively calculated for the points (x, y) that
do not belong to the airfoil shape S .

We generated 10869 SE-AF solutions with a train/validation/test split of 10509/120/240. A visual-
ization of a random sample and the predictions made by POSEIDON, CNO and FNO (128 training
samples) are shown in Figure 73.

We note here that this SE-AF benchmark differs from what has been seen during pretraining in many
aspects, namely i) the problem is time-independent, in contrast to the time-dependent PDEs for
pretraining, ii) the solution operator is very different as it maps a (shape) coefficient into the steady
state solution, and iii) the geometry of the underlying domain is non-Cartesian and the boundary
conditions are very different from what was encountered during pretraining.

B.2.14 Poisson-Gauss

We consider the Poisson equation,

−∆u = f, in (0, 1)2, (68)

32

with homogeneous Dirichlet boundary conditions. The solution operator maps the source term f to
the solution u. The source term f consists of a superposition of a random number of Gaussians

f(x, y) =

N∑
i=1

exp

(
− (x− µx,i)

2 + (y − µy,i)
2

2σ2
i

)
with N being an integer drawn from a geometric distribution Geom(0.4), µx,i, µy,i ∼ U[0,1] and
σi ∼ U[0.025,0.1]. Thus, this experiment models the diffusion of an input (source) which is a
superposition of Gaussians.

We generated 20000 Poisson-Gauss solutions (with a train/validation/test split of 19640/120/240)
with a finite element method based on FENICS [40]. A visualization of a random sample and the
predictions made by POSEIDON, CNO and FNO (128 training samples) are shown in Figure 74.

We note here that both the Poisson-Gauss and Helmholtz benchmarks differ from what has been seen
during pretraining in many aspects, namely i) the problems are time-independent, in contrast to the
time-dependent PDEs for pretraining, ii) the solution operator is very different as it maps coefficients
into the steady-state solution, and iii) the boundary conditions are very different from the periodic
boundary conditions, seen during pretraining.

B.2.15 Helmholtz

The Helmholtz equation models wave propagation in the frequency domain. We consider a variant of
this equation given by

−∆u− ω2a(x, y)u = 0, x, y ∈ D, (69)
and Dirichlet boundary conditions

u(x, y) = b, x, y ∈ ∂D,

where ω = 5π/2 is the frequency, D = (0, 1)2 is the domain, a is the spatial dependent function that
defines properties of the medium of the wave propagation and b is the fixed value of the solution u at
the boundary ∂D.

The boundary value b follows uniform ditribution, namely b ∼ U[0.25,0.5]. The function a is defined
as a sum of random number of Gaussians and is generated in several steps. First, we draw an integer
n from [2, 7] uniformly at random. This number represents the number of Gaussians that will be
randomly generated. For 1 ≤ i ≤ n, it holds that Ai ∼ U[0.5,10.0] and σi ∼ U[0.05,0.1]. Additionally,
two numbers xi, yi that represent x and y coordinates of the Gaussians are generated such that
xi, yi ∼ U[0.2,0.8]. The unnormalized function ā is obtained by

ā(x, y) = −
n∑

i=1

Ai exp

(
− (xi − x)2 + (yi − y)2

2σ2
i

)
, x, y ∈ (0, 1).

Function a is obtained by normalizing ā, i.e.

a(x, y) =
ā−min(ā)

max(ā)−min(ā)
.

The solution operator maps the tuple (a, b) to the solution u. This problem is a steady-state problem.
Trajectories are generated by a finite-difference method at 1282 resolution, similar to DeVito [43].

We generated 19675 Helmholtz solutions with a train/validation/test split of 19035/128/512. A
visualization of a random sample and the predictions made by POSEIDON, CNO and FNO (128
training trajectories) are shown in Figure 75.

33

C Models and Baselines

We compare multiple versions of POSEIDON with foundation model baselines, namely MPP [49]
and a CNO [60] foundation model that is trained in a similar manner as POSEIDON. In addition, we
compare against state-of-the-art neural operators trained from scratch, namely CNO and FNO [33],
as well as scOT trained from scratch. All these models and their training strategies are described in
the following. Their approximate model sizes can be read off from Table 5.

Table 5: Approximate model sizes of all the models considered in this paper.
Model Number of parameters

POSEIDON-L 629M

POSEIDON-B 158M

POSEIDON-T 21M

CNO-FM 109M

MPP-B 116M

CNO 39M

scOT 40M

FNO 37M

We train all models on a realization of Equation 6 in the Main Text; in particular, we set p = 1. For
each gradient step, we draw from the set ofN available trajectory snapshots {ul

tk
|ul

tk
∈ Rc×J×J}Nl=1

where c is the number of input/output functions, J is the size of the computational grid, and tk is the
(lead) time from the initial condition to the k-th snapshot in the trajectory, i.e. we get a batch of size
B of pairs {(um

ti ,u
m
tj)l}Bl=1 where i ≤ j. The loss is then computed as

L({(um
ti ,u

m
tj)l}Bl=1) =

1

c

c∑
s=1

∑B
l=1

∑J
u,v=1

∣∣∣(um
tj)

l
s,u,v − Sθ((tj)

l − (ti)
l, (um

ti)
l
s,u,v)

∣∣∣∑B
l=1

∑J
u,v=1

∣∣∣(um
tj)

l
s,u,v

∣∣∣+ ϵ
(70)

where ϵ = 10−10 for numerical stability, Sθ is the model, (·)l is the l-th sample from the batch and
(·)s,u,v denotes the value at indices (s, u, v).

During training, we create a checkpoint after every epoch, but only keep the checkpoint corresponding
to the lowest validation loss (evaluated at the end of the epoch) which is then also used for testing.

C.1 POSEIDON Models

In the following, we give thorough details for all POSEIDON models that we pretrained, as well as
details on finetuning these pretrained models. All models are pretrained on the datasets introduced in
Section B.1, i.e. they expect four dimensional inputs and outputs, density ρ, velocities u and v, and
pressure p. During pretraining, we set ρ = 1 and mask p for all pretraining datasets corresponding to
incompressible flow. Further, we use the full set of 77840 pretraining trajectories, unless otherwise
specified.

To finetune the pretrained model on tasks whose input/output functions are not in the set of pretraining
input/outputs (ρ, u, v, p) or where there are additional inputs/outputs – this corresponds to the tasks
NS-Tracer-PwC, FNS-KF, SE-AF, GCE-RT, Wave-Layer, Wave-Gauss, ACE, Poisson-Gauss, and
Helmholtz – we transfer all parameters from the pretrained model, except

• the embedding weight WE ,
• the patch recovery weight WR and bias bR, and
• the mixup convolutional kernel.

We refer to Section A.2 for notation. This means that solely embedding/recovery is trained from
scratch and just the parameters whose dimensions would not match, i.e. a minimal set of parameters

34

is trained from random initialization. All other parameters are kept trainable and no parameter is
frozen.

In general, we do not apply any weight decay on (time-conditioned) layer norm parameters. We
finetune all parameters using the same optimizer with different learning rates, i.e. we build two or
three parameter groups, depending on the finetuning task. In case the embedding and recovery do
not have to be replaced, we finetune all parameters, except parameters of the (time-conditioned)
layer norm, with learning rate η̂, and parameters of the layer norm with learning rate η̃N . If the
embedding/recovery is to be replaced and trained from scratch, we finetune all embedding/recovery
parameters (including the embedding bias bE) with learning rate η̃, layer norm parameters with
learning rate η̃N , and all other parameters with learning rate η̂.

C.1.1 POSEIDON-T

POSEIDON-T is the smallest pretrained model, an instantiated scOT with the following hyperparame-
ters:

• Embedding/latent dimension C: 48
• Number of SwinV2 transformer blocks at each level (∀i) ti: 4

This results in a model with 21M parameters (for POSEIDON models, we exclude embedding and
recovery parameters in this count).

Pretraining The model is pretrained on 8 NVIDIA RTX 4090 GPUs using the following (data-
parallel) training protocol:

• Optimizer: AdamW [41]
• Scheduler: Cosine Decay with linear warmup of 2 epochs
• Maximum learning rate: 10−3

• Weight decay: 0.1
• Effective batch size: 640, resulting in a per-device batch size of 80
• Number of epochs: 40
• Early stopping: No
• Gradient clipping (maximal norm): 5

Finetuning The pretrained model is finetuned on every task on a single GPU following this
finetuning protocol (η̃ is only applicable to certain downstream tasks):

• Optimizer: AdamW [41]
• Scheduler: Cosine Decay
• Initial learning rate η̂: 5 · 10−5

• Initial learning rate η̃: 5 · 10−4

• Initial learning rate η̃N : 5 · 10−4

• Weight decay: 10−6

• Batch size: 40
• Number of epochs: 200
• Early stopping: No
• Gradient clipping (maximal norm): 5

C.1.2 POSEIDON-B

POSEIDON-B is the base model, an instantiated scOT with the following hyperparameters:

• Embedding/latent dimension C: 96
• Number of SwinV2 transformer blocks at each level (∀i) ti: 8

This results in a model with 158M parameters.

35

Pretraining The model is pretrained on 8 NVIDIA RTX 4090 GPUs using the following (data-
parallel) training protocol:

• Optimizer: AdamW [41]

• Scheduler: Cosine Decay with linear warmup of 2 epochs

• Maximum learning rate: 5 · 10−4

• Weight decay: 0.1

• Effective batch size: 320, resulting in a per-device batch size of 40

• Number of epochs: 39 (40 were initially planned)

• Early stopping: No

• Gradient clipping (maximal norm): 5

Finetuning The pretrained model is finetuned on every task on a single GPU following this
finetuning protocol (η̃ is only applicable to certain downstream tasks):

• Optimizer: AdamW [41]

• Scheduler: Cosine Decay

• Initial learning rate η̂: 5 · 10−5

• Initial learning rate η̃: 5 · 10−4

• Initial learning rate η̃N : 5 · 10−4

• Weight decay: 10−6

• Batch size: 40

• Number of epochs: 200

• Early stopping: No

• Gradient clipping (maximal norm): 5

C.1.3 POSEIDON-L

POSEIDON-L is the largest model we trained, an instantiated scOT with the following hyperparame-
ters:

• Embedding/latent dimension C: 192

• Number of SwinV2 transformer blocks at each level (∀i) ti: 8

This results in a model with 629M parameters.

Pretraining The model is pretrained on 8 NVIDIA RTX 4090 GPUs using the following (data-
parallel) training protocol:

• Optimizer: AdamW [41]

• Scheduler: Cosine Decay with linear warmup of 1 epoch

• Maximum learning rate: 2 · 10−4

• Weight decay: 0.1

• Effective batch size: 128, resulting in a per-device batch size of 16

• Number of epochs: 20

• Early stopping: No

• Gradient clipping (maximal norm): 5

36

Finetuning The pretrained model is finetuned on every task on a single GPU following this
finetuning protocol (η̃ is only applicable to certain downstream tasks):

• Optimizer: AdamW [41]
• Scheduler: Cosine Decay
• Initial learning rate η̂: 5 · 10−5

• Initial learning rate η̃: 5 · 10−4

• Initial learning rate η̃N : 5 · 10−4

• Weight decay: 10−6

• Batch size: 16
• Number of epochs: 200
• Early stopping: No
• Gradient clipping (maximal norm): 5

C.1.4 Models for Dataset Ablations (see Section D.3)

For models used in the pretraining dataset ablations, we utilize the same pretraining and finetuning
strategies as for POSEIDON-B. For the model trained on half of the pretraining dataset, we only train
on the first half of each subset (NS-Sines, NS-Gaussians, CE-RP, CE-CRP, CE-KH, CE-Gauss); the
same logic applies to the model trained on an eighth of the pretraining dataset. The model trained on
a less diverse pretraining dataset is not trained on NS-Sines, CE-CRP, and CE-Gauss, such that the
pretraining dataset size is directly comparable to the model trained on half of the pretraining dataset.

C.2 scOT

We additionally train a scOT from scratch on every downstream task, to compare its performance to
POSEIDON and other baselines. Its hyperparameters are as follows:

• Embedding/latent dimension C: 48
• Number of SwinV2 transformer blocks at each level (∀i) ti: 8

This results in a model with 40M parameters. It is trained on one or multiple GPUs (depending on
the dataset size) with the following parameters:

• Optimizer: AdamW [41]
• Scheduler: Cosine Decay with linear warmup of 20 epochs
• Maximum learning rate η̂: 5 · 10−4

• Weight decay: 10−6

• Batch size: 40 (on a single GPU, else the effective batch size is larger)
• Number of epochs: 400
• Early stopping: If the validation loss does not improve for 40 epochs
• Gradient clipping (maximal norm): 5

C.3 CNO

A Convolutional Neural Operator (CNO) is a model that (approximately) maps bandlimited functions
to bandlimited functions [60]. Let Bw be the space of bandlimited functions with the bandlimit w. A
CNO is compositional mapping between function spaces G : Bw(D) → Bw(D) and is defined as

G : u 7→ P (u) = v0 7→ v1 7→ . . . vL 7→ Q(vL) = ū, (71)

where
vl+1 = Pl ◦ Σl ◦ Kl(vl), 1 ≤ ℓ ≤ L− 1, (72)

where L is the number of CNO blocks and D = (0, 1)2 is the domain.

37

First, the input function u ∈ Bw(D) is lifted to the latent space of bandlimited functions through a
lifting layer:

P :
{
u ∈ Bw(D,RdX)

}
→
{
v0 ∈ Bw(D,Rd0)

}
.

Here, d0 ≥ dX is the number of channels in the lifted, latent space. The lifting operation is performed
by a convolution operator and activation operator which will be defined below.

Then, the lifted function is processed through the composition of a series of mappings between
functions (layers), with each layer consisting of three elementary mappings, i.e., Pl is either the
upsampling or downsampling operator, Kl is the convolution operator and Σl is the activation operator.

Finally, the last output function in the iterative procedure vL is projected to the output space with a
projection operator Q, defined as

Q :
{
vL ∈ Bw(D,RdL)

}
→
{
u ∈ Bw(D,RdY)

}
.

The projection operation is also performed by a convolution operator and activation operator.

Upsampling and Downsampling Operators. For some w > w, we can upsample a function f ∈ Bw

to the higher band Bw by simply setting,

Uw,w : Bw(D) → Bw(D), Uw,wf(x) = f(x), ∀x ∈ D.

On the other hand, for some w < w, we can downsample a function f ∈ Bw to the lower band Bw

by setting Dw,w : Bw(D) → Bw(D), defined by

Dw,wf(x) =
(w
w

)2
(hw ⋆ f)(x) =

(w
w

)2 ∫
D

hw(x− y)f(y)dy, ∀x ∈ D,

where ⋆ is the convolution operation on functions defined above and hw is the so-called interpolation
sinc filter:

hw(x0, x1) = sinc(2wx0) · sinc(2wx1), (x0, x1) ∈ R2. (73)

Activation Operator. First, the input function f ∈ Bw is upsampled to a higher bandlimit w > w,
then the activation function is applied and finally the result is downsampled back to the original
bandlimit w. Implicitly assuming that w is large enough such that σ (Bw) ⊂ Bw, we define the
activation operator in (71) as,

Σw,w : Bw(D) → Bw(D), Σw,wf(x) = Dw,w(σ ◦ Uw,w̃f)(x), ∀x ∈ D. (74)

The above ingredients are assembled together in the form of an Operator U-Net architecture that has
bandlimited functions as inputs and outputs. In addition to the blocks that have been defined above,
one also needs additional ingredients, namely incorporate skip connections through ResNet blocks of
the form, Rw,w : Bw(D,Rd) → Bw(D,Rd) such that

Rw,w(v) = v +Kw ◦ Σw,w ◦ Kw(v), ∀v ∈ Bw(D,Rd). (75)

Additionally, the so-called Invariant blocks of the form, Iw,w : Bw(D,Rd) → Bw(D,Rd) is defined
such that

Iw,w(v) = Σw,w ◦ Kw(v), ∀v ∈ Bw(D,Rd). (76)
Finally, all these ingredients are assembled together in a modified Operator U-Net architecture which
is graphically depicted in Figure 4. Note that instead of a lead-time conditioned layer normalization
4, we incorporate a lead-time conditioned instance normalization into CNO. A lead-time conditioned
instance normalization is applied to an input v by

INα(t),β(t)(v)(x) = α(t)⊙ IN(v)(x) + β(t) (77)

where IN(v) is a regular instance normalization. In the case of CNO, we use (small) MLPs to
parametrize α(t) and β(t). This choice of conditional layer is similar to the FILM layer introduced
in [55], applied on top of the instance normalization. Additionally, we observed that including time t
as an additional, constant input channel of the CNO slightly enhances its performance.

The specifications of the CNO model that we used and trained from scratch in all the experiments, as
well as the training details are summarized in the following list:

38

• Lifting dimension: 54
• Number of up/downsampling layers: 4
• Number of residual blocks in the bottleneck: 6
• Number of residual blocks in the middle layers: 6
• Trainable parameters: 39.1M
• Optimizer: AdamW [41]
• Scheduler: Linear with decreasing factor of 0.9 every 10 epochs
• Initial learning rate: 5 · 10−4

• Weight decay: 10−6

• Number of epochs: 400

• Batch size: 32
• Early stopping: If the validation loss does not improve for 40 epochs

Source code for CNO is available at https://github.com/camlab-ethz/ConvolutionalNeuralOperator.

Figure 4: Schematic representation of CNO (71) as a modified U-Net with a sequence of layers
mapping between bandlimited functions.

C.4 FNO

A Fourier neural operator (FNO) G [33] is a composition
G : X → Y : G = Q ◦ LT ◦ · · · ◦ L1 ◦R. (78)

It has a “lifting operator” u(x) 7→ R(u(x), x), whereR is represented by a linear functionR : Rdu →
Rdv where du is the number of components of the input function and dv is the “lifting dimension”.
The operator Q is a non-linear projection, instantiated by a shallow neural network with a single
hidden layer and leaky ReLU activation function, such that vL+1(x) 7→ G(u)(x) = Q

(
vL+1(x)

)
.

Each hidden layer Lℓ : v
ℓ(x) 7→ vℓ+1(x) is of the form

vℓ+1(x) = (σ ◦ IN)
(
Wℓ · vℓ(x) +

(
Kℓv

ℓ
)
(x)
)
,

with Wℓ ∈ Rdv×dv a trainable weight matrix (residual connection), σ an activation function, corre-
sponding to leaky ReLU, IN standard instance normalization or time-conditioned instance normal-
ization (see Equation 77) and the non-local Fourier layer,

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNv

ℓ(k)
)
,

where FNv
ℓ(k) denotes the (truncated)-Fourier coefficients of the discrete Fourier transform (DFT)

of vℓ(x), computed based on the given J grid values in each direction. Here, Pℓ(k) ∈ Cdv×dv is a
complex Fourier multiplication matrix indexed by k ∈ Zd, and F−1

N denotes the inverse DFT. As with
CNO (Section C.3), we include time as an additional channel – in addition to the time-conditioned
instance normalization layers – for all time-dependent problems.

We used the following hyperparameters and training details to train the FNO models:

39

https://github.com/camlab-ethz/ConvolutionalNeuralOperator

• Lifting dimension: 96
• Number of Fourier layers: 5
• Number of Fourier modes: 20
• Trainable parameters: 37.0M
• Optimizer: AdamW [41]
• Scheduler: Cosine Decay
• Initial learning rate: 5 · 10−4

• Weight decay: 10−6

• Number of epochs: 400
• Batch size: 40
• Early stopping: If the validation loss does not improve for 40 epochs

C.5 CNO-FM

In addition to the POSEIDON models, we also pretrain a CNO foundation model baseline. We use
the same pretraining datasets as the POSEIDON models (see B.1), i.e. NS-Sines, NS-Gauss, CE-RP,
CE-KH, CE-CRP and CE-Gauss datasets. The inputs and the outputs of the model have 4 channels,
i.e. ρ, u, v and p. For the NS-Sines and NS-Gauss datasets, we mask out the pressure predictions
during training, while predicting a constant value ρ = 1 for density.

The specifications of the CNO-FM model that we pretrained, as well as the training details are
summarized in the following list:

• Lifting dimension: 82
• Number of up/downsampling layers: 4
• Number of residual blocks in the bottleneck: 8
• Number of residual blocks in the middle layers: 8
• Trainable parameters: 109M
• Optimizer: AdamW
• Scheduler: Linear with decreasing factor of 0.9 every epoch
• Initial learning rate: 5 · 10−4

• Weight decay: 10−6

• Effective batch size: 256, resulting in a per-device batch size of 32
• Number of epochs: 40

• Early stopping: No

To finetune the CNO-FM, we differentiate between two scenarios: one where the input and output
share the same context as the pretrained models (comprising the variables ρ, u, v, and p, either
masked or unmasked), and another where the downstream task is out-of-context (i.e. when the input
and target variables differ from those used during pretraining).

To explain the finetuning technique, let us denote the pretrained CNO model by GFM and decompose
it to

GFM = Q ◦ GFM,b ◦ P,
where P is the lifting layer, Q is the projection layer and GFM,b is the base part of the CNO-FM.

When the context of variables is retained in the downstream task, we introduce an additional linear
layer L that is applied prior to the lifting layer P . All other parameters from GFM are transferred
over to the downstream task model. Hence, the model that is finetuned is

GFT = Q ◦ GFM,b ◦ P ◦ L. (79)

A schematic representation of the CNO-FM finetuning procedure is shown in Figure 5. When the
downstream task is out-of-context, in addition to the linear layer L that is applied before P , the

40

projection layer is replaced by a new, randomly initialized projection layer Q⋆. Other parameters are
transferred over to the downstream task model. The model that is finetuned is

GFT = Q⋆ ◦ GFM,b ◦ P ◦ L. (80)

We set the number of epochs for the downstream tasks to 200. Since the loss converges significantly
faster than when training from scratch, even 50− 100 epochs were sufficient to effectively finetune
the CNO-FM. Parameters of GFT are divided into three distinct groups

• Group 1: Projection Q (or Q⋆), Lifting P and Linear layer L
• Group 2: All the conditional instance normalization layers INα(t),β(t)

• Group 3: Other parameters in GFM,b

We experimented with learning rates for each group of parameters, as well as schedulers. An efficient
way to finetune CNO-FM for in-context downstream tasks was to set the initial learning rates of the
parameter groups to lr1 = 2.5 · 10−4, lr2 = 5 · 10−4 and lr3 = 10−4. For out-of-context tasks, the
learning rates that we used are lr1 = 7.5 · 10−4, lr2 = 5 · 10−4 and lr3 = 10−4. In both cases, the
learning rate scheduler is linear with with decreasing factor of 0.9 every 5 epochs.

The CNO codes are available at https://github.com/camlab-ethz/ConvolutionalNeuralOperator.

Figure 5: Schematic representation of the finetuning procedure of CNO-FM.

C.6 MPP

Multiple physics pretraining (MPP) is a pretraining approach for autoregressive physical surrogate
modeling [49]. MPP uses a scalable axial attention transformer backbone to reduce the quadratic
complexity of the usual attention mechanism. Multiple input fields of MPP are projected onto a single,
shared embedding space. MPP also uses spatial and temporal attention blocks to capture spatial
and temporal dependencies in the data. To train or finetune MPP models, one uses the normalized
MSE loss. We will finetune the MPP-AVIT-B foundation model for all our downstream tasks. The
MPP-AVIT-B model has 116M trainable parameters.

MPP models are autoregressive models with fixed context size of TS . They predict the solution at a
time step N of a PDE of interest given the previous TS time steps. Thus, they rely on the history of
the solution, encompassing multiple time steps, to forecast future time steps accurately. This differs
from the the task that we are interested in (i.e. OLT defined in the Main Text), which aims to generate
the entire solution trajectory given only the initial datum and boundary conditions.

Therefore, we need to adjust the MPP finetuning strategy. We adapt the all2all strategy. Let
U = (u0, u1, . . . , uT) be a solution trajectory of length T + 1. Let (i, j) be two integers such that
j > i. We rely on the fact that MPP predicts one snapshot at a time and finetune MPP to predict uj
based on the history uj−1, uj−2, . . . ui. Since there are not always TS past time steps in the training

41

https://github.com/camlab-ethz/ConvolutionalNeuralOperator

samples, we fill the remaining time steps with copies of ui (see Figure 6). We generate T (T + 1)/2
samples out of the trajectory U . For steady-state operators of the form (f1, f2, . . . , fL) → u, the
L channels are copied TS times, and MPP is finetuned using these samples (see Figure 6). The
inference strategy for the time-dependent problems is straightforward. Given the initial snapshot u0,
one autoregressively applies the finetuned model T times to predict uT (see Figure 6). During the
finetuning of MPP, we do not predict dummy variables like the speed function in the Wave equation
or the forcing term in Kolmogorov flow, as the model had difficulties in predicting them, so the errors
accumulated fast. This contrasts with other models that predict the dummy variables alongside the
solution. Final testing errors for all the models are not calculated for these dummy variables.

For each downstream task, we finetuned MPP-AVIT-B model for 100 epochs. We did not use more
than 100 epochs as the training usually converged after 10 to 50 epochs. We used the Adam [25]
optimizer with a cosine annealing scheduler and linear warmup.

Figure 6: Schematic representation of MPP all2all and steady finetuning and inference strategies.

42

D Results

D.1 Performance on Downstream Tasks

We evaluate all models on the median relative L1 error at a certain snapshot in time on each solution
function of interest. For vectorized functions such as the velocity in fluid flow, we evaluate it over the
entire vector. Since all our downstream tasks have different solution functions of interest, we provide
an overview over the actual functions of interest in Table 6; should there be a list, we compute the
mean over all metrics. It also depicts, how the rollout in time was done for each task i.e., either the
solution at final time is computed directly with the final time as lead time or autoregressively (AR)
as presented in Main Text (8). Within AR, POSEIDON models were always evaluated with uniform
(homogeneous) rollout whereas in the case of CNO and CNO-FM, autoregressive (AR) rollout is
heterogeneous; for MPP, it is always uniformly autoregressive.

Evaluation of Downstream Tasks with Scaling Plots. In Figures 7 to 21, we present the test errors
(y-axis) for all the models (POSEIDON-L, POSEIDON-B, CNO-FM, MPP, FNO on the left sub-figure
and POSEIDON-L, POSEIDON-B, CNO, scOT and FNO on the right sub-figure of each figure) vs. the
total number of trajectories (time-dependent PDEs) or total number of samples (for time-dependent
PDEs) on the x-axis. As mentioned in the Main Text, the POSEIDON models clearly outperform all
the baselines on most of the tasks as the corresponding test errors are significantly lower than the
baselines for the same number of samples. Note that the metrics EG and AG (11) were computed
based on these plots. We do not include the POSEIDON-T results as they would further clutter the
scaling plots. However, the EG and AG metrics for POSEIDON-T are presented in Table 8.

On Scaling Laws. If we denote the number of trajectories (samples) by M , we can fit power laws of
the form,

Emodel(M) ≈ CmodelM
−αmodel , (81)

to the scaling plots in Figure 7 to 21. Here, Cmodel denotes the model-specific scaling factor and the
scaling exponent is αmodel. The scaling exponents, resulting from these fits are presented in Table
7. We observe from this table, that all the models that we consider obey scaling laws of the form
(81), with different scaling exponents for different problems (MPP-B does not converge in some
cases). These include the POSEIDON foundation models which show consistent scaling laws. For
instance, POSEIDON-L has a scaling exponent of approximately 0.5 or higher in all the cases except
for CE-RM (where all models converge very slowly). Nevertheless, we would like to emphasize
that the scaling exponent alone does not govern the final error, except in the asymptotic infinite data
limit. Rather, the scaling factor Cmodel in (81) plays a decisive role in determining errors in the
pre-asymptotic limited data regime that all downstream tasks correspond to.

Moreover, a closer analysis of the scaling plots reveals a more nuanced picture for the POSEIDON
models. In some of the downstream tasks, for instance the Poisson-Gauss benchmark, we see from
the scaling plot Figure 20 that both POSEIDON-L and POSEIDON-B display a biphasic behavior, with
a scaling law of the form,

Emodel(M) ≈
{
Cw

modelM
−αw

model , if M ≤Mpt
model,

Cℓ
modelM

−αℓ
model , if M ≥Mpt

model,
(82)

with αw < αℓ. Thus, the scaling behavior is characterized by two phases, with different exponents.
For instance, for the Poisson-Gauss benchmark (Figure 20), we find that Mpt = 32 for both models.
Moreover, for POSEIDON-B, αw = 0.23 and αℓ = 0.99 and for POSEIDON-L, αw = 0.33 and
αℓ = 0.94. We speculate that these phase transitions separate two phases, a warmup phase where
POSEIDON is slowly learning about an operator that is very different from those encountered in the
pretraining dataset (as is the case with Poisson-Gauss) and a learning phase, where fast learning takes
place and the model is able to quickly learn the specifics of the downstream task.

Summarizing Downstream Task Performance. In Table 9, we provide a statistical summary
of the performance of all models on all downstream tasks by presenting the (median) EG and the
(mean) AG over all tasks. These statistics provide an (average) account of model performance over all
downstream tasks and clearly quantify how the POSEIDON family of foundation models significantly
outperforms all the baselines.

43

Table 6: The evaluation metrics are computed for each downstream task on different functions of
interest, and rollout is done differently.

Downstream Task Functions of Interest Rollout

NS-PwC (ux, uy) AR

NS-SVS (ux, uy) AR

NS-BB (ux, uy) AR

NS-SL (ux, uy) AR

NS-Tracer-PwC (ux, uy), c AR

FNS-KF (ux, uy) direct

CE-RPUI ρ, (vx, y), p AR

CE-RM ρ, (vx, vy), p direct

SE-AF ρ direct

GCE-RT ρ, (vx, vy), p, ϕ direct

Wave-Layer u direct

Wave-Gauss u direct

ACE u direct

Poisson-Gauss u direct

Helmholtz u direct

Table 7: Scaling exponents with a power law fit (81)
Dataset POSEIDON-B POSEIDON-L scOT CNO-FM CNO MPP-B FNO

NS-PwC 0.36 0.49 0.52 0.43 0.62 0.55 0.34

NS-SVS 0.49 0.48 0.77 0.56 0.55 0.53 0.02

NS-BB 0.32 0.51 0.57 0.47 0.64 0.52 0.40

NS-SL 0.36 0.47 0.48 0.46 0.45 0.45 0.59

NS-Tracer-PwC 0.78 0.66 0.59 0.41 0.56 0.43 0.44

FNS-KF 0.98 0.56 1.04 0.30 0.45 0.29 0.43

CE-RPUI 0.35 0.37 0.43 0.27 0.32 0.05 0.23

CE-RM 0.10 0.11 0.09 0.10 0.11 -0.20 0.11

SE-AF 0.30 0.32 0.27 0.35 0.13 0.31 0.24

GCE-RT 0.53 0.59 0.44 0.47 0.31 0.11 0.43

Wave-Layer 0.57 0.51 0.33 0.40 0.51 0.13 0.43

Wave-Gauss 0.59 0.50 0.45 0.37 0.46 0.07 0.34

ACE 0.74 0.85 0.77 0.72 0.47 0.46 0.88

Poisson-Gauss 0.99 0.94 1.07 0.67 0.50 0.71 0.61

Helmholtz 0.38 0.43 0.68 0.42 0.54 0.27 0.31

44

Table 8: Efficiency gain (EG) and Accuracy Gain (AG) for the POSEIDON models on all downstream
tasks.

Pretrained Models Scratch

POSEIDON-L POSEIDON-B POSEIDON-T FNO

EG AG EG AG EG AG EG AG

NS-PwC 890.6 24.7 1024.0 19.7 1024.0 19.8 1 1

NS-SVS 502.9 7.3 518.9 7.9 212.0 6.1 1 1

NS-BB 552.5 29.3 816.0 14.7 365.0 19.4 1 1

NS-SL 21.9 5.5 19.1 4.7 9.7 3.7 1 1

NS-Tracer-PwC 49.8 8.7 20.4 5.4 35.1 6.2 1 1

FNS-KF 62.5 7.4 16.1 4.7 77.9 5.9 1 1

CE-RPUI 352.2 6.5 370.8 6.2 909.7 5.8 1 1

CE-RM 4.6 1.2 3.1 1.1 2.8 1.1 1 1

SE-AF 3.4 1.2 2.9 1.2 2.4 1.1 1 1

GCE-RT 5.3 2.0 3.2 1.5 1.7 1.2 1 1

Wave-Layer 46.5 6.1 24.9 4.7 14.5 3.4 1 1

Wave-Gauss 62.1 5.6 29.3 4.3 19.5 3.1 1 1

ACE 17.0 11.6 8.7 6.5 9.8 7.2 1 1

Poisson-Gauss 42.5 20.5 24.4 13.0 18.2 8.4 1 1

Helmholtz 78.3 6.1 64.7 5.0 64.7 4.9 1 1

Table 9: (Median) Efficiency gain (EG) and (Mean) Accuracy Gain (AG) over all downstream tasks
for all models. We also present N(EG) as the number of tasks for which the EG of the model is
greater than 10 and N(AG) as the number of tasks where the AG of the model is greater than 2.

Median EG Mean AG N(EG) N(AG)

POSEIDON-L 49.8 9.58 12 13

POSEIDON-B 24.4 6.71 11 12

POSEIDON-T 19.5 6.49 10 12

CNO-FM 10.6 2.91 8 10

MPP-B 2.0 1.82 3 6

CNO 4.6 2.61 5 6

scOT 5.4 2.57 4 8

45

4 32 256 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 7: NS-PwC. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 8: NS-SVS. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 9: NS-BB. Number of trajectories vs. median relative L1 error on the test set.

46

4 32 256 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 10: NS-SL. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 11: NS-Tracer-PwC. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 12: FNS-KF. Number of trajectories vs. median relative L1 error on the test set.

47

4 32 256 2048

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 13: CE-RPUI. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 14: CE-RM. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 15: SE-AF. Number of samples vs. median relative L1 error on the test set.

48

2 8 32 128 512

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 16: GCE-RT. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512 2048

Number of trajectories

0.01

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 17: Wave-Layer. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512 2048

Number of trajectories

0.01

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 18: Wave-Gauss. Number of trajectories vs. median relative L1 error on the test set.

49

4 32 256 2048

Number of trajectories

0.000

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 19: ACE. Number of trajectories vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 20: Poisson-Gauss. Number of samples vs. median relative L1 error on the test set.

4 32 256 2048

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

4 32 256 2048

Poseidon-B

FNO

Poseidon-L

scOT

CNO-FM

CNO

MPP-B

Figure 21: Helmholtz. Number of samples vs. median relative L1 error on the test set.

50

D.2 Scaling with respect to Model Size

In Figure 22, we plot how the training loss and evaluation (validation) loss during pretraining changes
with model size for the POSEIDON models. We observe from this figure (bottom row) that there is a
consistent decay in losses with increasing model size. The role of model size vis a vis downstream
tasks has already been shown in the scaling plots of the previous subsection where we compared
POSEIDON-L with the smaller POSEIDON-B. The corresponding metrics EG and AG are shown
in Table 8. We also see from the statistical summary Table 9 that there is a gain, on average, in
downstream performance with increasing model size for the POSEIDON family of models.

0 5 10 15 20

Epoch

10−2

10−1

100

T
ra

in
in

g/
V

al
id

at
io

n
L

os
s

0 5 10 15 20

Epoch

10−2

10−1

100

21M 158M 629M

Model Size

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

21M 158M 629M

Model Size

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Poseidon-L Poseidon-B Poseidon-T

Figure 22: (Top) Training (left) and evaluation (right) losses up to epoch 20 for different model sizes.
(Bottom) Scaling at epoch 20 for training loss (left) and evaluation loss (right).

51

D.3 Scaling with respect to Pretraining Dataset Size and Quality

As mentioned in the Main Text, scaling of the POSEIDON models with dataset size is of great interest.
To that end, in Figure 23, we plot the training and evaluation losses, during pretraining, for the
POSEIDON-B model, trained with one-eighth, one-half and full size of the pretraining dataset (the
details of the corresponding setups are given in Section C). We see from this figure that POSEIDON-B
scales with dataset size on the pretraining dataset. Moreover, in Figures 24 to 38 (left subfigure of
each figure), we compare the performance of POSEIDON-B, trained on the full pretraining dataset
with the same model trained on one-eighth of it.

Moreover, in Figures 24 to 38 (right subfigure of each figure), we compare the performance of
POSEIDON-B, trained on the half the pretraining dataset with the same model pretrained on a less
diverse dataset (see Main Text and Section C for details of the setup).

0 5 10 15 20

Epoch

10−1

100

T
ra

in
in

g/
V

al
id

at
io

n
L

os
s

0 5 10 15 20

Epoch

10−1

100

20000 40000 60000 80000

Number of trajectories

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

20000 40000 60000 80000

Number of trajectories

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

full pretraining data half pretraining data eighth pretraining data

Figure 23: (Top) Training (left) and evaluation (right) losses up to epoch 20 for different pretraining
dataset sizes. (Bottom) Scaling at epoch 20 for training loss (left) and evaluation loss (right).

52

2 8 32 128 512

Number of trajectories

0.010

0.100
M

ed
ia

n
re

la
ti

ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 24: NS-PwC. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.010

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 25: NS-SVS. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.010

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 26: NS-BB. Number of trajectories vs. median relative L1 error on the test set.

53

2 8 32 128 512

Number of trajectories

0.010

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 27: NS-SL. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 28: NS-Tracer-PwC. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 29: FNS-KF. Number of trajectories vs. median relative L1 error on the test set.

54

2 8 32 128 512

Number of trajectories

0.100M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 30: CE-RPUI. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

2× 10−1

3× 10−1

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 31: CE-RM. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 32: SE-AF. Number of samples vs. median relative L1 error on the test set.

55

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 33: GCE-RT. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 34: Wave-Layer. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 35: Wave-Gauss. Number of trajectories vs. median relative L1 error on the test set.

56

2 8 32 128 512

Number of trajectories

0.00

0.01

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 36: ACE. Number of trajectories vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.10

1.00

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 37: Poisson-Gauss. Number of samples vs. median relative L1 error on the test set.

2 8 32 128 512

Number of trajectories

0.100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

2 8 32 128 512

full dataset eighth of dataset half of dataset less diverse dataset

Figure 38: Helmholtz. Number of samples vs. median relative L1 error on the test set.

57

D.4 Case Studies

Given the excellent performance of POSEIDON models across the board, including on tasks that
involve PDEs (physical processes) not encountered during pretraining, it is important to understand
what underpins this performance. To this end, we will present three case studies in order to explain
POSEIDON’s robust performance.

D.4.1 CE-RPUI

First we consider the CE-RPUI downstream task. Clearly, POSEIDON models perform very well on
this task, as shown in Figure 13 as well as Tables 1 and 8. Also, as seen from Figure 67, where we
visualize a single random sample for all the variables at time T = 0.7, POSEIDON-B is much more
accurate, when finetuned on 128 trajectories, than CNO and FNO, which are trained from scratch
with the same number of trajectories. Note that the underlying solution is very complex, with a
mixture of shocks and roll-up vortices. While POSEIDON captures these shocks and vortices very
sharply, CNO and (especially) FNO fail to do so. What explains this impressive performance of
POSEIDON on this difficult downstream task?

We start by observing that, like all other downstream tasks, this task is out-of-distribution (o.o.d.)
with respect to the pretraining dataset. Although the underlying PDE (compressible Euler equations
(37)) is present in the pretraining dataset, this data distribution has not been seen during pretraining.
This o.o.d. nature of the task is clearly seen from Figure 39, where we plot how the same random
sample (visualized in Figure 67)) is inferred with a POSEIDON-B model zero-shot. We see from the
figure (second column from the left) that the zero-shot results are rather poor. However, even with 1
task-specific example, we see from Figure 39 (third column from left) that at least, some large scale
features (such shock locations) are approximated reasonably accurately. With just 4 downstream
trajectories, the quality of approximation improves dramatically and even the vortex roll-ups are
captured accurately. The quality of approximation continues to improve with 32 and 128 downstream
trajectories, as shown in the right-most columns of Figure 39. Thus, from this figure we conclude
that a few task-specific samples suffice to accurately approximate the underlying solution operator.
This is also evidenced in the scaling plot Figure 13.

How does POSEIDON succeed in learning this complex solution operator with so few samples? We
know that the pretraining dataset contains the CE-RP operator, where the initial condition (see Figure
57 for a sample) has a similar four-quadrant Riemann problem structure as the intial conditions in the
CE-RPUI benchmark, the main difference being that the interfaces, across which the initial data is
discontinuous, are now perturbed sinusoidally, instead of being axis-aligned. However, it is precisely
these perturbations that are responsible for the roll-up of small-scale vortices that are absent in the
CE-RP operator. Thus, the model potentially needs to learn how to approximate small-scale vortices
accurately from some other operator in the pretraining dataset, while learning how to propagate
large-scale shocks from the CE-RP operator.

One would think that the CE-KH operator in the pretraining dataset provides the information about
vortex roll-ups, see Figure 59 for visualizing a sample. However, the underlying vortices are much
larger. So, where does this missing information come from? One possible source could be the CE-
CRP operator (see Figure 58) where vortices of many different scales are being formed. Perhaps, the
model leverages shock propagation from CE-RP, large vortex roll-ups from CE-KH and small-scale
vortex dynamics, as well as curved shock propagation, from CE-CRP in order to provide very good
approximation with a few training examples on CE-RPUI. A partial test of this hypothesis is to check
if the model, pretrained with the less-diverse dataset that excludes CE-CRP performs worse than
the model pretrained with the full dataset. This is already shown in Figure 30 (Right) where the
performance of the model, pretrained with the less-diverse dataset is worse than the model trained
with the similarly sized but fully diverse dataset. This behavior is further reinforced from Figure 40,
where the approximation of the same sample, considered in Figure 39, with these ablated models
is shown. As predicted, the model pretrained on the less diverse dataset is clearly less accurate at
resolving small-scale vortices than the competing one trained on the more-diverse dataset. It misses
the input from the CE-CRP operator regarding small-scale vortex dynamics.

This qualitative analysis illustrates how the POSEIDON model leverages different operators from its
pretraining dataset to amortize different aspects in order to construct accurate approximations during

58

ρ

Ground Truth 0 samples 1 sample 4 samples 32 samples 128 samples

u
v

p

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

Figure 39: How POSEIDON-B approximates a random sample for the CE-RPUI task when trained
with different numbers of task-specific trajectories.

finetuning with a few task-specific examples and throws some light into how a foundation model for
PDEs can learn effective representations from its pretraining phase.

D.4.2 ACE

Next, we consider the ACE downstream task, where the underlying PDE is the nonlinear parabolic
Allen-Cahn equation (67), which is clearly not included in the pretraining dataset for POSEIDON.
More importantly, the type of physics that the Allen-Cahn Equation models is that of reaction-
diffusion. On the other hand, the PDEs included in the pretraining dataset, Compressible Euler and
Incompressible Navier-Stokes at very high Reynolds number, are convection-dominated. Hence,
one does not expect that the pretrained model has learned effective representations about reaction-
diffusion. Yet, we see from Figure 19 that POSEIDON is very effective at learning this solution
operator from a few training examples. This point is also reinforced from Figure 72, where we show
how a single randomly chosen sample is well-approximated by POSEIDON. How does POSEIDON
learn these new physics?

To understand the factors behind POSEIDON’s performance, we plot how the same random sample,
visualized in Figure 72, is approximated by POSEIDON-B, when fine-tuned with different number of
task-specific examples, ranging from 1 to 128, in Figure 41. We observe from this figure that already
with just 1 task-specific trajectory, POSEIDON is able to learn the large-scale features of the solution
of Allen-Cahn approximately. In particular, it has learnt both front propagation (potentially from
all propagating shock waves seen during pretraining) as well as diffusion (spreading) of localized
features. With more downstream trajectories, it is able to adjust local features quite well to further
approximate the diffuse fronts. This case study shows how POSEIDON can learn new features from a
few task-specific training examples.

Given these encouraging results on the ability of POSEIDON to generalize to the unseen physics
underlying the Allen-Cahn equation, we investigate this ability further by freezing the latent space
of POSEIDON during finetuning by setting θ̂r = θ̂∗, for all r, in the gradient descent procedure (10)
for finetuning. Thus, only the embedding and recovery parameters are learned and the rest frozen.
This results in an extremely lightweight model for training as less than 0.5% of the total parameters
in POSEIDON are being retrained. Nevertheless, as shown in Figure 42, even this very parsimonious

59

ρ

Ground Truth half of dataset less diverse dataset

u
v

p

−2 0 2 4 −2 0 2 4 −2 0 2 4

Figure 40: A sample of CE-RPUI when POSEIDON-B is pretrained on half of the pretraining dataset
vs. a less diverse pretraining dataset.

u

Ground Truth 1 trajectory 4 trajectories 32 trajectories 128 trajectories

−1

0

1

Figure 41: How POSEIDON-B approximates a random sample for the ACE task when trained with
different numbers of task-specific trajectories.

60

u

Ground Truth 1 trajectory 4 trajectories 16 trajectories 32 trajectories

−1

0

1

Figure 42: How POSEIDON-B with a Frozen Latent Representation approximates the same random
sample as in Figure 41 for the ACE task when trained with different numbers of task-specific
trajectories.

form of POSEIDON has already learned the solution of the Allen-Cahn equation qualitatively with
only one training trajectory, although there is a quantitative mismatch. This mismatch is corrected
when further samples are shown to the model. In particular, with 32 trajectories, the error with
this model (0.031) is actually lower than FNO with 128 trajectories (0.037) although it is higher
than the corresponding model where all the parameters of POSEIDON-B are finetuned (0.014). This
experiment demonstrates that the latent representations learned from the equations of fluid dynamics
during pretraining are very rich and can unexpectedly contain information about reaction-diffusion
equations, which are then leveraged by the frozen-latent model to learn the underlying solution
operator.

D.4.3 Poisson-Gauss

In our final case study, we consider the Poisson-Gauss task. The underlying PDE is the Poisson
equation (68) and the solution operator maps the coefficient, which is a superposition of Gaussians,
into the solution. A visualization of the solution operator for a single random sample is shown in
Figure 74 and shows how the source is diffused and smoothed out.

We remark that this task is very different from the pretraining dataset in various ways. First,
the underlying PDE is time-independent in contrast to the two time-dependent PDEs seen during
pretraining. Second, the underlying physics of diffusion of features and their smoothing out is
patently different from the physics seen in the pretraining dataset. Finally, the Dirichlet boundary
conditions considered here are also different from the periodic boundary conditions of the pretraining
dataset. Nevertheless, we see from the scaling plot Figure 20 and Table 1 and 8 that POSEIDON
models perform very well in this case. This is also observed from Figure 74, where we observe that
POSEIDON-B learns this particular random sample far better than CNO and FNO, with the same
number (512) of training samples. To understand the reasons behind POSEIDON’s performance, in
Figure 43, we again plot how this foundation model approximates this particular random sample,
when trained with an increasing number of task-specific samples. We see from this figure that
for 1 sample, the approximation is very poor, indicating how much out-of-distribution this task is,
with reference to the pretraining dataset. In fact, the model simply learns to approximate the input.
However, within a few samples (16), it has learnt that the input needs to be spread (diffused) out. It
takes about 128 samples for the model to realize that the input needs to be both spread out as well as
smoothened and by 512 samples, the local adjustments needed to further smoothen the output have
been made.

A few remarks are in order to explain this qualitative picture. First, POSEIDON could have used the
first few samples in training to forget the information from the pretraining phase. Yet, it does not do
that and uses the very first sample to already just output the identity operator. Then, there appears
to be a warmup phase where the model slowly learns the underlying physics, for instance diffusion
and smoothening and then a fast learning phase where the operator can be better approximated. This
qualitative picture is also consistent with the observed biphasic power scaling, see the subsection on
scaling laws in section D.1, and the fact that there is a phase transition between the warmup and fast
learning phases in the power law (82). This case study sheds further light into how POSEIDON can
learn unseen physics from a few task-specific training examples.

As with the Allen-Cahn equations of the previous section, we further study the factors underpinning
the ability of POSEIDON to generalize to this PDE by freezing the latent space of POSEIDON during

61

u

Ground Truth 1 sample 16 samples 128 samples 512 samples

−0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 43: How POSEIDON-B approximates a random sample for the Poisson-Gauss task when
trained with different numbers of task-specific samples.

u

Ground Truth 1 sample 16 samples 128 samples 512 samples

−0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 44: How POSEIDON-B, with a Frozen Latent Representation, approximates a random sample
for the Poisson-Gauss task when trained with different numbers of task-specific samples.

finetuning by setting θ̂r = θ̂∗, for all r, in the gradient descent procedure (10) for finetuning.
Thus, only the embedding and recovery parameters are learned and the rest frozen. As shown in
Figure 44, even this frozen-latent form of POSEIDON has already learned the basic features of the
underlying solution operator, i.e., Diffusion and Smoothing, qualitatively with only a few training
samples, although there is a quantitative mismatch. This mismatch is corrected when further samples
are shown to the model. In particular, with 512 trajectories, the error with this model (0.11) is
significantly lower than FNO (0.282) although it is higher than the corresponding model where all
the parameters of POSEIDON-B are finetuned (0.022). This experiment further demonstrates that the
latent representations learned from the equations of fluid dynamics during pretraining are rich enough
to even contain information about the a priori unrelated physics of steady state diffusion, which are
then leveraged by the frozen-latent model to learn the underlying solution operator.

62

D.5 Results with DPOT

Table 10: Efficiency gain EG ((11) with S = 1024 for time-dependent and S = 4096 for time-
independent PDEs) and Accuracy Gain (AG) ((11) with S = 128 for time-dependent and S = 512
for time-independent PDEs) for DPOT and tested downstream tasks.

Finetuned DPOT DPOT from Scratch

M L M L

EG AG EG AG EG AG EG AG

NS-PwC 44.8 12.5 39.7 12.0 17.0 6.1 23.3 10.2

NS-SL 4.5 2.4 4.7 2.4 2.1 1.3 3.0 1.6

FNS-KF 0.0 1.0 0.0 0.9 0.0 0.8 0.0 0.8

CE-RPUI 53.5 3.7 53.6 3.6 26.1 2.5 31.2 2.9

SE-AF 3.5 1.2 4.7 1.4 4.4 1.3 5.1 1.4

Wave-Layer 23.5 5.5 28.9 6.0 14.1 3.6 17.8 4.2

Wave-Gauss 25.2 4.4 27.8 4.5 18.0 3.3 20.5 3.6

The DPOT foundation model [19] has been trained on operators for the compressible and incom-
pressible Navier-Stokes equations, Reaction-Diffusion equations and Shallow-Water equations. The
model has been setup to take a sequence of time steps for a time-dependent PDE and output the next
time step. However, we can modify it for finetuning for our OLT operator learning task by following
exactly the same procedure as for finetuning the MPP foundation model. For steady state problems,
an identical procedure as with MPP is used. This allows us to perform a fair comparison between
DPOT and the POSEIDON models proposed here.

To this end, we consider DPOT-M (with 120 M parameters) and DPOT-L (with 509 M parameters)
which are comparable in size to the POSEIDON-B and POSEIDON-L models, respectively. Given
compute constraints, we focus this comparison on a representative subset of 7 downstream tasks
which are listed in Table 10. Moreover, a trained-from-scratch DPOT model, with the Adaptive
FNO architecture, is also employed for each task to evaluate DPOT’s model performance. For both
finetuning and training models from scratch, we employed the Adam optimizer [25] with a weight
decay of 10−6, and a 1cycle learning rate policy. For finetuning DPOT models, the maximum learning
rate was set to 10−4, and training was conducted for 100 epochs. When training models from scratch,
we used a maximum learning rate of 10−3 and trained for 200 epochs.

The resulting EG and AG scores are presented in Table 10. These scores should be compared with
the corresponding EG and AG scores of POSEIDON-L and scOT from Table 1 and POSEIDON-B from
Table 8. Comparing these results, we make the following observations,

• For all these tasks except SE-AF, POSEIDON is significantly better, both in terms of efficiency
and accuracy gains, to the corresponding DPOT model. Even for SE-AF, the models are very
comparable. The superiority in performance of POSEIDON is seen very clearly when we
consider the mean AG scores over these 7 downstream tasks which amount to POSEIDON-L
(8.14), POSEIDON-B (6.5), DPOT-M (4.39) and DPOT-L (4.4). Hence, the POSEIDON-L
model is almost twice more accurate than both the DPOT models considered here. In fact,
the DPOT models’ performance lies in-between CNO-FM with an average AG score of 2.66
and the POSEIDON models. Similar results also hold for the efficiency gain score.

• Surprisingly, DPOT foundation models do not seem to scale with model size, at least on
this set of 7 representative downstream tasks as seen from the mean AG scores of 4.4 for
both the DPOT-M and DPOT-L models where an increase of the number of parameters by a
factor of 5 does not lead to any noticeable increase in model performance on downstream
tasks.

• As surprisingly, the stand-alone DPOT neural operators performed well on this dataset. For
instance, the average AG score of trained-from-scratch DPOT-L is 3.53, which is only 25%
lower than the DPOT-L foundation model. On the other hand, POSEIDON-L is almost 5

63

times more accurate than the underlying scOT neural operator. These results indicate that
DPOT foundation models do not harness latent representations as well as POSEIDON does
and they rely on the capacity of the underlying neural operator to learn downstream tasks.

Taken together, our results indicate that (our modification of) DPOT performs better than the CNO-
FM and MPP foundation models but is significantly inferior to the POSEIDON models. Moreover,
the lack of scaling with model size for DPOT on downstream tasks and questions over how it uses
latent representations further point to the advantages of POSEIDON over this competing model.
Nevertheless, this comparison merits further study.

64

D.6 Further Ablations and Results

D.6.1 On all2all training

The all2all training strategy, described in the Main Text, aims to leverage the semi-group structure
of the solution operator of the time-dependent PDE (1) to scale-up the training data per trajectory.
As shown in Figure 2 (d), we use every possible pair of snapshots, per trajectory, in the learning
process leading to the loss function (6). It is instructive to compare this strategy with the vanilla
training strategy based on the loss function (5). As this strategy is applicable for any (time-dependent)
operator learning algorithm, we study it for the CNO model [60] here. To this end, we consider the
NS-SL task and compare the all2all and vanilla strategies and plot the results in Figure 45 to observe
that the all2all training strategy significantly outperforms the vanilla training strategy for this task.

However, there is a caveat with the all2all strategy. It lies in the computational cost of training as
the number of training pairs grows quadratically with the number of available time snapshots at
which the trajectory is sampled. One option to reduce this cost is to select a subset of snapshots from
within all available snapshots per trajectory and apply all2all training to this subset, bringing down
the computational cost proportionately by the relative reduction in the cardinality of the selected
subset. Yet, there is the possibility that by sampling too few snapshots, the overall error will increase.

To investigate this trade-off, we consider the NS-PwC task and the CNO model. The data for this
task is available in the time-interval [0,0.7], sampled at 14 time snapshots (excluding the initial time
0). Denoting the ith-snapshot by ti with i = 0, 1, . . . , 14, We select the following subsets of time
snapshots,

T14: Snapshots at t0 = 0 and t14 = 0.7. The training only considers learning the map between
initial datum and solution at final time t14. Samples corresponding to identity function are
also included.

T7: Snapshots at t0, t7, t14

T2: Snapshots at t0, t2, t4, t6, t8, t10, t12, t14

T1: Snapshots at tj , for all 0 ≤ j ≤ 14

For each of the above subsets of time snapshots, all2all training is used leading to 3, 6, 36 and 120
training pairs per trajectory for T14, T7, T2, T1, respectively.

In Figure 46, we plot the test error vs. number of trajectories. From the left panel of this figure, we
see that there is consistent gain in accuracy as a more dense sampling of the snapshots is performed.
The models are monotonically more accurate as we go from T14 through T7 to T2. However, we also
observe from Figure 46 that going beyond T2 to T1 does not yield any further decrease in test error
as the difference between the newly added snapshots and the existing ones in T2 is not statistically
significant enough to aid the training process. Moreover, by choosing T2 over T1, we reduce the
computational cost of training by a factor of 3.3. These considerations motivate us to a not too dense
sampling strategy for pretraining (and finetuning) our foundation models.

D.6.2 Direct. vs. Autoregressive Inference

As mentioned in the Main Text, our time-conditioned models can either be directly evaluated at the
time of interest, or an autoregressive rollout can be performed (see Equation 8 of the Main Text).
This can per se be of any form that the user wants, i.e. with homogeneous step-sizes in time, or
with heterogeneous step-sizes in time. For simplicity, we only consider homogeneous autoregressive
rollouts for POSEIDON, scOT and FNO models, for the CNO models we find a slight performance
boost with a heterogeneous rollout strategy.

Figure 47 shows for the NS-PwC and the Wave-Layer downstream task how the error behaves when
using direct or (homogeneous) autoregressive rollouts. We can directly see that it depends very
much on the task at hand, as autoregressive rollout works better for the NS-PwC task, whereas direct
lead-time input works better for Wave-Layer; this seems to be very dataset- and dynamics-dependent.
We therefore choose the best strategy for each task which is listed in Table 6.

65

128 256 512 1024 2048

Number of trajectories

0.100

3× 10−2

4× 10−2

6× 10−2

2× 10−1

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

vanilla all2all

Figure 45: NS-SL. Testing errors of the CNO models trained in an all2all and vanilla manner.
Performance improves with all2all training.

128 256 512 1024

Number of trajectories

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

T14 – direct

T7 – direct

T2 – direct

128 256 512 1024

T1 – AR

T1 – direct

T2 – AR

T2 – direct

Figure 46: NS-PwC. Testing errors of the CNO models trained in an all2all manner on different
Ti trajectories. (Left) Errors from directly evaluating the trained models. Performance improves as
denser trajectories are incorporated. (Right) Saturation effect observed. Adding denser trajectories no
longer enhances performance, as the additional samples are statistically less significant.

D.6.3 Error Growth over Time for POSEIDON-B

Autoregressive inference can only work better than direct lead-time input when the error that ac-
cumulates at every step is smaller than the error obtained by direct lead time input. In Figure 48,
we can directly see that the error scales sub-linearly for the NS-PwC experiment and this is true in
general for our downstream tasks. This leads to two observations. First, there is no blow-up (for
instance exponential growth) of error in time with these models. Second, the fact that the error grows
in time proves that it is harder to predict the solution at final time from initial data than predicting
time-averaged quantities. In other words, the L∞-error in time will be greater than the L1-error. This
justifies our choice of evaluating different models at the final lead time of the underlying task.

To further demonstrate how POSEIDON compares with FNO over time, we plot errors for the NS-PwC
and NS-SL experiments as a function of time with both models in Figure 49. We observe from this
figure that the difference in error between FNO and POSEIDON-B actually grows over time and is
the highest at the final time as FNO has much larger rate of error growth over time than POSEIDON,
justifying our decision to evaluate models with respect to error at the final time.

66

2 8 32 128 512 2048

Number of trajectories

0.01

0.10

1.00
M

ed
ia

n
re

la
ti

ve
L

1
er

ro
r

2 8 32 128 512 2048

Poseidon-B – Autoregressive

Poseidon-B – Direct

FNO – Autoregressive

FNO – Direct

Figure 47: Homogenenous autoregressive rollout vs. direct lead-time input on NS-PwC (left) and
Wave-Layer (right).

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time

0.006

0.008

0.010

0.012

0.014

0.016

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

Figure 48: Error accumulation for autoregressive rollout of POSEIDON-B finetuned on 128 trajectories
of the NS-PwC dataset.

D.6.4 Out-of-distribution Time Extrapolation

Here, we consider the NS-SL downstream task. As mentioned before, FNO (and other neural
operators) were trained from scratch as well as POSEIDON (and other foundation models) were
finetuned to learn the solution up to a final lead time of T = 0.7. We want to investigate how the
POSEIDON foundation model and the neural operator baseline (relatively) perform when we consider
an out-of-distribution time extrapolation at the downstream task level. To this end, in Figure 50, we
plot the test errors, with respect to increasing number of task-specific trajectories, for both FNO and
POSEIDON-B, but evaluated at final times of T = 0.7 and the extrapolated final time of T = 1.0.
A homogeneous autoregressive rollout is used in all cases. We observe from this figure that both
POSEIDON-B and FNO are worse at extrapolating in time than they are at predicting within the
time-period that they have been trained on. In addition to significantly outperforming FNO at both
time T = 0.7 and at the extrapolated time of T = 1.0, POSEIDON-B in fact performs relatively better
at out-of-distribution than FNO. It is best seen from the EG metric (11), where POSEIDON’s EG
≈ 20 for time T = 0.7 is improved to EG ≈ 30 for time T = 1.0. This gain can be attributed to the
fact that during pretraining, POSEIDON models have been trained for a longer time horizon.

67

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

Poseidon-B FNO

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

Poseidon-B FNO

Figure 49: Error accumulation for the finetuned POSEIDON-B and FNO for 128 training trajectories
on NS-PwC (left) and NS-SL (right).

2 8 32 128 512 2048

Number of trajectories

0.010

0.100

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

Poseidon-B – T = 1.0

FNO – T = 1.0

Poseidon-B – T = 0.7

FNO – T = 0.7

Figure 50: Out-of-distribution extrapolation in time for POSEIDON-B and FNO on NS-SL up to
T = 1.

D.6.5 Generalization of POSEIDON with respect to Changing PDE Parameters

Several of our downstream tasks such as GCE-RT, Wave-Layer, Wave-Gauss and Helmholtz involve
operators that map the coefficient in the PDE to its solution. This setup is very different from the
pretraining dataset where the underlying solution operators only map the initial data to solutions
at later times and there is no PDE coefficient that is encountered. Nevertheless, from Tables 1
and 8, we observe that the POSEIDON models generalize very well to these very different setups
for the operators for downstream tasks. To further test the ability of POSEIDON to generalize for
different PDE parameters, we consider the Navier-Stokes Equations ((31)) with a viscosity coefficient
ν = 4× 10−3. The ground truth data is generated using the Azeban spectral hyper viscosity solver
[62]. This new viscosity coefficient is very different from the setup of the pretraining data and
downstream tasks considered so far as in all of them, only a hyperviscosity of 4×10−4 was applied to
high-enough Fourier modes in order to model the incompressible Euler equations with zero viscosity.
In this new task, the initial conditions are identical to the NS-PwC downstream task. We see from
Figure 51 that Poseidon-B generalizes very well to this new viscosity coefficient and outperforms
FNO readily, in terms of both sample efficiency and accuracy. In particular, the AG and EG scores
of Poseidon-B are EG = 925.5 and AG = 47.5, which are completely comparable to (even better
than) the scores of EG = 1024 and AG = 19.7 (see Table 8 for the original NS-PwC task). Taken

68

2 8 32 128 512 2048

Number of trajectories

0.001

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

Poseidon-B FNO

Figure 51: Error for the NS-PwC downstream task, but with viscosity ν = 4× 10−3 (on all modes)
instead of 4× 10−4 applied only on high-enough Fourier modes to simulate the inviscid limit

together with other downstream tasks involving different PDE coefficients, this experiment clearly
demonstrates the ability of POSEIDON to generalize to different PDE parameters via finetuning.

D.6.6 POSEIDON Evaluated on Different Grids

As POSEIDON is based on an operator transformer (scOT), it can be evaluted on grid resolutions,
different from the underlying computational grid. Following [3], we can simply downsample
(upsample) the input function from the given grid to the computational grid, process the input with
POSEIDON and upsample (downsample) the output from the computational grid to the given grid
resolution. We perform this evaluation of POSEIDON-B on multiple grid resolutions for the NS-PwC
task and present the result in Figure 52 to observe that the test error is (approximately) invariant to
the grid resolution.

D.6.7 Robustness of Poseidon with respect to Noise

To study how robust POSEIDON is to noise, we consider the downstream CE-RPUI task and at
inference time, we add Gaussian noise to the inputs (initial conditions) at different noise-to-signal
ratios (NSRs) of 0.1%, 1% and 3% respectively. The resulting errors, computed with respect to a
Ground Truth where the outputs are not noisy, for varying numbers of training trajectories, are shown
in Figure 53. The errors in the zero noise (clean) case are also shown in this Figure. We observe
from this figure that POSEIDON-L’s performance is robust to input noise and the error does not grow
significantly even when the noise level is an appreciable 3%, demonstrating the robustness of this
foundation model with respect to noise.

D.6.8 Histograms of Errors for Different Tasks

In Figure 54, we plot the distribution of errors across the test set for all downstream tasks with the
POSEIDON-B model, finetuned with 128 trajectories (samples).

69

50 60 70 80 90 100 110 120 130

Resolution

0.010

0.012

0.014

0.016

0.018

0.020

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

training resolution

Figure 52: Test performance of POSEIDON-B finetuned on 128 trajectories of the NS-PwC dataset
for multiple resolutions.

2 8 32 128 512

Number of trajectories

0.010

0.100

1.000

M
ed

ia
n

re
la

ti
ve
L

1
er

ro
r

clean 0.1% 1% 3%

Figure 53: Effect of injecting Gaussian noise in the initial condition on CE-RPUI (before normalizing
the data; normalization constants are as before) with POSEIDON-L.

70

0.00 0.02 0.04 0.06 0.08
0

20

40

60

NS-PwC

0.01 0.02
0

50

100

150

NS-SVS

0.000 0.025 0.050 0.075 0.100
0

10

20

30

NS-BB

0.01 0.02 0.03 0.04
0

20

40

60

80

100

NS-SL

0.05 0.10 0.15
0

10

20

30

NS-Tracer-PwC

0.05 0.10 0.15
0

10

20

30

FNS-KF

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

D
en

si
ty

CE-RPUI

0.175 0.200 0.225 0.250 0.275
0

10

20

30
CE-RM

0.0 0.1 0.2
0.0

2.5

5.0

7.5

10.0

12.5

SE-AF

0.00 0.05 0.10 0.15 0.20
0

5

10

15

GCE-RT

0.0 0.2 0.4
0

2

4

6

8
Wave-Layer

0.0 0.2 0.4 0.6
0

2

4

6

8

Wave-Gauss

0.00 0.01 0.02 0.03
0

25

50

75

100

125

ACE

0.00 0.05 0.10 0.15

Relative L1 error (mean over all QOIs)

0

10

20

30

Poisson-Gauss

0.0 0.5 1.0
0

1

2

3

4

5

Helmholtz

Figure 54: Error distribution of POSEIDON-B finetuned on all downstream tasks (for 128 trajectories
in the time-dependent, and 512 in the time-independent case). The kernel density estimate is done
over the mean of all functions/quantities of interest.

71

E Computational Resources

All experiments were run on different types of GPUs, on the Euler cluster of ETH Zurich. Depending
on the experiment, we use between 8 and 128 CPU cores and up to 512GB of RAM, with pretrainings
using the most CPU cores and RAM. However, we note that this is more than is actually needed, as
we tried to minimize being bottlenecked by dataloading. For all our models and baselines, we used
consumer-grade GPUs with 24GB of VRAM. All our pretrainings were performed in (data-)parallel
on 8 NVIDIA GeForce RTX 4090 GPUs. All finetuning experiments and most scratch trainings were
performed on a single GPU, while some scratch training runs with a lot of data were performed in
(data-)parallel. Pretraining times can be read off from Table 11.

Table 11: Approximate pretraining times on 8 NVIDIA GeForce RTX 4090 GPUs. Batch sizes are
given in parentheses.

POSEIDON-L POSEIDON-B POSEIDON-T CNO-FM

165h (16) 118h (40) 22h (80) 178h (32)

In Table 12, we provide an overview over the inference times of each model for a single call to it. We
observe from this table that even the biggest POSEIDON-L has an (average) inference time of less
than 10−2 secs. This is contrast to the PDE solvers that were used to generate the data in this paper.
Their run times, for a resolution of 1282 ranged from anywhere between 0.1 sec (for highly optimized
GPU solver [62] for the NS datasets to 10 secs for FENICS [40] FEM solver for the Poisson-Gauss
dataset to approx 100 secs for NEWTUN [45] for generating the airfoils datasets to 500 secs for
the well-balanced scheme to generate the GCE-RT. Thus, we observe a gain in inference time from
anywhere between 1− 5 orders of magnitude.

Table 12: Approximate inference times (per call and normalized to a single sample) for different
models, all reported on a NVIDIA GeForce RTX 4090 GPU for the FNS-KF experiment. Batch sizes
are given in parentheses. We note that the values given here are just proxies as this was not tested in a
controlled environment.

Model Approximate inference time

POSEIDON-L 4 ms (16)

POSEIDON-B 2.9ms (40)

POSEIDON-T 1.6ms (40)

CNO-FM 1.8ms (32)

MPP-B 10ms (4)

CNO 0.9ms (32)

scOT 3ms (40)

FNO 2ms (40)

F Pretrained Models, Datasets, and Source Code

The source code corresponding to this work is available on Github (https://github.com/camlab-
ethz/poseidon). Everything is tightly integrated into Huggingface Transformers [73] and we make
heavy use of Huggingface Accelerate for distributed training.

In addition to the code, we make (pretrained) models and datasets available on the Huggingface
Hub (https://huggingface.co/camlab-ethz), see the Poseidon collection for pretrained models and
pretraining datasets, the Poseidon – Downstream Tasks collection for all downstream tasks, or the
PDEGYM collection for all datasets in PDEGYM.

72

https://github.com/camlab-ethz/poseidon
https://github.com/camlab-ethz/poseidon
https://huggingface.co/camlab-ethz
https://huggingface.co/collections/camlab-ethz/poseidon-664fa125729c53d8607e209a
https://huggingface.co/collections/camlab-ethz/poseidon-downstream-tasks-664fa237cd6b0c097971ef14
https://huggingface.co/collections/camlab-ethz/pdegym-665472c2b1181f7d10b40651

G Visualizations

u v

−2 0 2 −2 0 2

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

−1 0 1 2 −2 −1 0 1 2

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 55: NS-Sines. Visualization of a random sample.

73

u v

−2 0 2 −4 −2 0 2

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

−2 0 2 −2 0 2

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 56: NS-Gauss. Visualization of a random sample.

74

ρ u v p

1.0 1.5 2.0 0.0 0.2 0.4 0.6 −0.5 0.0 0.5 1.0 −0.2 0.0 0.2

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

0 1 2 3 4 0.0 0.5 1.0 1.5 0 1 2 −0.5 0.0 0.5

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 57: CE-RP. Visualization of a random sample.

75

ρ u v p

−2.0 −1.5 −1.0 −0.5 0.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 −2 −1 0 1 2

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

−2 0 2 4 6 −2 −1 0 1 −2 −1 0 1 2 −1 0 1 2 3

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 58: CE-CRP. Visualization of a random sample.

76

ρ u v p

−0.5 0.0 0.5 −0.2 0.0 0.2 −0.10 −0.05 0.00 0.05 0.10 6.0 6.5 7.0
×10−7

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

−1.0 −0.5 0.0 0.5 −0.50 −0.25 0.00 0.25 0.50 −0.4 −0.2 0.0 0.2 0.4 −0.1 0.0 0.1

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 59: CE-KH. Visualization of a random sample.

77

ρ u v p

0.60 0.65 0.70 −4 −2 0 2 −4 −2 0 2 −1.0 −0.5 0.0 0.5 1.0

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

−0.5 0.0 0.5 1.0 1.5 2.0 −2 0 2 −4 −2 0 2 4 −5 0 5

(b) (Top) Ground truth. (Bottom) Samples predicted by POSEIDON-B at T = 1.

Figure 60: CE-Gauss. Visualization of a random sample.

78

u v

−1 0 1 −1 0 1

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

C
N

O
F

N
O

−1.0 −0.5 0.0 0.5 1.0 1.5 −1 0 1

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 61: NS-PwC. Visualization of a random sample.

79

u v

−0.5 0.0 0.5 −1.0 −0.5 0.0 0.5

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

C
N

O
F

N
O

−0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 62: NS-BB. Visualization of a random sample.

80

u v

−2 0 2 −1 0 1

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

C
N

O
F

N
O

−4 −2 0 2 −2 −1 0 1 2 3

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 63: NS-SL. Visualization of a random sample.

81

u v

−0.5 0.0 0.5 −0.50 −0.25 0.00 0.25 0.50

(a) Inputs: horizontal velocity u and vertical velocity v.

G
ro

u
n

d
T

ru
th

u v

P
os

ei
d

on
-B

C
N

O
F

N
O

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 64: NS-SVS. Visualization of a random sample.

82

u v Tracer

−1 0 1 −1 0 1 0 1 2

(a) Inputs: horizontal velocity u, vertical velocity v and tracer concentration c.

G
ro

u
n

d
T

ru
th

u v Tracer

P
os

ei
d

on
-B

C
N

O
F

N
O

−1.5 −1.0 −0.5 0.0 0.5 1.0 −1 0 1 0 1 2

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 65: NS-Tracer-PwC. Visualization of a random sample.

83

u v f

−2 0 2 −2 0 2 −1 0 1

(a) Inputs: horizontal velocity u, vertical velocity v and forcing term f .

G
ro

u
n

d
T

ru
th

u v f

P
os

ei
d

on
-B

C
N

O
F

N
O

−2 −1 0 1 2 −2 −1 0 1 2 −1.0 −0.5 0.0 0.5 1.0

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 66: FNS-KF. Visualization of a random sample.

84

ρ u v p

−2.0 −1.5 −1.0 −0.50 −0.25 0.00 0.25 0.50−0.6 −0.4 −0.2 0.0 −5.0 −4.5 −4.0

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

C
N

O
F

N
O

−2 −1 0 1 2 3 −1.0 −0.5 0.0 0.5 1.0 −1 0 1 −6 −5 −4 −3 −2

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 67: CE-RPUI. Visualization of a random sample.

85

ρ u v p

0.0 0.5 1.0 2.8 3.0 3.2
×10−5

−1.3 −1.2 −1.1
×10−5

0 10 20

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v and pressure p.

G
ro

u
n

d
T

ru
th

ρ u v p

P
os

ei
d

on
-B

C
N

O
F

N
O

−1 0 1 2 3 4 −2 0 2 −2 −1 0 1 2 −0.5 0.0 0.5 1.0 1.5

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 1.4.

Figure 68: CE-RM. Visualization of a random sample.

86

ρ u v p g

−2 −1 0 −2.8 −2.6
×10−11

0.85 0.90 0.95 1.00
×10−11

−1 0 1 −1.0 −0.5 0.0 0.5

(a) Inputs: density ρ, horizontal velocity u, vertical velocity v, pressure p, and gravitational potential g.

G
ro

u
n

d
T

ru
th

ρ u v p g

P
os

ei
d

on
-B

C
N

O
F

N
O

−2 −1 0 −5 0 5 −5 0 5 −1.5 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at the seventh time step.

Figure 69: CE-RM. Visualization of a random sample.

87

u c

0 2 4 6 8 −1 0 1 2

(a) Inputs: displacement u and propagation field c.

G
ro

u
n

d
T

ru
th

u c

P
os

ei
d

on
-B

C
N

O
F

N
O

−1.0 −0.5 0.0 0.5 1.0 −1 0 1 2

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at the 14-th time step.

Figure 70: Wave-Gauss. Visualization of a random sample.

88

u c

0 2 4 6 8 −1.5 −1.0 −0.5 0.0 0.5

(a) Inputs: displacement u and propagation field c.

G
ro

u
n

d
T

ru
th

u c

P
os

ei
d

on
-B

C
N

O
F

N
O

−2 −1 0 1 2 3 −1.5 −1.0 −0.5 0.0 0.5

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at T = 0.7.

Figure 71: Wave-Layer. Visualization of a random sample.

89

u

−0.5 0.0

(a) Inputs: concentration u.

G
ro

u
n

d
T

ru
th

u

P
os

ei
d

on
-B

C
N

O
F

N
O

−1.5 −1.0 −0.5 0.0 0.5 1.0

(b) (Top) Ground truth. (From second row onwards) Samples predicted by the finetuned POSEIDON-B, CNO,
and FNO at the 14-th time step.

Figure 72: ACE. Visualization of a random sample.

90

Shape

0.0 0.2 0.4 0.6 0.8 1.0

(a) Inputs: airfoil shape function

G
ro

u
n

d
T

ru
th

ρ

P
os

ei
d

on
-B

C
N

O
F

N
O

−4 −2 0 2

(b) (Top) Ground truth. (From second row onwards) Samples (density ρ) predicted by the finetuned POSEIDON-B,
CNO, and FNO.

Figure 73: SE-AF. Visualization of a random sample.

91

f

0.00 0.05 0.10 0.15 0.20

(a) Inputs: source term f .

G
ro

u
n

d
T

ru
th

u

P
os

ei
d

on
-B

C
N

O
F

N
O

0.0 0.1 0.2 0.3 0.4

(b) (Top) Ground truth. (From second row onwards) Samples (solution u) predicted by the finetuned POSEIDON-
B, CNO, and FNO.

Figure 74: Poisson-Gauss. Visualization of a random sample.

92

f

0.0 0.2 0.4 0.6 0.8 1.0

(a) Inputs: propagation speed f .

G
ro

u
n

d
T

ru
th

u

P
os

ei
d

on
-B

C
N

O
F

N
O

−2 −1 0 1

(b) (Top) Ground truth. (From second row onwards) Samples (solution u) predicted by the finetuned POSEIDON-
B, CNO, and FNO.

Figure 75: Helmholtz. Visualization of a random sample.

93

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the paper and SM, we thoroughly justified all our claims and contributions.
We detailed all models, datasets and training, as well as testing strategies used. Additionally,
we supported our assertions with numerous experiments conducted throughout the study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicated an entire section to discussing the limitations and clearly outlined
the next steps to address them.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

94

Answer: [NA]
Justification: The purpose of this paper is to introduce a foundation model for learning the
solution operators of PDEs, featuring novel benchmarks, training techniques, and a new
paradigm for foundation models for PDEs. Theoretical results will be addressed in future
work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will make the weights of our models, along with the codes and benchmarks,
open source. We have clearly explained how the models were trained and finetuned, as well
as which datasets were used. We also explained clearly how the datasets were generated. By
following our instructions, end users will find it fairly easy to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

95

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As explained in the previous answer, we will make the weights of our models,
along with the codes and benchmarks, open source. We explained clearly how the datasets
were generated. We will not release the datasets and pretrained checkpoints during the
review process as the files are very large and we are not aware of a file hosting service that
enables anonymous release of this size. Code is available at the reviewer’s disposal.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We dedicated many sections in the main paper and the SM to explain the
training and test details, along with all the relevant information necessary to understand our
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

96

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: In Section D.6.8, we presented histograms of errors for various tasks. All the
relevant statistical information can be inferred from these histograms. All other plots would
get too cluttered by adding error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided an estimation about the training times and resources that we used
in all the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research respects the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

97

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is exclusively dedicated to advancing academic research in the area
of Partial Differential Equations. Our models are tailored for utilization by researchers with
an interest in this domain.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, our paper does not present any identifiable safety
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

98

Justification: The segments of code not authored by us, such as the CNO filtering, are
explicitly acknowledged within the codebase, and due credit is accorded to the respective
owners of these assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the new assets are well documented. Detailed explanations of the datasets
and codes are provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper involves neither crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

99

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

100

	Introduction
	Approach
	Experiments
	Discussion
	
	
	Architecture of the scalable Operator Transformer (scOT)
	Operator Learning with scOT
	Computational Realization of scOT

	Datasets
	Pretraining Datasets
	NS-Sines
	NS-Gauss
	CE-RP
	CE-CRP
	CE-KH
	CE-Gauss

	Downstream Tasks
	NS-PwC
	NS-BB
	NS-SL
	NS-SVS
	NS-Tracer-PwC
	FNS-KF
	CE-RPUI
	CE-RM
	GCE-RT
	Wave-Gauss
	Wave-Layer
	ACE
	SE-AF
	Poisson-Gauss
	Helmholtz

	Models and Baselines
	Poseidon Models
	Poseidon-T
	Poseidon-B
	Poseidon-L
	Models for Dataset Ablations (see Section D.3)

	scOT
	CNO
	FNO
	CNO-FM
	MPP

	Results
	Performance on Downstream Tasks
	Scaling with respect to Model Size
	Scaling with respect to Pretraining Dataset Size and Quality
	Case Studies
	CE-RPUI
	ACE
	Poisson-Gauss

	Results with DPOT
	Further Ablations and Results
	On all2all training
	Direct. vs. Autoregressive Inference
	Error Growth over Time for Poseidon-B
	Out-of-distribution Time Extrapolation
	Generalization of Poseidon with respect to Changing PDE Parameters
	Poseidon Evaluated on Different Grids
	Robustness of Poseidon with respect to Noise
	Histograms of Errors for Different Tasks

	Computational Resources
	Pretrained Models, Datasets, and Source Code
	Visualizations

