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ABSTRACT

Safe exploration is a key requirement for reinforcement learning agents to learn
and adapt online, beyond controlled (e.g. simulated) environments. In this work,
we tackle this challenge by utilizing suboptimal yet conservative policies (e.g.,
obtained from offline data or simulators) as priors. Our approach, SOOPER, uses
probabilistic dynamics models to optimistically explore, yet pessimistically fall
back to the conservative policy prior if needed. We prove that SOOPER guarantees
safety throughout learning, and establish convergence to an optimal policy by
bounding its cumulative regret. Extensive experiments on key safe RL benchmarks
and real-world hardware demonstrate that SOOPER is scalable, outperforms the
state-of-the-art and validate our theoretical guarantees in practice.

1 INTRODUCTION

A defining feature of intelligence is the ability to utilize online streams of information to learn and
adapt over time (Silver & Sutton, 2025). Reinforcement learning (RL) provides a framework for
online learning without supervision, driving several notable real-world applications (Silver et al., 2017,
Ouyang et al., 2022). Safety is key to unlocking RL in the physical world—RL agents simply cannot
risk taking actions that lead to catastrophic outcomes (Dalrymple et al., 2024), even while learning,
when they lack complete knowledge about their environments (Legg, 2023). Such agents must explore
safely (Amodei et al., 2016), gradually discovering new safe behaviors to solve their tasks.

Safe exploration is a major challenge in practice. Methods with theoretical safety guarantees often
struggle to scale to complex, general-purpose tasks, whereas scalable approaches typically fail to en-
sure safety during learning (cf. Section 2). A key reason lies in how they incorporate prior knowledge
about the environment—a crucial component for anticipating danger without learning through harmful
trial-and-error. Such prior knowledge can be instantiated via policies. Beyond primarily maintaining
safety, as done in much of prior work, we argue that prior policies can also guide exploration toward
promising regions of the environment, enabling agents to provably learn near-optimal policies.

Motivated by this insight, we propose Safe Online Optimism for Pessimistic Expansion in RL—
SOOPER—a model-based RL algorithm for safe exploration in constrained Markov decision pro-
cesses (CMDP, Altman, 1999). SOOPER uses prior policies that can be derived from scarce offline
data or simulation under distribution shifts. Such policies are invoked pessimistically during online
rollouts to maintain safety. These rollouts are collected optimistically so as to maximize information
about a world model of the environment. Using this model, SOOPER constructs a simulated RL
environment, used for planning and exploration (Amodei et al., 2016), whose trajectories terminate
once the prior policy is invoked. The key idea is that early terminations incentivize the agent to avoid
the prior policy when trajectories with higher returns can be obtained safely. This design allows
SOOPER to leverage standard RL methods, bypassing the complexity of directly solving CMDPs.
More fundamentally, this enables a novel bound on the agent’s cumulative regret.

Our contribution.

* First, we propose SOOPER, a scalable model-based RL algorithm for safe exploration in continu-
ous state-action spaces that leverages offline- and simulation-trained policies as safe priors.

* Next, under standard regularity assumptions, we prove that SOOPER guarantees constraint
satisfaction with high probability throughout learning. We additionally show that SOOPER
gradually expands an implicit set of safe policies until it converges to the feasible set defined
by the true CMDP. This is accomplished by reformulating the problem as an unconstrained
MDP, making the approach naturally compatible with standard deep RL methods, while
avoiding min-max formulations typical for CMDPs. Using this formulation, we further
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establish a novel upper bound on the cumulative regret, improving over prior works that provide
optimality guarantees only at the end of training with arbitrarily poor performance during
exploration (Wagener et al., 2021; As et al., 2025b).

» Finally, we conduct extensive empirical evaluation of SOOPER, comparing it with other
state-of-the-art safe exploration algorithms when initialized from offline- and simulation-trained
policies in RWRL benchmark (Dulac-Arnold et al., 2021) and SafetyGym (Ray et al., 2019).
In all these experiments, SOOPER substantially outperforms the baselines in terms of safety
and performance. We further validate SOOPER for safe online learning on hardware, giving
empirical evidence that our theory translates to the real world.

2 RELATED WORKS

Prior works on safe exploration fall broadly into two categories: theoretically principled methods
with guarantees on safety and optimality and those prioritizing practicality and scalability.

Provable safety. A canonical line of work leverages safe Bayesian optimization (Sui et al., 2015),
which has seen real-world success (Berkenkamp et al., 2016; Kirschner et al., 2019; Sukhija et al.,
2023b), but typically ignores the Markovian structure of sequential decision problems and is limited
to a few parameters. Berkenkamp et al. (2017) extend to continuous MDPs and provide safety and
optimality guarantees via Lyapunov stability, though they rely on manual resets of the system at each
timestep and state-space discretization for safe set computation. In contrast, Prajapat et al. (2025b)
leverage model predictive control (MPC) to implicitly compute these sets and ensure that the agent
can always return to a safe state. Other MPC-based methods ensure safety either through “backup”
policies (Koller et al., 2018; Prajapat et al., 2024; 2025a) or via low-fidelity models with reachability
analysis (Hewing et al., 2019) and safety filters (Wabersich & Zeilinger, 2021; Curi et al., 2022).
However, these approaches lack optimality guarantees. A substantial body of work addresses safe
exploration in discrete CMDPs (Moldovan & Abbeel, 2012; Turchetta et al., 2016; Wachi et al., 2018;
Wachi & Sui, 2020; Simdo et al., 2021; Prajapat et al., 2022; Bura et al., 2022). Akin to our work, Bura
et al. (2022) proposes a model-based approach that uses optimism and pessimism to provide optimality
and safety guarantees for small-scale tabular problems. Although the above methods guarantee safety
throughout learning, scaling them to high-dimensional problems is computationally hard.

Scalability. The works of Dalal et al. (2018); Eysenbach et al. (2018); Srinivasan et al. (2020);
Thananjeyan et al. (2021); Bharadhwaj et al. (2021); Thomas et al. (2021); Sun et al. (2021); Liu
et al. (2022); As et al. (2022); Sootla et al. (2022); Huang et al. (2024) use scalable tools from deep
RL for safe learning, with different levels of theoretical guarantees and effectiveness in maintaining
safety throughout learning in practice. Safe exploration has also been studied from an optimization
perspective, with methods aiming to guarantee feasibility of all optimization iterates. These
techniques span trust regions (Achiam et al., 2017; Milosevic et al., 2024), Lyapunov stability (Chow
et al., 2018), interior-point (Liu et al., 2020; Usmanova et al., 2024; Ni & Kamgarpour, 2025), and
primal-dual optimization (Usmanova & Levy, 2025). While these methods scale well, they often
overlook the exploration aspect of learning, namely how to actively sample data that maximizes
information about the environment. As a result, they often lack optimality except under assumptions
on the initial state distribution.

Optimality. As et al. (2025b) propose ActSafe, which guarantees safety and optimality for simple
regret, relying on reward-free exploration, and therefore might perform poorly during exploration.
Wachi et al. (2023) introduce MASE, which enforces safety under high-probability constraints on safe
states but relies on a restrictive “emergency stop” action that can effectively ‘stop time’ at any state.
Lastly, Wagener et al. (2021) propose SAILR, a state-of-the-art algorithm that like SOOPER, reformu-
lates safety through terminations whenever their “backup” policy is invoked. However, its guarantee
on simple regret hinges on the probability of such resets vanishing over time, yet no formal conditions
are provided to ensure this occurs. In this work, we relax several of these assumptions and establish
a novel bound on the cumulative regret, while also demonstrating improved empirical performance.

3 PROBLEM SETTING

Constrained Markov decision processes. Safety in RL has been conceptualized in several ways
across the literature (Garcia et al., 2015; Brunke et al., 2022; Gu et al., 2024). In this work, we focus on
constrained Markov decision processes (CMDP, Altman, 1999), due to their flexibility and capacity
to generalize several notable formulations of safety (cf. Wagener et al., 2021; Curi et al., 2022; Wachi
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etal., 2023). A discounted infinite-horizon CMDP is defined by the tuple M. == (S, A, p,r, ¢,, po),
where S C R%s and A C R%4 are the continuous state and compact action spaces, with the transition
probability p(s¢+1]|s¢, at) of reaching s;+; € S by applying a; € Ain s; € S. We consider the
transition probabilities p to be governed by the unknown stochastic dynamics

si41 = f(se,a0) Fwi,  (s,a0) €S XA, 50~ po, (D

with the initial state distribution py and additive noise w; € W C R%s. Throughout our theoretical
analysis, we consider the setting of additive zero-mean Gaussian noise.

Assumption 1 (Gaussian noise (Kakade et al., 2020)). The additive noise w; is independent and
identically distributed (i.i.d.) zero-mean Gaussian noise with variance o>.

We note that this assumption can be relaxed to a richer class of sub-Gaussian distributions. The
reward and the cost are given by r : S x A — [0, Rmax] and ¢ : S x A — [0, Cinax| With discount
factor v € (0, 1). We assume the following regularity conditions for the dynamics, reward, and cost.

Assumption 2 (Lipschitz-continuity (Berkenkamp et al., 2017)). The dynamics f, reward r and cost
c are Lipschitz continuous with known constants Ly, L., L respectively.

Assumption 3 (Regularity (Berkenkamp et al., 2017)). The unknown dynamics f lie in an RKHS asso-
ciated with a kernel k and have a component-wise bounded norm || f;||i. < B with a known constant
B. Moreover, we assume the kernel k to be bounded by k((s,a), (s,a)) < kmaz, V(s,a) € S x A.

Intuitively, this assumption means that the complexity of f is controlled by the kernel, which in
turn enables generalization from limited data. Our analysis uses Assumption 3 to relate the statistical
complexity of learning the dynamics to the number of online episodes required for convergence.
In Section 5, we model it using neural networks that can learn features to represent f accurately.

The goal in our setting is to find a stationary, stochastic policy 7 (a¢|s¢) for the true dynamics f
that maximizes value function V" (s) := E[>",~,v'r(ss, as) | so = s|, while ensuring that the cost
value function V7 (s) := E [ ;2 ~v'¢(st, ar) | so = s] remains below a safety budget d € Rx:

m; € argmax J,(m, f) =Eg up, [ViT(50)]  s.t. Je(m, f) = Egympo [V (50)] < d. )

We hereafter consider in our theoretical analysis strict feasibility of 7%; namely that an optimal policy
of the constrained problem does not lie on the boundary of the feasible set but may be arbitrarily
close, such that J.(7%, f) < d. Equation (2) naturally decouples the objective from safety, so each
can be solved independently. This explicit separation prevents agents from exploiting the reward
function to achieve high performance at the expense of harmful behaviors, a problem commonly
referred to as reward hacking in the Al safety literature (Amodei et al., 2016).

Safe online learning. Since knowledge of the dynamics is limited a priori, the agent must learn
them through online interaction. We consider learning in an episodic setting, where in each episode
n = 1,... N, infinite-horizon trajectories are truncated after 7,, steps and the agent is reset to a
new initial state (Puterman, 2014; Sutton & Barto, 2015). The agent deploys a policy 7, collecting
transitions D,, = {(s¢, at, S¢+1)t=1,.. 7, }. The optimality gap due to incomplete knowledge over
episodes is quantified by cumulative regret, namely, the difference in performance between m,, and
the optimal policy given full access to M..:
N
RIN) =" (Jo(mi ) = Jolmn, £)) st Jo(ma, f) <d, Vne{l,...,N}.  (3)
n=1

The crux of safe exploration is that unlike performance, where suboptimality during learning is
tolerable, safety must be maintained throughout all n episodes.

Probabilistic world models. Given full knowledge of the CMDP M., the agent can solve Equa-
tion (3) with no regret. In practice however, the agent has only limited knowledge about M.. We
capture this uncertainty by defining a set of plausible models of the dynamics F,, for each iteration n.

Definition 1. We define the set of plausible models in episode n' as Fpr = {f | |f — pon'| < Brron' },
described by a nominal model 1,y : S x A — RS and the uncertainty o, : S x A — R%s given
data D .,,y. This implies the model of f is always well-calibrated (Curi et al., 2020), if there exist
V! < n: By € Rsg such that, with probability of at least 1 — ¢ it holds ¥(s,a) € S x A that
f(s,a) € Fo =g Fn-
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Definition 1 formalizes the agent’s epistemic uncertainty about M.. At each iteration n, the
agent maintains a confidence set that is statistically consistent with the observed data. This is
done by learning a model with nominal dynamics p,, : S x A — R% and epistemic uncertainty
0, : S x A — RIs forevery n = 1,..., N, using transitions from all previously collected
trajectories D;.,,. This type of statistical models can be learned in practice via various (approximate)
Bayesian inference methods (e.g., Rasmussen & Wiliams, 2006; Lakshminarayanan et al., 2017;
Liu & Wang, 2016). Additionally, calibration can be achieved empirically with post-hoc recalibration
techniques (Kuleshov et al., 2018).

Pessimistic policy priors. The set F( has a unique interpretation: it formally represents the agent’s
prior knowledge about the environment. For instance, in fully data-driven settings, given an offline
dataset Dy, a model F; can be learned from D, and then used to construct a conservative MDP that
penalizes the agent when it goes outside of the data distribution (Levine et al., 2020; Yu et al., 2020).
Alternatively, in simulator-driven workflows, one has access to a nominal model po: S x A — Rds,

and a bounded ‘sim-to-real gap’ wu:S x A — R, giving fe Fo={f||f - po| <u}.
Probabilistic models of this sort formalize the conservatism needed for safe prior policies.

Assumption 4 (Safe policy prior). We assume access to a pessimistic policy prior & : S — A that
satisfies the constrgint in Equation (2) for all dynamics f € Fq such that under the true dynamics we
have V¥ (s) < V. (s) for all states with probability at least 1 — 6.

Learning such “worst-case” policies builds on the principle of pessimism in the face of uncertainty
and has been extensively studied in the robust RL literature (Kitamura et al., 2024; Zhang et al.;
Shi et al.; Shi & Chi, 2024), offline safe RL (Jin et al., 2021; Liu et al., 2023; Zheng et al., 2024;
Wachi et al., 2025), safe learning from demonstrations (Schlaginhaufen & Kamgarpour, 2023;
Lindner et al., 2024) and when transferring from simulators (Queeney & Benosman, 2023; As et al.,
2025a). In our experiments in Section 5, we leverage a few of these methods and demonstrate the
effectiveness of combining them with safe online learning.

4 SOOPER: SAFE ONLINE OPTIMISM FOR PESSIMISTIC EXPANSION IN RL

In a nutshell, SOOPER can be explained by two modes of operation: (i) safe online data collection
by pessimistically invoking a safe prior policy early enough so as to ensure constraint satisfaction;
(ii) optimistic planning in “simulation” via model-based rollouts, driving exploration of the unknown
dynamics through intrinsic rewards.

Quantifying pessimism. We define the pessimistic cost value function V.* for the policy prior 7:

V7 (s) == max E; lZ’y (s¢,at)

so=s|, st+1:f(st,at)+wt. %)
feFn =0

By definition, Equation (4) considers the worst-case model f in the well-calibrated set F,, (per
Definition 1), which implies that V. (s) upper-bounds V.7 (s) for all s € S with probability 1 — 4.
We later formally show that, as the number of episodes n increases, the agent refines its model 7,
and tightens the pessimistic upper-confidence bound V,* on the expected accumulated cost.

A tractable upper bound. Computing the pessimistic cost-value V7 in Equation (4) is intractable
due to the maximization over JF,,. Instead, we upper-bound V. by augmenting the cost function with
an uncertainty penalty such that

5 a = ]E Z’y St7at )\pessimismHo'n(stvat)”)

So—S,ao—a],

&)

VIi(s) < VI(s) = Ea~fr [QT..(s,0)], st41 = pin(s1, a1) + wy.
Crucially, directly penalizing the cost function avoids finding the worst-case model within F,,, and
lends itself gracefully to existing temporal difference techniques for value function learning. The
derivation of Apessimism and the proof for this upper bound are deferred to Lemma 2 in Appendix A.

Online cost tracking. SOOPER operates in an online fashion, where for each of the trajectory
rollouts, it uses Q; », to predict when a; ~ 7Tn( |s¢) is potentlally unsafe. Specifically, this may occur
if the sum of the accumulated cost until ¢, i.e., c<; = Zi 077 ¢(s7,a,) and the pessimistic cost
value 7! Q7 e.n(8t;ar) exceeds the safety budget d. We exploit this idea in our design of Algorithm 1.
In Theorem | we show that this design guarantees safety throughout all episodesn = 1,..., N.



Under review as a conference paper at ICLR 2026

Algorithm 1 Safe Rollout via Online Cost Tracking

Require: Pessimistic cost value Q’;n, policy 7, safe policy prior 7, and safety budget d
1: Initialize accumulated cost ¢ = 0 and experience buffer D,, = ()
2: forstept=1,...,7T, do
3 Execute a; ~ 7 (at|St, c<t, Q’gn), observe sy, Gt, S¢11 > Theorem 1
4: Append the tuple (s, at, s¢1+1) to Dy,
5 Update accumulated cost: c<;y1 = c<; + Yics
6: end for
7: return D,,

Theorem 1 (Safety guarantee). Suppose Assumptions I to 4 hold and F,, is well-calibrated ¥'n =
1,..., N according to Definition 1. If actions are executed for all timesteps t according to

B # L 7Tn('|5t) lf q)(3t7at7c<t7Qir,n) <d
Wn(at|5ta C<ty Qc,n) T {ﬁ'(St) otherwise,

where @ is the discounted sum of the realized accumulated cost c<y = Et;:lo Y c(87, ar) until
t — 1 and the pessimistic cost value QT ,, such that ® (s, as,c<¢, Q7F.,,) = c<i + 7' QL . (51, ar) with

factor Npessimism = C ﬁ w, where C' = max{Cx, kma: }. Then, Algorithm 1 satisfies

the safety constraint with probability 1 — § on f for every episoden = 1,...,N.

We refer to Appendix A for the formal proof. Monitoring costs online allows the agent to execute 7,
until 7 is required. This enables the agent to visit state-actions that 7« would avoid, since those would
be deemed unsafe by V. (sg).

Simulated exploration. While Theorem 1 guarantees safety during online rollouts, the policy 7,
may explore potentially unsafe behaviors by using simulated rollouts on the learned world model.
This allows SOOPER to train 7,, on an unconstrained “planning MDP” M, that differs from the real
CMDP M_ in that it reaches a terminal state s after those state-actions that would trigger 7 during
online deployment:

_ 1 = if ®(ay, s¢,ccr, QF,) > d = s,
P(st41 | se,a1) = (s = s (at- St Gty Qin) Z dor 5 = ¢ ©)
p(St41 | S¢,a¢) otherwise.

The resulting termination signal encourages the agent to find policies that outperform 7 if possible.
This is done by assigning the terminal reward on M to the pessimistic value V. of 7 upon termination:

K?(St) if @(ay, st, c<t, an) = d,
7(st,a) =<0 if s; = s¢, @)
r(s¢,ar) otherwise,

whereby,

fe€Fn =0

V7(s) = min E; lz V(s ar) | so = S] s Sep1 = fse,a) + wr. (8)

This choice of the terminal reward keeps the reward structure consistent with the rewards encountered
during online rollouts of 7 on f, unlike prior works that treat the terminal reward as a hyperparame-
ter (Thomas et al., 2021; Wagener et al., 2021). Figure 1 illustrates a concrete example of how this
design encourages the agent to learn to outperform the prior policy.

Exploration-exploitation and expansion. Probabilistic models have proven particularly effective
in the unconstrained setting. Optimistic planning with these models enables a principled balance
between exploration and exploitation, forming the basis of the celebrated UCRL algorithm (Auer
& Ortner, 2006; Curi et al., 2020). However, when safety must hold at every iteration n, exploration-
exploitation is restricted to the set of policies that are safe with high probability. In particular, this set
consists only those policies that satisfy the constraint under the worst-case model in F,,. Crucially,
due to pessimism, an optimal policy 7} may not lie in this set initially, as shown in Figure 2.
Nonetheless, this set can be expanded by updating the model using the collected measurements
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+ ,ytzir(st) < V7™ (s0) Figure 1: The ager}t’§ goal is to reach the cross

marker while avoiding obstacles (tires). The
- agent deploys a policy 7,,, however at time ¢,
it switches to the prior policy 7, to maintain
the safety criterion of Algorithm 1. The prior
policy 7 ensures safety by following a con-
servative route, but sacrifices performance,
resulting in a lower return V' (s;). The tra-
jectory of iteration n is recorded to improve
models of subsequent iterations. After IV it-
erations, as more data is gathered, the agent
learns a more rewarding trajectory via model-
generated rollouts in M. See provided video.
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Figure 2: We denote the implicit set of safe policies in iteration n by II7 ;, based on the learned
model F,,. Left: exploration-exploitation in constrained tasks may not find an optimal policy because

search is limited to II”. ;. Right: expansion proactively enlarges the safe set and reaches the optimum.

from the environment, even in those regions where rewards are low. Prior works typically follow an
expand-then-explore-exploit strategy (Sui et al., 2015; Berkenkamp et al., 2017; Bura et al., 2022; As
et al., 2025b), which begins by learning the dynamics with reward-free trajectory sampling to expand
the safe set, followed by exploration-exploitation to find an optimal and safe policy. This approach
has two limitations: (i) it requires agents to first learn an auxiliary policy unrelated to the task,
leading to wasted compute and exploration; (ii) it restricts the theoretical analysis to simple regret,
allowing arbitrarily poor performance during exploration as long as the final policy is near-optimal.

A unified objective. In contrast, SOOPER addresses the exploration-exploitation-expansion
dilemma through intrinsic rewards (Sukhija et al., 2025) with a single tractable objective:

o0
Ty = arg IIl;lJX Eﬁ,ﬂ,so Z 7t7:(5t; at) + ('ytAexplore + WAexpand) Ha'n(sh at) || ) (9)
t=0
St+1 = fn(St,ar) +wi,  ap ~ w(:|st),
where Acxplore and Acxpang are weighting factors for the respective components of the intrinsic reward
bonus, encouraging exploration and expansion. In Lemma 12 in Appendix B, we derive these
quantities in closed form and prove that Equation (9) indeed enables expansion. Importantly, since
we only augment the reward with exploration bonuses, an approximate solution to Equation (9) can
be computed efficiently.

Converging to the optimum. By iteratively updating the model F,, and planning according to
Equation (9) in each episode, SOOPER achieves sublinear cumulative regret and therefore converges
for a sufficient number of episodes N in Algorithm 2 according to Theorem 2.

Theorem 2 (Sublinear cumulative regret). Suppose Assumptions I to 4 hold and the model F,, is
well calibrated according to Definition 1. Then, Algorithm 2 guarantees with probability 1 — 0

N
R(N) = Z (JT(T(':,f) - J’r(ﬁ-n7f)) S o (Fj\/(?Og(N)\/N> ’

n=1

and Jo(7n, f) <d, Vn € {1,...,N},
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Algorithm 2 Safe Online Optimism for Pessimistic Expansion in RL (SOOPER)

Require: Initial dynamics set Fy, pessimistic cost value Q7 , policy prior 7, safety budget d
. Initialize experience buffer D /
: for episoden=1,...,N do
Execute Algorithm 1 to collect D,, > On the real environment
Update F,, < Di.,,
Obtain 7,,, Q7 via Equations (5) and (9) > Model-based exploration and planning
end for '
return 7,

A A Sl e

that is, the cumulative regret grows sub-linearly in N, while satisfying the constraint throughout
learning by Theorem 1.

Proof sketch. Previous works explicitly expand the safe set of policies via pure exploration. This
restricts them to a simple regret analysis, since performance can be evaluated only after the reward-
free expansion phase. SOOPER optimizes a single objective, thus expansion occurs implicitly, during
learning the task. This allows us to extend the analysis to cumulative regret, providing guarantees
on the agent’s performance throughout learning. We bound the cumulative regret in Equation (3)
by decomposing the performance gap in each iteration n into two terms (Lemma 4). (i) The first
term corresponds to the regret on the planning MDP M (cf. Equations (6) and (7)). Specifically, we
compare the performance difference between an optimal policy of M and the learned policy 7,,. Since
this setting is purely unconstrained, we bound this term following the regret analysis for unconstrained
MDPs of Kakade et al. (2020). (ii) Next, we analyze the performance gap due to invoking the prior
policy 7 (Algorithm 1). In particular, we study the performance of executing 7, an optimal policy
of the true CMDP M., however under the safety criterion of Algorithm 1. Intuitively, due to the
pessimism of an, instead of performing optimally with 7%, Algorithm 1 invokes 7, thus leading to
suboptimal performance. The gap in performance between executing 7> freely and under Algorithm 1
is bounded by the model uncertainty at iteration n (Lemmas 6 and 8). The key intuition is that since
7 is in fact safe, as model uncertainty shrinks, Algorithm 1 needs to invoke 7 less, hence converging
to optimal performance. Finally, we show that the sum of these two terms, is upper-bounded by the
objective in Equation (9) in each iteration n. The complete proof is detailed in Appendix B.

Practical implementation. Our practical implementation follows closely Algorithm 2. We in-
stantiate a “deep” version of Algorithm 2 that scales to high-dimensional continuous control tasks,
following a model-based actor-critic architecture similar to MBPO (Janner et al., 2019). Line 4 is
implemented via a probabilistic ensemble of neural-networks (Chua et al., 2018). In our practical
implementation we additionally learn the reward and cost functions (see Appendix C). The standard
deviation across ensemble predictions is used to estimate the epistemic uncertainty o,, (Depeweg
et al., 2018). We found this approach to deliver reliable uncertainty estimates in practice (cf. Section 5
and Appendix D). In Line 5, we solve Equations (5) and (9) using model-generated rollouts and by per-
forming a fixed number of actor-critic updates as described by Janner et al. (2019). Adapting MBPO
to our setting is straightforward, as it only requires wrapping the model predictions within the MDP
defined by M. This suggests that SOOPER is readily extensible to future advancements in deep RL.

5 EXPERIMENTS

We now present our empirical results, demonstrating SOOPER’s safety and performance guarantees
in practice. In the Appendix D, we provide additional ablations, illustrating how each component of
SOOPER plays a key role in attaining good performance while maintaining safety throughout learning.

Setup. In all experiments, we use the model-based architecture described in Section 4. We compare
SOOPER with the following baselines: (i) SAILR (Wagener et al., 2021), a state-of-the-art RL
algorithm for safe exploration. (ii) CRPO (Xu et al., 2020), a CMDP solver without safety guarantees
during learning. (iii) Similarly, Primal-Dual (Bertsekas, 2016) is a constrained optimization algorithm,
which is commonly used as a CMDP solver. CRPO and Primal-Dual serve as natural baselines,
as they represent the standard approaches practitioners would typically adopt when fine-tuning
policies initialized from simulation or offline training. Unless specified otherwise, we use a batch

of 128 trajectories to obtain empirical estimates of the undiscounted cumulative rewards .J, (7) and
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Figure 3: Performance improvement over the baseline policy and largest constraint recorded through-
out learning. Among all methods, SOOPER remains safe in all tasks while consistently outperforming
or being on par with the other baselines when they satisfy the constraints.
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costs jc(w) and run each experiment for five random seeds. We slightly abuse notation, so that for
SOOPER, 7 denotes the policy induced by Algorithm | and for SAILR the policy induced by their
“advantage-based intervention”. All baselines are initialized with the same task-specific prior policy.

Safe transfer under dynamics mismatch. We study policies that are trained under a mismatch in
the dynamics on five tasks from RWRL (Dulac-Arnold et al., 2021), SafetyGym (Ray et al., 2019)
and RaceCar (Kabzan et al., 2020). We provide additional details in Appendices E to G about how
mismatches in the dynamics are implemented for each task. We refer to Appendix D for additional
details on how we train the pessimistic prior policies. We train prior policies under the shifted
dynamics (g, cf. Section 3) and continue learning on the true dynamics. Figure 3 presents the
largest cumulative cost recorded on the true dynamics throughout training, along with the relative
performance improvement at the end of training compared to the policy prior before online learning.
As shown, SOOPER satisfies the constraints throughout learning in all of the tasks. For each task,
among all algorithms that satisfy the constraints, SOOPER is consistently on par or outperforms the
baselines. This demonstrates SOOPER’s ability to transfer safely under distribution shifts.

Safe offline-to-online. We evaluate SOOPER when initialized with a conservative policy using
only offline data. To this end, we collect a fixed offline data of 2M transitions from the PointGoall
task of SafetyGym. We train a pessimistic prior policy offline by following MOPO (Yu et al., 2020),
a well-established model-based offline RL algorithm. We use a Primal-Dual optimizer to solve the
constraint optimization problem with this offline data. We found this approach to yield policies that
satisfy the constraint while still delivering nontrivial performance. We use these policies to initialize
all the baselines for our experiments. Figure 5a presents the objective and constraint during online
learning. Notably, SOOPER outperforms all the baselines while maintaining safety.

Scaling to vision control. Next, we demonstrate that
SOOPER scales to control tasks with image-based observations.
Specifically, we use the CartpoleSwingup task from Dulac-
Arnold et al. (2021) and train policies that operate on three
temporally-stacked 64 x 64 grayscale images as depicted in Fig-
ure 4. As in Figure 3, we introduce a distribution shift in the
dynamics and pretrain a vision policy under the perturbed dy-
namics using DrQ (Yarats et al., 2021). We then train SOOPER  Figure 4: Image observations for
by learning the dynamics model directly on the embeddings pro- the CartpoleSwingup task. The
duced by the pretrained DrQ vision encoder. Figure 5b shows goal is to swing the pendulum to the
that even when trained on these embeddings, SOOPER satisfies upright position while avoiding the
the safety constraints and achieves near-optimal performance.  range outside the vertical red lines.

Safe online learning on real hardware. Finally, we evaluate SOOPER when trained online
directly on real-world robotic hardware: a highly dynamic, remote-controlled race car operating
at 60 Hz. The task is to reach a designated goal position located behind three obstacles (tires) that
must be avoided (illustrated in Figure 6). This setting is particularly challenging due to stochasticity
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(a) Safe online learning from an offline-trained policy. (b) Vision control task.

Figure 5: Learning curves of the objective and constraint when learning from offline and vision
policies. SOOPER satisfies the constraints while significantly improving over the initial prior policy.
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Goal

Obstacles

0 50 100

Iteration n
Figure 6: Safe exploration on real hardware with SOOPER. We report the mean and standard error
across five seeds of the objective and constraint measured on the real system. SOOPER learns to
improve over the prior policy while satisfying the constraints throughout learning. Video of training.

introduced by high-frequency control and delays in both actuation and motion-capture measurements.
We initialize training with a prior policy derived from a first-principles simulator (Kabzan et al.,
2020), and then fine-tune it on the physical system using trajectories collected in real time. We repeat
the experiment with five random seeds and report cumulative rewards and costs after each iteration
in Figure 6. As shown, after training, SOOPER is roughly twice as good as the prior policy in terms
of rewards while satisfying the safety constraint throughout learning. In Appendix D, we extend
this experiment to the offline setting, and report results when using a prior policy trained offline
with data collected from the real system.

6 CONCLUSION

In this work, we address a critical challenge in systems that learn autonomously, namely, maintaining
safety during learning. We present SOOPER, a novel algorithm that provably improves performance
over policies trained in simulation or offline, while satisfying safety constraints throughout learning.
SOOPER is simple to implement, achieves state-of-the-art performance and consistently maintains
safety when deployed in practice. In addition, we establish a new theoretical result on the cumulative
regret, enabling a guarantee of good performance during learning and not only at the last iteration.
These contributions advance our understanding of safe exploration and make an important step
towards deployable RL. Nonetheless, many important challenges remain. In terms of theory and
methodology, extending our work to high-probability constraints over particular states and developing
new methods for the non-episodic setting, where agents learn from a single trajectory without resets,
are two challenging yet crucial problems. On the practical side, considering more complex tasks
with more powerful models is a promising direction for future work.


https://anonymous.4open.science/r/sooper/docs/videos/SOOPER/timelapse.mp4
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A  SAFETY GUARANTEE

First, we derive in Lemma 1 that the pessimistic safety-condition with online cost tracking (Theorem 1)
guarantees safety given the true pessimistic cost value function V" of Equation (4).

Lemma 1. Suppose Assumptions 1 to 4 hold and F,, is well-calibrated ¥n = 1, ..., N according to
Definition 1. Given the safe prior 7, the rollout of the policy m, satisfies the safety constraint with
probability 1 — § on f for every episode n =1, ... N, if the actions are executed for all timesteps t
according to the pessimistic safety-condition:

~ TS l é S¢,0Q¢, C /’fn <d
Wn(at|3tac<t,fn)—{ n(lse) i ®(sp,ar, ety )

(se) otherwise,
where
(54, a1, Cct, Fn) = cet + ' e(s4,a;) + 4 max E,, [Vcﬁ(f(st, ay) + wy) |, (10)
feFn

indicates the sum of the accumulated costs c<; = Zi;lo yte(sy, ap) until t — 1, the immediate cost
at t, and the worst-case pessimistic cost value V" defined in Equation (5).

Proof. We prove the safe rollout of 7, for the unknown f by induction.
1. Base Case (t = 0): By definition of 7,,, we only execute ag ~ 7y, (+|so) if ®(s0,ag,c<o, Fpn) < d
with c.o = 0 and otherwise the safe prior 7. By definition of ®, either a is safe to execute with

4> e(s0,a0) + 7 max B, [V (f(s0, a0) + wo)] (an
fE€Fn

and otherwise executing ag = 7(sg) is safe since V.7 (s¢) < d by Assumption 4.

2. Inductive Step: Given the agent is safe up to timestep ¢t — 1, i.e.,

cet—1+ ¥ e(sem1,a0-1) + }HB}X E, {Vf(f(st—l, ag—1) + wt—l)} <d, (12)
€

n

we show constraint satisfaction for time ¢, satisfying
d>cer +7'e(se, ar) + 7 By l:‘/cﬁ(f(stv a) + Wt)] . (13)

Using 7,,, we either execute a; if Equation (13) is satisfied and therefore is safe by definition.
Otherwise, we invoke the prior a; = 7(s;). Using ¢y = c<4_1 + 7' te(s;_1,a:_1), we obtain

cet +le(ss, ) 4+~ Jrzléa}x E, [Vf(f(st, ag) + wt)} (14)
= carm1 + 7 T (8-, a0-1) A e(se ) + 4 Fer, = [Vf(f(sh ar) + Wt)} (15)
<ccro1+y " te(sio1,a01) + 4 ;}g__i E, [Vcﬁ(f(st—ly ai—1) + Wt—l)} <d. (16)

O

Next, we show that adding the cost penalties in QZ,L (Equation (5)) upper-bounds the true cost value,
using Sukhija et al. (2025, Lemma A.5):

Lemma 2. Suppose Assumptions I to 3 hold and JF,, is well-calibrated by Definition 1. Given

’7t+1 max Ew [‘Z:ﬁ(.f(sta at) + Wt):| = Eﬁ' Z ’YTC(S‘H CL.,—)
feFn r=t+1

s. t. Sr41 :f(STva‘r)+wT7 ar :fr(s.,-), St+1 :f(5t7at)+wt7

~ 7 (1+Vds) Bn(9)

)\pessimism =C

)

1—7 o
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then for all episodes n = 1, ..., N with probability of 1 — §:

'7t+1 ]Icnaj_—x E |:V (f(sta at) + Wt) S VtApessimismHUn(Sta at)”
€Sn

+Ez

Z ’VT (C(S'r, a—r) + )\pessimismnan (s‘rv G‘T) ||)‘| ’

T=t+1

St Sr41 = pin(Sr,00) Fwr,  ar =7(57),  Sip1 = pin(Se, ar) + wy.

Proof. Let us denote the value following the nominal dynamics p.,, of F,, as

t _
;7 c(st,at) | s0 = S] ) a7

S.t. Ser1 = pn(Se,ar) +wi,  ap = w(sy),

and the upper bound on the cost value following the worst dynamics f € F, by

c(se,at) | so=s|,
ZV t t|0 ] (18)

S.t. Sg11 = f(st,at) +wy, ap = 7r(st).

Following Sukhija et al. (2025, Lemma A.5), the difference between these values is bounded by

ny ||U7z Staat)H | S0 = S‘| P (19)

S.t. Sp1 = pn(se, ag) +wt, ay = 7(st).

V7 (s) = max V(s
feFn

Vcﬁ( ) Vﬂ-( ) )\pes51m1sm

Bringing f/jr (s) to the other side and using the definition in Equation (17) results in:

Vj—(s) < f/z”r(s) + )\pesamlsm 27 ||Un st7at)|| | S0 = S] , (20)
Z’y Stvat + )\pe551mlsmH0n(3t7at)||) | S0 = 31 , 21
S.t. Spy1 = un(shat) +uw, ap=7(s). (22)
Further, we use this upper bound having c(s;, a;) already observed and rewriting
1" max E, (V7 (Flsera0) + )] = 21V (s0) = (s, a0) (23)
() .
< E Z’y S‘raa'r )\pessimismHJn(STva‘r)”) - C(Stvat) (24)
S Efr Z 7T (C(S.,-, a‘r) + )\pessimismnan (57'7 CLT)”) + 7t>\pessimism||0n (5t7 at) ||7 (25)
T=t+1
St Srq1 = pn(Sr,07) Fwr,  ar =7(S7),  Seq1 = pn(Se,ar) + wy, (26)
where step (i) follows from using the upper bound in Equation (21). O

Theorem 1 (Safety guarantee). Suppose Assumptions I to 4 hold and F, is well-calibrated N'n =

1,..., N according to Definition 1. If actions are executed for all timesteps t according to
Fon(as|se, ¢ Y= n(+[8¢) if(b(stvahc<t7Qir,n) <d
PR <t Ken 7 (s¢) otherwise,

where ® is the discounted sum of the realized accumulated cost c<s == 21:10 V(87 ar) until

t — 1 and the pessimistic cost value QA such that ®(sy, ar, c<y, Q’AT )i=cCer + Qc n (S, ar) with

5
factor Apessimism = C 7 w where C' = max{Cyx, kmar }. Then, Algorithm 1 satisfies
the safety constraint wzth probablllty 1 — 6 on f for every episoden =1,..., N.

17
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Proof. Theorem 1 is proven using Lemmas | and 2. Consider the accumulate cost @(st, at, C<ty Fn)
from Lemma 1

D(s4, @y, C<ty Fn) =C<t + 7 c(s1,a1) + 7T max By, [V (f(se,a) + Wt)} 27
fE€Fn
(1) .
<c<t+7 (C(St, at) + )\pessimism”Un(sta at)H)

Z 5‘r7 a‘r + /\pessimism”Un(STa ar) )‘| (28)
(ii) (111) #
=cet + 7' QL (s, a¢) = ®(s¢, a4, 04, Q1) < d. (29)

Step (i) follows from the upper bound on the cost penalties in Lemma 2, and Step (ii) and (iii) follow
from the definitions of Q7 ,, and ®(s¢, at, c<¢, Q7 ,,) from Equation (5) and lemma 1.

B REGRET ANALYSIS

Overview of proof. Theorem 2 states that the tractable objective in Equation (9) achieves sublinear
cumulative regret while satisfying the safety constraint. We start our proof by decomposing the
cumulative regret into per-episode regret terms. Using Lemma 3, we lower-bound the performance of
the true system M . by the performance on the planning MDP M. This bound allows us to decompose
the per-episode regret into two components in Lemma 4 that can be bounded separately: (i) Safe
rollout vs. optimal rollout. The first regret term captures the performance gap between the optimal
policy 7 and the same policy executed via Algorithm 1 on M,. The difference arises from invoking
the prior policy 7 due to uncertainty in the learned dynamics. We express this gap in Lemma 5 in
terms of action differences between 7% and the potentially used safe prior 7. By Theorem 1, these
action differences can be related in Lemma 6 via the safety criterion ® to the accumulated model
uncertainty along potentially unsafe trajectories starting with 7 (a;|s; ) at step ¢, followed by 7. Since
it may be unsafe to execute them, we instead express their cumulative uncertainty in terms of the
corresponding safe trajectories starting with 7 (s;) at step ¢ (Lemma 7). This is achieved using the
difference of Gaussians (Kakade et al., 2020, Lemma C.2). Consequently, we establish in Lemma 8
an upper bound on the first regret term, which depends on the model uncertainty along the safe rollout
of 77 under Algorithm 1. (ii) Planning model vs. true dynamics. The second regret term quantifies
the Value gap between an optimal policy for the planning MDP M (with true dynamics f) and the
policy 7, obtained by optimizing the nominal model p,, in episode n. This gap can be bounded in
terms of the model uncertainty evaluated along the optimal policy 7* when it is safely executed using
Algorithm 1. By Lemma 12, the tractable objective in Equation (9) is an optimistic upper bound on
the best achievable performance across all models F,,. Consequently, Lemma 13 provides a bound
on the sum of the two per-episode regret components along the safely rolled-out behavioral policy 7,
using Algorithm 1. Summing these bounds over all episodes yields Theorem 2, which states that the
objective in Equation (9) attains sublinear cumulative regret.

To decompose R(N'), we first establish a lower bound on the performance of 7,,, obtained by safely
rolling out 7, on M, with Algorithm 1 using ®.

Planning at the lower performance bound. Given the policy ,, on M, we derive in Lemma 3
the performance bound of the safe policy 7,, on M, with dynamics f using the pessimistic value
function V7 (s¢) defined in Equation (8).

Lemma 3. Suppose Assumptions 1 to 3 hold and the model F,, is well-calibrated according to
Definition 1. Then the performance J,(Ty, f) of the safe policy T,, induced by Algorithm 1 on M. is
lower-bounded by the performance Jz(my, f) of the policy 7, on M following the true dynamics f:

Jr(’ﬁna f) Z JF('/Tnv f)

Proof. We consider for all timesteps k two cases:

1. Never fall back to prior (i.e. T, is always safe). Then, by definition of M,

T f) = By | Y277 (50,01 | = T (s ). (30)
t=0
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This equality follows by definition from M and M., being identical in case the agent never falls
back to the safe prior 7 during the rollout and therefore 7,, = 7.

2. Agent falls back to safe prior (i.e. at s; action G; = 7 (s;) is executed instead of potentially unsafe
a). For the performance J,. (7, f) of 7,, on M, we get by combining the policy values of 7,

and 7 s
T (T £) = Enpoa | 322 7(51,00)] +7* Vi (s), 31)
t=0
whereas for the performance of J; (7, f) of T, on M, we get
0 k-1 o0
(anf 7r,L,so [Z styat +’7 T(Slmak) + Z ’th(STv)i| (32)
t=k+1
w — ky
—E, ., [ny r(se,ar) + 4 V7 (sk)}. (33)
t=0

Step (i) follows from the modified transitions in Equation (6) to the absorbing state s; as soon as
the agent would fall back to the safe prior 7, and (ii) follows from the terminal reward given in
Equation (7) for transitioning to s;. Since V7 is defined pessimistically in Equation (8), it holds
that V7 (s) < V7 (s) and thereby follows
k—1
Te(Tns £) < By | 322 7(50500)] +9* Vi (58) = o, ), (34)
t=0
which completes the proof.

O

Regret decomposition. Lemma 3 enables us to decompose R(N) into two separate terms. The
first term models the regret of executing 7,, on M., caused by falling back to the safe prior 7 when
safely rolling out 7, with Algorithm 1. The second component determines the (constraint-free) regret
of m,, on M.

Lemma 4. Suppose Assumptions I to 4 hold and the model F,, is well-calibrated according to
Definition 1. Let 7} be the optimal policy on M. with J.(77%, f) = maxy. s (x, ry<a Jr (7, f) and
applying Algorithm 1 to w, yields 7. , with Jr(ﬁ’;n, f) for the current learned model F,, in episode
n. Further, let T be the optimal policy on M that has J-(7*, f) = max, J:(«, f) for ® and an
in episode n. Given Jz(m,, f) denotes the performance of the behavioral policy w, on M, the
cumulative regret R(N 2712[:1(‘]7“ (7%, f) — I (Tn, [)) of T, on M can be decomposed into:

):
N
< Z (Jr(ﬂ-;kyf) - Jr(ﬁ:7nvf)) + (J,:(ﬂ'*,f) - JF(T‘-nﬁf))7
n=1 n

AL :PER. of @} with ® A2 :PER. of m,on M

M=

I
-

with the per-episode regret (PE.R.) terms AL and A2 related to the safe prior and the regret on M.

Proof. Starting with the cumulative regret definition in Equation (2) for M., we upper bound R(N)
using

5 N N

R(N) 2 Z( T’(ﬂ—:vf) - Jr(ﬁ—nvf)) § Z(Jr(wzvf) - JF('/Tnaf)) (35)
i N
= (Ielmws, £) = T )+ o7 ) = Ti(ns £)), (36)

where step (i) follows applying Lemma 3 and (ii) introducing a zero term by adding and subtracting
Jo (7%, f). Since M. and M are identical for safe policies (e.g. 7 ,,) by not transitioning to s;
(see Equations (6) and (7)) and 7* is the optimal policy on M with F,, in episode n

(T £) = To (T s ) < Jo (7", f) 37)
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Thus, we obtain the following upper bound of R(N) by plugging Equation (37) into Equation (36):

N

R(N) < Z(Jr(ﬂ-:’ f) - Jr(ﬁ-;nv f)) + Z(‘]?:(ﬂ-*a f) - J?’(ﬂ-na f)) (38)
n=1

O

Al regret bound. Recall from Lemma 4 that the per episode regret of executing 7% with ® for F,,
in episode n on the planning MDP M. is A}, = J.(7}) — J.(7%,,). We rewrite Al in terms of the
distance between the optimal policy 7 and the safely rolled-out pohcy Tepin Lemma 5.

Lemma 5. Suppose Assumptions 1 to 4 hold and the model F,, is calibrated according to Definition 1.
Then the per-episode regret A}, = J,.(n}, f) — J, (7% ., f) admits the bound

8 < Be | (204 B >Zv E ieriien [l =]

. (lst)

Sir1 = f(se,a0) +wi,  ap ~ Wzn“st)

with the Lipschitz constants L., Ly for the reward and dynamics, and R= max{ Rmaz, Kmaz }-

Proof. We bound the episodic regret with the advantage formulation (As et al., 2025b, Lemma A.2)

A}I :Eﬁ—

Zv Eos s (s) [Ar(Th s 56,0 C)]] : (39)

with A, ¢ (7, s¢, ar) = r(se, ar) + YEL [V, (se41) — VT (s¢)], and s¢1 = f(s¢, ar) + wr.
Al _]Eicn’ [Z’Y Ea ~mk(e]se) |:< (St7 *) (40)

+ (E5t+1‘st7ﬂz7w {Vf:m (St-ﬂ—l)} - Vrﬁ:m (St)) )”

(11)

[Zv E o i) [(r(s0,a%) = r(se,a@ n))]] (41)

=% —*

Bz, .50 [Z VI By s Vi " (6401)] = By fsme ool Vi " (5141)])

(111)
[zm vty [min{Le]la — %]l Runas}] (42)

A~ (tlse)

+ Z ’Y\/ma’x{]ESt+1 [s¢,m%,we [R(St-‘rl)} ’ ]Est+1 [s¢,75 Wt [R(St-l-l)}}
t=0

Lyl|la
X ’ytE al~m*(¢]s min le )
et -

~
c,m

where step (i) follows from the advantage definition and (ii) uses the value function to derive the
dependence on the reward difference in timestep ¢. We rewrite the advantage in terms of the expected
action difference in step (iii) using the expectation difference under two Gaussians (Kakade et al.,

. 2
2020, lemma C.2) with R(s) = (VT on (s)) . Step (iii) uses the Lipschitz constants L,., Ly for the
reward and the dynamics (Assumption 2). Further, we bound this by:

()
AL SE,. [Zw TN L M ) 43)

e~ en (180)
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[ Lyllag —az,|
+RizfytEiazNﬂ, (‘St) {mm{g,l}]]

a,n Cn(lgf)

(ii)
s | (Lo B2 )Zwm o llez=az]]. @

c,n L n( ‘51)

Step (i) uses \/max{]Ewthl|shwz7w[R(5t+1)],Ewt’st“‘stj;m,w[R(st+1)]} < Rﬁ with R =

max{ Rmax, kmax } due to 7 > 0 and in (ii) we drop the min operator due to non-negativity. O

Lemma 5 expresses the regret in terms of the difference between actions taken by an optimal policy
7. and those taken by 7. ,, in episode n with model F,,. In the following, we use Lemma 5 to relate

A}L to model uncertainties “collected” along trajectories induced by these policies. Bounding these
uncertainties ensures that the learner improves its model of the dynamics after each episode.

Lemma 6. Suppose Assumptions 1 to 4 hold and the model F,, is well calibrated according to
Definition 1. Given ® is defined as in Theorem 1, AL depends on the accumulated and discounted
uncertainty X, along the trajectories of action a; and the safe 7, and the diameter of the bounded
action space D 4. Given vy, = (1 + Npessimism) Apessimism With Apessimism being defined as in Theorem 1,

RimasL = . i (a,
Al <Ere [ (LT et 1 7) § "D 4 min {EGMZ(.SM [V téat f)] 1}]
C

g

Se(ae £) =7 lon(ses an)l + Z Elvellon(sr, ®(se)l],  sra1 = f(s7,%(s7)) + w7
T=t+1

and §. = mtin(Eat~7‘r:,n(~ISt)[d — (<t + (s, ai) + ’yt“Ewt [Vf(stﬂ)})]) e RT.

Proof. We can upper bound the expected difference between the policies by the action bound D 4
times the probability PP of falling back to the safe prior

Dzy (st) =E azr (|st> [llag —a ] (45)
a‘z,nNTr ‘9,)
0)
SD AP, orms (s (<t +7'QL, (51, a) > d) (46)
(ii)
:DAPatNWé('|St) <C<t + fytc(stv at) 47)

+ ’Yt-i-l (Ewt [‘757} (Mn(sgn a;) + UJt)] + )\pessimismEt(at, Un)) > d)

with 57,1 = pn (s}, af) + wi, Se(ar, pn) = llon(se ae)ll + 372, B[y low(sy, 7(s7)) ] and
Vi (s0) = Y pogve(s), a,) following the model dynamics p,,. Step (i) follows from the switching
criterion in Theorem 1 and step (ii) by the definition in Equation (5). Next, we relate the uncertainty
along trajectories under the model dynamics i, to those under the true dynamics f by

() - .
D (5¢) SDaPayrur: (1s0) ( 9" et ar) + 9 (B [V7 (ua (51, 07) + )] (48)
+ B [V (f (1, ar) + wi)] = B, [V (f (50, a0) + wi)]
+ Apessimism(zt(ata /~Ln) + Et(atv f) - Et(ata f))) 2 d>
(i) N
gDAPat"‘”é('Bt) <C<t + ’th(St, at) + 7t+1 (Ewt [Vcﬂ(f(sh at) + wt)] (49)
+ (]- + Apessimism)>\pessimism2t (ata f)) 2 d>

(i) X
< DA]PM"‘”:('BQ <C<t + Pytc(sh at) + ’yt+1 (Ewt [Vcﬂ(st+1)] + vn X (atv f)) > d)

(50)
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We first expand the inequality in (i) with two zero terms. In step (ii), we bound the difference of the
value and the uncertainty for the different dynamics using Sukhija et al. (2025, Lemma A.5). In (iii) we
define v, = (14 Apessimism) Apessimism and sample according to the true dynamics 5,11 = f(s¢, a;) +wy.

Consider the set of all policies that are safely reachable given 7
N7, = {7 | Ex[cct + v e(se, ar)] + 7 Eo, [V (8141)] < d, Vi) (51)

Since 7} is strictly feasible we have E -+ [c<; 4+ v c(s¢, ar)] + 7T Ey, [Vf: (st+1)] < d; in addi-
tion, V.7 (s) < AL (s) for all initial states (cf. Assumption 4), therefore E[c<; + ~v'c(s¢, ar)] +

VR, [VE (stﬂ)} < d implying that 7 € II% ;. We define the smallest (tlme wise) safety gap due
to sw1tch1ng from 7} to 7 as

0c = mtin(]anﬂ:(-ISt)[d — (car +7'e(st,a0) + 7T, [V (se41)])]) € Rso. (52)

We thus rewrite the probability of invoking the safe prior 7

D”Té,n(st) = DaPq, oz (151 (Vnzt(ata f) > d—(car + (s, a) + 7By, [Vcﬁ(stﬂ)]))

(53)
= DAPq,mrr(sy) (ynEt(at, f) > 66). (54)
Using Markov’s inequality, we can bound the probability of invoking the prior by
Y
Dz (s¢) < D4 min {Eatwﬂ;(»st),wt [W] ; 1} (55)

Finally, we insert Equation (55) into Lemma 5 and obtain

RL UnXi(ag, f)
1 Ly t\Yt,
Al SE%Z,",SO [ <Lr + T 7) E 7' D 4 min {anﬂ;(.st),wt {50 , 101, (56)

t=0
O

Remark 1. Indeed, at the beginning of learning, 7 may not lie within the set {7 | Er[c<; +
vie(se, ar)] + YT By, [V (s¢41)] < d, Wt} C IIE, as the pessimistic cost value V" < V¥ for all
s € § with probability 1 — § by definition (recall Equation (4)). Reducing pessimism such that VFE
converges to V.* effectlvely expands this set until it converges to I17 Z4- Moreover, let us cons1der
the case where the prior policy does not satisfy the assumption that V’r (s) <V (s) forall s € S,
i.e., the pessimistic prior policy 7 in fact accumulates more costs (in expectation) than an optimal
policy 7 when executed on the true dynamics f. In this case, 7} is not guaranteed to lie within Hfr
and SOOPER converges to the optimum within the set of all feasible policies II% = 4 that are safely
reachable given 7.

Lemma 6 establishes an upper bound on the first regret %

term AL, based on the probability of action a; ~ 7(+|s;) ™
to be unsafe given the model uncertainty. More concretely,

. (e on (5
even though actions a; ~ 7 (-|s;) in Equation (56) are L 1 (5t ar)

determined by a safe policy 7}, they may be regarded
unsafe due to limited knowledge during learning,
quantified by epistemic model uncertainty. Since such
trajectories would trigger 7 when executing Algorithm 1,
we must relate the bound in Equation (56) to uncertainty Figure 7: Relating the uncertainty of a
induced along trajectories executed by the prior policy safe trajectory (green) to a trajectory that
7. Therefore, we relate in Lemma 7 these accumulated executes m} freely at ¢ (i.e. not under
uncertainties when executing 7, freely in ¢, to trajectories  Algorithm 1, in red) and therefore may
induced under Algorithm 1, starting with the safe prior be (possibly wrongly) considered unsafe
policy at timestep ¢. This relation is visualized in Figure 7. due to model uncertainties.

St @(St7atvc<thin) >d
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Lemma 7. Suppose Assumptions I to 4 hold and the model F,, is well-calibrated according to
Definition 1, the accumulated uncertainty along a trajectory induced by executing w freely at
t, quantified by By, 7+ (.|s,)w, %t (a1, [)], can be upper-bounded by the uncertainty along a safe
trajectory starting with the safe prior according to Algorithm 1:

LyD 4 ’yt

Eflt"‘”i(“st)7wt [Et(atv f)} S (1 + 0_) met [Et(ﬁ—(st)a f)] (57)

Proof. Using the definition of ¥; from Lemma 6

LO'D.A
ag

t oo
a1 < (14 2224) [ ST T lonsr sl 59)
T=t

we can bound the difference between the accumulated uncertainties of the two trajectories
Az’t :Eatwﬂ':(-\st) [Ewt [Zt(ata f)] - Ewt [zt (7?((815), f)“ (59)

. 0o 2
< K., (Z E[wwn(sﬁﬂs»)]) (60)

T=t+1

. {anw:(-st)HUn(Staat) — (st T (se)) ] }
X 1min 71
g

LoDa /g 5 GG DR 61)

g

by using the expectation difference under two Gaussians (Kakade et al., 2020, Lemma C.2) in (i) and
bound the uncertainty difference of under the different actions for the first timestep in (ii) using the
closed set of actions with diameter D 4 and the Lipschitz constant L, of the uncertainty. Thus we

can further bound this term using Eq, <+ (.[s,),w, [2t] < /Ew, [S¢(7(s¢), f)]? and obtain

L”DA> VEu, [Ze(7(s1), )] (62)

(ii)
<

Eatmw:(~|s,),wt [Et(atv f)] < (1 +

r 2
@ LO'D.A = T o
< <1+ . > E., (;7 IIUn(ST,W(Sr)H) (63)

o) e [(E) i)

(64)
(i) LsD t & R
< (1+ - A) 117 (;EMWIJn(sfﬂr(sf))lP]) (65)
(iv) L.D t o 2
< <1—|— UO’ A) li'y <;Ewt[ﬁlan(sﬁﬁ(3‘r))”]> (66)
LoD L R
< <1+ : A) D LM Vo LACE TR G
T=t

where we get step (i) by restating the definition of X; (7 (s;)) from Lemma 6 and thereafter applying
the Cauchy-Schwarz inequality in (ii). In step (iii), we factor out the infinite sum of 4" and can
interchange the square with the summation in (iv) due to the non-negativity of ||, ]|. O

Following from the relation between uncertainty accumulated along trajectories that execute 7 freely

at ¢ and thereafter follow 7, and those that pessimistically invoke 7 in Lemma 7, we can bound the
first regret term when episodes are collected safely using Algorithm 1.
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Lemma 8. Suppose Assumptions I to 4 hold and the model is calibrated according to Definition 1.
Given the Lipschitz constants L, with bounded actions D 4, the first regret term AL is bounded with
probability 1 — § in terms of the safely rolled out policy Ton:

o0
A}, < Eze [Un ZE[\/ ’Yt|0'n(3t7at)”]} St+1 = Hn(St,at) +we,  ar ~ 7., (+[se),
=0

DA (1 4 L, DA) (1+)‘pﬂwmwn) Aﬁevvmmm.

where 1, = (L'r + @L) g 5

o

Proof. Given the derived regret bound in Lemma 6, we bound the sum by the largest sum-
mation term during the safe rollout (i.e. executing 7} under Algorithm 1) using abbreviation

= <L + Bl ”7).

s > -
AL <Er: o|C"Y4'Damin {Eam.m),m [”té‘”f)] : 1} (68)
L t=0 ¢ -
_ ) 5 -
g]EFr:m,sO ClﬁDA max (Hlln {Eatr\aﬂ:('St)7Wt |:Vt(§at,f) 5 1}) :| (69)
- 1 > -
<Ez: .50 CliDA min {mtax (anﬂ:(-sf)wt {V”t(gaf’f) ) , 1} } . (70)

As we invoke the prior for the maximal term we obtain together with Lemma 7

t
AL <Ez: | [C”DA min { max ( (1 + Lo DA) 2 (71)
t o 1—x

S BVl (s (o) 1}
- T=t
, 1 L,D 4 1T vy —
Er: [c — (1+ ! )w/lmgﬁwt[\/vto—n(shat)n]}, 72)

ser1 = f(se,a¢) Fw,  ap~ 7_T:;,n('|3t)~ (73)

Since we now have the uncertainty along the entire safe rollout of 7 ,, following the true dynamics
f, we can now express the entire rollout in terms of the model dynamlcs in, using (Sukhija et al.,
2025, Lemma A.5):

M 1 L,D 1 v, /<
1 < / o/ A Yn N
e L (R e O DRIV LACHA |
+Zm¢ (s al)ll - ZEM[W||an<s;,a;>|nD
t=0

(i) LoD 4 1 v
<Ez: C’7D 1 z —_— 75
e e (O Nt ™

% (14 Apesimism) 3 Eus [T 10 (55 aé)ll]]
t=0

str1 = f(s6,a0) + Wi, 84 = pn(sy, ap) + wi. (76)

In step (i), we introduce a zero term by adding and subtracting the accumulated uncertainties along
the model dynamics. Next, we bound in (ii) the difference of the uncertainties along the two different
dynamics with (Sukhija et al., 2025, Lemma A.5). Thus, the proof is complete by plugging back in
C’ and v,,. O
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A2 regret bound. Let us now consider the second term A? that determines the regret of the policy
m, on M, given F,,. Therefore, we first bound the value difference between the pessimistic value

estimate KZ:T and the true value of executing 7 on f. Leveraging this bound, we can upper-bound the
value difference of executing m,, on M, and M in Lemma 10. Finally, we bound the second regret
term A2 in Lemma 11.

Lemma 9. Suppose Assumptions 1 to 3 hold and the model F,, is well-calibrated according to
Definition 1. Given the pessimistic cost value V' from Equation (4), we get with probability 1 —

1—7 o ’

VIV (s1) = Vi (si)l < A Y E [y llon(Ge #GO] . An =

t=k

where R = max{Rmaz, kmaz }- The trajectory can either be along the worst-case dynamics

Stp1 = in (50, 7(50)) + (1 + Vdi)Bp1(0)0n (51, 7(51)) + wi, with o € [=1,1], initial state
Sk = S, or the true dynamics 5111 = f (8¢, 7(5t)) + w, yielding the same bound.

Proof.

IV (s1) = ‘ Z (s641) Vrﬁ(§t+l)):| ‘ (77)

< "E[|Ew, (V] (st1) — VI (5i51))], (78)

Mg
2

~+
Il
o

where 5,41 is in each step the worst next state given J,,, leading to the worst value (see Equation (4)).
Thus with §t41 = pin (8¢, 7(8:)) + a(1 + Vdz) Brn—1(6)0n (8, 7(5¢)) + we, where o € [—1, 1] and
R(s) = (V7)2(s) it holds

IV () = V(s |<ZvENmax{Ewt (st1))- Bu [R (G )]) 79)
- { fo3(00) = b5, 50) + o0+ VT s BB G,

ZE Vo (se, w(s))] - (80)

t=k

We rewrite the value difference dependent on the worst-case dynamics i, + a(1 + v/d,.)fn—1(0)op,
and the true dynamics f in step (i) using Kakade et al. (2020, Lemma C.2), which can be expressed
in terms of the model uncertainty in (ii) (Sukhija et al., 2023a, Corollary 3). O

Lemma 10. Suppose Assumptions I to 3 hold and the model F,, is calibrated according to Defini-
tion 1. We consider the following definitions

(ﬂ—naf ﬂso[zvrshat]

f(se,ae) +we ®(sp,ae,000,QF,) > d, sy # st
S84 otherwise,

JF(']T'ru Nn) = ETI’,S() |:Z ’th(gm a/if):| 3
t=0

- - (B a) Fwe P(5, a0, QF ) = d, Sy # 54,
7rn(5t)7 St4+1 = .
S84 otherwise,

Qg ~ 7rn('|5t)7 St+1 = {

Ry 201+ VA8 (0)

1—7 o
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Then we have for all n. > 0, with probability 1 — ¢

oo

| S (s pn) — T (0, £ Z T sS0 'Y ”Un 1(3tva't)|”
t=0

|5 (7, pin) — J5 (7, )] < An Z]Eﬁn,ém [7t||0n—1(5taat)|” :
t=0

Proof. We prove the first inequality |5 (7, pin) — J7 (Tns )| < An Yo poo B so [V ]|on—1(5e, @) |]
and the second one holds for a analogous argument. We extend the argument of Sukhija et al. (2025,
Lemma A.5) to account for the termination state s;.

| S (s pin) — T (0, f)] = 81

(oo}
B, s0.un [Z WHI(V:}L (8t41) — V:}L(Stﬂ))] ;

t=0

where V7, is the value following 7 under dynamics f, and we define the states 5;41 and 5441 as

3, ®(3;, T y>d,3 i i
Sip1 = {f(sta at) + wy (St; Cl.t,C<t, QCJL) Z @, St # St , Gy ~ 7Tn('|3t)7 (82)
Sy otherwise,

_ n(Se,ap) +wp  D(St, as, Cet, >d,s St, ~ N
8t+1={u(t t) ¢ (50,1 <tQ n) ‘7 T, ag ~ mp(+|8¢)- (83)

En otherwise.

2
Let w}%(s) = (Vr’ff(s)) and with R(s) < A, if m,, does not invoke the safe prior 7, we

obtain the following bound following Sukhija et al. (2025, Lemma A.5)

T R AE 15 DX N Wi ey o ey T
::/t min{ [St4+1 — Se41]| ’ 1} ]
.
<3 4En i, Vo R B Bl 9
:(;t min{ £ (St5 ae) — pn (31, @) ’ 1}]
-
<z __7 d+ an : Z]Ewn w0 [VllonGua)l]. (86)

t=0
In case the agent invokes 7 at some timestep ¢ = k, we formulate the regret as

(1)k 1

| J# (s ptn) — T (70, £ < Z YEx, 50 [\/maX{Ewt[ (8t+1)], B, [R(s141)]} 87)
t=0

St+1— 8 x 0
‘ vtmm{””lam',l}] MV — V()]

+ i \/Ew, [R(s1)]7" min {w, 1}

t=k+1
(i) k—1

= B [\/max{Ewt R )] B [RGors )T} (88)

. St41— 8 - Foa
X vtmln{w,l}] + YV (8k) — VI (k)]
(i) k=1

< S VB | Vi B RG] B RG] (59)
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x 4! min
o

{ 1 G, (50)) = an (e, wE)I 1}]

Ex s [v llon (e, 7(50)]

11—~ g t=k
® Ry (14 vd)Bn-1(8) = o (3, d
<
1 o ;%Em sol ¥ lon (e, a)|l] (90)
Ry 2(1 n—1(6) 5
+1_v (+W5 1O S g o [y lom (G (5 ]

t=k

™ R S
) Y L CAC 1) BT

=14 2

In step (i), we split the infinite sum along the trajectory, when the policy prior 7 is invoked. We
therefore follow the trajectory along the model dynamics in Equation (83). Further, we eliminate
the difference term for the terminal state s; in (ii). In step (iii), we use Lemma 9 to bound the value

difference between the true value V™ along f and the pessimistic value Kf. Using Sukhija et al.
(2023a, Corollary 3) we bound the difference between the next states in (iv). Finally, in step (v), we
formulate the bound over 7,,, allowing us to upper bound both terms with the uncertainty using the

safely rolled out policy 7,, and abbreviate \,, = 131 w O

Lemma 11. Suppose Assumptions I to 3 hold and the model is well-calibrated according to defini-
tion 1. Given the optimal policy *, then we obtain the following per-episode regret on M in episode

n, A2 = Ja(n*, f) = Ja(m, f) with Ay, = 20 2L BentO) syig probabitity (1 6)

Ai = J;(?T*7f) - J?’(Trn?f) < ‘]7:(77*’:“71) + An ZEﬁ'*,So [’ytHan(Stva’t)”] - J?(Trn?f)v
t=0

where $;11 = fin (S, ar) + wy
Proof. We can show this by applying Lemma 10 to an optimal policy 7* on M. O

Intrinsic rewards for exploration and expansion. Next, we show with Lemmas 12 and 13 that
the policy 7, in Equation (9) achieves both optimism and expansion by upper-bounding the sum of
both regret terms A, = AL + A2,

Lemma 12. Given Assumptions I to 4 hold and the model F, is well-calibrated according to
Definition 1, the policy m, as defined in Equation (9)

[e'S)
Tp = arg In‘I?‘XEﬁ,ﬂ',SQ [Z (’th(sta at) + (’Yt)\explore + V ’Yt)\expand)uo'n(sta at)”)] 3

t=0

St+1 :Nn(staat)+wt7 a Nﬂ'("st)v

With Aespiore = 3An (Lemma 11) and N expana = 30y, (Lemma 8), satisfies with probability 1 — 6:

Ap =AL + A2 <00 Y Ere oo [V lon (6, a0) ] + Jo (7, )

t=0
+>\ ZETF ,S0 ’7 Hgn(staat”” anf)
t=0
00
Z Trn,so ’Y )\explore+ VY Aexpaml |Un(3t7a't)||] +J (7'('”,/,6”) - J?’(Trn)f)'

t=0
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Proof. Recall that by construction 7,, maximizes

> A i (s ar)) + Z(W?mn +vt3xn)||an<st,at>>|] : 92)
t=0 t=0

Hence
J(mp) > J(m) V. (93)

Apply Equation (93) first to the policy 7 ,, (i.e. the policy induced by using 7" and then invoking the
safe prior policy 7). By the linearity of expectations and non-negativity of all terms,

() 2Jo(7e s ) + B o [3%2\/ o (e, an)ll + 3A Zvnon ||] (94)

Next apply Equation (93) to the optimal policy 7* on F,,, yielding

J(Trn) Z J,:(?T*, Mn) + IE71'*,50 [37771 Z \/’?Han(sta at)” + 3)‘71 Z ’YtHUTL(Stv at))||‘| . (95)
t=0 t=0

Adding Equation (94) and Equation (95) results in

o) [eS)
2J(7Tn) >J ( (, nvl/’f’n) + Eﬁ'g,",so [3UTL Z V fYtHUn(Sta at)” + 3)\n Z’ytﬂan(st,at)ﬂl (96)
t=0 t=0

TR (7 i) + Ee o [3%2 Vtllon(se, ad) +3An2¢|an<st7at))n] :
t=0 t=0

Let us derive a bound for J;(77. ., /1), that we can relate to the optimal policy 7* for M.

JF(W aMn) SJF(W 7f) + AnEre s, Z'V Han St, At | 97
L t=0
@ — % t ]
SJT(T(- 7f)+/\nE7?*,so ny |\Un(3t7at)|| (98)
(iif) . >
SJ7'(7Tc7f)+/\nE7?*,so ZFY Han(st7at)|| (99)
(iv)
<T@ ) + A s Zv o (s¢, )| (100)
t=0

- [z Vlou(snran ]

Step (i) follows from Lemma 10 and (ii) is derived from the definition of M in Equations (6) and (7).
Next, step (iii) uses the optimality of 7 and finally step (iv) uses the upper bound of the first regret
term A} in Lemma 8. Hence, we can lower bound parts of the term by Jz(7*, u,). Therefore,
2J(my,) in Equation (96) is lower bounded by

2J (mn) >2J5(n%, pin) + 2nErs | [Zf o (5e, ar) |1 (101)

+ 377nE7'r*,so [Z \/’?Ho—n(sta at)||‘|
t=0

+3AEx: s [Z Y llom (st ar)l

+ Eze s [2)% ZVtHUn(Stv at)”] .

t=0
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Since all terms are non-negative, we can drop the terms 3(A\,, + 7,)Ezs o 2= V' [lon (se, ar)|]
and obtain by dividing both sides by two: '

o0
2J(mp) 22J5(7", pn) + 22, Ez+ 5, [Z Yo (se, at)] (102)
t=0

+ Ex:

c,n50

200y Wnan(st,am]
t=0

J(1) 2Jo(* ) + AnEie sy [Z A loa(se, at>||] (103)
t=0

+ Eﬂ'(’;",So

My VA lon(st, at)ll] :
t=0
By definition of J(m,,) and Equation (103), subtracting J=(m,,, f) completes the proof. O

In Lemma 12 we show that the objective upper bounds the performance and the per-episode regret
on the model dynamics. Next, we show in Lemma 13 that we can also bound the regret on the true
dynamics f using 7.

Lemma 13. Given Assumptions [ to 4 hold and the model F, is well-calibrated according to
Definition 1, the per-episode regret inn, A, = Al + A2, is upper-bounded with probability of at
least 1 — § for alln > 0 by

(o)
Ay < (3N, 4 4 4307 +310)) D Er o [V lon (st @) ]
t=0

Jor sy = f(s¢,a1) + wy following the true dynamics with a; ~ 7, (+|s¢, c<4, an)

Proof. Using the derivation in Lemma 12, we can upper bound the regret in terms of 7,, by

(i) X
A, < ZEwn,so[('YtAexplore + v ’Yt/\expand)HUn(Siv CL;)H] + JF(T‘-na ,un) - Jf(Trnv f) (104)
t=0

(i)

<3(nn + /\n)EﬁmSo [Z V ’Yt”(‘rn(s;a a;)H + S (Tn, pin) — Ji(7ns f), (105)
t=0

where s}, = (i, (s}, a}) + w; follows the true dynamics with a; ~ m,(-|s;) and we insert Lemma 12
in (i). Step (ii) follows from v € (0, 1) and the uncertainty along the safely executed policy 7,, being
larger than for 7,,, which terminates in s+. We next use Lemma 10 to bound Jiz (7, ptr,) — J5(mp, f)
and obtain

An <3(n + An)Ez, 50 [Z VAtllon (st ap)l
t=0

+ Az, s [Z VAt llom (st at)”] (106)
=0

@
:3777LE7T71780

> VAllow(se anl
t=0

+ 3 (E [Z Wllon(s;,amll (107)
t=0
- Eﬁ'mso [Z V ’YtHO'n(Sta at>||
t=0

) 43, (Eﬁmso [Z VAtllow(st, aé)ll]
t=0
. - [Z VA (s al)| ) + 4N Er, s, [Z VA lon (st at>|] :
t=0 t=0

where step (i) introduces zero terms by adding and subtracting accumulated uncertainties. We further
bound the per episode regret using non-negativity and Lemma 10

An <(BA2 + 4N, + 302 +30,)Ex, s, lz VA o (st at>||] : (108)
t=0

O
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In Lemma 13, we derived an upper bound on the per episode regret A,,, based on the policy 7,
executed on the true dynamics s;y1 = f(st, a:) + wi. Using Chowdhury & Gopalan (2017), we
obtain a sublinear cumulative regret for our safe exploration algorithm SOOPER.

Theorem 2 (Sublinear cumulative regret). Suppose Assumptions I to 4 hold and the model F,, is
well calibrated according to Definition 1. Then, Algorithm 2 guarantees with probability 1 — §

N

R(N) = Z (Jr(ﬂ-:vf) - Jr(ﬁ-nvf)) <0 (F%fog(N)\/N> ’

n=1

and Jo(7n, f) <d, Vn e {1,...,N},

that is, the cumulative regret grows sub-linearly in N, while satisfying the constraint throughout
learning by Theorem 1.

Proof. Given the per episode regret bound in Lemma 13, we sum over all episodesn =1,..., N
N N ')
RIN) = 3" AL+ A2 <3322 440, + 302 +300) Y Er, s, {\/'ytﬂan(st, at)||} . (109)
n=1 n=1 t=0

As by definition Chowdhury & Gopalan (2017), for the well-calibrated model F,,, 3,, < Sy for all
n=1,...,N, we rewrite

N o
R(N) <A + 30 + 0% +18) D2 D Eryy [VAllon (st a0l (110)

n=1 t=0

<i> N oo 5
(AN + 305+ 1+ VI S| (B, [Vlontenaol] ) | amn
n=1

(i)
<(AN +3(A% +nx + 1))

S e |3 B, [VATlontonalF] |

}

n=1 t=0
(112)
We use Cauchy-Schwarz in step (i) for the outer sum over episodes n = 1,..., N and in (ii) for the
inner sum over timesteps ¢. Further, we can bound the regret term for episodes n = 1,..., N, using
the truncated horizon 7;,, = — lé‘;g(%) , by decomposing the term into

o0

ZESO[ZEM [fnan st a0 H (113)
= i\’: (T" Ex, \/>||an (st,ap)l| } + i Ez, {\/r?||o'n(3t,at)||2:|> (114)
T,

n=1 t t=T,
N Tn—1 B N 7 k2

<Y B, [VAllon(snadl?] + Doy fes (115)
n=1 t=0 ) Tot=1 v

@ = [ 2] al 1 k?naz

<3S En [Villon(sea)?] + 30 2 (116)
n=1 t=0 ) B n=1 v

@ Y= I t 2] k'?na;v

<D0 D En [VATllon(s )] + 702 (log(N) +1). (117
n=1 t=0 B .

log(n log(n —log. (n —
Step (i) follows from L» = 102%’1%’ with 102%’8 = log,(n) and hence v logy(n) — p-1,

In (ii), we use the fact that % is non-decreasing in n and therefore due to Lehman et al.

(2018, Theorem 3.9.1) we bound 25:1% < log(N) 4 1. Further, we bound the first term
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SN SR [«/ o (s, ar)| } as in Sukhija et al. (2025, theorem 5.7):

R’yNFNlog(N) R’yo-max (log( ) + 1)
_|_
R T

<(AN + 3% +nx + nN)M . (118)

where R, = m(ﬁ%, with S;pae = 1‘17‘7\/’1‘” As T, is non-decreasing, we fix Ty and since
b 3nam
AN X %, Nn X 1—Nw we obtain from the definition of Sy from Chowdhury & Gopalan (2017) that
7/2
Ry <0 (T3, VN) - (119)

O

C THEORETICAL EXTENSION TO WORLD MODELS

For our theoretical analysis in Appendices A and B, we assume, for simplicity in presentation, that
the reward and cost functions are known. All arguments can be extended to the more general setting
of unknown costs and rewards, which are learned as part of a “world model”, in addition to the
unknown dynamics f. In practice, we consider this general setting in our experiments (Section 5).
Below we briefly illustrate how one can extend the analysis above to this more general case.

First, one needs to impose an additional RKHS assumption on the cost and reward functions,
analogous to Assumption 3 for the unknown dynamics f. Accordingly, we jointly learn with the
unknown dynamics f a calibrated model for the reward and cost function with nominal predictions
wh, ps and epistemic uncertainty ol ,0S. Hence, it holds ¥(s,a) € § x A : r(s,a) € {r' |
|7 —ul| < Bupob}and V(s,a) € S x A:c(s,a) € {¢' || — ps| < Bnol}.

Given only access to the calibrated model predictions, we modify the reward and cost structure on
the planning MDP M as follows:

V7(se) if ®(ar, 51, c<1, Q) > d,

7:(St7 at) =<0 if St = St, (120)
tr (e, at) + Broy (s, ar)  otherwise,

C(se,ae) = puy, (¢, a) + Broy (¢, ae). (121)

By utilizing the above cost and reward, we demonstrate safe exploration and achieve sublinear
cumulative regret, even in the presence of unknown cost and reward functions.

Safety guarantee for unknown costs. Under the modified cost ¢ in Equation (121), the update of
the pessimistic Q-value is given by:

oo

Z Sta at )\pessimism”Un(stv at)”)

t=0

En

Sg = S,a9 = a] . (122)

For this modified update using ¢, it is possible to show that Lemma 2 holds using uncertain predictions.
One can derive it by bounding the difference between the value Vf (s) following the model dynamics
with the true cost function, and the value f/gr(s) following the model dynamics with the mean
predictions

|Vcﬁ(3) Z’Y c(st, ar) U%(5t7at))‘| | s0=s (123)
< Ex lZ’Y |c(st, ar) — py,(se, ae)| | s0 = 51 (124)
o
< Ex lz V' Bnoy(se,ar) | s0 = S] ; (125)
0
St41 = Hn (St ar) +wi, S0 = s. (126)
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Hence, by bringing the actually observable value f/gr(s) to the right side, it follows that

V7(s) < VF(s) + Es Zvﬂn st,at)ls()s] (127)
=Ex Z’Yt(ﬂn(st,at) + Bnoy(s5¢,at)) | so = 5] (128)
t=0
=Esz | Y _7'é(se.ar) | s0= 81 : (129)
t=0
St41 = un(st, (lt) —+ Wi, ay = ’ﬁ'(St). (130)

Using the derived upper bound and plugging it into Equation (20) yields

< Ex Z’Y 5t7at )\pessimismHUn(Shat)”) | S0 = 5] , (131)

Str1 = ,un(st,at) +w, ap=7(s). (132)

Hence, the proof of Theorem 1 holds using Q% (s, a) from Equation (122) in Equation (29). We
can also upper-bound this in a more compact form by assuming the same kernel k for the cost
and the dynamics prediction, so that we have (3,07, (¢, at) + Apessimism||0n (8¢5 @) || < (Apessimism +
Bn)|lod¢(s¢,ar)||. This follows from the non-negativity of o and with o being defined as the
concatenation of the prediction uncertainties for the dynamics o, and the cost o..

Regret bound for unknown reward and cost function. Similar to the modified cost update in
Equation (122), we use 7 in Equation (120), and optimize for

T, =argmaxE; » o [Z ('ytf(st,at) + ('yt/\explore + V! Aexpand) || 0 (8¢, at)||)] , (133)
T =0
St+1 = /,Ln(st,at) + Wt, Ay ~ 7T('|St). (134)

For the derivation of the regret bound, the first regret term is affected by enlarging the pessimistic
additive cost with )\pessmsm + f,. This contributes an additive 3,, term, which does not change the

proportionality of 7,, o 1 . For the second regret term, we obtain an additional term that quantifies

the uncertainty in the reward prediction, similar to the derivation in Equation (129). Hence, we obtain
the additive term in Lemma 11 while following the mean dynamics and using the model’s mean
predictions ;..

Agl :Jf‘(ﬂ-*mf) - J~(7Tn7f) (135)
<Tp (7", pin) + A ZEﬂ so [V llon(se, an)ll] = Ja(mn, f) (136)
t=0
Z .U’n Stvat) +ﬂﬂ (St7at)) | S0 = S] (137)
t=0
ZEW ,80 ’Y ||0n(5t,at)||] (,/Tnaf) (138)
t=0

By definition of the modified objective in Equation (133), we still upper bound in Lemma 12
the regret with the behavioral policy 7, so that the following proof steps still hold. Further, we
can again assume that the dynamics and the reward are part of the same kernel, resulting in the
bound B,,07 (st, ar) + Anllon(se, ar)| < (A + Bu)llof" (s, ar)||, where of>" is defined as the
concatenation of the prediction uncertainties of the dynamics O'n and the reward o). Thereby, also
for the second regret term, the proportlonahtj remains \, the regret bound

remains unchanged Ry < O (F A{ log(N) V/N') for unknown reward and cost functions.
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D ADDITIONAL EXPERIMENTS

We conduct further empirical analysis of SOOPER, focusing on the following key aspects: (i) demon-
strating the role of prior policies in accelerating learning; (ii) leveraging terminations for safe policy
improvement; (iii) ablating the role of Algorithm 1; (iv) robustness of SOOPER to prior policies with
varying pessimism levels; (v) the necessity of acting pessimistically for safety, and (vi) the influence
of optimism on the agent’s regret. The goal of these ablations is to provide additional empirical
evidence to support the different design choices of SOOPER.

Safe transfer under task misspecification. We demonstrate the effectiveness of policy priors
compared to “backup” policies that are commonly considered in previous works. For this, we
reduce the size of the goal in the PointGoall task from SafetyGym (see Figure 16) from 0.3 to 0.15.
This makes learning harder, as additional exploration is required to find the goal. We compare the
following methods: (i) SOOPER that uses a policy trained on the original 0.3 goal task as a safe
prior; (i) SAILR that uses a hand-crafted “backup” policy that brakes the robot upon triggering,
following SAILR’s “advantage-based filtering”. The policy 7, in this case is initialized with the same
policy prior that SOOPER uses; (iii) SOOPER that uses the policy prior only within Algorithm 1,
but learns its policy m,, completely from scratch; (iv) finally, a baseline that uses the hand-crafted
braking backup policy, falling back to it as done in in SAILR, while training the policy 7,, from
scratch. Figure 8 demonstrates two results: (a) as expected, both baselines that learn from scratch fail
to converge within the training budget of 200 episodes. (b) On the other hand, when finetuning the
prior policy, using a hand-crafted braking “backup” policy indeed satisfies the constraint, however
at the cost of slower learning compared to SOOPER. This result illustrates the importance of using
policy priors not only to maintain safety, but also to guide and accelerate learning.

--- SOOPER -+ Braking Filter =+ From Scratch == From Scratch + Braking Filter —- Baseline

0 50 100 150 200 0 50 100 150 200
Iteration n Iteration n

Figure 8: Learning curves of the objective and constraint for PointGoall goal size transfer. SOOPER
performs significantly better using the prior policy trained on a larger goal size, significantly helping
in exploration when learning to reach a smaller goal.

Learning from terminations. We study the effect of learning from terminations on the agent’s
ability to reduce its dependency on the policy prior. To this end, we ablate the use of terminations
in Equations (6) and (7) and compare SOOPER with a variant that does not terminate in M. In
Figure 9, we observe a decrease in the incurred costs for SOOPER with terminations, while SOOPER
without terminations still encounters high costs for both CartpoleSwingup and RaceCar. If the optimal
unconstrained policy violates the safety budget, the agent trained without terminations fails to achieve
the optimal safe performance. This failure occurs because, in the absence of termination signals, the
agent receives no feedback about triggering the prior policy during online rollouts.

Robustness to policy priors. Different degrees of sim-to-real gap or lack of data coverage in
the offline setting require increasing levels of conservatism. We demonstrate that SOOPER can
effectively learn from policy priors with varying levels of conservatism and initial performance.
For this, we train three prior policies on PointGoal2 for different sim-to-real gaps with sufficient
pessimism levels and show that SOOPER converges to optimal performance while satisfying the
constraints using all three policy priors in Figure 10. These results highlight SOOPER’s ability to
safely explore in highly uncertain environments, given conservative policy priors.

Pessimism for safe exploration. Given the previous ablation on conservatism of safe policy priors,
we now study the scale of pessimism used during learning. As shown for CartpoleSwingup in
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---SOOPER -~ SOOPER without Terminations - - Baseline
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Figure 9: Learning curves of the objective, constraint, and number of times the safe prior is triggered
during online rollouts. The number of times SOOPER uses the prior shrinks over training.
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Figure 10: Learning curves of the objective and the constraint, starting from different safe policy
priors with various levels of conservatism, differing in initial performances.

Figure 11, using increased Apegsimism, the agent consistently satisfies the constraints without significant
sacrifice in performance. Moreover, SOOPER demonstrates robustness to increased Apessimism, and
showcases higher performance for lower chosen pessimism values. Crucially, this behavior is expected
as it reflects an inherent tradeoff between pessimism and exploration.

900
125 1 T )\pessimism
800 Budget —fesresressresrznmgen o BaQgernegzagrassnanrnnnsfatonn Ry
£ £ 75
o 700 1 <
600 - 25
1 1 1 1 1 0 1 1 1 1 1
0 2 4 6 8 0 2 4 6 8
Iterations n x10* Iterations n x10*

Figure 11: Learning curves of the objective and the constraint for SOOPER with increasing Apessimism-
Pessimism improves robustness of constraint satisfaction.
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Optimistic planning for sublinear regret. We now study the influence of SOOPER’s intrinsic
reward on its performance, safety during learning and on the cumulative regret. Specifically, we study
how varying Acxpand together with Acxpiore improves SOOPER’s performance in the CartpoleSwingup
task. Intuitively, high values of Aexpand + Aexplore May lead to excessive exploration, while small values
Of Aexpand - Aexplore May not explore enough. As visible in Figure 12, empirically, the cumulative regret
%R(N ) exhibits a single optimum, since for small optimism scales the agent under-explores and fails
to expand the safe region, and for large optimism scale the agent over-explores, which reduces short-
term greediness and lowers cumulative reward over the finite horizon. As N increases, short-term
suboptimality due to over-exploration decreases and the cumulative reward becomes less sensitive
to the optimism scale, consistent with the sublinear-regret guarantee for sub-linear growth in V.

== Xexplore + Aexpand = 0 == Aexplore + Aexpand = 10 —*= Aexplore + Aexpand = 50

Budget
800 —
E = 200 o
<= 700 A E 5 50 -
S s 175 7 /—Optimal Oy
600
I I I I 150 I I I I I 0 I I I I
0 25 50 75 0 25 50 75 100 0 25 50 75
Iterations n Optimism Iterations n

Figure 12: Learning curves of the objective and the constraint, as well as cumulative regret, for
different optimism scales. A good value for the optimism value can be identified, where both under-
and over-exploration are avoided and regret is minimized.

Safe offline-to-online on real hardware. We repeat our hardware experiment in Section 5 on
the race car however now use SOOPER using an offline-trained policy. We collect 25K real-world
transitions, corresponding to roughly ten minutes of real-time data. To collect this data, we use the
simulation-trained policy used in our sim-to-real experiment as baseline. This dataset is then used to
train a pessimistic policy using MOPO (Yu et al., 2020) with a primal-dual solver for the constraint.
We introduce pessimism by penalizing the reward and cost with model uncertainty (see Yu et al.,
2020). We repeat our hardware experiment with five random seeds, reporting the mean and standard
error of the accumulated rewards and costs of each iteration n in Figure 13. As shown, SOOPER
leverages the offline-trained policy prior to learn near-optimal policy while satisfying the constraint
throughout learning.
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Figure 13: Performance and safety on the real race car given a prior policy that is trained via a fixed
offline data. SOOPER improves the performance while satisfying the constraint during learning.

Learning directly from costs. While we demonstrate that SOOPER can learn safety from an
unconstrained MDP with termination, our method can be extended to learning directly from costs
via model-based rollouts with any off-the-shelf CMDP solver. While this variant enjoys the safety
guarantee of Theorem 1 using Algorithm 1, it is not guaranteed to learn an optimal policy. We
instantiate this variant with CRPO and refer to this baseline as SafeCRPO. The evaluations across
various tasks show that SOOPER’s Algorithm | can be paired with alternative CMDP solvers
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and ensures safe learning. However, SafeCRPO consistently learns slower and achieves lower
performance than SOOPER. This demonstrates the advantage of SOOPER using terminations paired
with Algorithm 1 to learn safely and guarantee convergence.

Additional learning curves. Figure 15 complements Figure 3 in Section 5 and shows the learning
curves on all sim-to-sim tasks. SOOPER consistently achieves near-optimal performance without
violating the constraint during learning. In addition to the baselines presented in Section 5, we
include another CMDP solver that is based on Log Barriers (Usmanova et al., 2024). This solver is
theoretically guaranteed to maintain feasibility during learning by penalizing iterates that approach
the boundary of the feasible set. For all of our sim-to-sim experiments, we train the safe policy
priors following SPiDR (As et al., 2025a). SPiDR leverages domain randomization to introduce the
conservatism required for constraint satisfaction when deploying RL policies under distribution shifts.
In particular, to obtain pessimistic policies, SPiDR penalizes the cost according to the disagreement
in next-state predictions of the randomized dynamics.

E SAFETYGYM

PointGoal environments. In these tasks, the agent must navigate to a target location while avoiding
hazards which include free-moving vases and designated hazard zones. The environment is depicted
in Figure 16. The initial positions of the agent, goal, vases, and hazards are randomized at the
beginning of each episode. The reward function is defined as the change in Euclidean distance to the
goal between successive steps

re(Se,at) = dp—1 — dy + 1[dy < €],

where d; = ||X; — Xgoal||2 is the Euclidean distance from the robot to the goal. The term 1[d; < €]
is an indicator that gives a reward bonus when the agent reaches the goal, i.e. when it is within
€ = 0.3 of the center of the goal. The goal position is resampled to another free position in the
environment once reached. PointGoall and PointGoal2 differ in the amount of obstacles located in
the environment. A cost of 1 is incurred when the agent collides with a vase v, when one of the vases
crosses a linear velocity threshold (after collision) or when the agent is inside a hazard zone h:

ci(s,ar) = 1[Fv € V : collides(x¢,%,)] + 1[Fv € V : x!, >~y + 1[Fh € H : d; < p],

where 7 = 572 and p = 0.2. Please see the implementation of Ray et al. (2019) for more specific
details.

Simulation gap. In our sim-to-sim experiments (in Figure 3), before training, we uniformly sample
the gear parameters of the actuators that control the linear and angular velocity of the robot. The
precise ranges are given in Table 1. Note that the z-joint is a hinge joint that allows the agent to rotate
around the z-axis and the z-joint is a slide joint that allows translation in the xy-plane.

F RWRL BENCHMARK

We use the RWRL benchmark suite (Dulac-Arnold et al., 2021), which adds safety constraints and
distribution shifts to the tasks from the DeepMind Control benchmark suite (Tassa et al., 2018).

Constraints. We use the joint position limits constraint for HumanoidWalk, joint velocity limits
for WalkerWalk, and slider position limits for CartpoleSwingup. These are the standard constraints
proposed by Dulac-Arnold et al. (2021).

Simulation gap. In our sim-to-sim experiments from Figure 3, we follow a similar experimental
setup as Queeney & Benosman (2023), introducing variability in the physical properties of the system
during training to simulate distribution shifts. In Table 2 we provide the specific parameters we
perturb in each task.

G RACECAR ENVIRONMENT

In this environment the agent is asked to navigate to a goal position while avoiding static obstacles.
This environment is implemented both in our sim-to-sim experiments, as well as on the real-world
race car experiments.
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Figure 14: Learning curves of the objective and the constraint for SOOPER and SafeCRPO across all
environments. SOOPER consistently outperforms and shows asymptotic convergence.
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Figure 15: Learning curves of the objective and the constraint for SOOPER and comparison baselines.
SOOPER maintains safety throughout training in all tasks while outperforming the baselines in terms
of performance.
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Table 1: Domain randomization parameters and
ranges used during training.

Parameter Value
Gear (x) [-0.2, 0.2]
Gear (z) [-0.1, 0.1]

Figure 16: Visualization of a random initial-
ization of the PointGoal2 environment. The
red pointmass is the agent, the green transpar-
ent cylinder is the goal, the cyan boxes are
vases and the blue circles are hazard zones.

Figure 17: RWRL tasks.
Table 2: Additive domain randomization parameters and ranges used during training of the policy

prior across tasks from RWLR.

Parameter Value

CartpoleSwingup
Pole Length [-0.1, 0.1]
Gear [-1.0, 1.0]
Knee Gear [-40., 40.0]

HumanoidWalk
Friction [-0.05, 0.05]

Hip Gear (x) [-20.0, 20.0]
Hip Gear (y) [-20.0, 20.0]
Hip Gear (z)  [-60.0, 60.0]

WalkerWalk
Torso Length  [-0.1, 0.1]
Gear [-5.0, 5.0]

Reward and cost. The reward at timestep ¢ is given by
re(st,a¢) = di—1 —dg + 1[dt < 6] - >\c||at||2 - )\l”at - apl”%,

where d; is the Euclidean distance to the goal, and a; € R? denotes the action applied at time ¢
(consisting of steering and throttle). The term 1[d; < €] is an indicator function that gives a reward
bonus when the agent is within € = 0.3 of the goal. The penalties A. and \; weight the control effort
(magnitude of the action) and the change in action between consecutive timesteps, respectively. The
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cost function at time ¢ is defined as
3

ci(se,ar) =Y 1lee—pill < pi) EF + 1z, ¢ V],
=1

where z; € R? is the car’s position, p; and p; are the position and radius of the i-th obstacle and EF
is the kinetic energy of the car at time ¢, simulating a plastic collision between the car and obstacles.
This choice of cost function allows us to penalize more severely collisions in which the car smashes
with high velocity into obstacles, as opposed to softly touching them. The second term penalizes the
agent for leaving the valid area V, which corresponds to a bounded rectangular arena.

Simulation gap. In the previous sim-to-sim environments, we model the sim-to-sim gap for the
experiments in Figure 3 by introducing an auxiliary dynamics parameter (e.g., pendulum length) that
is not observed during training. In contrast, in the RaceCar environment, the car dynamics in the
training environments are governed by a semi-kinematic bicycle model that does not account for
interactions between the tire and the ground. On the other hand, in evaluation, we use the dynamical
bicycle model of Kabzan et al. (2020). We refer the reader to Kabzan et al. (2020) for the detailed
equations of motion.
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H LARGE LANGUAGE MODELS USAGE IN THIS WORK (ICLR 2026).

Large language models were used in this work for the sole purpose of text polishing and editing.
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