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ABSTRACT

The Major Histocompatibility Complex (MHC) is a crucial component of the
cellular immune system in vertebrates, responsible for, among others, presenting
peptides derived from intracellular proteins. The MHC-I presentation is vital in
the immune response and holds great promise in vaccine development and cancer
immunotherapy. In this study, we analyze the limitations of existing methods
and benchmarks for MHC-I presentation. We introduce a new benchmark to
measure crucial generalization properties and models’ reliability on unseen MHC
molecules and peptides. Finally, we present HLABERT, a pre-trained language
model which significantly surpasses prior methods on our benchmark and also sets
new state-of-the-art on the old benchmarks.

1 INTRODUCTION

The Major Histocompatibility Complex (MHC) is a critical cell surface protein in the cellular
immune system of vertebrates that plays a vital role in binding peptides derived from intracellular or
extracellular proteins. It comes in two variants: MHC Class I (MHC-I) and MHC Class II (MHC-II).
MHC-I molecules are found on almost all nucleated cells and present peptides from intracellular
proteins to cytotoxic T-cells, which can kill cells that are infected or otherwise abnormal. MHC-II
molecules are found primarily on antigen-presenting cells, such as dendric cells and macrophages,
and present peptides collected from extracellular proteins to T-helper cells.

If T-cells recognize and bind to a peptide-MHC complex, an immune response can be triggered.
While MHC-I is more critical in a cytotoxic response, the latter is more important in a T-helper
response. Therefore, the binding of antigenic peptides to MHC-I molecules is an essential step in the
cellular immune response and has significant potential in vaccine design and cancer immunotherapy.

The problem of computational prediction of peptide-MHC binding has been approached through
several training methods (1). Most of them rely on artificial neural networks and differ in architecture
choice and input preprocessing by different padding choices to be able to train and predict different
peptide lengths.

MOTIVATIONS AND RELATED RESEARCH

Pan-specific models, as opposed to allele-specific models, are trained on datasets containing multiple
alleles, thus allowing for a larger training sample size. While allele-specific models may demonstrate
increased accuracy when restricted to specific alleles, the pan-specific models enable generalization
across different MHC molecules. Several approaches were developed for MHC presentation pre-
diction. The pan-specific model, NetMHCpan, is an ensemble of Multi-Layer Perceptions trained
using the NNAlign_MA (2) framework and introduced the integration of both binding affinity and
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eluted ligand data into training (3; 4). Another popular pan-specific model, netMHCflurry, is an
ensemble of Convolutional Neural Networks with a Multi-Layer Perceptron classification head (5).
Recently proposed, Trans-pHLA based on a not-pretrained transformer, shows that transformers are
suited for predicting MHC-I presentation (6). Anthem is an allele-specific model, utilizing the AODE
computational framework, a variant of Naive Bayes, with a separate model for each HLA and limited
ability to generalize over new MHC, but generalizes well to unseen peptides (7). To explain the name
of the two mentioned models, recall here that the Human leukocyte antigens (HLA) are part of the
major histocompatibility complex (or MHC) in humans.

One-to-One methods utilize separate models for different peptide lengths. At the same time, One-
to-Many and Many-to-Many approaches involve transforming input sequences to either pad or
shorten the sequences to a fixed length, enabling transfer learning across different peptide lengths.
ACME (8) is a pan-specific Many-to-Many model incorporating a Convolutional Neural Network
and an attention mechanism, focusing on exploring generalization among unseen MHCs. BVLSTM-
MHC (1) is Pan-specific Bilateral and Variable Long Short-Term Memory architecture (BVLSTM),
overcoming the issue of variable peptide length without preprocessing input.

All the mentioned methods report high metrics on test sets. However, it has been shown that MHC-I
presentation models are susceptible to changes in training dataset size and content (9). Due to this,
we investigated existing evaluation methods and identified several weak points:

• Weak generalization, train-test split, and imbalance. The train-test split should be
performed carefully to avoid the situation when the model was benchmarked on peptides
and MHCs already seen. In previous approaches, the test set was created from unseen pairs
of peptide-MHC or just unseen peptides (6; 3; 4; 7; 1; 5). This approach could result in
high scores on a test set, not due to generalization but due to overfitting of the method
to see sequences of peptides or MHCs. To obtain good generalization on unseen MHCs
and peptides, we excluded both all MHCs and peptides seen in the test from the train set.
This provides a strong generalization benchmark, with high metrics indicating a model
understanding of the MHC structure role.

• Synthetic negative examples. In previous approaches (6; 3; 4; 7; 1; 5) negative examples,
i.e. non-binding peptides, are randomly sampled parts of proteins that were not marked
as binding in the assay. This approach was applied both in the train and test sets. As we
think it isn’t an error to sample additional negatives this way in the train set, we apprehend
that adding them to the test set leads to falsely optimistic metrics on that benchmark. The
random part of proteins could be much different than the product of the immunoproteasome,
which is responsible for producing the peptides for presentation. Due to those synthetic
samples in the test set, the benchmark results could be flawed. In our approach, a negative
example is a pair (MHC, peptide) with an assay with a negative result.
Additionally, what is more important — is that kind of random sampling uses the assumption
that negative peptides are linear epitopes. Non-linear epitopes which are the product of cis
or trans-splicing, play really significant role in immune response and may account for up to
30% of ligandome (10)

• Biased choose of positive examples. In NetMHCpan4.1 authors had used their previous
model NetMHCpan3 (3) to select positive entries for the test set. This allows for a data
leakage between train and test. Last but not least the problem of limiting the length of the
considered peptides should be stated. The exploration of the IEDB database (11) revealed
that there are peptides longer than 12 that bind to MHC-I. Despite that, all previous methods
fixed this threshold (3; 4; 5; 6; 7; 1).
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OUR RESULTS

As explained above, we identified several limitations of existing methods, mostly related to evaluation
and benchmark construction. In this work, we propose a new model for pan-specific MHC-I
presentation prediction. Moreover, we benchmark multiple previously used methods. Our pan-
specific model outperforms all previous solutions, both on previously used benchmarks and new,
more restrictive benchmarks. Our results show that existing pan-specific models do not generalize
well to unseen alleles and peptides. Our proposed HLABERT shows better generalization, both on
unseen peptides and alleles and. Summarizing, our main contributions are as follows:

• identification and detailed analysis of several limitations of existing methods and bench-
marks;

• creation of new benchmark for measuring the generalization of MHC-I presentation model-
ing;

• new model called HLABERT based on pre-trained transformers, which outperforms all
previous methods on both new and old benchmarks.

2 MATERIALS AND METHODS

DATASET CONSTRUCTION

As we have discussed, existing benchmarks and validation methods suffer multiple limitations. Due
to this fact, we have constructed our dataset in a way that tries to overcome most of them.

To create the dataset, we downloaded all measurements from IEDB (11). After getting the data, we
filtered it, leaving only MHC-I. We have also chosen only MHCs originating from humans for the
initial data set, removed all non-linear peptides and peptides containing ambiguous amino acids and
dropped all peptides shorter than 7 and longer than 25.

All assays with positive results were assigned 1 and negative 0. In case there were multiple contra-
dictory assay results for specific peptide-MHC pairs, we have assigned them the dominant value. In
cases where the number of positive assays was equal to negative ones, the pair were removed from
the dataset.

MHC sequences are gathered from IPD (12). MHC’s IDs were mapped to their canonical names
using mhcgnomes python library 1. Then measurements from IEDB and sequences from IPD were
joined using those canonical IDs.

Train-test split. The train-test split was done in the following way: we randomly chose 35 MHC
alleles with measurements for more than 50 peptides and less than 7000. This set of peptide-MHC
pairs constitutes our test set. From the training set, we excluded all peptides and MHC which appear
in the test set. The validation set was created from peptide-MHC pairs which are removed from
the training set due to having peptides the same as in the test set. This setting allows us to measure
generalization both on unseen peptides and unseen MHC alleles (one part of the validation set
measures the generalization of unseen peptides, and the latter measures the generalization of unseen
MHCs). Our final dataset has 509540 data points in a train, 128093 in validation, and 71113 in the
test. The numbers of unique peptides in the training set, validation, and test are accordingly 361151,
34050, and 54113. The numbers of unique MHC alleles are accordingly 127, 143, and 35. A visual
explanation of train-test split construction is presented in Figure 1.

MHC sequences processing. MHC receptor has three α chains — α1, α2, α3 (all α chains have a
length of around 90 amino acids), trans-membrane part (around 20 aa), and a part which is inside
the cell (around 20-40 aa) and additionally it has β − 2-microglobulin (light chain). The α1 and the
α2-2 domains are structural parts of the peptide-binding cleft. The α3 Ig-like domain mediates the
interaction with the CD8 coreceptor, which is necessary to signal T-cell. Also, topologically, it is
relatively close to peptide, the same as beta-2-microglobulin (light chain), but is further than α1 and α2.

1https://github.com/pirl-unc/mhcgnomes
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Figure 1: Graphic explanation of the data split. Axes repre-
sent different peptides and MHC alleles. Partition is done
in a way that prevents any overlap of alleles or peptides be-
tween train and test split. Numbers on axes indicate number
of peptides/alleles assigned to each partition.

Figure 2: A schematic representa-
tion of MHC class I.

β2-microglobulin is necessary for cell surface expression of MHC class I and stability of the peptide-
binding groove (13; 14; 15).

From that description, we can conclude that all regions may play a more or less significant role in
peptide binding. Therefore, we decided to use full sequences of MHC. Additionally, we compare
how the prediction quality differs from using the pseudo-MHC. Pseudo-MHC is a pseudo-sequence
consisting of only polymorphic amino acid residues in contact with the peptide (16). The contact
residues are defined as being within 4.0 Å of the peptide.

Notice that we compared those two representations of MHC because HLABERT was pretrained
on full protein sequences, so it seemed to be much more convenient also to explore the following
hypotheses: (i) if it will improve the prediction because it will be more similar to training data; (ii)
if BERT is capable of training and find out which parts of the protein are the most crucial for the
binding with a peptide.

MODEL ARCHITECTURE

Our model is based on the DistillProtBERT architecture (17). DistillProtBERT is a pre-trained
transformer produced by the distillation of the ProtBERT model. Distillation is a compression
technique in which a compact model is trained to reproduce the behavior of a larger model (18).
ProtBERT (19) is a pre-trained transformer, which is trained on an objective of masked language
modeling as defined in (20). In the case of ProtBERT, the objective is to predict the amino acids in
multiple positions based on the rest of the protein. In initial experiments, we have examined the full
ProtBERT model (19), but we have not obtained significantly better results. Due to shorter training,
we decided to proceed with the distilled version.

Our architecture has two variants, as described in Figure 3. The model dualBERT consists of
two copied "legs", each of them encoded either MHC or peptide. The produced hidden state is
concatenated and forwarded to the last N−k encoder layers. On the other hand, singleBERT encodes
MHC and peptide together.

We decided to compare those two architectures because, in the method of training, BERT wasn’t
trained on pairs of proteins, so it could not be trained in a way to learn about relations between
two proteins. Therefore it is more convenient to separate the processing of 2 proteins and then
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Figure 3: HLABERT architectures. Diagram A shows dualBERT variant, diagram B singleBERT
variant. Symbols m, n, and k denote hyperparameters, N denotes BERT length.

build transformer blocks over those 2 representations to train the network to understand the relations
between proteins in supervised way.

More precisely, it is being fed by batches of sequences in the form:

[CLS] Peptide Sequence [SEP] MHC Sequence [END]

where [CLS], [SEP], and [END] are special tokens, standing for classification, separation, and
sequence end. Variant DualBERT gets

[CLS] Peptide Sequence [END]

[CLS] MHC Sequence [END]
to the first and second leg respectively.

On the head of each of the variants, we use a concatenation of embeddings from multiple poolings.
More precisely, given sequence length L, embedding hidden dimension H and embedding vectors
u = [v1, ..., vL], u ∈ RL×H , it produces concatenation of embeddings:

ConcatEmbedding = [CLSEmb,MeanEmb,MeanSqrtEmb,MaxEmb] ∈ R4H

CLSEmb = vClsIdx (where ClsIdx is an index of [CLS] token) picks a synthetic token, creates em-
bedding from it, and during the forward pass in the transformer encoder, accumulates all information
needed for classification in it.

MeanEmb =
∑L

j=1 vj

L·H ∈ RH aggregates information from all L embeddings by taking the mean of

them. Similarly we take MeanSqrtEmb as
∑L

j=1 vj√
LḢ

.

MaxEmb = [vargmaxi=1...L(vij),j ]j=1...H takes max for each dimension over all L embeddings.

The vector after pooling is processed by the classification head, which consists of n fully connected
layers; a batch normalization layer (21) and dropout (22) follow each layer. Model output is processed
by softmax (23). The model is optimized using cross-entropy loss (24) with L2 regularization (25).
Figure 3 presents the model architecture.

MODEL TRAINING, HYPERPARAMETERS SEARCH AND PERFORMANCE EVALUATION

As the model and training had multiple hyperparameters which impact the model performance, we
had to find optimal values of those hyperparameters.

The most important variable hyperparameters were: oversampling proportions, loss functions and
their hyperparameters, methods of pooling, dropout, hidden dimensions, and the number of layers of
classification (m), and last the binary parameter — complete sequence vs. pseudo-MHC.
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As the space of possible parameters is large, we had to perform multiple grid searches to reason about
the optimal hyperparameters. Finally, almost 400 experiments have been performed.

Oversampling proportion. Without oversampling model was overfitting to the dominant class,
because of the data imbalance, we oversampled the training dataset with different frequencies to
determine which frequency led to the best performance on the validation set.

Complete sequence vs. pseudo-MHC. To compare if pseudo-MHC is better than full MHC
sequence, we compared multiple models which differ only on the use of full or pseudo-MHC
sequence. Additionally, we would like to check if BERT is able to generalize without preprocessing
of MHC sequence.

Architecture. As a result, we have a model and training with the following hyperparameters:
dimensionality of transformer hidden space: 1024; layers sizes and dropout of head feed-forward
network: [2048, 2048, 2048], 0.3 respectively; optimizer: Adam; learning rate: 5e− 7; weight decay:
5e− 3; batch size: 64; the number of epochs: 60. Moreover, we have checked if freezing weights of
initial encoder blocks increase performance. In the dualBERT setup, this leads to overfitting, thus we
finally stick to the singleBERT version. In this variant, however, freezing doesn’t improve our results,
so we finally don’t freeze anything.

Performance evaluation. As our test is slightly imbalanced (85% of examples are positive), we
decided to use include metrics that are suited for imbalanced data. Also, as we focus on antigen
discovery, positive examples are more essential for us; therefore, it also shaped the choice of our
metrics. We used a few metrics for binary classification: Accuracy, Recall, Precision, F1, AUC, and
PR-AUC. The detailed definitions can be found in the Appendix.

3 RESULTS AND DISCUSSION

We compared our model HLABERT to the models described in the introduction. We used training,
and test data from the most popular benchmark (3). We outperformed other models on the test set in
terms of AUC. The results of that comparison are described in Table 1

As we can see, our model surpasses other models on AUC and have similar results to NetMHCpan4.1.
However, most of the models dropped a magnitude compared to AUC. We asked ourselves the
question: why?

Then we explored that most of the models seemed to overfit to 0 because of ill-posed training.
Synthetic negative peptides were over 95% of the dataset. As we explored different oversampling
techniques, it seems that in this problem, models are really sensitive to a class imbalance in the
training set. We could optimize the model to achieve better results than netMHCpan4.1 on that task,
however - due to code unavailability and impossible to reproduce model, we didn’t know if that
web-API model was retrained on that test set, and we would compare our test to their train. Therefore,
we decided to rethink the benchmarking method.

AUCROC PRAUC

MHCFlurry 0,84 0,42
NetMHCpan* 0,95 0,82
ACME 0,92 0,58
HLABERT 0,95 0,78

Table 1: Results of models on the benchmark proposed by NetMHCpan-4.1 Authors.
(*) NetMHCpan was not retrained, due to lack of available code. Due to this, metrics of the test set
are not reliable, as it was not stated clearly if the model available as the web application was later
trained on a full set containing the examples from test set.

Generalization of the model is the final goal of machine learning because it implies how the model
will perform in a real-world scenario. Therefore, rigorous benchmarking of the method is a crucial
step in the lifespan of every machine-learning model. It is tough when no additional data is provided
by the model’s author or is insufficient — we believe that benchmarks should be easily reproducible
while still being as simple as possible.
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AUCROC PRAUC

train val test train val test

MHCFlurry .92 .84 .78 .99 .93 .95
NetMHCpan* .89 .88 .90 .99 .96 .98
ACME .88 .87 .32 .99 .96 .96
Phla .94 .91 .85 .99 .96 .96
Not-Pretrained HLABERT .96 .91 .84 .96 .97 .96
Dual HLABERT .96 .88 .77 .96 .95 .94
HLABERT .94 .92 .91±.0001 .94 .97 .98±.0002

Table 2: Results of models on our benchmark. Models labeled with a star (*) were not retrained due
to unavailable code for training or the inability to run training. We tested them on a subset of the test
containing HLA alleles not present in the reported training and test set.

Previous benchmarks had limitations such as improper train-testsplit and random negative peptides
in test set, which didn’t allow the proper measurement of a generalization on unseen MHCs and
peptides. The benchmark we proposed resolves these issues - it allows testing how the model will
generalize on completely new MHC or pathogen while being much easier to reproduce

As you can see in Table 2 there is a significant drop in generalization on most of the metrics compared
to those reported in original papers, which implies that these models don’t generalize as well as
reported.

Additionally, previous benchmarks contained synthetically sampled peptides as a negative example
in the test set, as well as bias on positive examples, due to the usage of the previous model to choose
positive peptides. A new benchmark without those limitations allows for a less biased measurement
of model performance. Lack of the random negative samples means that the benchmark is more suited
for the use-case with known the results of protein cleavage, for example, from mass spectrometry
analysis of proteolytic peptides (MAPP) (26).

Our model achieved state-of-the-art results compared to other methods, including NetMHCpan4.1,
measuring performance on both previous and new benchmarks. However, due to the lack of access to
the full model and training data from NetMHCpan4.1, proper validation was impossible. Additionally,
full hyperparameters of the network have not been published, making it nearly impossible to reproduce
their results. Despite these limitations, NetMHCpan4.1 was validated on our benchmark using the
web-API version of NetMHCpan4.1, and our results showed improvement. It should be noted that
some of the MHC and peptides in the test were also included in the previous training set, suggesting
that our model outperforms NetMHCpan4.1 even further than the metrics indicate.

We found that models trained on full MHC sequence have similar performance on the test set to
pseudo MHC. It shows that full sequence doesn’t give better results, but it is a hypothesis that needs
more exploration. Appropriate choice of mask may make it easier to train and achieve better results.

Additionally, we have compared the not-pretrained HLABERT with pretrained version (see table 2).
We have found that not pretrained models achieve worse metrics. Taking into account the out-of-
distribution characteristics of our test set, we hypothesize that pretraining has a positive influence on
generalization capabilities.

Notice that our method doesn’t need additional preprocessing of the sequence, which sometimes
might need additional experiments to reason about the structure of the protein.

4 CONCLUSIONS AND FUTURE WORK

In this work, we have provided an analysis of the shortcomings of previous benchmarks and model
validation approaches. As a result of that analysis, we created a new benchmark without those
limitations. Then we benchmarked the essential models in the field and compared results with
our model. We analyzed the generalization of other models and compared them to ours. We
achieved state-of-the-art results on our benchmark and external benchmark provided by Authors of
NetMHCpan4.1.
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Our work is by no means comprehensive in the goals that had been realized. There are multiple steps
that could be undertaken:

• To ensure an understanding of the performance of available architectures, measure the
performance of other pre-trained models such as T5 (19);

• To provide a further understanding of the model’s generalization, create a cross-species
benchmarking dataset in which, the model would be trained on N-1 species and tested on
the Nth species that the model has not seen before. Such a setting will allow measuring
whether the model generalizes over MHC-I polymorphism;

• To provide further information on the model generalization, extend the dataset using non-
linear peptides, which are the results of splicing.

• Add more negative samples to have a proportion of negatives to positives similar to real-
world data.
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A PERFORMANCE EVALUATION - METRICS DEFINITIONS

Definition of variables: True Positive (TP) - Number of correctly predicted binders by the model, True
Negative (TN) - Number of correctly predicted binders by the model, False Negative (FN) - Number
of binders predicted as non-binders by the model, False Positive (FP) - Number of non-binders
predicted as binders by the model.

Accuracy is a metric that quantifies the proportion of correctly predicted examples out of all examples.
Mathematically, it can be expressed as:

TP+TN
TP+TN+FP+FN
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Recall is a measure of the ability of a binary classifier to identify all positive instances correctly.
It is defined as the ratio of true positive predictions to the sum of true positive and false negative
predictions. In probabilistic interpretation, it is the probability of correctly predicting a positive
example, given that it is a positive instance. Mathematically, recall can be expressed as:

TP
TP + FN

Precision is a measure of the accuracy of positive predictions by a binary classifier. It is defined
as the ratio of true positive predictions to the sum of true positive and false positive predictions. In
probabilistic interpretation, it is the probability of a positive prediction being correct, given that the
classifier predicted it as positive. Mathematically, precision can be expressed as:

TP
TP + FP

F1 Score is a metric that combines precision and recall by taking their harmonic mean. This metric
is especially useful in imbalanced datasets, where there is a trade-off between precision and recall.
The F1 score can be expressed as:

2 Precision Recall
Precision + Recall

False Positive Rate (FPR) is a measure of the proportion of negative instances that are incorrectly
classified as positive by a binary classifier. In probabilistic words, it is the probability that the model
will label the negative sample incorrectly:

FP
TN + FP

Area Under the Receiver Operating Characteristic Curve (AUROC) is a metric used to evaluate
the performance of binary classifiers. The AUROC measures how the trade-off between sensitivity
and specificity changes, depending on the threshold, by computing the area under the ROC curve.
The ROC curve plots the true positive rate (sensitivity) against the false positive rate at different
threshold settings. The AUROC in probabilistic interpretation is the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative one, assuming that
positive instances rank higher than negative instances.

Figure 4: AUR-ROC at test set of HLABERT

PR-AUC - To handle the trade-off between sensitivity and precision, which depends on the threshold,
we compute the area under the PR curve, which plots the true positive rate (Sensitivity) against the
precision at different threshold settings for a binary classifier. It is proven that it is a better metric
than AU for strongly imbalanced datasets. That can be approximated as averaged precision:
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Precision-Recall Area Under the Curve (PR-AUC) is a metric used to evaluate the performance of
binary classifiers in cases where the positive class is rare or when false negatives are more detrimental
than false positives (27). The PR-AUC handles the trade-off between sensitivity and precision, which
is dependent on the threshold, by computing the area under the PR curve. The PR curve plots the
true positive rate (sensitivity) against the precision at different threshold settings. The PR-AUC is a
better metric than AUROC for strongly imbalanced datasets and can be approximated as the average
precision, expressed as: ∑

nPn(Rn −Rn−1)

where Pn is Precision at index n and Rn is Recall at index n.
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