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ABSTRACT

Predicting multiple functions labeled with Enzyme Commission (EC) numbers
from the enzyme sequence is of great significance but remains a challenge due
to its sparse multi-label classification nature, i.e., each enzyme is typically as-
sociated with only a few labels out of more than 6000 possible EC numbers.
However, existing machine learning algorithms generally learn a fixed global
representation for each enzyme to classify all functions, thereby they lack in-
terpretability and the fine-grained information of some function-specific local
residue fragments may be overwhelmed. Here we present an attention-based
framework, namely ProtDETR (Protein Detection Transformer), by casting en-
zyme function prediction as a detection problem. It uses a set of learnable func-
tional queries to adaptatively extract different local representations from the se-
quence of residue-level features for predicting different EC numbers. ProtDETR
not only significantly outperforms existing deep learning-based enzyme function
prediction methods, but also provides a new interpretable perspective on automat-
ically detecting different local regions for identifying different functions through
cross-attentions between queries and residue-level features. Code is available at
https://github.com/yangzhao1230/ProtDETR.

1 INTRODUCTION

The rapid advancement of genome sequencing has revealed numerous protein sequences, yet their
functional annotations remain largely unknown (Acids research, 2021). Due to the time and cost
constraints of experimental validation, computational methods for protein function prediction are
essential, particularly for enzymes that play crucial roles in metabolic processes. The Enzyme
Commission (EC) system classifies enzyme functions using four-level hierarchical numbers (e.g.,
1.1.1.1). Enzyme function prediction presents a challenging multi-label classification problem, as
each enzyme may catalyze multiple reactions, requiring accurate prediction of a few relevant EC
numbers from over 6000 possibilities.

Recent years have seen significant advances in sequence-based enzyme function prediction through
deep learning. HDMLF (Shi et al., 2023) leverages multi-sequence alignment with neural networks
for EC number prediction, while CLEAN (Yu et al., 2023) addresses data imbalance through con-
trastive learning, particularly excelling with sparse training instances. Despite these performance
improvements, interpretability remains a challenge. ProteInfer (Sanderson et al., 2023) approaches
this through CNN-based activation mapping, while EnzBert (Buton et al., 2023) and DeepECtrans-
former (Kim et al., 2023) utilize Transformer attention mechanisms. However, EnzBert primarily
targets mono-enzymes, and DeepECtransformer relies on a conventional multi-classification ap-
proach using global protein representations.

These deep learning-based methods actually follow the classification framework, i.e., they generally
extract a fixed global representation for each enzyme and feed it into classifiers or compare it with
templates of different EC numbers for classification. However, different enzyme functions largely
depend on different local structures corresponding to specific active sites or residue fragments. If a
local fragment or a weighted combination of residues in an enzyme determines a function, the fine-
grained information of that fragment or combination is more effective in identifying that function.
For the same enzyme, different functions may depend on different residue fragments and the discrim-
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inative fine-grained information is also different. Such fine-grained residue-level or fragment-level
information may be overwhelmed in the global protein-level representation. Moreover, gaining the
interpretability at the detailed granularity for in-depth analysis becomes infeasible due to the loss of
residue-level features.

In multi-label image classification, efforts have been made to learn different features for different
classes. Query2label (Liu et al., 2021) introduces unique learnable queries for each class, termed
class queries, which localize areas relevant to different objects within an image through cross-
attention. This approach achieves fine-grained and interpretable modeling for multi-label classifica-
tion. Nevertheless, this method cannot be directly transferred to multifunctional enzyme annotation
due to the quadratic complexity of attention calculations for lengthy enzyme sequences and the vast
number of queries needed to cover all EC numbers, resulting in prohibitively high computational
demands.

We cast multi-label enzyme function prediction as a detection problem and introduce a novel frame-
work, ProtDETR, by leveraging the advancements in object detection, as exemplified by DETR (Car-
ion et al., 2020). Analogous to detecting all objects of interest in an image and determining their
classes and locations, ProtDETR detects all functional residue fragments for determining relevant
EC numbers. It preserves the sequence of residue-level features and employs functional queries
to identify a specific enzymatic function or denote its absence from the sequence. Unlike class
queries utilized in query2label, where more than 6000 queries are required, ProtDETR only learns
10 functional queries as the maximum number of annotated functions for all enzymes in Uniprot
is less than 10. In this way, ProtDETR adaptively extracts fine-grained fragment-level representa-
tions from residue distributions located by different queries for classifying different functions, while
significantly reducing the computational demands.

1. Different from existing methods that encode the enzyme into a fixed representation for
multi-label classification, we cast enzyme function prediction as a fine-grained detection
problem and propose a novel framework called ProtDETR, which adaptively detects dif-
ferent fragments from all residues of the enzyme by functional queries and extracts fine-
grained fragment-level representations for classifying different functions.

2. ProtDETR achieves state-of-the-art (SOTA) results in both multifunctional and monofunc-
tional enzyme prediction tasks. For instance, in the multifunctional enzyme prediction on
the New-392 dataset, it not only matches the precision of existing SOTA methods but also
improves the recall by 25% and enhances the F1-score significantly.

3. ProtDETR is the first model to offer EC number-specific interpretability. The cross-
attention mechanisms between residue-level features and function queries not only illumi-
nate the prediction mechanics of our model but also substantially bolster the reliability and
utility of the predictions. This unique capability provides novel insights into the intricate
catalytic mechanisms of multifunctional enzymes, propelling further research in enzyme
function studies.

2 METHOD

2.1 PROBLEM FORMULATION

Most enzymes are proteins and can be represented by amino acid sequences with length L. We
denote such a protein sequence as S = {s1, s2, . . . , sL}, where si is one of 20 standard amino acids.
Our objective is to predict the set of active enzymatic functions for each sequence. Traditionally,
this is viewed as a multi-label classification problem with a label vector y = {y1, . . . , yM}, where
yi = 1 indicates activation of the i-th function and M can be very large (often over 6000). To
align with a detection-based perspective, we instead treat each protein’s functions as a set of active
function indices Y . We also introduce a null symbol ∅ to represent the absence of a function. Let
N be the maximum number of functions typically active in a single enzyme (in practice, N = 10
is sufficient for most enzymes). When an enzyme has fewer than N active functions, we pad the
remaining slots with ∅. Formally,

Y = {i | yi = 1} ∪ {∅}N−|{i|yi=1}|.
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Figure 1: Three distinct approaches to multifunctional enzyme annotation. (A) CLEAN:
contrastive learning-based approach using sequence-level representations and centroid distances.
(B) DeepECtransformer: self-attention mechanism for modeling amino acid interactions. (C)
ProtDETR: reformulates enzyme function prediction as a residue-level detection problem using
function-specific queries.

Hence, |Y | = N is fixed, which allows us to apply a set-based detection paradigm in an end-to-end
manner.

2.2 OVERVIEW

Figure 1 contrasts ProtDETR with two prior SOTA methods. CLEAN (Yu et al., 2023) (Figure 1(A))
uses global protein-level representations learned by contrastive learning (Khosla et al., 2020), effec-
tively clustering enzymes by EC numbers in a latent space but lacking residue-level interpretability.
DeepECtransformer (Kim et al., 2023) (Figure 1(B)) extracts amino acid features via a Transformer
Encoder, then aggregates these features into a single global representation for multi-label classifica-
tion. Despite partial interpretability using self-attention, it relies on thousands of binary classifiers,
one for each EC class, which is challenging to train under highly imbalanced, long-tailed data.

Our ProtDETR (Figure 1(C)) instead re-conceptualizes enzyme-function prediction as a residue-
level detection task. Leveraging a Transformer encoder-decoder design, we use a fixed number (N =
10) of learnable query tokens—each query can capture the fine-grained local signatures of a possible
function. Cross-attention between each query and the amino acid sequence selectively attends to
crucial local fragments, such as active or binding sites, enabling more accurate and interpretable
predictions.

2.3 ESM-1B EMBEDDING

We begin by encoding each protein sequence using the pretrained ESM-1b model (Rives et al.,
2021), a large language model trained on billions of protein sequences via masked language mod-
eling (Kenton & Toutanova, 2019). Given a sequence S, we apply ESM-1b to obtain residue-level
embeddings: FESM = E(S) ∈ RL×dESM , where E(·) denotes the ESM-1b embedding function.
These embeddings have shown strong performance in numerous protein-related tasks (Hsu et al.,
2022; Meier et al., 2021; Hu et al., 2022). Consistent with prior work (Yu et al., 2023; Shi et al.,
2023), we truncate sequences to L = 1022 to fit model constraints.
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2.4 DETECTION TRANSFORMER ARCHITECTURE

We adopt a Transformer-based encoder-decoder architecture (Carion et al., 2020), adapted from
DETR for enzyme function detection. First, we project FESM to dmodel dimensions via a linear
mapping, producing feature representations that a multi-layer Transformer encoder with Me layers
refines with self-attention:

Ftrans = Linear(FESM) ∈ RL×dmodel , Fencoded = Encoder
(
Ftrans

)
.

On the decoder side, we introduce N learnable query tokens QEC ∈ RN×dmodel , each representing
a potential function. A Transformer decoder with Md layers applies cross-attention between these
queries and Fencoded, yielding

Qdecoded = Decoder
(
QEC, Fencoded

)
∈ RN×dmodel ,

where each query captures local context relevant to one possible enzyme function. Finally, a linear
projection head maps these N decoded embeddings to probability distributions over C + 1 classes
(i.e., C enzyme functions plus one null class):

pi = Linear
(
Qdecodedi

)
∈ RC+1, ŷi = argmax(pi),

for 1 ≤ i ≤ N , where ŷi ∈ {0, ..., C}. The predicted set of enzyme functions is then defined as
Ŷ = {ŷi}, where ŷi = C indicates that the i-th query detects no enzyme function.

2.5 TRAINING OBJECTIVE

Since enzyme sequences can have multiple functions and the order of our N query predictions is
inherently arbitrary, we need to establish a matching between predictions and ground truth labels.
Following Carion et al. (2020), we formulate this as a set prediction task and employ the Hungar-
ian algorithm (Kuhn, 1955) to find an optimal one-to-one correspondence by minimizing a global
matching cost:

σ̂ = arg min
σ∈SN

N∑
i=1

Lmatch

(
Yi, Ŷσ(i)

)
,

where SN is the set of all permutations over N elements. Here, Yi ∈ {1, ..., C} denotes the i-th
ground truth label with C representing the null class, and Ŷσ(i) is the σ(i)-th predicted label. The
cost Lmatch is based on the negative log-likelihood for each ground-truth class.

Once we obtain the optimal assignment σ̂, we calculate the final cross-entropy loss over matched
pairs:

L(Y, Ŷ ) =

N∑
i=1

− log p̂ σ̂(i)

(
Yi

)
,

where p̂ σ̂(i)

(
Yi

)
is the predicted probability of the correct class for Yi under the optimal matching.

This ensures that each ground-truth function (including null) is paired with exactly one model pre-
diction, enforcing a one-to-one correspondence in the multi-function setting. To address the extreme
long-tail problem in enzyme function prediction, we further discuss the additional loss we used in
Appendix E.

2.6 LOCALIZATION OF KEY ENZYMATIC SITES VIA ATTENTION

Residue-level attention scores in ProtDETR provide interpretability. First, in the final layer of the
encoder, we aggregate the self-attention scores across all heads to find residues of high global im-
portance:

AttnAgg(i) =

H∑
h=1

L∑
j=1

EncAttnh(i, j),

where EncAttnh(i, j) denotes the self-attention weight from residue i to residue j under head h in
the last encoder layer. We visualize these scores to identify potentially significant regions (Appendix
Fig. 7(A)).
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Table 1: Benchmark Scores on New-392 and Price-149 Datasets
Method New-392 Price-149

Precision Recall F1 Score Precision Recall F1 Score
DEEPre - - - 0.0415 0.0403 0.0386
ECPred 0.1778 0.0954 0.1000 0.0197 0.0197 0.0197
DeepEC 0.2978 0.2167 0.2297 0.1184 0.0724 0.0846
ProteInfer 0.4088 0.2843 0.3086 0.2434 0.1382 0.1662
DeepECtransformer 0.4268 0.3260 0.3350 0.5263 0.3026 0.3511
BLASTp - - - 0.5083 0.3750 0.3852
CLEAN 0.5965 0.4811 0.4988 0.5844 0.4671 0.4947
ProtDETR 0.5943 0.6083 0.5773 0.5773 0.5066 0.5078

More uniquely, ProtDETR also provides function-specific insight via the decoder cross-attention.
For each query qEC and residue i, we similarly aggregate cross-attention weights from the final
decoder layer:

QueryAttn(qEC, i) =

H∑
h=1

DecAttnh(qEC, i),

where DecAttnh(qEC, i) represents the cross-attention weight from query qEC to residue i under
head h. This reveals where each individual function query focuses in the sequence (Appendix
Fig. 7(B)). As multifunctional enzymes typically have distinct sites for different activities, these
query-specific attention maps provide deeper insight into the roles of particular residues in enabling
diverse enzyme functions. These two interpretability methods are further explained in Appendix
Figure 7.

3 EXPERITMENT

We evaluated ProtDETR’s performance on both multifunctional and monofunctional enzyme bench-
marks, demonstrating its superior effectiveness and interpretability. More model implementation
details, including model architecture and hyperparameter selection, can be found in Appendix A.

3.1 PROTDETR ENABLES PRECISE MULTIFUNCTIONAL ENZYME CLASSIFICATION

We followed CLEAN’s (Yu et al., 2023) experimental setup, training ProtDETR on the split100
dataset (220K instances from SwissProt) and evaluating on two benchmarks: New-392 (392 newly
identified sequences) and Price-149 (experimentally verified annotations). Detailed data descriptions
are provided in Appendix B.

Figure 2: Performances in five-fold
cross-validation.

Before evaluating our model on test sets, we aligned
with the benchmarking approach of CLEAN, using MM-
Seqs2(Steinegger & Söding, 2017) to group data by se-
quence similarity, with thresholds from 10% to 70%. This
led to the creation of datasets: split10, split30, split50,
split70, and split100, where split100 represents the orig-
inal, full dataset. We split each dataset with a ratio of
4:1 for training and testing, respectively, and conducted
five-fold cross-validation. The average F1 score across
these folds is reported. As shown in Fig 2, ProtDETR’s
F1 scores are initially lower than CLEAN’s at the lower
similarity levels (split10 and split30), equal at split50, and
surpass CLEAN at the higher levels, with notable scores
of 0.9332 versus 0.9163 for split70 and 0.9686 versus
0.9534 for split100. This improvement on larger datasets highlights the advantage of deep learning’s
data-driven nature, where ProtDETR’s fine-grained modeling benefits from more data to enhance its
prediction accuracy.

5



Published as a conference paper at ICLR 2025

Figure 3: (A) Comparison of average EC number frequencies in the training set as predicted by
ProtDETR, CLEAN, and observed in the actual test sets, demonstrating ProtDETR’s predictions to
more closely align with the true data distribution than those by CLEAN. (B-D) Across various EC
occurrence frequencies, ProtDETR demonstrates comparable precision to CLEAN but significantly
superior recall for more frequent EC numbers, enhancing its F1 scores.

Following the hyperparameter optimization process as CLEAN, we adjusted the model’s hyper-
parameters during the five-fold cross-validation on the split100 dataset. Once we determined a
relatively suitable set of hyperparameters for training, we trained our model on the entire split100
dataset for a fixed number of epochs, in line with CLEAN’s approach. We obtained ProtDETRsplit100
for multifunctional enzyme annotation. We conducted comparisons of our model against the cur-
rent SOTA methods on the test set, including CLEAN (Yu et al., 2023), DeepECtransformer (Kim
et al., 2023), ProtInfer (Sanderson et al., 2023), DeepEC (Ryu et al., 2019), BLASTp, DEEPre (Li
et al., 2018), and ECPred (Dalkiran et al., 2018). We evaluated our model using the same metrics as
CLEAN, specifically weighted average precision, recall, and F1 score. These metrics helped assess
our model’s performance in multi-label classification challenges, especially in long-tail scenarios.
As shown in Table 1 for the New-392 dataset, our model achieved a precision of 0.5943, comparable
to the SOTA performance 0.5965 set by CLEAN, while our recall of 0.6083 was 25% higher than
CLEAN’s recall of 0.4811. This achievement emphasized our model’s capacity for accurately an-
notating enzymes with potentially undiscovered functions (Poirson et al., 2024). The DeepECtrans-
former, which also models features at the residue level like ours, performed worse in comparison
to ProtDETR and CLEAN. Results for the Price-149 dataset, depicted in Table 1, mirrored those
for New-392, with our model matching CLEAN in precision but showing a notably higher recall of
0.5066 compared to CLEAN’s 0.4671. These findings underlined the effectiveness of our approach
as a tool for the annotation of multifunctional enzymes.

For a deeper analysis of the prediction outcomes, we calculated the average occurrences within the
training set of EC numbers predicted by CLEAN, predicted by ProtDETR, and actually present in
the test sets. As shown in Figure 3(A)), CLEAN’s predictions typically fall below the true average
occurrences observed in the test sets. In contrast, while ProtDETR’s predictions slightly exceed the
actual averages, they align more closely. Specifically, on the New-392 dataset, CLEAN’s prediction
for the average frequency was 89.40, whereas ProtDETR’s was closer to reality at 119.41, with the
actual frequency being 110.63. For the PRICE-149 dataset, the average frequencies predicted by
CLEAN and ProtDETR were 14.69 and 34.75, respectively, against an actual frequency of 28.81.

To further explore the models’ performance across various occurrence ranges, we combined the
New-392 and Price-149 datasets to create a mixed dataset. We then divided the EC numbers from
this dataset into several groups based on their occurrences within the split100 dataset: 0-5, 5-10, 10-
50, 50-100, and over 100. Figure 3 ((B), (C), and (D)) illustrate the precision, recall, and F1 scores
for both ProtDETR and CLEAN. Our results indicated that ProtDETR’s precision is comparable
to that of CLEAN across all examined occurrence intervals. Notably, ProtDETR’s recall signif-
icantly outperformed CLEAN’s in identifying EC numbers occurring more than 10 times. This
improvement was also reflected in the F1 scores, underscoring ProtDETR’s enhanced ability in han-
dling higher-occurrence, head classes without compromising performance on lower-occurrence, tail
classes.

3.2 PROTDETR IS ALSO EFFECTIVE AT MONOFUNCTIONAL ENZYME PREDICTION

Analysis of the data distribution reveals that enzyme function prediction, though framed as a multi-
label task, predominantly involves single-labeled samples. As shown in Appendix Figure 6(A),
within the split100 dataset, 215,439 out of nearly 220,000 enzymes possess a single EC annotation,
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Table 2: Comparative performance on monofunctional enzyme prediction across different EC levels.
Model Level F1 Precision Recall Accuracy Classes
ECPred 0 0.769 0.784 0.781 0.769 2
EnzBert 0 0.837 0.874 0.831 0.845 2
ProtDETR 0 0.873 0.877 0.871 0.875 2

ECPred 1 0.728 0.691 0.841 0.824 6
EnzBert 1 0.604 0.784 0.582 0.813 6
ProtDETR 1 0.731 0.780 0.716 0.882 6

ECPred 2 0.492 0.468 0.579 0.759 51
EnzBert 2 0.629 0.676 0.672 0.781 51
ProtDETR 2 0.672 0.694 0.707 0.848 51

ECPred 3 0.496 0.491 0.549 0.727 132
EnzBert 3 0.609 0.625 0.652 0.749 132
ProtDETR 3 0.644 0.657 0.666 0.816 132

ECPred 4 0.407 0.431 0.412 0.636 634
EnzBert 4 0.552 0.576 0.562 0.687 634
ProtDETR 4 0.576 0.601 0.589 0.719 634

with only 30 enzymes having more than six functions. Similarly, in the combined New-392 and
Price-149 datasets (Appendix Figure 6 (B)), 480 out of 569 enzymes are monofunctional.

Given this prevalence of monofunctional enzymes, effective single-function prediction capability is
crucial for addressing the enzyme function prediction challenge. While ProtDETR was originally
designed for multifunctional annotation with 10 functional queries, we adapted it for monofunctional
prediction by simply adjusting the number of queries to 1, while maintaining other hyperparameters
consistent with ProtDETRsplit100.

A detailed comparative analysis was conducted utilizing the ECPred40 dataset, which consists of a
curated collection of monofunctional enzymes and some non-enzymes, assembled by EnzBert (Bu-
ton et al., 2023) based on the original dataset introduced by ECPred (Dalkiran et al., 2018). Two
evaluations were carried out. The first evaluation was dedicated to distinguishing between enzyme
and non-enzyme classifications. In the second evaluation, we focused exclusively on the enzymes
present in the testing set, assessing the accuracy of predictions across the first to fourth EC levels.
These two types of evaluations are referred to as level 0 and levels 1-4, respectively. The metrics
used are macro F1, precision, recall, and accuracy, following EnzBert. We trained on the training
set pre-divided by EnzBert (Buton et al., 2023) and selected the model with the best F1 score on the
validation set for testing on the ECPred40 test set. The results are shown in Table 2, where level 0
refers to distinguishing between enzymes and non-enzymes.

Remarkably, ProtDETR’s performance surpassed that of EnzBert and ECPred across almost all EC
levels and metrics, as illustrated in Table 2, except for a comparable precision to EnzBert at Level
1 (0.780 vs 0.784) and a lower recall compared to ECPred at the same level (0.716 vs 0.841).
Despite these specific instances, ProtDETR consistently outperformed the benchmarks, averaging an
improvement of approximately 0.03 points over the nearest competitor. This signified ProtDETR’s
precision in not just identifying proteins as enzymes but also in its granular prediction capabilities
across both broad and detailed EC categorizations.

3.3 EXPLORING PREDICTION INTERPRETABILITY WITH PROTDETR

Efforts by recent deep learning models (Sanderson et al., 2023; Buton et al., 2023; Kim et al., 2023)
have shown potential in identifying catalytic sites during enzyme function prediction. However,
these methods often provided broad, averaged insights rather than precise interpretability. Subsec-
tion 2.6 demonstrates how ProtDETR achieves fine-grained interpretability through both its encoder
and decoder architecture. The decoder’s cross-attention mechanism enables EC number-specific in-
terpretations, allowing identification of functional sites associated with particular enzyme functions.
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Figure 4: Visualization of ProtDETR’s interpretability. (A) Monofunctional enzyme C3MW73
showing encoder-query complementarity. (B) Multifunctional enzyme O13848 demonstrating EC-
specific attention patterns.

Benchmarking with the M-CSA Database We first quantitatively evaluated our interpretability
capabilities on the M-CSA benchmark, with details provided in Appendix D.

Case Study and Visualization. To complement our M-CSA benchmark quantitative analysis, we
conducted case studies on multifunctional enzymes from UniProt. Figure 4 (A) and (B) visualize
our findings, where sequence importance is shown with the top 5% critical residues in red, and
active sites are marked by asterisks and blue spheres in 3D structures. Figure 4 (A) illustrates
ProtDETR’s attention scores for Uniprot ID C3MW73, associated with EC number 4.1.1.50 and
active sites at residues 69, 74, and 89. The left panel showcases the encoder’s focus, particularly
on active sites 64 and 79, while the right panel highlights query 3’s attention, accurately predicting
the enzyme’s function with an emphasis on active site 89. This case underscores the collaborative
identification of all pertinent active sites by both the encoder and the query that makes the accurate
prediction. Figure 4 (B) examines Uniprot ID O13848, a multifunctional enzyme linked to EC
numbers 1.1.1.190 and 1.1.1.191, with active sites at 54 and 109. The left panel reveals query 2’s
attention, correctly inferring EC 1.1.1.190 with a focus on active site 109, whereas the right panel
shows the attention of query 6, predicting EC 1.1.1.191 and concentrating on the 54. Different
queries have predicted their respective correct enzymatic functions, and these two queries focus on
different active sites, suggesting that ProtDETR may possess EC-number specific interpretability.

4 CONCLUSION

This study presents ProtDETR, a novel detection-based framework. By treating enzyme function
prediction as a detection problem, ProtDETR not only surpasses existing methods in performance
but also provides EC number-specific interpretability through its unique approach. This method-
ological innovation demonstrates the potential of detection frameworks in computational biology
and opens new avenues for understanding enzymatic processes, contributing significantly to the
broader field of enzyme research.
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MEANINGFULNESS STATEMENT

Enzymes are fundamental molecular machines that drive virtually all biological processes in living
systems. Understanding their functions is crucial for comprehending life itself. Our work con-
tributes to meaningful representation of life by developing an interpretable way to predict enzyme
functions from their sequences. Unlike black-box approaches, ProtDETR provides insights into how
specific protein regions contribute to different biological functions, mirroring nature’s modular de-
sign principles. This interpretability helps bridge the gap between sequence and function, advancing
our understanding of life’s molecular machinery in a mechanistically meaningful way.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4190–4197, 2020.

N Acids research. Uniprot: the universal protein knowledgebase in 2021. Nucleic acids research,
49:D480–D489, 2021.

SF Altschul, W Gish, W Miller, and EW Myers. Lipman. dj (1990) j. Mol. Biol, 215:403–410.

Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang, Webb
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A HYPERPARAMETER SELECTION STRATEGY

The hyperparameter configurations for our model were primarily influenced by the guidelines pro-
posed in DETR Carion et al. (2020), tailored to meet the specific demands of our enzyme function
prediction task. DETR originally suggested using 6 encoder layers, 6 decoder layers, and 8 atten-
tion heads, with a inference threshold set at 0.7. Given the flexibility of adjusting thresholds during
the testing phase, our initial focus was on fine-tuning the encoder and decoder layers as well as the
number of attention heads. We evaluated three different configurations: (3, 3, 4) and (6, 6, 8) – the
standard DETR setup.

Our assessments demonstrated that models with fewer parameters generally outperformed their more
complex counterparts, likely due to the prolonged training epochs required for larger models to
achieve convergence. Comparative results on split100’s 5-fold cross-validation for the configura-
tions (3, 3, 4) and (6, 6, 8) are presented in Table 3 and Table 4, respectively. We conducted a total
of one hundred training epochs on our model. It is evident that the configuration (3, 3, 6) consis-
tently outperformed (6, 6, 8) across all epochs and inference thresholds, also requiring fewer epochs
to converge while using fewer parameters. Consequently, we have adopted the (3, 3, 4) configuration
for our final hyperparameter settings in the task of multifunctional enzyme annotation.

Table 3: F1 scores for configuration (3,3,6) across different inference thresholds and epochs
Infer Threshold 20 Epochs 50 Epochs 100 Epochs

0.5 0.9486 0.9543 0.9571
0.7 0.9551 0.9577 0.9606
0.9 0.9617 0.9623 0.9645
0.99 0.9600 0.9678 0.9686

Table 4: F1 scores for configuration (6,6,8) across different inference thresholds and epochs
Infer Threshold 20 Epochs 50 Epochs 100 Epochs

0.5 0.9331 0.9225 0.9629
0.7 0.9296 0.9198 0.9576
0.9 0.9296 0.9197 0.9505
0.99 0.9296 0.9197 0.9387

Table 5: Configurations of Model HyperParameters for Different Training Sets
ProtDETRsplit100 ProtDETRECPred40

Encoder Layer 3 3
Decoder Layer 3 3
Num heads 4 4
Number of Queries 10 1
Hidden dim 256 256
FFN DIM 2048 2048
Dropout 0.1 0.1
Learning Rate 1e-4 1e-4

This training culminated in the deployment of our ProtDETRsplit100 on the complete split100 dataset.
We adopted a fixed epoch strategy similar to that used in CLEAN Yu et al. (2023), which trained on
the full split100 dataset for 7000 epochs. However, we limited our training to 50 epochs dedicated to
multifunctional prediction. This decision was based on the observation that, by the 50th epoch, our
model’s performance in five-fold cross-validation on the split100 dataset had already significantly
surpassed that of CLEAN, with no substantial gains from additional training.

A pivotal adjustment was made to the Number of Queries parameter, predicated on our analytical
insight. Given DETR’s framework, where an image is unlikely to host more than 70 objects, thus
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setting 100 queries, we reasoned that an enzyme with up to 7 or 8 functions warrants 10 queries
by analogy. This foundational setting was preserved in ProtDETRsplit100. For ProtDETRECPred40,
tailored to monofunctional enzyme prediction, we adjusted the query count to one, reflecting the
task’s monofunctional focus. Due to the smaller dataset size of ECPred40, we trained the model
for a total of 20 epochs. During the validation phase of ProtDETRECPred40, peak performance was
observed at the 17th epoch, which guided our decision to finalize the model at this stage.

Table 5 delineates the specific hyperparameters employed for each model version, detailing our
tailored approach to enzyme function prediction across different training sets.

B DETAILS OF MULTIFUNCTIONAL ENZYME CLASSIFICATION DATASET

Figure 5: (A) A Venn diagram illustrates the overlap of EC numbers between the training and test
sets, highlighting shared and unique annotations. (B) The frequency of EC numbers in the New-392
and Price-149 test sets reveals a long-tailed distribution, with New-392 encompassing a wider array
of head classes.

To evaluate the prediction capabilities of ProtDETR for multifunctional enzymes, we adopted the
experimental setting used by CLEAN Yu et al. (2023). Specifically, ProtDETR was trained on the
split100 dataset, which is composed of about 220K instances from the expert-reviewed SwissProt
section of the UniProt database Acids research (2021). Each instance is labeled with one or more
EC numbers. The model’s performance was tested using two benchmarks: New-392 and Price-149.
The New-392 dataset includes 392 enzyme sequences corresponding to 177 unique EC numbers,
extracted from the SwissProt version released after CLEAN’s training in April 2022. This dataset
simulates a realistic scenario by training the model on historical SwissProt data and then predicting
the functions of newly identified sequences. The Price-149 dataset, curated by ProteInfer Sanderson
et al. (2023), contains experimentally verified annotations and poses a challenge due to inconsisten-
cies or errors in annotations by other automatic annotation methods, such as those found in KEGG
Kanehisa & Goto (2000).

The relationship between EC numbers in both the training and test sets is depicted in Figure 5(A),
showing that each test set has a low overlap with the training set. Additionally, New-392 and Price-
149 share only five common EC numbers, suggesting these datasets effectively test the model’s
ability to predict across a diverse range of EC numbers. Figure 5(B)illustrates the EC numbers
appearing in the test sets, with the vertical axis indicating their frequency of occurrence in the
training set. Each test set contains a mix of both highly frequent (head) categories, defined as EC
numbers observed more than a hundred times in the training set, and infrequent (tail) categories, for
example, those seen only once. Notably, only New-392 includes instances of extremely frequent
categories, with occurrences exceeding a thousand times.

C MORE INTUITION FOR MONOFUNCTIONAL ENZYME PREDICTION

Analysis of the data distribution reveals a clear pattern in enzyme functionality. As shown in Figure 6
(A), in the split100 training dataset, the vast majority (215,439 out of 220,000) of enzymes are
annotated with exactly one EC number. Only a small fraction has multiple functions, with 10,583
having two EC numbers and merely 30 enzymes having more than six functions.
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This strong bias towards monofunctional enzymes is also evident in our test sets. Figure 6 (B) shows
that in the combined New-392 and Price-149 datasets, 480 out of 541 enzymes are monofunctional,
with only 61 enzymes having multiple functions. This consistent pattern underscores the importance
of accurate single-function prediction in enzyme annotation tasks.

Figure 6: (A) The distribution of EC numbers per enzyme in the split100 dataset indicates that a
large majority of enzymes are annotated with a single EC number. (B) Statistics from the combined
test sets of New-392 and Price-149 highlight the prevalence of monofunctional enzymes.

D MORE INTERPRETABILITY EXPERIMENTS

Figure 7: Interpretability Capabilities of ProtDETR: (A) The encoder employs ”Attn Agg” to
assess the average attention each residue receives within the self-attention mechanism, highlighting
general areas of interest. (B) ”Query Attn” is utilized, where the decoder employs cross-attention
from each query to a residue, calculating unique focus levels of each query on different sites, pro-
viding EC number-specific interpretations.

In a quantitative comparison, our study benchmarked ProtDETR against EnzBert, selected due to the
lack of quantitative interpretability experiments from DeepECtransformer. We utilized the M-CSA
(Mechanism and Catalytic Site Atlas) database (Ribeiro et al., 2018). This database documented 992
enzymes and their active sites. We applied PRG-AUC and maximum F-Gain score (Max F-Gain)
metrics (Flach & Kull, 2015), aiming to showcase our model’s precision in highlighting enzymatic
functionalities and its ability to pinpoint catalytically significant residues. In simple terms, our
model assigned an importance score to each residue, representing the probability of each residue
being predicted as an active site. These scores were then compared with the actual labels of active
sites to calculate performance metrics.

Table 6 showcases the interpretability comparison between ProtDETR and EnzBert, with a base-
line established by randomizing token importance scores to evaluate effectiveness beyond random
chance. EnzBert utilized a variety of interpretability methods, including neural network gradient-

14



Published as a conference paper at ICLR 2025

Table 6: Quantitative assessment of enzyme active site recognition capabilities on the M-CSA
dataset benchmark.
Backbone Method Type PRG-AUC (×100) Max F-Gain (%)

Random - 42.54± 4.37 69.85± 1.04

EnzBert SwissProt21

Grad 75.01 81.27
Grad × Input 63.62 78.66
Integrated Grad 76.41 81.70
Attn Last Layer 87.80 85.62
Rollout 66.08 76.77
TGLRP 90.92 88.56
TGradCam 81.00 82.77
Attn Agg 98.02 96.05

ProtDETR SwissProt21 Attn Agg 96.50 94.54

ProtDETR split100 Attn Agg 89.17 88.28
Query Attn 83.08 82.30

based techniques (such as Grad, Grad X Input, Integrated Grad (Sundararajan et al., 2017), TGrad-
Cam (Chefer et al., 2021)) and attention mapping approaches (like Rollout (Abnar & Zuidema,
2020), TGLRP (Chefer et al., 2021)). Specifically, Attn Last Layer refers to analyzing attention
from the last layer of the Transformer Encoder, whereas Attn Agg involves averaging attention anal-
ysis across all layers of the Transformer Encoder. EnzBert’s evaluation found that Attn Agg was the
most effective method.

To ensure a fair comparison, ProtDETRSwissProt21 was developed using the SwissProt21 dataset,
the same dataset that EnzBert used for this task. This dataset contained approximately 500K pro-
tein sequences, including both enzymes and non-enzymes. Similarly, since this dataset comprised
only monofunctional enzymes, we restricted the model to a single functional query. We adopted
the Attn Agg method (shown in Figure 7(A)) for active sites scoring. As shown in Table 6,
ProtDETRSwissProt21 yielded a PRG-AUC(X 100) of 96.50 and a Max F-Gain of 94.54%, indicat-
ing that the interpretability of our model’s encoder closely matched that of EnzBert. Furthermore,
this significantly surpassed the performance of random guessing for active site prediction.

To investigate the interpretability capabilities of ProtDETR’s decoder, we evaluated ProtDETRsplit100
focusing on its process for classifying multifunctional enzymes. We employed a Query Attn mech-
anism (shown in Figure 7(A)), which allocated importance scores based on each query’s cross-
attention scores to discern residue significance. However, given that the M-CSA dataset comprised
monofunctional enzymes, we opted to consider only the query with the highest confidence in EC
number prediction among all queries, presuming this query most likely reflected the correct predic-
tion. Averaging attention across all queries significantly diminished performance, as most queries
did not predict an EC number. Despite being trained on a dataset notably smaller than EnzBert’s
SwissProt21, ProtDETRsplit100 exhibited commendable interpretability. It outperformed EnzBert’s
interpretative techniques in 6 out of 8 cases with the Attn Agg method and in 3 out of 8 with Query
Attn. This indicated the decoder of ProtDETR also had the capability of localizing active sites.

E ADDRESSING THE LONG-TAILED CHALLENGE

The long-tailed distribution of enzyme classes in training data presents a significant challenge in
multifunctional enzyme annotation, as depicted in Figure 8. Each EC number level exhibits a
pronounced long-tailed distribution. Additionally, non-enzymatic instances significantly outnum-
ber specific enzyme classes, exacerbating the class imbalance. In machine learning, such long-tail
distributions typically result in significant performance degradation, as models tend to favor the
more frequent classes at the expense of rare classes. To address this issue, we explore three distinct
strategies to mitigate the effects of class imbalance and enhance the model’s performance across all
classes.
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Figure 8: Long-tailed distribution in the split100 dataset, observable across all four hierarchi-
cal levels of EC numbers. This widespread pattern underscores the significant challenge of class
imbalance in enzyme function prediction.

Baseline Adjustment (BA): Following DETR, we apply a constant weight to non-enzyme classes
within our loss function to mitigate their predominance due to high occurrence rates. However,
this method does not directly address the imbalance within enzyme classes. The weight w is a
hyperparameter, set to 0.1 based on DETR guidelines.

LBA = −
N∑
i=1

(
w · ⊮{Yi=∅} + ⊮{Yi ̸=∅}

)
· log(p̂i) (1)

Inverse Frequency Reweighting (IFR): This method corrects class imbalance by adjusting weights
inversely proportional to class frequencies, thus enhancing the influence of rarer classes. The weight
for each class wc is set inversely proportional to its frequency in the training dataset, enhancing the
model’s attention to rarer classes.

LIFR = −
N∑
i=1

1

freq(ci)
· log(p̂i) (2)

Logit Adjustment (LA): Logit Adjustment is a straightforward yet effective technique commonly
employed in long-tail image classification tasks to enhance model performance across diversely
distributed classes Menon et al. (2020). By adding the logarithm of class frequencies to the logits,
this method increases the difficulty of learning for high-frequency classes, aiming to balance the
training across different class distributions. This logit modification forces the model to pay more
attention to less frequent classes, potentially reducing the dominance of frequent classes in the loss
function:

adjusted logits = logits + log(freq(ci)) (3)
After adjusting the logits, the standard cross-entropy loss is applied.

We conducted experiments using the naive cross-entropy method (CE). We evaluated these methods
on a 4:1 cross-validation using the split70 dataset, with performance based on the F1 score, as shown
in Table 7. The CE and BA methods proved to be the least effective, with F1 scores of only 0.8903
and 0.8901, respectively. This is likely because these methods did not account for the long-tailed
distribution of different classes, leading to poor results. Conversely, the IFR approach outperformed
the others with an F1 score of 0.9332 and was thus adopted. The third methodology, LA, while effec-
tive in long-tailed image classification tasks, was less effective in our context, yielding an F1 score
of 0.9242. We speculate that datasets tailored for long-tailed image classification, often engineered
with standardized declining power-law frequencies, might be ill-suited for the multifunctional en-
zyme classification task. This highlights the need for novel long-tail handling strategies, a promising
avenue for future research.

F RELATED WORK

Enzyme Function Prediction. Traditional methods for enzyme function prediction are categorized
into three main approaches: sequence-based (Altschul et al.; 1997), homology-based (Steinegger
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Table 7: Performance comparison of the proposed methods for solving the long-tailed distribution
based on F1 score.

Method F1 Score

CE 0.8903
BA 0.8901
IFR 0.9332
LA 0.9242

et al., 2019), and structure-based (Zhang et al., 2017). While each method has its merits, chal-
lenges in obtaining accurate homology information and enzyme structures make sequence-based
predictions particularly appealing. Classical sequence-based methods, such as BLASTp (Altschul
et al., 1997; Stephen, 1990), predominantly derive function annotations based on sequence simi-
larity. However, these methods can yield unreliable predictions when sequence similarity is low.
Moreover, traditional methods often suffer from slow processing speeds and suboptimal accuracy,
particularly in the context of large and diverse enzyme datasets. This has driven the need for more
efficient and accurate computational strategies in enzyme function prediction.

With advancements in the deep learning community, several innovative methods have emerged for
enzyme function prediction. For instance, DeepEC (Ryu et al., 2019) and ProteInfer (Sanderson
et al., 2023) utilize convolutional neural networks (CNNs) for this task. However, their performance
is hampered by CNNs’ inherent limitations in capturing long-range dependencies within protein se-
quences. More recent innovations, such as DeepECtransformer (Kim et al., 2023) and EnzBert (Bu-
ton et al., 2023), employ Transformer Encoders to achieve residue-level granularity and offer a
degree of interpretability through attention mechanisms. Despite these advancements, their straight-
forward approach of managing thousands of binary classifications for different enzymes struggles
with the pronounced long-tail distribution of enzyme functions. The recent method CLEAN (Yu
et al., 2023) represents the SOTA, applying supervised contrastive learning (Khosla et al., 2020) to
global features extracted from ESM-1b (Rives et al., 2021). This method has shown notable im-
provements, especially in recognizing enzymes from tail classes. However, it only models global
representations coarsely and lacks detailed interpretability. Similarly, the recent GRU-based (Chung
et al., 2014) method HDMLF (Shi et al., 2023) also models using global features derived from
ESM-1b, encountering similar limitations in terms of coarse representation and lack of detailed
interpretability.

Our proposed ProtDETR innovatively transforms the multi-label classification challenge into an
object detection task. This approach not only effectively addresses the issues inherent in sparse
multi-label classification but also significantly enhances the model’s granularity and interpretability,
marking a paradigm shift in how enzyme functions are predicted.

Detection Transformer. Object detection has long been a fundamental task in computer vision,
traditionally characterized by complex, multi-stage pipelines (Ren et al., 2015; Chen et al., 2018;
Lin et al., 2018; Fan et al., 2021). The introduction of DETR (Carion et al., 2020) brought about
a paradigm shift with its end-to-end Transformer Encoder-decoder architecture, which simplified
the detection pipeline and achieved remarkable results. Following DETR’s innovations, subsequent
works (Dai et al., 2021b;a; Jia et al., 2023; Zhang et al., 2022) have proposed various improvements
to enhance its efficiency and accuracy. Given the structural similarities between multi-functional
enzyme prediction and object detection — where the total number of EC numbers mirrors the ex-
tensive pool of potential bounding boxes in an image, but the actual enzyme functions resemble
the sparse bounding boxes found in most images — we adapt the DETR framework to address the
inherent challenges of sparse multi-label classification in enzyme function prediction.

Our initial inspiration came from the multi-label image classification task approach in
query2label (Liu et al., 2021), where each class is represented by a unique, learnable query to-
ken, termed class queries, facilitating fine-grained multi-label classification through cross-attention
between image patches and class queries. Due to the extensive domain of enzyme functions, di-
rectly applying this method to multi-functional enzyme prediction is not feasible because of the
prohibitive computational demands and the quadratic complexity involved in attention calculations
for lengthy enzyme sequences. Therefore, we adopted an approach analogous to DETR, modifying
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it by replacing a large number of class queries with a manageable number of function queries. This
adaptation not only reduces computational complexity but also ensures detailed and interpretable
modeling suitable for the sparse nature of enzyme functions, thus mirroring the fine-grained task-
specific adjustments seen in object detection frameworks.

G DETECTION VS. MULTI-LABEL CLASSIFICATION

The impetus for integrating a detection-oriented methodology within ProtDETR for the annotation
of multifunctional enzymes stems from the complex nature of enzyme function prediction, espe-
cially when addressing enzymes with multiple functionalities. Inspired by the DETR framework
from computer vision, ProtDETR adopts object detection principles to surpass the constraints of
conventional methods.

Traditional techniques for enzyme function prediction frequently falter in sparse multi-label learning
scenarios. ProtDETR addresses this challenge by re-envisioning the prediction of enzyme functions
as a detection task, employing an array of learnable functional query tokens to bolster classification
accuracy.

In departure from the class queries of standard multi-label classification (Kim et al., 2023; Shi et al.,
2023), ProtDETR utilizes functional queries, each uniquely crafted to discern a specific enzymatic
function. This approach not only alleviates computational burdens but also enhances the inter-
pretability of the model. ProtDETR prioritizes enzyme functions pertinent to a given protein se-
quence, thereby improving prediction efficiency and enabling a more precise EC number-specific
analysis, which enriches our comprehension of enzyme functions.

The DeepECtransformer, a recent approach (Kim et al., 2023), employs a traditional multi-
classification framework, where a single protein descriptor informs multiple binary classifiers.
Its efficacy, however, was found wanting on the NEW-392 and PRICE-149 benchmarks set by
CLEAN (Yu et al., 2023), especially due to its non-use of ESM-1b embeddings (Rives et al., 2021).
To discern if the multi-classification enhancements credited to CLEAN are linked to the ESM-1b
embeddings, we restructured our codebase to a conventional multi-classification layout. In this
version, named Protein Multifunctional Enzyme Classification (ProtMC), we removed the decoder
from ProtDETR and instead trained a multitude of binary classifiers, each representing an EC num-
ber, with the encoder’s averaged feature outputs. The focal loss technique was applied to counter
the long-tail skew of binary classification (Lin et al., 2017). The comparative performance results
for ProtMC are shown in Table 8.

The ProtMC variant’s performance lagged significantly on both benchmarks, an outcome attributable
to the onerous task of training 5200 independent binary classifiers, as necessitated by the split100
category’s pronounced long-tail distribution. The abundance of classes engendered data scarcity for
numerous classifiers, thus impeding the model’s capacity to forge potent decision boundaries.

Table 8: Comparative results of Detection (ProtDETR) vs. Multi-Label Classification (MLC) on the
NEW-392 and PRICE-149 benchmarks.

Method NEW-392 PRICE-149
Precision Recall F1 Score Precision Recall F1 Score

ProtDETR (Detection) 0.5943 0.6083 0.5773 0.5773 0.5066 0.5078
ProtMC (MLC) 0.4596 0.4414 0.4316 0.3307 0.3224 0.3133
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