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Abstract

Generation of plausible but incorrect factual infor-
mation, often termed hallucination, has attracted
significant research interest. Retrieval-augmented
language model (RALM)—which enhances mod-
els with up-to-date knowledge—emerges as a
promising method to reduce hallucination. How-
ever, existing RALMs may instead exacerbate hal-
lucination when retrieving lengthy contexts. To
address this challenge, we propose COFT, a novel
COarse-to-Fine highlighTing method to focus
on different granularity-level key texts, thereby
avoiding getting lost in lengthy contexts. Specif-
ically, COFT consists of three components: re-
caller, scorer, and selector. First, recaller applies
a knowledge graph to extract potential key enti-
ties in a given context. Second, scorer measures
the importance of each entity by calculating its
contextual weight. Finally, selector selects high
contextual weight entities with a dynamic thresh-
old algorithm and highlights the corresponding
paragraphs, sentences, or words in a coarse-to-
fine manner. Extensive experiments on the knowl-
edge hallucination benchmark demonstrate the
effectiveness of COFT, leading to a superior per-
formance over 30% in the F1 score metric. More-
over, COFT also exhibits remarkable versatility
across various long-form tasks, such as reading
comprehension and question answering.

1. Introduction
Large language models (LLMs) have exhibited remarkable
power and impressive generalization capabilities across a
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Figure 1. COFT achieves state-of-the-art performance on a broad
range of long-form tasks compared with existing methods, using
ChatGPT as the backbone.
wide range of domains (Brown et al., 2020; El-Kassas et al.,
2021). However, even the currently most capable LLM
still exhibits knowledge hallucination issues, i.e., GPT41

(OpenAI, 2023) may also generate plausible yet incorrect
factual information (Zhang et al., 2023b). Moreover, in long-
form tasks consisting of multiple sentences or paragraphs,
hallucination can be exacerbated (Wang & Sennrich, 2020).

To address this challenge, extensive research efforts have
been devoted to reducing knowledge hallucination in LLMs
(Kojima et al., 2022; Dhuliawala et al., 2023). Canoni-
cal methods, such as chain-of-thought (Wei et al., 2022),
encourage LLMs to first generate internal thoughts or rea-
soning steps before responding (Adolphs et al., 2021; Wei
et al., 2022). These methods enhance the logic of the rea-
soning process in LLMs, thereby implicitly reducing knowl-
edge hallucination. Recently, retrieval-augmented language
model (RALM) has emerged as a new trend to address
hallucination, which enhances up-to-date knowledge in a
plug-and-play manner (Vu et al., 2023; Yu et al., 2023).

1https://huggingface.co/spaces/lmsys/chatbot-arena-
leaderboard
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Extensive works demonstrate the effectiveness of RALMs
(Gao et al., 2023b; Yu et al., 2023). RALMs retrieve the
most relevant contexts from external knowledge sources for
LLMs to make judgments. These contexts can contain thou-
sands of tokens, such as relevant documents from search
engines or database query results (Liu et al., 2023). The
potential benefit of RALM is its ability to integrate relevant
external knowledge, thereby enriching the LLMs’ under-
standing of input text and generating answers based on this
information. This is particularly beneficial when LLMs lack
direct knowledge of a question (Yu et al., 2022).

Albeit with multiple benefits of RALMs, they confront sig-
nificant challenges that severely hinder their performance
and deployment. On the one hand, the lack of complete
contextual semantics. When only retrieving several rele-
vant sentences, the lack of complete contextual semantics
may lead to misunderstandings. On the other hand, the lost
in the long context. When retrieving the entire document
for comprehensive information, irrelevant texts also distract
their reasoning (Shi et al., 2023). Despite LLMs’ ability to
process long contexts, performances significantly decrease
as the input grows longer, even for models explicitly de-
signed for long contexts (Liu et al., 2023).

Therefore, in this paper, we seek to answer the question:
Can we propose a novel approach that preserves complete
contextual semantics and exhibits robustness to long con-
text? With this consideration, we delve explicitly into the
two significant challenges and propose a novel approach,
namely COarse-to-Fine highlighTing (COFT), which pre-
serves complete contextual semantics and avoids getting lost
in long context. The key idea of COFT is to focus on the key
texts when retrieving the entire document. COFT is a novel
framework and effectively addresses the challenges within
canonical RALM methods. Specifically, COFT consists of
three components:

(i) Recaller integrates an external open-source knowledge
graph (KG), wikidata, to extract potential key entities
as candidates within the query and reference context.
To enrich the candidates, recaller also retrieves their
one-hop neighbors from the KG. The objective of re-
caller is to identify potential key entities.

(ii) Scorer applies a small language model, Llama 7B (Tou-
vron et al., 2023), to calculate contextual weight of
each candidate entities. Entities with higher contextual
weights indicate a stronger correlation with the query,
and vice versa. Scorer assigns different weights to
measure the importance of each entity.

(iii) Selector proposes a dynamic threshold algorithm that
considers both the length and informativeness of refer-
ence contexts to select high contextual weight entities.
Selector then highlights each context based on these
entities in a coarse-to-fine manner. Selector selects the

final key entities and highlights the reference context.

COFT is a novel framework to reduce knowledge halluci-
nation in LLMs. As shown in Figure 1, experiments on the
knowledge hallucination benchmark demonstrate the effec-
tiveness of COFT with an average improvement of 32.1%
in the F1 score metric. COFT also serves as a plug-and-play
framework for many long-form tasks, which achieves an
average improvement of 4.6% in the precision metric for
reading comprehension and a maximum improvement of
10.5% in the F1 score metric for question answering.

2. Related Work
2.1. Retrieval-Augmented Language Models

Retrieval-Augmented Language Models (RALMs) that
enhance models with up-to-date knowledge by external
knowledge sources, extend the knowledge boundaries of
LLMs (Guu et al., 2020; Lewis et al., 2020; Izacard et al.,
2022). These models first retrieve an external evidence cor-
pus, such as Wikipedia, to pinpoint documents relevant to
the query as reference texts (Karpukhin et al., 2020; Sachan
et al., 2023). Then, a reader component analyzes these docu-
ments and provides a response (Izacard & Grave, 2020; Yu
et al., 2021). This approach effectively retrieves reference
texts related to the query, thereby enhancing the credibil-
ity of generated questions (Gao et al., 2023b; Jiang et al.,
2023b). The evolution also leads to the emergence and pop-
ularity of retrieval-augmented products, such as ChatGPT
plugins, Langchain, and New Bing.

2.2. Chain-of-X Approaches in LLMs

LLMs are capable of decomposing complex problems into
a series of intermediate steps and generate internal thoughts
or reasoning steps before responding, known as Chain-of-
Thought (CoT) prompting (Wei et al., 2022). The CoT
approach mirrors human problem-solving by breaking com-
plex issues into smaller components, helping LLMs focus
on each segment, reducing errors, and enhancing logic in
reasoning (Wang et al., 2022). Following-up works effec-
tively extend CoT to other chain-of-X methods, including
chain-of-explanation (Huang et al., 2023) and chain-of-
knowledge (Wang et al., 2023b). More recently, chain-of-
verification (Dhuliawala et al., 2023) prompts LLMs to draft
initial responses, plan verification questions, answer ques-
tions, and generate the final verified response, which reduces
the likelihood of LLMs to misunderstand a specific concept.
Chain-of-note (Yu et al., 2023) enables LLMs to annotate
retrieved documents and incorporates them in formulating
the response to enhance the robustness of LLMs.
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Highlighted Reference context: As of my last update, the U.S. is home to 
nearly 100 commercial nuclear reactors spread across various states, with a 

significant concentration in the eastern part of the country. Furthermore, 
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Figure 2. An overview of COFT. COFT integrates recaller, scorer, and selector into a unified framework to reduce knowledge hallucination.
The workflow is as follows. (1) Perform Named Entity Recognition on the query to extract potential candidate entities. (2) Search the
neighboring entities for each potential entity in the knowledge graph to enrich the candidates. (3) Retain candidates that are also present in
the reference context as the final key entities. (4) Calculate the contextual weight for each key entity. (5) Calculate the threshold to filter
a dynamic proportion of entities. (6) Choose the granularity for highlighting, such as word, sentence, or paragraph. (7) Highlight the
reference context based on filtered entities and selected granularity.

2.3. Knowledge Hallucination

Hallucination is a general problem in LLMs, affecting var-
ious natural language processing tasks, such as reading
comprehension (Maynez et al., 2020), open-domain ques-
tion answering (Roller et al., 2020), and remains unresolved
by simply enlarging training data or model size (Zhang
et al., 2023a). We mainly discuss generation-time and
retrieval-augmented methods to reduce knowledge hallu-
cination, which are most relevant to our COFT.

For generation-time correction, efforts typically improve the
token generation policy to enhance the reliability of gener-
ated contents (Mielke et al., 2022; Wu et al., 2023). Some
methods enable models to generate contents along with cor-
responding confidence scores and correct low confidence
output to reduce hallucinations (Gao et al., 2023b). Chain-
of-X approaches also improve reasoning for logical tasks,
which implicitly reduces hallucination. Several approaches
get improved results with extended reasoning steps, such as
deductive verification (Ling et al., 2023; Peng et al., 2023)
and self-verification (Miao et al., 2023a; Galitsky, 2023).

For retrieval-augmented language models (RALMs), they
mitigate hallucinations by applying external retrievers to pro-
vide query-relevant references and inject up-to-date knowl-
edge, rather than relying solely on LLMs. RALMs can de-
crease hallucinations by using factual documents for ground-
ing (Jiang et al., 2023c; Shuster et al., 2021). Several meth-
ods use automatic fact-checking and regeneration (Peng
et al., 2023) or agreement voting and attribution analysis to

conduct multi-round assessments (Chen et al., 2023a; Gao
et al., 2023a). While RALMs help reduce hallucinations,
they require high-quality texts. Irrelevant texts may exacer-
bate hallucination and performance declines as texts grow
longer (Liu et al., 2023; Shi et al., 2023).

3. Preliminaries
3.1. Notations

We denote an input prompt for LLM as x = (xins, xque, xrefs),
where xins denotes the instructions for downstream tasks,
xque denotes the queries, and xrefs denotes reference contexts.
Let S = [s1, s2, s3, . . .] denote the sentence list of xrefs,
where si denote the i-th sentence and E = [e1, e2, e3, . . .]
denote the candidate key entity list, where ek denote the
k-th candidate. For a given entity ek, we denote fek,si and
fek,S as the number of times ek appears in si and S. Let
|si| and |S| denote the number of words within sentence si
and the reference context S. Let ti denote the i-th token in
xrefs, P (ti) denote its output probability by a small language
model Ms, and I(ti) denote the self-information of token
ti. Let ⊕ denote the concatenation of two texts.

3.2. Self-Information

Self-information is a fundamental concept in information
theory, which quantifies the amount of information con-
tained in a random event (Shannon, 1948). In natural lan-
guage processing, an event can be regarded as a generation
step (i.e., a token), and the distribution corresponds to its
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output distribution. We can obtain self-information of a
token ti by the follow equation:

I(ti) = − log2 P (ti | t1, t2, . . . , ti−1)

where I(ti) denotes the self-information of token ti and
P (ti) denotes its output probability.

In information theory, self-information represents the
amount of information contained in a random event. The
higher the probability of a random event occurring, the lower
its self-information. Rare events convey more information,
thus having higher self-information, while common events
convey less information, resulting in lower self-information.

In natural language processing, self-information can be uti-
lized to evaluate the informativeness in lexical units such
as words, sentences, or paragraphs. Lexical units with
higher self-information carry important information, act-
ing as key units that determine the semantics of the con-
text. Conversely, lexical units with lower self-information
contain less information and exert a smaller impact on the
semantic interpretation of the context. Some works apply
self-information in creative language (Bunescu & Uduehi,
2022) and information compression (Li et al., 2023; Jiang
et al., 2023a). The self-information between two indepen-
dent events exhibits an additive property as follows:

I (t0, t1) = − log2 P (t0, t1)
= − log2 P (t0)P (t1 | t0)
= − log2 P (t0)− log2 P (t1 | t0)
= I (t0) + I (t1)

(1)

This means we can measure the self-information of a lexical
unit by summing the self-information of its tokens.

4. Method
We propose a COarse-to-Fine highlighTing method (COFT)
that promotes LLMs to focus on key lexical units, which
preserves complete contextual semantics and avoids get-
ting lost in long contexts. COFT can highlight different
granularity-level lexical units in a coarse-to-fine manner,
such as paragraphs, sentences, and words. COFT organi-
cally integrates three modules in a unified framework. An
overview of COFT is shown in Figure 2.

4.1. Recaller

Recaller first generates candidate key entities extracted from
the query and then retains the candidates occurred in the
reference contexts. Specifically, for a given query and refer-
ence context, the workflow of recaller is as follows:

(i) Recaller first conducts named entity recognition on the
query to extract named entities that represent keywords
within the query. These entities include some specific
terms and important nouns such as people, places, or-
ganizations, etc.

(ii) After obtaining named entities, recaller leverages them
to search one-hop neighbor entities in wikidata to en-
rich candidate entities. The named entities and cor-
responding one-hop neighbors are combined to form
candidate entities for the query.

(iii) Recaller finally retains candidate entities that are also
present in the reference context, forming the final can-
didate key entities list.

As shown in the left part of Figure 2, given a query such
as “Which country or city has the maximum number of nu-
clear power plants?”, recaller first performs named entity
recognition to identify entities like “country”, “city”, and
“nuclear power plants”. Then, recaller extracts one-hop
neighboring entities from wikidata for each named entity,
such as “United States” and “France”. Finally, based on
these named entities and neighboring entities, recaller re-
tains entities that are present in the reference context as the
final candidate key entities list. For example, “France” will
not be retained because it is not in the reference context.

4.2. Scorer

After obtaining candidate key entities, scorer proceeds to as-
sess their importance. With this desiderata, scorer proposes
an entity-level iterative algorithm based on a small language
model, Llama 7B (Touvron et al., 2023) to calculate the
contextual weight of each entity in the context. Algorithm 1
outlines the overall procedure.

Algorithm 1 Pseudo code for entity-level iterative algorithm

Input: A query xque, a reference context xrefs, a key candi-
date entity list E , and a small language model Ms.

1: Segment the reference context xrefs into sentences list
S = [s1, s2, s3, . . .].

2: Initialize the TF-ISF dictionary DTF -ISF , the self-
information dictionary DSI , and the contextual weight
dictionary DCW .

3: for ek in E do
4: Retain ek occurred in each reference sentence si ∈ S .
5: Calculate the TF-ISF score of each entity via Equa-

tion 2 and append entities and corresponding TF-ISF
scores into DTF -ISF .

6: Calculate the self-information score of each entity by
the language model Ms via Equation 3 and append
entities and self-information scores into DSI .

7: Calculate the contextual weights of each entity using
DTF -ISF and DSI via Equation 4 and append all
entities and their contextual weights into DCW .

8: end for
Output: Contextual weights dictionary DCW .

Specifically, we first segment reference contexts xrefs into
sentence list S = [s1, s2, s3, . . .]. Drawing upon the TF-IDF
(Term Frequency–Inverse Document Frequency) algorithm
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(Sparck Jones, 1972), a well-suited text relevance assess-
ment and text mining approach that enables the exclusion of
the majority of common entities while preserving important
entities. We introduce the TF-ISF algorithm, which involves
considering the TF-IDF algorithm at the Sentence level. For
a given entity ek in sentence si, the corresponding TF-ISF
calculation function is as follows:

TF -ISF (ek) =
fek,si
|si|

× log2

(
|S|

fek,S + 1

)
(2)

where fek,si and fek,S denote the number of times ek ap-
pears in si and S. |si| and |S| denote the number of words
within sentence si and reference contexts S.

TF-ISF evaluates the importance of entities in reference con-
text based on word frequency and effectively distinguishes
common but unimportant entities. Higher TF-ISF suggests
that the entity plays a more important role in understanding
the sentence semantics, and vice versa.

We further concatenate the query and reference context
to measure the importance of each token in the reference
context based on self-information. Given the input xque ⊕
xrefs, the self-information calculation function is as follows:

I(ti) = − log2 P (ti | xque, t1, t2, . . . , ti−1) (3)
where ti denotes the i-th token within the reference context
xrefs, P (ti|xque, t1, t2, . . . , ti−1) denotes its output probabil-
ity by the small language model Ms, and I(ti) denotes the
self-information of token ti. We can further leverage the ad-
ditivity property of self-information in Equation 1 to merge
tokens into entity e, thereby obtaining the self-information
of each individual key candidate entity I(e).

To comprehensively consider both the TF-ISF and self-
information, we propose contextual weights to indicate the
importance of each key candidate entity in the reference
context. A higher contextual weight suggests greater im-
portance of the entity to answer the query. The contextual
weight calculation function is as follows:

w(ek) = TF -ISF (ek)× I(ek) (4)

where TF -ISF (ek) and I(ek) denote the TF-ISF and
self-information of a key candidate entity ek, respectively.
Other combination methods for TF-ISF and self-information
scores are also feasible, and we leave it as a future work.

4.3. Selector

After obtaining candidate key entities and their contextual
weights, selector highlights the final lexical units for the
query. Specifically, selector first sorts entities based on con-
textual weights, and proposes a dynamic threshold algorithm
to filter a dynamic proportion of key entities. The dynamic
thresholds can be defined as τ = 0.5×(τlen+τinfo), where
τlen and τinfo denote the min-max normalized value of the
length and informativeness for each reference context. τ
varies with the length and informativeness of the reference

context, as longer and more informative reference context
requires more highlights. Then, selector highlights the refer-
ence context according to the granularity of selected lexical
units. This highlighting process is as follows:

(i) Split the reference context according to the granularity
of selected lexical units.

(ii) Calculate the contextual weight of the split lexical units
by summing the contextual weight of candidate key
entities occurred in the split.

(iii) Sort these lexical units in descending order by their
contextual weight, and select the lexical units with con-
textual weights in the top τ × 100% for highlighting.

After selecting the highlighted lexical units, selector inserts
special symbols around these lexical units. Considering the
rich diversity of formatting found in publicly accessible web
data, which forms a part of the pre-training corpus for LLMs,
we adopt markdown syntax, particularly the bold syntax
(**) as an example, to highlight important lexical units. This
approach aligns with the natural occurrence of formatted
text in online sources, thereby enabling the LLMs to more
accurately interpret and process textual emphasis as it ap-
pears in real-world scenarios. Take word-level granularity
highlighting as an example. If the selected highlighted enti-
ties are “nuclear power plants” and “United States”, then the
sentence “The nuclear power plants in the United States play
a crucial role in providing . . .” will be highlighted as “The
**nuclear power plants** in the **United States** play
a crucial role in providing . . .” as input for LLM inference.
Other highlighting methods, such as HTML bold symbols
or different markdown syntax are also viable options and
we leave the exploration as a future work.

5. Experiments
We design experiments to evaluate the effectiveness of
COFT for reducing knowledge hallucination and demon-
strate the versatility of COFT on a variety of tasks. With
this desiderata, we divide the experiments into four parts:

(i) To evaluate the effectiveness of COFT, we compare
COFT with existing state-of-the-art methods for reduc-
ing knowledge hallucination.

(ii) To demonstrate the versatility of COFT, we conduct
experiments on reading comprehension and question-
answering benchmarks.

(iii) To investigate the contribution of each component
within COFT, we conduct the ablation study.

(iv) To provide more insight into COFT, we conduct the
visualization study.
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Table 1. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains. We denote COFT at the paragraph, sentence, and word levels as COFTp, COFTs, and COFTw.
The results of vanilla, CoT, and RALM methods are taken from FELM (Chen et al., 2023c). We bold the best results for each LLM
backbone.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

Vanilla 34.5 27.8 45.5 25.8 17.4 50.2 27.1 16.4 78.7
CoT 32.3 27.4 39.5 20.4 12.7 52.9 26.5 17.0 60.3
RALM 48.7 45.7 52.1 34.2 24.7 55.8 27.1 16.2 82.8
CoVe 47.3 47.6 47.1 47.2 39.8 58.2 64.0 66.7 61.5
CoN 55.9 55.7 56.1 59.3 58.1 60.6 62.4 55.3 71.5

COFTp 69.3 71.9 66.9 67.9 62.9 73.8 70.4 66.8 74.4
COFTs 62.0 63.1 60.9 68.7 67.1 70.4 66.2 64.7 67.7
COFTw 64.4 61.7 67.4 70.9 65.7 77.2 77.3 67.9 89.8

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

ChatGPT

Vanilla 9.1 27.6 5.4 4.1 6.5 2.9 0.7 4.2 0.4
CoT 2.6 33.3 1.4 4.2 25.1 2.3 2.7 9.1 1.6
RALM 25.2 34.9 19.7 17.4 16.7 18.2 20.1 54.1 12.4
CoVe 20.0 50.1 12.5 18.2 12.5 33.3 23.1 63.6 14.1
CoN 18.2 66.7 10.6 20.0 25.0 16.7 31.4 32.7 30.3

COFTp 78.6 83.8 74.0 83.9 81.2 86.8 77.5 85.9 70.5
COFTs 76.8 75.7 77.9 74.6 79.1 70.5 76.8 84.4 70.5
COFTw 81.6 85.5 77.9 84.4 80.9 88.4 81.1 93.7 71.5

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

GPT4

Vanilla 40.2 76.9 27.2 19.7 60.0 11.8 22.3 89.5 12.7
CoT 50.2 79.4 36.7 25.2 64.0 15.7 26.2 89.1 15.4
RALM 53.6 80.8 40.1 34.7 59.5 24.5 52.2 63.8 44.2
CoVe 49.7 55.4 45.1 66.7 83.3 55.6 48.2 56.9 41.8
CoN 52.8 45.2 63.6 66.7 75.0 60.0 68.8 78.6 61.1

COFTp 83.1 79.7 86.8 89.9 84.4 96.1 91.8 85.5 99.1
COFTs 80.0 92.3 70.6 76.6 84.9 69.8 85.5 89.2 82.1
COFTw 87.3 94.8 80.9 77.9 86.0 71.3 84.7 92.9 77.9

5.1. Experiment Setups

Experiment Setups. We apply LLMs including Vicuna2

(vicuna-33B-v1.3) (Zheng et al., 2023), ChatGPT3

(gpt-3.5-turbo) and GPT4 (gpt-4) (OpenAI, 2023)
as backbone models. To guarantee stable and reproducible
results, we utilize greedy decoding and set the temperature
parameter as 0 in all experiments. For knowledge halluci-
nation, we use FELM (Chen et al., 2023c) as the benchmark
with precision, recall, and F1 score as evaluation metrics
(Chen et al., 2023c). For reading comprehension, we use
RACE-H (high school level reading comprehension) and
RACE-M (middle school level reading comprehension) (Lai
et al., 2017) as benchmarks with precision as the metric (Bi

2https://huggingface.co/lmsys/vicuna-33b-v1.3
3https://platform.openai.com/

et al., 2024; Rae et al., 2021). For question answering,
we use Natural Question (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), and WebQ (Berant et al., 2013) as
benchmarks with EM and F1 score as metrics (Chen et al.,
2017; Zhu et al., 2021). Details of experiment setups and
datasets are in Appendix B. For knowledge hallucination,
we use word, sentence, and paragraph granularity levels
of COFT (denoted as COFTw, COFTs, and COFTp). For
reading comprehension and question answering, we focus
specifically on the word-level COFTw (denoted as COFT).

Baseline Methods. We examine five variants for each of
LLMs: (i) vanilla: standalone LLMs without any additional
preprocessing modules or external retrievers. Vanilla LLMs
represent the original capabilities of LLMs. (ii) Chain-
of-thought (CoT) (Wei et al., 2022): LLMs are asked to
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Figure 3. Evaluation on F1 score metric of noise robustness in question answering task, utilizing ChatGPT as the backbone model. COFT
demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.

first generate internal thoughts or reasoning steps before
responding. (iii) RALM: following (Chen et al., 2023c), we
use LLMs with BM25 algorithm (Robertson et al., 2009)
to retrieve the most relevant texts as input to vanilla LLMs.
(iv) Chain-of-verification (CoVe) (Dhuliawala et al., 2023):
CoVe prompts LLMs to draft the initial response, plan ver-
ification questions, answer the question, and generate the
final verified response. (v) Chain-of-note (CoN) (Yu et al.,
2023): enables LLMs to sequentially annotate the retrieved
documents and incorporates them to formulate the response.

5.2. Knowledge Hallucination Results

In this section, we conduct experiments on the knowledge
hallucination benchmark. As shown in Table 1, we ob-
serve that COFT significantly and consistently outperforms
existing methods on the hallucination benchmark. Specifi-
cally, for all three backbone models, COFT achieves average
improvements of 34.5%; 33.1%; 28.7% in the F1 score met-
ric, 16.3%; 22.6%; 11.6% in precision metric, and 30.9%;
35.9%; 28.7% in recall metric for WK (world knowledge,
a wide domain including movies, countries, places, and
so on), Sci/Tech (Science and Technology spanning vari-
ous academic disciplines such as physics, chemistry, and
biology), and Wri/Rec (Writing and Recommendation, in-
cluding details of some books and movies) domains.

While methods such as CoT and CoN do not consistently en-
hance the performance of Vicuna-33B and ChatGPT across
various datasets, COFT consistently demonstrates a superior
performance over vanilla models. Notably, in the science
and technology domain, COFT achieves a maximum per-
formance enhancement of over 60% in the F1 score metric,
which effectively underscores the importance of capturing
key information in the entire context. The universality of
three backbone models also suggests that COFT possesses
the potential across various LLMs.

5.3. Reading Comprehension Results

Reading comprehension task necessitates that LLMs answer
certain questions based on the entire content, requiring the

Table 2. Results of the reading comprehension task in the precision
metric, utilising ChatGPT as the backbone model.

Backbone Methods RACE-H RACE-M

ChatGPT

Vanilla 65.6 81.6
CoT 56.3 81.6
CoVe 54.5 82.1
CoN 59.4 79.6

COFT 73.4 85.8

model to retain a comprehensive understanding of the com-
plete contextual semantics. Through the reading compre-
hension task, we investigate COFT’s ability for full-context
awareness in long contexts. We conduct experiments on
RACE-H and RACE-M (Lai et al., 2017) and only use the
provided reading passages and do not use other information
from retrieval systems. Consequently, we do not include
RALM as a baseline. We present the results of COFT using
ChatGPT as the backbone in Table 2. More Results using
Vicuna-33B and GPT4 as backbones are in Appendix C.

As shown in Table 2, COFT exhibits great performance
on both the RACE-H and RACE-M, which outperforms
the suboptimal results by 7.8% and 3.7% in the precision
metric. We observe that COFT achieves more performance
enhancement on the more challenging and complex dataset,
RACE-H. This suggests that COFT possesses potential for
application in more complex real-world scenarios. More-
over, COFT consistently yields improved results over vanilla
models, which demonstrates the effectiveness of focusing
on key lexical units and maintaining full context semantics.

5.4. Question Answering Results

Question answering task requires the LLM to effectively
focus on keywords and phrases within a question. Following
CoN (Yu et al., 2023), we conduct experiments on question-
answering tasks to evaluate the robustness of COFT un-
der scenarios where reference texts contain both relevant
and noisy documents. These noise documents are retrieved
based on their semantic similarity to the input questions,
which often contain similar but misleading information. We

7



Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models

Table 3. The results of ablation study on the knowledge hallucination benchmark, FELM, using ChatGPT as the backbone model.
WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

ChatGPT

COFTw/o recaller 74.6 81.0 69.1 73.9 80.7 68.2 63.6 86.1 60.1
COFTw/o TF -ISF 78.3 82.4 74.7 78.5 81.8 75.5 67.1 84.5 55.7
COFTw/o SI 76.9 80.9 73.3 76.1 80.5 72.1 64.5 85.8 51.7
COFTw/o scorer 76.2 80.3 72.6 74.6 85.9 65.8 60.1 87.2 45.8
COFTw/o selector 77.3 79.7 75.1 75.7 82.4 70.1 70.7 86.1 60.1

COFT 81.6 85.5 77.9 85.5 86.5 84.5 75.2 88.3 65.4

employ the noise ratio to represent the extent of noisy in-
terference under varying degrees of noise. For instance,
if the top-k documents are retrieved for LLMs, then k × r
represents the number of noisy documents, while k×(1−r)
indicates the number of relevant documents. For example,
with a 20% noise ratio and a requirement for the top-5 doc-
uments, 4 would be relevant documents, and 1 would be a
noisy document. We concatenate relevant and noisy doc-
uments randomly, to mitigate position bias (Zheng et al.,
2023). This requires LLMs to identify the most relevant
information under lengthy and noisy conditions.

As illustrated in Figure 3, we observe that compared to
other methods, COFT demonstrates relative robustness to
reference texts containing noisy text, maintaining focus
on highlighted key text within reference contexts. These
results demonstrate that COFT is robust against noisy texts,
exhibiting a higher tolerance for noisy information, which
more closely aligns with user inputs in real-world scenarios.

5.5. Ablation Study

To further investigate the contribution of each component
within COFT, we conduct a series of ablation experiments
on the entire framework. We select a word-level version,
COFTw to conduct the ablation study. Other granularity
versions of COFT including sentences or paragraphs follow
a similar way. For simplicity, we denote COFTw as COFT
in this section. Specifically, we denote COFT without re-
caller extracting candidate key entities as COFTw/o recaller,
COFT without the TF-ISF score as COFTw/o TF -ISF ,
COFT without the self-information score as COFTw/o SI ,
COFT without scorer calculating the contextual weight as
COFTw/o scorer, and COFT without dynamic threshold se-
lecting key candidate entities as COFTw/o selector, respec-
tively. We set the threshold τ to 0.5 for COFTw/o selector

as an example. More detailed results are in Appendix E.1.

We present ablation results of COFT using ChatGPT as the
backbone model in Table 3. More Results using backbone
models including Vicuna-33B and GPT4 are in Appendix
E.2. As shown in Table 3, the absence of any component
within COFT results in a performance degradation of the
entire framework. Notably, recaller and scorer have more
significant impacts on the performance of COFT, which
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Figure 4. Visualization of the information flow in Vicuna-33B be-
fore (left) and after (right) highlighting key lexical units (between
two ** symbols). The line color depth reflects the significance of
the information flow from the right word to the left.

demonstrates the importance of extracting candidate key
lexical units from the reference text and ranking them based
on contextual weight to reduce knowledge hallucination.

5.6. Visualization Study

To provide more insight into COFT, we conduct a visualiza-
tion study. As mentioned above, COFT promotes LLMs to
focus on key texts in the entire context. We employ attention
scores to trace the information flow in the reference context
based on Vicuna-33B, both before and after highlighting
(Wang et al., 2023c). As shown in Figure 4, the highlighted
key lexical units possess higher attention scores and exhibit
stronger interactions with other words. This suggests that
LLMs better focus on these highlighted key lexical units
during inference.

6. Conclusions
In this paper, we propose a novel COarse-to-Fine high-
lighTing method to effectively reduce knowledge hallucina-
tion. Specifically, we propose recaller, scorer, and selector
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to form a general framework for LLMs to focus on key texts
and avoid getting lost in long contexts. Extensive exper-
iments on the knowledge hallucination task demonstrate
the effectiveness of COFT with an average improvement of
32.1% in the F1 score metric. This superior performance
over existing state-of-the-art methods demonstrates the ef-
fectiveness of COFT in reducing knowledge hallucination in
LLMs. COFT also serves as a plug-and-play framework for
many long-form tasks that achieves an average improvement
of 4.6% in the precision metric for reading comprehension
tasks and a maximum improvement of 10.5% in the F1 score
metric for question-answering tasks.
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A. More Related Works
A.1. Language Models

Language models such as GPT (Radford et al., 2018), BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019), and
Megatron-LM (Shoeybi et al., 2019) have led to a learning paradigm shift in natural language processing (NLP). Models are
first pre-trained on extensive volumes of unlabeled text corpora with language modeling objectives, and then fine-tuned
on downstream tasks. Recently, large language models (LLMs) including ChatGPT, PaLM (Chowdhery et al., 2022), and
Gemini (Team, 2023) have shown great performance in both few-shot and even zero-shot scenarios (Brown et al., 2020).

A.2. Knowledge Hallucination

Besides the methods mentioned in Section 2.3 to address knowledge hallucinations during the generation time or through
the RALM framework, these are some methods that address hallucinations during training time. These interventions during
the training stage of LLMs to tackle the issue of model hallucinations are termed training-time correction. For training-time
correction, efforts are made to enhance the raw left-to-right outputs of either an encoder-decoder or a decoder-only language
model. This enhancement involves training or suitably adjusting the model’s weights to reduce the likelihood of hallucinated
content. This includes using reinforcement learning (Roit et al., 2023; Wu et al., 2023) as well as contrastive learning
methods (Chern et al., 2023; Sun et al., 2023). For training-time correction methods, models designed to resolve knowledge
hallucinations during the training phase typically require the use of open-source LLMs and substantial computational
resources. Our COFT effectively reduces the hallucination issue in LLMs without the finetuning process. Moreover, LLMs
after the training-time generation method can also be integrated as a part of our COFT pipeline.

A.3. Context Compression

One significant challenge in the computation of self-attention mechanisms is the computational complexity O(L2), which
exhibits a quadratic scaling in relation to the length of the input sequence L. Numerous variations of the Transformer
architecture have been introduced, aiming to modify the conventional attention mechanism into more efficient alternatives
specifically designed for tasks involving very long context (Zaheer et al., 2020; Katharopoulos et al., 2020). Extensive
endeavors also focus on context compression by compressing the context into fewer soft tokens. This includes substitutes
with summary tokens (Chevalier et al., 2023), leveraging additional auto-encoder schemes (Ge et al., 2023), and semantic
compression (Fei et al., 2023). Sparse attention (Anagnostidis et al., 2023) adopts a methodology predicated on learning to
dynamically excise uninformative context tokens for each individual token. Several efforts also select contexts to compress
the input prompt (Li et al., 2023; Jiang et al., 2023a;b). However, due to the incomplete context, these methods may confront
inevitable losses of information in real-world scenarios characterized by more complex distributions of attention.

B. More Details of Datasets and Experiment Setups

Table 4. Statistics of the knowledge hallucination benchmark, FELM. #Segments
denotes the total number of segments. Segment Length and reference Length
denote the average length of the segment and reference texts, respectively. Size
denotes the number of samples for each domain.

Dataset-Domain #Segments Segment Length Reference Length Size

FELM-WK 567 17.5 486.1 184
FELM-Sci/Tech 717 19.2 193.6 125
FELM-Wri/Rec 1637 18.4 141.7 136

We present more details of datasets and ex-
periment setups in this section.

For more details of experiment setup, in
this paper, we use ChatGPT and GPT4 as the
representatives of the current closed-source
LLMs, both of which can be get access
via OpenAI4. We apply Vicuna-33B (Zheng
et al., 2023) as a representative of open-
source LLMs. All experiments were per-
formed on four Nvidia A100 GPUs (80GB).
We implement our approach based on Py-
Torch 1.13.05 and Huggingface’s Transform-
ers6. For experiments with original prompts exceeding 4k tokens, we utilize extened length models, i.e., GPT-3.5-Turbo-16k

4https://platform.openai.com/
5https://pytorch.org/
6https://github.com/huggingface/transformers
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and GPT-4-32k as our backbones. To guarantee stable and reproducible results, we utilize greedy decoding and set the
temperature parameter as 0 in all experiments. For the small language models used for calculating self-information, we
apply LLaMA-7B7, and other open-source models can also be replaced based on specific requirements. More detailed
configurations for the best performance of each task and dataset can be seen within our code.

Table 5. Statistics of the reading comprehension benchmarks, RACE-H and RACE-M. The values below the Training/Valid/Testing Set
are the number of passages and questions in each dataset, respectively. Passage/Question/Option Len denotes the average length of the
passages, questions, and options, respectively. Vocab size denotes the number of words in the vocabulary.

Dataset Training Set Valid Set Testing Set Passage Len Question Len Option Len Vocab Size

RACE-M 6,409/25,421 368/1,436 362/1,436 231.1 9.0 3.9 32,811
RACE-H 18,728/62,445 1,021/3,451 1,045/3,498 353.1 10.4 5.8 125,120

For more details of datasets, we list below all the datasets and corresponding evaluation metrics used in knowledge
hallucination, reading comprehension, and question-answering tasks, respectively by COFT as follows.

For the knowledge hallucination task, we employ FELM (Chen et al., 2023c) as our benchmark. Specifically, FELM
requires to conduct a factual evaluation of several segments based on reference texts. This requires LLMs to categorize
each segment as either true or false according to the given reference context. We utilize WK (world knowledge), Sci/Tech
(science/technology), and Wri/Rec (writing/recommendation) domains as our knowledge hallucination benchmark. These
datasets are derived from instances where individuals prompt ChatGPT and annotators subsequently annotate the responses
for factuality evaluations. We summarize the details of this knowledge hallucination benchmark in Table 4. Following
FELM (Chen et al., 2023c), we use precision, recall, and F1 score as our evaluation metrics.

For the reading comprehension task, we employ RACE-M (middle school level reading comprehension task) and RACE-H
(high school level reading comprehension task) (Lai et al., 2017) as our benchmarks. RACE is collected from the English
exams for middle and high school Chinese students in the age range between 12 to 18. RACE consists of nearly 28, 000
passages and nearly 100, 000 questions generated by human experts (English instructors), and covers a variety of topics
that are carefully designed to evaluate the students’ ability to understand and reasoning. The reasoning types of RACE
include word matching, paraphrasing, single-sentence reasoning, multi-sentence reasoning, and insufficient/ambiguous. We
summarize the details of this reading comprehension benchmark in Table 5. To better satisfy long-text reading comprehension
tasks, we retain only those samples in RACE where the length of provided reading passages of top 70%. We also observe
that the length of passages and the vocabulary size in RACE-H are significantly larger compared to RACE-M, indicating the
greater difficulty level of high school examinations. For Vicuna-33B, we use one-shot setting. Following (Bi et al., 2024;
Rae et al., 2021), we use precision as our evaluation metric.

For the question-answering task, we employ Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),
and WebQ (Berant et al., 2013) as our benchmarks. We present details of these datasets as follows:

Table 6. Statistics of the question answering benchmarks. Full size
denotes the original size of these benchmarks. The IR recall evalu-
ation is based on the retrieval of the full test set. The subset refers
to the remaining dataset obtained after removing the instances that
could not be retrieved.

Dataset Full Size IR Recall Subset Size

Natural Questions 3,610 73.82 1,477
TriviaQA 7,993 89.95 5,148
WebQ 2,032 64.22 1,073

Natural Questions (Kwiatkowski et al., 2019): natural
questions corpus comprises real anonymized, aggregated
queries directed to the Google search engine. An anno-
tator is provided with a question and a corresponding
Wikipedia page from the top 5 search results. They an-
notate a long answer (usually a paragraph) and a short
answer (one or more entities) if they are found on the
page, or they mark it as null if no long or short answer is
identified. Natural Questions corpus offers a substantial
dataset for end-to-end training in the field of question
answering, facilitating research in natural language com-
prehension. It enables the study of human performance
in annotating QA annotations for naturally generated questions, contributing to a better understanding of the challenges in
this domain.

TriviaQA (Joshi et al., 2017): TriviaQA is a very challenging reading comprehension dataset that consists of more than

7https://ai.meta.com/llama/
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650K question-answer-evidence triples. It contains 95K question-answer pairs authored by trivia enthusiasts, accompanied
by independently gathered evidence documents. On average, there are six evidence documents per question, which serve as
high-quality supervision for answering the questions. TriviaQA possesses several notable characteristics: (1) It features
relatively intricate and compositional questions. (2) There is substantial syntactic and lexical variability observed between
questions and the corresponding answer-evidence sentences. (3) The dataset necessitates more extensive cross-sentence
reasoning in order to locate answers.

WebQ (Berant et al., 2013): WebQ uses the Google Search API8 to obtain questions that start with a specific word and
contain precisely one entity. The Google Search API was employed to supply the edges of the graph. Specifically, WebQ
queries the question by excluding the entity, the phrase before the entity, or the phrase after it. Each query generates five
candidate questions, which are then added to the queue. This process continues until one million questions have been visited.
Out of those, a random subset of 100, 000 questions is submitted to Amazon Mechanical Turk9 (AMT). Workers on AMT
are tasked with answering the questions using only the Freebase10 page associated with the entity in the question. If the
question is unanswerable based on Freebase, workers are instructed to mark it as such.

We follow the CoN (Yu et al., 2023) for text retrieval on these three datasets. During the process of listing retrieved
documents, we set a rule to stop searching based on the number of relevant and irrelevant texts; we stop searching when
both types reach our criteria. Situations wherein the DPR (Karpukhin et al., 2020) fails to retrieve pertinent documents for
certain queries will not be included in our robustness evaluation. Furthermore, to better simulate the scenarios involving
long context reasoning and robustness against noisy text, we establish a criterion: for each question-answering pair, we only
retain those pairs where the retrieved text exceeds 1500 words in length. Pairs with retrieved text falling below this threshold
are discarded. Consequently, the subset is more compact than the original full-size dataset set, as shown in Table 6.

C. More Results of Reading Comprehension Table 7. Results of the reading comprehension task in the precision
metric, utilizing Vicuna-33B and GPT4 as the backbone models. We
bold the best results for each backbone, respectively.

Backbone Methods RACE-H RACE-M

Vicuna-33B

Vanilla 44.8 74.2
CoT 43.7 76.6
CoVe 56.8 78.2
CoN 51.7 75.7

COFT 68.4 81.3

GPT4

Vanilla 78.9 88.4
CoT 87.9 88.6
CoVe 78.8 89.7
CoN 79.5 86.2

COFT 89.1 89.9

As we mentioned above, COFT can be effectively imple-
mented across various NLP tasks for LLM long-form in-
ference. In this section, we present more results of COFT
with Vicuna-33B and GPT-4 as backbone models on the
reading comprehension task to serve as a supplement to
Section 5.3, where ChatGPT is employed as the backbone
model. We observe from Table 7 that COFT consistently
enhances performance across various LLM backbones
in both RACE-H and RACE-M benchmarks. Specif-
ically, COFT obtains superior performances of 11.6%
and 3.1% in RACE-H and RACE-M for the Vicuna-33B
model and 1.2% and 1.3% in RACE-H and RACE-M
for GPT4 model, respectively. These results effectively
demonstrate that COFT shows versatility under multiple
LLMs as backbone models in the reading comprehension
task, which also suggests that COFT effectively promotes
LLMs to retain a comprehensive understanding of the long contextual semantics and to focus on keywords and phrases
relevant to the question. Furthermore, we observe that COFT achieves more performance enhancement on the more
challenging and complex dataset, RACE-H. This also suggests that COFT possesses potential for application in more
complex real-world scenarios. Notably, when utilizing Vicuna-33B as the backbone model, COFT achieves 11.6% superior
performance in precision metric on RACE-H over the suboptimal approaches. This also indicates the potential of COFT to
better assist relatively “small” models in more effectively maintaining complete context semantics, focusing on key lexical
units, and avoiding getting lost in the lengthy context. These findings also demonstrate the efficacy of COFT applicable in
reading comprehension tasks, where complete contextual semantics are necessary.

8https://developers.google.com/custom-search
9https://www.mturk.com/

10https://developers.google.com/freebase
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Table 8. The results of ablation study on the knowledge hallucination benchmark, FELM, using Vicuna-33B as the backbone model. We
denote COFT without recaller as COFTw/o recaller , COFT without TF-ISF score as COFTw/o TF -ISF , COFT without self-information
score as COFTw/o SI , COFT without scorer as COFTw/o scorer , and COFT without selector as COFTw/o selector , respectively.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

COFTw/o recaller 57.8 55.7 60.1 55.9 60.4 52.1 56.1 54.8 57.4
COFTw/o TF -ISF 60.7 56.5 65.5 57.9 55.4 60.7 64.6 63.5 65.7
COFTw/o SI 59.9 55.7 64.8 59.4 57.8 61.1 63.9 62.5 65.3
COFTw/o scorer 57.3 53.7 61.5 52.6 50.8 54.5 60.1 59.3 61.1
COFTw/o selector 60.3 57.9 62.8 64.7 59.1 71.4 67.7 62.8 73.5

COFT 64.4 61.7 67.4 70.9 65.7 77.2 77.3 67.9 89.8

Table 9. The results of ablation study on the knowledge hallucination benchmark, FELM using GPT4 as the backbone model. We denote
COFT without recaller as COFTw/o recaller , COFT without TF-ISF score as COFTw/o TF -ISF , COFT without self-information score as
COFTw/o SI , COFT without scorer as COFTw/o scorer , and COFT without selector as COFTw/o selector , respectively.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

GPT4

COFTw/o recaller 81.3 85.6 77.5 71.9 78.6 66.3 77.1 83.3 71.7
COFTw/o TF -ISF 82.7 89.5 76.9 74.5 79.2 70.4 81.5 86.5 77.1
COFTw/o SI 79.2 85.1 74.1 74.8 78.8 71.1 80.8 85.8 76.3
COFTw/o scorer 77.9 83.4 73.1 73.4 76.5 70.6 79.4 83.5 75.6
COFTw/o selector 80.9 84.2 77.9 74.0 81.8 67.5 78.6 88.7 70.5

COFT 87.3 94.8 80.9 77.9 86.0 71.3 84.5 92.9 77.9

D. More Results of Question Answering
COFT also exhibits robustness against noise texts present in the reference contexts. We provide more question answering
results illustrated in Figures 5, 6, 7, 8, and 9. We also provide detailed data tables as a numerical complement to the visual
results in Section 5.4. As illustrated in Tables 11, 12, and 13, we observe that COFT is capable of maintaining relative
robustness compared to other methods under conditions of severe noisy scenarios. This also demonstrates the effectiveness
of mining key lexical and phrases relevant to the query. We further observe that as the noise ratio increases, that is, a greater
proportion of irrelevant text in the reference context, COFT demonstrates enhanced robustness compared to other methods,
thereby yielding relatively superior results. COFT achieves improvements or comparable results to baseline methods across
nearly all conditions of noise ratio. Notably, under conditions where the noise ratio is 80%, COFT achieves a maximum
improvement of 6.5% in EM metric and 10.5% in the F1 score metric when utilizing ChatGPT as the backbone model,
which also demonstrates the noise robustness under similar nosy documents and the capability to focus on the highlighted
key lexical units to the given query of our COFT.

Specifically, when ChatGPT serves as the backbone model and the noise ratio goes from 0% to 80%, on the Natural
Questions dataset, COFT achieves average improvements of 4.3% in the EM metric and 3.4% in the F1 score metric. On the
TriviaQA dataset, our COFT achieves average improvements of 2.7% in the EM metric, alongside 2.0% in the F1 score
metric. Furthermore, on the WebQ dataset, COFT achieves average improvements of 2.3% in the EM metric and 4.7% in
the F1 score metric. These results underscore the efficacy of the COFT approach in enhancing the performance of ChatGPT.

When Vicuna-33B serves as the backbone model, COFT has demonstrated notable improvements across different evaluation
metrics. On the Natural Questions dataset, COFT achieves average improvements of 1.6% in the EM metric and 3.0% in the
F1 score metric. On the TriviaQA dataset, COFT achieves average improvements of 2.0% in the EM metric, along with
2.5% in the F1 score metric. Furthermore, on the WebQ dataset, COFT achieves average improvements of 1.4% in the
EM metric and 1.8% in the F1 score metric. These results underscore the efficacy of the COFT approach in enhancing the
performance of Vicuna-33B.

When GPT4 serves as the backbone model, our COFT exhibits enhancements across various evaluation metrics as well.
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Table 10. The inference time (per sample on average) on the FELM benchmark for the vanilla, CoT, RALM, CoVe, CoN, and COFT
methods. We report the results using Vicuna-33B, ChatGPT, and GPT4 as backbone models, respectively. For Vicuna-33B, we deploy it
locally and record the inference time. For ChatGPT and GPT4, we utilize the API interfaces provided by OpenAI to conduct inference
and record the corresponding inference time. (Unit: seconds)

Backbone Models Vanilla CoT RALM CoVe CoN COFT

Vicuna-33B (Local Deployment) 29.01 29.87 31.15 37.41 35.01 31.72
ChatGPT (API) 3.86 4.15 4.45 7.24 5.13 4.50
GPT4 (API) 5.14 5.33 5.74 10.22 6.68 5.81

Specifically, on the Natural Questions dataset, COFT achieves average improvements of 1.5% in the EM metric and 2.0% in
the F1 score metric. On the TriviaQA dataset, COFT achieves average improvements of 3.4% in the EM metric, along with
0.6% in the F1 score metric. Moreover, on the WebQ dataset, COFT achieves average improvements of 4.6% in the EM
metric and 2.5% in the F1 score metric. These results highlight the effectiveness of COFT in enhancing the performance of
GPT4 in these question-answering tasks.

These results further highlight COFT’s efficacy in comparison to canonical methods. Such robustness to lengthy and noisy
texts closely aligns with the real-world scenarios of user prompt inputs, effectively aiding LLMs in delivering more accurate
responses. This effectively facilitates the practical deployment of LLMs in scenarios where high-precision and reliable
answers are critically essential. Moreover, the effectiveness across various LLM backbones also demonstrates the potential
of COFT to serve as a versatile plug-and-play framework over a wide range of long-form downstream NLP tasks.

E. More Results of Ablation Study
E.1. Detailed Ablation Results of Selector

In Section 5.5, we conduct the ablation study on selector by setting the threshold to a fixed value of 0.5, utilizing ChatGPT
as the backbone model. In this section, we conduct a more detailed ablation study of the selector. We experiment with
the threshold τ for selector, ranging from 0.1 to 1.0, and report the ablated results of Vicuna-33B, ChatGPT, and GPT4,
respectively to provide more insight into our dynamic threshold algorithm.

As shown in Tables 14, 15, and 16. We still observe that our dynamic threshold algorithm achieves consistently superior
and robust results against all other fixed thresholds. This effectively demonstrates the necessity of considering both the
length and the amount of information of a given input reference context when setting the filtering thresholds to key lexical
units. Moreover, the proposed dynamic threshold algorithm may potentially be beneficial to consider additional factors or
optimize the combination method of context length and the amount of information to get improved results and we leave the
exploration as a future work.

E.2. Ablation Results for Vicuna-33B and GPT4

In Section 5.5, we report the results of the ablation study using ChatGPT as the backbone model. In this section, we will
further present the results using Vicuna-33B and GPT4 as backbone models to obtain more insights into the individual
components constituting COFT across various backbone models. As illustrated in Tables 8 and 9, we still observe that
the absence of each component within COFT invariably leads to a decline in performance across diverse domains for
Vicuna-33B and GPT4 in the FELM benchmark, which demonstrates that COFT organically integrates these components
into a unified framework as well.

Remarkably, we observe that in the absence of a scorer, i.e., selector randomly retains the top τ × 100% of key candidates
obtained by the recaller using a dynamic threshold algorithm, rather than preserving them in descending order based on
contextual weight, leads to a more significant decline in performance. This underscores the critical importance of effectively
measuring the candidates’ significance and highlights these candidates in reducing the issue of knowledge hallucination
within LLMs as well.

These results underscore the organic integration of the three core components of COFT, recaller, scorer, and selector. This
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Table 11. Results of question answering tasks in Natural Questions, TriviaQA, and WebQ benchmarks, utilizing ChatGPT as the backbone
model. We evaluate the performance of each method in terms of EM and F1 score across various noise ratios (Yu et al., 2023). We bold
the best results for each noise ratio, respectively.

NQ TriviaQA WebQ

Backbone Methods Noise Ratio EM F1 Score EM F1 Score EM F1 Score

ChatGPT

Vanilla

80%

25.9 37.1 67.4 78.3 13.9 35.1
CoT 24.5 36.3 69.6 78.9 13.8 37.7
CoVe 27.1 45.9 68.8 78.9 24.4 40.6
CoN 23.9 43.3 68.5 77.9 17.2 35.4
COFT 33.6 51.9 74.3 82.1 27.6 51.1

Vanilla

60%

37.7 48.1 70.4 81.2 33.7 50.1
CoT 36.1 49.4 72.2 80.5 34.5 47.3
CoVe 32.8 51.6 71.3 80.4 35.7 44.6
CoN 37.7 50.5 68.7 80.5 34.5 49.5
COFT 43.2 55.9 75.1 83.7 37.3 55.3

Vanilla

40%

37.0 51.8 73.3 82.5 31.1 50.4
CoT 40.7 57.6 73.7 81.1 31.9 49.3
CoVe 39.3 57.4 72.5 80.4 34.7 50.1
CoN 42.7 56.8 70.4 80.5 35.1 51.7
COFT 46.4 59.9 76.6 84.7 35.7 54.7

Vanilla

20%

44.4 59.2 73.5 85.1 35.5 51.0
CoT 46.2 58.5 75.4 85.7 35.7 50.3
CoVe 42.1 63.4 76.7 82.3 34.4 50.0
CoN 46.7 62.0 71.9 82.1 35.7 53.1
COFT 50.2 65.1 79.2 87.4 38.7 56.5

Vanilla

0%

49.8 62.9 75.5 86.4 35.4 52.6
CoT 51.6 65.9 75.3 88.3 35.5 52.5
CoVe 44.8 64.5 75.4 85.7 34.5 53.7
CoN 50.6 64.1 78.7 88.7 35.5 58.4
COFT 53.9 68.7 79.2 89.3 38.7 59.9
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Table 12. Results of question-answering tasks in Natural Questions, TriviaQA, and WebQ benchmarks, utilizing Vicuna-33B as the
backbone model. We evaluate the performance of each method in terms of EM and F1 score across various noise ratios (Yu et al., 2023).
We bold the best results for each noise ratio, respectively.

NQ TriviaQA WebQ

Backbone Methods Noise Ratio EM F1 Score EM F1 Score EM F1 Score

Vicuna-33B

Vanilla

80%

15.7 22.1 42.4 50.1 9.2 13.8
CoT 17.2 25.8 43.1 51.5 9.6 15.5
CoVe 16.4 24.9 45.2 53.7 11.7 16.4
CoN 16.2 24.3 46.8 54.9 10.5 15.5
COFT 19.7 30.6 49.2 58.6 13.8 21.0

Vanilla

60%

17.9 27.6 46.8 57.7 15.7 20.5
CoT 17.8 28.1 48.5 59.2 13.1 21.1
CoVe 19.9 27.9 49.1 61.4 14.8 24.1
CoN 17.3 28.5 49.5 60.6 15.7 26.4
COFT 21.3 32.8 52.8 63.1 16.2 28.2

Vanilla

40%

18.4 28.5 52.1 63.0 14.9 24.7
CoT 18.9 29.4 53.5 62.5 14.4 25.7
CoVe 22.5 32.1 53.4 62.8 15.8 28.4
CoN 20.1 31.6 52.8 63.4 15.5 27.3
COFT 23.7 35.0 55.9 65.8 19.7 30.4

Vanilla

20%

19.4 32.6 54.3 63.3 20.4 29.8
CoT 20.7 32.9 54.9 63.9 20.9 30.5
CoVe 23.5 33.7 55.3 64.3 22.5 31.7
CoN 21.9 34.3 55.7 63.4 21.8 30.2
COFT 25.5 36.2 57.3 67.5 22.4 33.4

Vanilla

0%

21.5 34.9 56.9 66.5 22.8 32.7
CoT 24.5 35.5 57.6 64.2 20.4 31.5
CoVe 25.7 38.1 59.4 66.7 25.8 35.7
CoN 24.2 37.6 58.9 65.8 24.6 36.9
COFT 26.7 39.5 59.8 68.4 26.5 35.9
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Table 13. Results of question answering tasks in Natural Questions, TriviaQA, and WebQ benchmarks, utilizing GPT4 as the backbone
model. We evaluate the performance of each method in terms of EM and F1 score across various noise ratios (Yu et al., 2023). We bold
the best results for each noise ratio, respectively.

NQ TriviaQA WebQ

Backbone Methods Noise Ratio EM F1 Score EM F1 Score EM F1 Score

GPT4

Vanilla

80%

53.3 60.1 45.3 58.5 19.7 38.7
CoT 54.1 62.4 49.6 60.1 20.7 40.6
CoVe 53.4 60.9 44.5 59.1 16.7 39.3
CoN 54.3 61.8 50.8 60.4 6.9 31.9
COFT 57.3 65.4 54.4 62.7 24.6 43.0

Vanilla

60%

54.9 63.2 49.8 65.5 20.1 40.1
CoT 57.3 66.1 55.2 61.5 20.7 40.4
CoVe 54.0 64.4 45.4 61.4 20.3 41.9
CoN 56.8 66.1 50.0 66.8 10.3 33.3
COFT 59.6 67.8 57.8 68.4 24.1 44.1

Vanilla

40%

57.1 66.3 54.8 65.4 19.4 41.5
CoT 57.7 67.8 56.7 67.6 22.6 42.5
CoVe 58.4 66.1 55.4 64.1 21.4 41.1
CoN 58.2 67.1 55.6 66.1 16.4 36.0
COFT 59.1 70.3 59.3 72.4 25.8 44.8

Vanilla

20%

60.6 68.8 58.8 75.3 16.1 39.5
CoT 61.1 69.4 58.3 72.5 22.8 41.8
CoVe 58.8 70.0 55.7 70.9 22.7 39.3
CoN 61.4 69.8 57.8 70.8 16.5 36.6
COFT 62.4 72.1 62.3 74.1 28.8 44.6

Vanilla

0%

63.5 74.8 62.5 81.4 19.4 42.8
CoT 63.8 74.4 62.5 82.1 22.6 41.7
CoVe 59.6 71.4 62.2 73.3 23.3 43.4
CoN 63.2 74.1 59.8 76.7 16.8 36.2
COFT 64.3 75.7 66.7 82.3 29.7 46.2
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integration is not merely additive but forms a cohesive framework that significantly reduces the problem of knowledge
hallucination in LLMs.

Table 14. A more detailed ablation study for selector on the knowledge hallucination benchmark, FELM, using ChatGPT as the backbone
model. To demonstrate the superiority of our dynamic threshold algorithm, we set the threshold τ ranging from 0.1 to 1.0.

WK Sci/Tech Wri/Rec

Backbone Threshold F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

ChatGPT

τ = 0.1 76.8 77.9 75.7 78.0 82.6 74.0 71.8 87.5 60.9
τ = 0.2 69.8 70.6 69.1 72.6 78.2 67.7 68.1 85.1 56.7
τ = 0.3 77.5 82.0 73.5 74.5 80.9 69.0 73.9 87.3 64.1
τ = 0.4 75.2 82.5 69.1 74.5 84.3 66.7 71.5 87.3 60.5
τ = 0.5 77.3 79.7 75.1 75.7 82.4 70.1 70.7 86.1 60.1
τ = 0.6 78.7 84.7 63.2 81.4 84.8 78.3 72.3 85.1 62.8
τ = 0.7 75.4 75.1 75.7 81.6 81.3 81.9 56.6 81.8 43.3
τ = 0.8 66.2 69.4 63.2 72.4 80.4 65.9 70.8 84.4 60.9
τ = 0.9 74.5 73.9 75.0 61.7 86.1 48.1 69.3 88.0 57.1
τ = 1.0 77.9 81.5 74.6 82.8 83.4 82.2 61.2 82.2 48.7

COFT 81.6 85.5 77.9 85.5 86.5 84.5 75.2 88.3 65.4

Table 15. A more detailed ablation study for selector on the knowledge hallucination benchmark, FELM, using Vicuna-33B as the
backbone model. To demonstrate the superiority of our dynamic threshold algorithm, we set the threshold τ ranging from 0.1 to 1.0.

WK Sci/Tech Wri/Rec

Backbone Threshold F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

τ = 0.1 56.6 55.8 57.5 63.2 64.0 62.4 60.8 52.3 72.5
τ = 0.2 54.2 53.9 55.1 65.9 53.4 70.2 72.3 62.1 86.4
τ = 0.3 54.0 56.8 51.5 67.3 63.4 71.7 69.7 62.8 78.2
τ = 0.4 52.9 54.5 51.3 69.7 62.4 75.2 67.5 56.8 83.3
τ = 0.5 57.3 53.7 61.5 52.6 50.8 54.5 60.1 59.3 61.1
τ = 0.6 57.5 57.5 57.6 67.0 62.7 72.0 73.2 64.7 84.2
τ = 0.7 60.9 59.6 62.2 67.6 60.6 76.5 67.8 60.3 77.4
τ = 0.8 53.0 52.5 53.6 66.1 58.7 75.6 62.6 51.9 78.8
τ = 0.9 50.2 64.1 41.3 63.8 62.9 64.7 65.4 60.3 71.5
τ = 1.0 52.2 48.9 55.9 62.4 59.1 66.1 66.5 55.5 82.8

COFT 64.4 61.7 67.4 70.9 65.7 77.2 77.3 67.9 89.8

F. Inference Time Comparisons
We note that COFT requires an additional process of highlighting the input text before feeding it into the LLM for reasoning.
Compared to the vanilla model, this process could potentially introduce extra inference time. Hence, in this section, we
record and compare the average inference time per sample of different methods including vanilla, CoT, RALM, CoN, CoVe,
and COFT on the knowledge hallucination benchmark, FELM, to explore the influence of additional inference time and
provide more insight of our COFT. We report the word-level granularity COFT as an example, as the inference times for
COFT at three different granularity levels (paragraph level, sentence level, and word level) are nearly identical.

We report the average inference time per sample as a metric, as shown in Table 10. We observe from the table that although
the incorporation of COFT as a preprocessing module for LLM introduces additional inference time costs, this impact is
marginal. On average, the increase in inference time cost per sample due to the introduction of COFT, compared to the
vanilla model, is 12%. Notably, when utilizing accelerated APIs such as GPT, this additional inference time is less than
one second, yet it offers an average improvement of 33.2% and a maximum of 60.5% in the F1 score for existing LLMs to
reduce the issue of knowledge hallucination. Furthermore, COFT exhibits higher inference efficiency compared to methods
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Table 16. A more detailed ablation study for selector on the knowledge hallucination benchmark, FELM, using GPT4 as the backbone
model. To demonstrate the superiority of our dynamic threshold algorithm, we set the threshold τ ranging from 0.1 to 1.0.

WK Sci/Tech Wri/Rec

Backbone Threshold F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

GPT4

τ = 0.1 74.6 89.3 64.1 65.4 80.7 55.0 61.0 78.3 50.0
τ = 0.2 73.7 92.0 61.5 69.1 80.7 55.0 67.8 62.1 74.7
τ = 0.3 67.7 91.3 53.8 72.7 82.4 65.1 44.2 63.0 34.0
τ = 0.4 75.8 92.6 64.1 65.1 81.4 54.3 69.5 63.0 77.5
τ = 0.5 77.9 83.4 73.1 73.4 76.5 70.6 79.4 83.5 75.6
τ = 0.6 83.3 90.9 76.9 48.1 75.4 35.3 78.5 84.3 73.5
τ = 0.7 74.6 89.3 64.1 68.7 82.5 58.8 80.6 84.7 76.9
τ = 0.8 76.5 89.7 66.7 67.8 77.9 60.0 77.9 79.2 76.7
τ = 0.9 80.0 90.3 71.8 61.5 79.9 50.0 67.3 78.3 59.0
τ = 1.0 80.1 90.3 71.8 36.3 84.5 23.1 57.1 70.6 48.0

COFT 87.3 94.8 80.9 77.9 86.0 71.3 84.5 92.9 77.9
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Figure 5. Evaluation on EM metric of noise robustness in question answering task, utilizing ChatGPT as the backbone model: COFT
demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.

such as CoN, and CoVe, indicating that the additional computational overhead introduced by COFT is limited. We may
focus on exploring ways to further reduce the time cost of the COFT, including lightweighting small language models to get
a faster calculation of contextual weight(Zhu et al., 2023; Hsieh et al., 2023) or adopting more efficient (Wang et al., 2023a;
Frantar & Alistarh, 2023; Zhao et al., 2023) and rational large model inference strategies such as speculative decoding (Chen
et al., 2023b; Leviathan et al., 2023) as for future works.

G. More Results of Smaller Self-information Calculator
In Section 5.2, we utilize Llama 7B as the self-information calculator due to its great performance across a wide range of
downstream tasks (Touvron et al., 2023). To further demonstrate the generalization and versatility of COFT across models
of smaller scales, we conduct additional experiments using GPT-2 small (124M), GPT-2 medium (355M), GPT-2 large
(744M), and GPT-2 XL (1.5B) to calculate the self-information, respectively (Radford et al., 2019). As shown in Tables
17, 18, 19 and 20, COFT consistently exhibits superior performance across all baseline methods, which demonstrates the
effectiveness and potentially broad applications to smaller models.

H. More In-depth Analysis of COFT
H.1. Comparison Results of Adding Special Prompt

We conduct experiments of the baseline methods with the addition of the prompt ”Please pay close attention to the most
relevant content in the text” on the FELM benchmark for the knowledge hallucination task. As shown in Table 21 , we
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Figure 6. Evaluation on F1 score metric of noise robustness in question answering task, utilizing GPT4 as the backbone model: COFT
demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.
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Figure 7. Evaluation on EM metric of noise robustness in question answering task, utilizing GPT4 as the backbone model: COFT
demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.

find that while the inclusion of this prompt leads to marginal improvements in the overall performance, it can also result in
a decline in performance in certain cases. This suggests that simply appending the prompt can not consistently enhance
performance.

In contrast, COFT has demonstrated significant improvements, with an average increase of 30% and a maximum improvement
of 60.5% in F1 scores across the knowledge hallucination benchmark, which further demonstrates the great benefits of
COFT.

H.2. Two-hop Neighborhood Results of COFT

COFT exhibits excellent scalability and can be extended to multi-hop neighbor situations. COFT initially focuses on one-hop
neighbors of candidate entities within the KG due to their intrinsic relevance and close association. And leveraging only a
single hop from the neighbors results in an average increase of 30% and a maximum improvement of 60.5% in the F1 score
on the knowledge hallucination task.

We conduct additional experiments incorporating two-hop neighbor information of COFT on the knowledge hallucination
benchmark. As shown in Table 22, compared to the one-hop version of COFT, integrating two-hop neighbor information
further enriches the input provided to the LLMs, leading to a moderate performance improvement over the one-hop scenario.

Despite the primary focus on one-hop neighbors, COFT maintains great performance. This demonstrates the effectiveness
of extracting one-hop neighbors. When incorporating two-hop information, COFT further achieves a better result, which
also demonstrates the flexibility and scalability of COFT. Therefore, for more complex question scenarios, there are also
potential benefits of incorporating two-hop or even multi-hop neighbors to further increase the performance of COFT.
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Figure 8. Evaluation on F1 score metric of noise robustness in question answering task, utilizing Vicuna-33B as the backbone model:
COFT demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.
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Figure 9. Evaluation on F1 score metric of noise robustness in question answering task, utilizing Vicuna-33B as the backbone model:
COFT demonstrates superior performance on all three open-domain QA benchmarks, especially at higher noise ratios.

H.3. Only Input Highlights for LLM Inference

We incorporate specific symbols to highlight these units within the context to preserve the complete contextual semantics.
The absence of complete contextual semantics may face inevitable information loss in real scenarios with more complex
attention distributions (Miao et al., 2023b).

We further conduct experiments on the knowledge hallucination dataset, where we only use the highlighted lexical units as
input to LLMs. As shown in Table 23, we find that even when only the highlighted lexical units are provided as reference
context, the model achieves notable improvements over the baseline methods. This outcome demonstrates the efficacy of
our COFT approach in accurately identifying and leveraging support facts within the reference text, thereby enhancing the
inference performance. Meanwhile, compared to Table 1, we find that COFT uses only the highlighted lexical units as input
is less competitive than the original version of COFT, which also demonstrates the effectiveness of our highlight mechanism.

H.4. More Results of Analyzing Position Bias of COFT

We further conduct experiments to explore the impact of position bias in the QA task. Specifically, each reference context
comprised relevant documents and irrelevant documents. Drawing upon (Liu et al., 2023), we experiment by varying the
positioning of the correct text from the first to the fifth position. As shown in Table 24, we find that COFT is less influenced
by the position bias compared to Vanilla LLMs. This demonstrates COFT’s robustness to the positioning of the correct text
and implies the great potential to handle lengthy contexts in real-world scenarios.

H.5. More Results of Randomly Selecting Highlights of COFT

We also conduct additional experiments on the knowledge hallucination task. For each query, we randomly highlight lexical
units (paragraphs, sentences, or words) that align with the number of highlighted key lexical units in original COFT.

As shown in Table 25, we find that randomly highlighting lexical units can not improve the results, which demonstrates the
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Instruction:
I will show you a question, a list of text segments, and a reference text. All the segments can be concatenated to form a 
complete answer to the question. Your task is to assess whether each text segment contains factual errors or not based on 
the reference text. Please pay close attention to the content in the symbol ** ** in the reference text. Please generate using 
the following format.

Answer: 
List the judgment results for each segments, such as: [True, False, ...]. Please only output the list, no more details. Note 
that the length of the list should be same as the number of segments.
Below are my inputs.

Question: 
Have there been any US presidents shorter than 5ft?
Segments: ['Yes, there have been several US presidents who were shorter than 5 feet tall.', 'James Madison, the fourth 
president of the United States, was only 5 feet 4 inches tall.’]

Reference text: 
A record of the heights of the presidents of the **United States** and presidential candidates is useful for evaluating what 
role, if any, height plays in presidential elections.  Some observers have noted that the taller of the two major-party 
candidates tends to prevail, and argue this is due to the public‘s preference for taller candidates. The tallest U.S. president 
was Abraham Lincoln at 6 **feet** 4 **inches** (193 centimeters), while the shortest was **James Madison** at 5 **feet** 
4 **inches** (163 centimeters)…..

Figure 10. Prompt templates of knowledge hallucination task after highlighting the key lexical units. We use a sample prompt template
across Vicuna-33B, ChatGPT, and GPT4.

effectiveness of COFT to identify key lexical units that are relevant to the query.

H.6. More Results of Joint-level Highlight Version of COFT

In practical applications, within a document, some paragraphs may be too short and might not require paragraph-level
highlightintg, while others may be too long for word-level highlighting.

Therefore, we also conduct experiments using a joint-level highlighting version of COFT on the knowledge hallucination
task. We highlight key lexical units by word-level granularity. If more than one-third of the words within a sentence were
highlighted, we highlight the whole sentence. Similarly, if more than one-third of the sentences within a paragraph were
highlighted, we would highlight the whole paragraph.

As shown in Table 26, COFT at the joint level yields an improvement over using single-level lexical units such as words,
sentences, or paragraphs. We will include the joint level version of COFT in Table 1 of the main text to have a more
comprehensive understanding of COFT. This suggests that exploring more joint-level highlighting strategies could be a
promising direction for COFT.

I. Prompt Templates for Each Task
We list the prompt templates for different tasks to offer more visually intuitive results in Figures 10, 11, and 12 for knowledge
hallucination, reading comprehension, and question answering, respectively. More detailed prompt information for the best
performance of each task and dataset can be seen within the code.
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Instruction:
Please choose the best option based on the article and question. Please pay close attention to the content in the symbol** 
**in the article. If the content in ** ** is not important, it can be ignored. 

Question: 
We can infer from the passage that   _  .
Options:
A. about 50% of first marriages end in divorce in the U.S, much higher than other parts of the world
B. never tie the knot before you make sure he or she will not divorce you
C. it usually takes 7-10 years to rebuild one's credit if it is broken for any reason
D. it's unusual for people in their 20's to have money these days

Reference text: 
Being young is great. Most of the **parts** of your body still work great, you have a full head of hair, you're energetic, and 
you have a **world** of opportunity in front of you. However, there's going to come a time when you start to get older. And 
as you get older, you'll have new responsibilities, complete independence, and perhaps most importantly, less time to 
recover from mistakes. You see, we all make mistakes in life. Maybe you spent more **money** than you should have on 
a car, you passed up on a great job opportunity, or you didn't try as hard as you could have in school…..

Figure 11. Prompt templates of reading comprehension task after highlighting the key lexical units. We use a sample prompt template
across Vicuna-33B, ChatGPT, and GPT4.

Table 17. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains using GPT2-small (124M) to calculate the contextual weight. We denote COFT at the paragraph,
sentence, and word levels as COFTp, COFTs, and COFTw, respectively.

Backbone Method WK Sci/Tech Wri/Rec

F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFTw 63.7 62.4 65.1 69.1 63.8 75.3 74.6 69.8 80.1
COFTs 61.3 60.6 62.1 66.9 63.9 70.1 69.9 65.5 74.9
COFTp 64.2 65.3 63.2 69.2 66.6 72.1 75.9 69.9 83.1

ChatGPT
COFTw 74.0 77.9 70.4 79.6 79.1 80.1 78.1 86.1 71.5
COFTs 71.8 70.5 73.1 74.3 75.5 73.1 75.6 77.9 73.5
COFTp 77.3 81.8 73.3 79.6 75.3 84.4 79.7 85.5 74.7

GPT-4
COFTw 74.0 77.9 70.4 79.6 79.1 80.1 78.1 86.1 71.5
COFTs 71.8 70.5 73.1 74.3 75.5 73.1 75.6 77.9 73.5
COFTp 77.3 81.8 73.3 79.6 75.3 84.4 79.7 85.5 74.7

Instruction:
Please refer to the following text and answer the following question in simple words. Please note that no explanation 
should be provided except for the answer. Please pay close attention to the content in the symbol** **in the article. If the 
content in ** ** is not important, it can be ignored. 

Question: 
when does the miz and maryse show start

Reference text:
n late-2011, she announced plans for a clothing and jewelry line called House of **Maryse**, and later began working as a 
realtor. In November 2016, she began starring in the reality television series Total Divas on E! as part of the main cast. 
She and her husband The **Miz** will also star in their own reality **show** titled **Miz** & Mrs. that will premiere in 2018.
off WWE programming. After two months of inactivity, **Maryse** was released from her WWE contract on October 28. On 
October 5, 2012, **Maryse** appeared at the Family Wrestling Entertainment (FWE) event "Back 2 Brooklyn", performing 
live commentary. She began appearing regularly for FWE, where she commentated during women's matches…..

Figure 12. Prompt templates of question answering task after highlighting the key lexical units. We use a sample prompt template across
Vicuna-33B, ChatGPT, and GPT4.
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Table 18. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains using GPT2-medium (355M) to calculate the contextual weight. We denote COFT at the
paragraph, sentence, and word levels as COFTp, COFTs, and COFTw, respectively.

Backbone Method WK Sci/Tech Wri/Rec

F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFT w 65.2 62.0 68.8 70.8 66.3 76.0 72.6 62.8 85.9
COFT s 62.8 60.6 65.2 67.9 63.1 73.5 69.5 65.5 74.0
COFT p 66.9 66.8 67.1 65.0 60.6 70.1 71.2 62.7 82.4

ChatGPT
COFT w 75.8 80.1 71.9 72.4 85.3 62.9 77.5 79.9 75.3
COFT s 70.9 77.9 65.1 73.7 80.7 67.9 74.8 85.1 66.8
COFT p 80.4 83.5 77.5 77.4 83.5 72.1 78.7 84.6 73.6

GPT-4
COFT w 81.1 83.3 79.1 79.7 80.1 79.4 84.5 80.1 89.3
COFT s 79.1 85.1 73.9 76.9 80.3 73.7 80.8 83.2 78.5
COFT p 81.8 85.9 78.0 76.4 79.1 73.9 80.9 90.5 73.1

Table 19. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains using GPT2-large (744M) to calculate the contextual weight. We denote COFT at the paragraph,
sentence, and word levels as COFTp, COFTs, and COFTw, respectively.

Backbone Method WK Sci/Tech Wri/Rec

F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFT w 63.3 61.1 65.7 69.8 63.2 78.0 75.8 65.9 89.3
COFT s 63.2 62.6 63.8 69.3 64.5 74.8 72.8 60.6 91.2
COFT p 63.6 60.4 67.2 67.0 61.3 73.9 70.3 64.8 76.9

ChatGPT
COFT w 73.7 76.1 71.5 80.2 73.5 88.2 78.4 79.3 77.6
COFT s 75.2 69.9 81.3 74.1 83.1 66.9 73.9 74.6 73.3
COFT p 75.9 74.5 77.4 83.1 82.5 83.7 77.3 80.6 74.2

GPT-4
COFT w 82.0 85.2 79.1 84.3 80.1 88.9 88.3 84.1 92.9
COFT s 78.2 88.5 70.1 75.8 78.4 73.3 86.3 85.3 87.4
COFT p 82.9 87.9 78.4 80.6 82.8 78.5 86.5 88.2 84.9

Table 20. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains using GPT2-XL (1.5B) to calculate the contextual weight. We denote COFT at the paragraph,
sentence, and word levels as COFTp, COFTs, and COFTw, respectively.

Backbone Method WK Sci/Tech Wri/Rec

F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFTw 63.5 62.9 64.1 69.5 65.5 74.1 78.6 71.3 87.5
COFTs 66.0 73.1 60.1 65.2 71.3 60.1 74.5 66.9 84.1
COFTp 65.2 69.1 61.7 69.4 67.2 71.8 71.5 65.1 79.3

ChatGPT
COFTw 73.5 81.5 66.9 79.4 74.2 85.4 74.7 86.4 65.8
COFTs 76.1 83.3 70.1 78.1 73.9 82.7 76.7 80.5 73.3
COFTp 77.9 80.5 75.4 81.3 77.8 85.2 78.7 84.1 73.9

GPT4
COFTw 82.1 83.8 80.5 83.8 79.2 89.0 88.1 88.3 87.9
COFTs 80.1 82.9 77.5 80.1 82.9 77.4 82.7 79.6 86.1
COFTp 85.0 89.4 81.1 82.7 79.9 85.7 85.0 84.7 85.3
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Table 21. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains by adding the prompt ”Please pay close attention to the most relative content in the text”.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

Vanilla 35.1 29.6 43.1 26.2 17.9 48.8 30.3 19.2 72.0
CoT 35.0 31.1 40.1 24.5 15.9 53.3 30.5 19.9 65.4
RALM 47.2 44.2 50.6 36.1 27.3 53.1 31.2 19.4 80.1
CoVe 46.7 45.1 48.5 47.7 41.1 56.7 64.4 59.2 70.5
CoN 54.3 55.1 53.5 59.7 56.0 63.9 66.2 60.3 73.3

ChatGPT

Vanilla 12.8 27.9 8.3 4.3 6.3 3.3 2.1 5.5 1.3
CoT 8.3 30.9 4.8 7.9 23.9 4.7 6.3 11.9 4.3
RALM 25.7 33.7 20.8 18.4 18.8 18.0 23.1 58.3 14.4
CoVe 18.8 46.7 11.8 18.8 13.7 29.8 21.1 60.4 12.8
CoN 18.0 63.0 10.5 21.9 24.4 19.9 31.3 28.9 34.2

GPT-4

Vanilla 39.7 80.3 26.4 21.7 63.5 13.1 25.6 84.4 15.1
CoT 53.2 82.1 39.3 27.6 61.0 17.8 27.0 84.5 16.1
RALM 53.9 78.8 41.0 31.4 55.7 21.9 48.4 70.3 36.9
CoVe 49.2 50.5 47.9 70.1 85.5 59.4 50.9 51.2 50.7
CoN 55.0 50.1 61.0 68.7 80.3 60.1 69.3 75.1 64.3

Table 22. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains by incorporating two-hop neighbor information of COFT. We denote COFT at the paragraph,
sentence, and word levels by COFT p, COFT s, and COFT w, respectively.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFT p 69.5 73.3 66.0 67.0 63.5 71.0 69.2 64.3 75.0
COFT s 61.9 60.6 63.2 72.1 69.5 74.9 67.2 61.5 74.1
COFT w 63.7 63.5 64.0 68.3 63.3 74.2 77.0 74.8 79.4

ChatGPT
COFT p 78.4 79.5 77.4 83.5 83.1 83.9 78.7 90.5 69.7
COFT s 76.1 77.1 75.1 78.3 75.5 81.3 79.2 94.9 67.9
COFT w 82.2 86.8 78.1 86.4 83.9 89.0 83.7 92.8 76.3

GPT4
COFT p 88.2 90.0 86.5 89.7 92.6 87.0 92.6 88.4 97.3
COFT s 84.1 88.1 80.5 78.7 80.5 77.0 88.3 91.2 85.5
COFT w 92.4 93.3 91.5 81.4 90.7 73.9 87.8 93.8 82.5

Table 23. Results of knowledge hallucination benchmark on WK (world knowledge), Sci/Tech (science and technology), and Wri/Rec
(writing and recommendation) domains by only making use of the selected key lexical units as input to the LLM. We denote COFT at the
paragraph, sentence, and word levels as COFT p, COFT s, and COFT w, respectively.

Backbone Method WK Sci/Tech Wri/Rec

F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B
COFT p 69.0 69.8 68.3 61.3 57.7 65.3 65.4 60.6 71.1
COFT s 61.1 60.1 62.1 61.8 60.5 63.2 61.7 60.0 63.5
COFT w 60.1 57.1 63.5 61.9 62.8 61.1 70.1 63.1 78.8

ChatGPT
COFT p 74.2 80.0 69.2 77.3 78.6 76.1 70.9 76.8 65.8
COFT s 71.1 69.4 72.8 74.5 76.7 72.4 70.3 77.5 64.3
COFT w 69.7 69.9 69.5 74.3 72.3 76.5 70.9 75.5 66.9

ChatGPT
COFT p 77.3 75.4 79.3 86.6 80.8 93.3 85.7 80.3 91.9
COFT s 74.4 84.5 66.4 75.4 81.1 70.4 81.3 84.4 78.5
COFT w 69.9 70.1 69.8 74.3 83.5 66.9 78.6 85.1 73.0
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Table 24. Results of question answering tasks in the Natural Questions benchmark. Performance of the vanilla LLM and COFT is
evaluated in terms of EM and F1 score under different positions of the correct document.

Backbone Methods 1st 2nd 3rd 4th 5th

EM F1 Score EM F1 Score EM F1 Score EM F1 Score EM F1 Score

Vicuna-33B COFT 21.5 32.3 20.9 32.0 19.5 30.6 20.5 31.7 21.4 32.0
Vanilla 18.3 26.3 16.3 23.6 11.7 18.6 13.3 24.5 16.2 25.8

ChatGPT COFT 35.6 53.8 35.3 51.2 31.0 50.3 32.7 51.4 35.2 52.8
Vanilla 28.1 40.1 26.3 37.3 20.5 32.1 23.3 33.4 26.9 38.1

GPT-4 COFT 58.5 66.8 57.7 66.5 56.9 64.8 57.5 65.9 57.9 65.5
Vanilla 54.5 63.5 53.7 62.7 51.6 58.4 53.6 61.1 53.9 62.8

Table 25. Results of knowledge hallucination task. We denote randomly selecting version of COFT as Random COFT and the original
version of COFT as Original COFT.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

Random COFT p 59.4 67.3 53.2 50.4 51.1 49.8 55.5 50.1 62.1
Original COFT p 69.3 71.9 66.9 67.9 62.9 73.8 70.4 66.8 74.4
Random COFT s 49.9 49.7 50.1 50.9 47.9 54.3 55.1 48.9 63.1
Original COFT s 62.0 63.1 60.9 68.7 67.1 70.4 66.2 64.7 67.7
Random COFT w 35.8 33.1 38.9 37.7 29.3 52.9 45.1 34.9 63.7
Original COFT w 64.4 61.7 67.4 70.9 65.7 77.2 77.3 67.9 89.8

ChatGPT

Random COFT p 49.5 53.8 45.9 45.8 55.4 39.0 51.0 59.2 44.8
Original COFT p 78.6 83.8 74.0 83.9 81.2 86.8 77.5 85.9 70.5
Random COFT s 37.3 48.1 30.4 46.4 45.5 47.3 39.6 48.1 33.6
Original COFT s 76.8 75.7 77.9 74.6 79.1 70.5 76.8 84.4 70.5
Random COFT w 52.6 53.6 51.7 57.4 49.3 68.7 47.0 55.3 40.8
Original COFT w 81.6 85.5 77.9 84.4 80.9 88.4 81.1 93.7 71.5

GPT-4

Random COFT p 64.1 59.1 70.0 66.0 60.1 73.3 65.0 78.9 55.3
Original COFT p 83.1 79.7 86.8 89.9 84.4 96.1 91.8 85.5 99.1
Random COFT s 66.0 75.0 58.9 61.6 68.1 56.3 66.9 75.4 60.1
Original COFT s 80.0 92.3 70.6 76.6 84.9 69.8 85.5 89.2 82.1
Random COFT w 62.4 80.5 51.0 71.6 77.1 66.9 68.8 78.4 61.3
Original COFT w 87.3 94.8 80.9 77.9 86.0 71.3 84.7 92.9 77.9

Table 26. Results of knowledge hallucination benchmark. We denote the joint-level version of COFT as COFT-joint and the original
version of COFT as Original COFT. The best results for each LLM backbone are highlighted in bold.

WK Sci/Tech Wri/Rec

Backbone Methods F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Vicuna-33B

Original COFT p 69.3 71.9 66.9 67.9 62.9 73.8 70.4 66.8 74.4
Original COFT s 62.0 63.1 60.9 68.7 67.1 70.4 66.2 64.7 67.7
Original COFT w 64.4 61.7 67.4 70.9 65.7 77.2 77.3 67.9 89.8
COFT-joint 71.2 73.3 69.2 70.7 66.8 75.1 79.1 69.8 91.2

ChatGPT

Original COFT p 78.6 83.8 74.0 83.9 81.2 86.8 77.5 85.9 70.5
Original COFT s 76.8 75.7 77.9 74.6 79.1 70.5 76.8 84.4 70.5
Original COFT w 81.6 85.5 77.9 84.4 80.9 88.4 81.1 93.7 71.5
COFT-joint 81.1 87.1 75.9 86.2 83.5 89.0 84.8 92.5 78.3

GPT4

Original COFT p 83.1 79.7 86.8 89.9 84.4 96.1 91.8 85.5 99.1
Original COFT s 80.0 92.3 70.6 76.6 84.9 69.8 85.5 89.2 82.1
Original COFT w 87.3 94.8 80.9 77.9 86.0 71.3 84.7 92.9 77.9
COFT-joint 89.7 95.0 85.0 90.0 88.0 92.0 92.1 90.7 93.5
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J. More Discussions On COFT
J.1. Why is it necessary to use both TF-ISF and self-information to measure the importance of entities?

We propose context weights to assess the importance of each entity within a given context. Firstly, we consider the frequency
and distribution of entities in the reference context by calculating the Term Frequency-Inverse Sentence Frequency (TF-ISF),
which helps to distinguish entities that are frequently mentioned yet not common words. Such entities play a significant
role in understanding the semantics of sentences. Subsequently, we take into account the amount of information an entity
contributes when responding to a query within the reference context by computing self-information, which helps to identify
potentially significant, highly informative entities. These entities may carry unique or crucial information essential for
understanding the entire text.

TF-ISF measures the distinctiveness of words across sentences and self-information assesses their information value in
probabilistic terms. By multiplying these two metrics, we obtain a comprehensive indicator, context weights, that more
effectively captures the importance of words in context. Moreover, the context weights may potentially be beneficial to
consider additional factors or optimize the combination method of TF-ISF score and self-information to get improved results
and we leave the exploration as a future work.

J.2. Why does COFT only search for one-hop neighbor entities in the open-source KG?

Retrieving neighbor entities of a target entity in a knowledge graph is a common method for finding entities related to
the target. For example, the one-hop neighbor entities of a celebrity often represent attributes like their family, friends,
nationality, and workplace, which contain significant and comprehensive information about the given entity. We could also
opt to retrieve the two-hop neighbor entities. If the average degree of nodes in the KG is high, this approach can introduce
more relevant nodes but may also bring in a large number of irrelevant nodes.

Therefore, the decision to search for one-hop, two-hop, or more distant neighbor entities should be dynamically adjusted
based on the task and the specific characteristics of the KG. For COFT, we observe that retrieving only one-hop neighbors
yields satisfactory results. Considering the potential noise introduced by retrieving higher-hop neighbors, we only retrieve
one-hop neighbors to enrich the key entity candidates for COFT in all mentioned tasks.

J.3. Why highlighting key lexical units in three different granularity levels from coarse to fine?

COFT represents a key entity-driven highlighting approach. It captures potential key entities from the perspective of a
knowledge graph (world knowledge) and evaluates the importance of entities based on the TF-ISF and self-information
scores. After identifying the final key entities, a straightforward method is to highlight these corresponding entities in the
reference context, i.e., the word-level highlighting COFT. However, considering practical applications, such as cases where
the reference context contains a small number of entities that appear multiple times, word-level highlighting provides limited
information as well. In these scenarios, sentence-level highlighting or paragraph-level highlighting may be more appropriate.

Moreover, for certain queries, it is crucial to focus on the core paragraphs of the reference text, rather than just sentences or
words. Therefore, to enhance the versatility of COFT, we have proposed three different levels of granularity of highlighting
selections: paragraph, sentence, and word. Table 1 corroborates the effectiveness of multi-granular highlighting as well.

J.4. What named entity recognition method is employed in COFT, and does it have any tailored designs?

Given the relative maturity of named entity recognition (NER) in the fields of natural language processing and knowledge
graphs, we do not elaborate on it in the main text. Considering the need for rapid deployment and ease of implementation,
we have utilized the Spacy11 open-source library for the NER component. Moreover, we employ noun phrase extraction
from the NLTK library12 to retain some non-named yet significant nouns in queries. We also reference the entity list from
Wikidata for entity recognition. The ablation study results in Tables 3, 8, and 9, demonstrate the simplicity and effectiveness
of the NER component in our method. We also think that other specific optimized NERs are promising to improve COFT.

11https://spacy.io/
12https://www.nltk.org/
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