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Abstract

The increasing demand for long-context generation has made the KV cache in large
language models a bottleneck in memory consumption. Quantizing the cache to
lower bit widths is an effective way to reduce memory costs; however, previous
methods struggle with key cache quantization due to outliers, resulting in subopti-
mal performance. We propose a novel quantization approach PolarQuant, which
provides a new perspective for key cache quantization and efficiently addresses
the outlier dilemma. We observe that the distribution of the key states reveals
well-structured patterns under polar transformation. Outliers generally appear in
only one of the two dimensions, which are rotated together by a specific angle when
rotary position embeddings are applied. When represented as two-dimensional
vectors, these dimensions exhibit well-organized patterns, with radii and angles
smoothly distributed in polar space. This alleviates the channel-wise outliers, mak-
ing them well-suited for key cache quantization. PolarQuant divides key vectors
into groups of two-dimensional sub-vectors, encoding them as the quantized radius
and the polar angle, rather than quantizing original key vectors directly. Polar-
Quant achieves the superior efficiency in KV cache quantization and accelerates
the decoding process by turning the query-key inner product into a table lookup,
all while maintaining the downstream performance of full-precision models. Our
code is available at https://github.com/ericshwu/PolarQuant.

1 Introduction

Large language models (LLMs) have achieved remarkable success across a wide range of real-
world applications. As these models evolve, the demand for enhanced long-context capabilities also
increases, especially in tasks like contextual retrieval in question answering [[17] and reasoning chains
generation for complex reflection and decision-making [21} 20]. However, a significant challenge in
developing long-context LLM:s is the rising memory cost associated with increasing context lengths,
which hinders both their practical deployment and further research.

The attention mechanism [4] in LLMﬁs a major source of computational overhead and memory
consumption, which increase rapidly with context length. To reduce this cost, Key-Value cache (KV
cache) is a common strategy, which stores and reuses keys and values for generation to avoid the
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Figure 1: (a) Illustration of the activation distribution for the key cache, exemplified by Llama 3.1-
8B-Instruct (Layer 0, Head 0). The key cache exhibits channel-wise outliers, where the magnitudes of
a few channels significantly larger than others across tokens. We observe that these outliers generally
appear in only one of the two dimensions rotated together by RoPE. (b) When viewing these two
dimensions in a two-dimensional plane, although the individual x- or y-axis may contain outliers,
they collectively form stable circular patterns, making quantization of the original outliers easier.
Each blue dot represents a mapped two-dimensional vector, with transparency indicating frequency.
(c) PolarQuant using » = 2 bits to quantize radii and ¢ = 3 bits to quantize polar angles. The colorful
arrows indicate sub-vectors formed by pairs of dimensions in the keys; the quantized results are
shown with colorful dashed arrows. The quantization error is represented by the grey dashed arrow.

redundant computation. Nevertheless, as the context length increase, the memory required for KV
cache can surpass that of the model weights, making it the dominant factor in overall memory usage.

Many solutions have been proposed to reduce the memory cost of KV cache. Some studies introduce
memory-efficient attention modules, such as MQA [25]], GQA [2]] and MLA [9]]. While promising,
these module architectures require training LLMs from scratch, which limits their applicability.
Another research line focuses on the reduction of KV cache size in a compatible manner with pre-
trained LLMs. This includes techniques like KV cache eviction [7} [15} 136], which identifies and
drops unimportant tokens from the cache , and KV cache quantization [12H14,[19}[37].

This paper focuses on the key cache quantization, which converts the floating-point key cache into low-
bit integers to reduce memory usage. In general, key cache quantization is more challenging than value
cache due to the presence of channel-wise distributed outliers. Prior studies [[13}[19] have highlighted
the widespread existence of such outliers in key cache. As shown in Figure [[(a), the key states
exhibit larger activations along certain channel dimensions, making token-wise quantization difficult.
To address this issue, KIVI [19] proposes a channel-wise quantization strategy that groups and
quantizes key elements along the channel dimensions. Building upon this perspective, KVQuant [13]
further identifies RoPE as the primary source responsible of the outliers observed in the key cache.
The rotation operations in RoPE disturb the magnitude consistency, making accurate quantization
complicated. To mitigate this, KVQuant proposes quantizing the keys before applying RoPE, which
is described as pre-RoPE quantization. Promising as it is, this approach requires on-the-fly RoPE
computation, which consequently introduces potential computational overhead. In this work, we aim
to preserve the benefits of pre-RoPE quantization in reducing approximation errors while eliminating
redundant computations at each generation step. We propose a polar transformation perspective on
handling outliers in the key cache, and effectively address the dilemma in 2D polar coordinates.

KVQuant [[13]] observes a clear and structured pattern in pre-RoPE key activations: channel-wise
magnitude are highly consistent. Recall that RoPE operates a rotation to every two-dimensional

3In this paper, we focus on decoder-only Transformer-based [29] LLMs using rotary position embedding
(RoPE, 26)), which are the predominant implementation of advanced LLMs.



sub-vector within the key using an orthogonal 2 x 2 rotary matricesE] Since rotation is a magnitude-
preserving transformation, these 2D sub-vectors inherit the magnitude characteristics seen in the
pre-RoPE case. As shown in Figure[T[b), they form well-structured circular patterns when analyzed
in 2D polar coordinates. By encoding each sub-vector as its corresponding radius p and polar
angle 6, the entire key vector can be represented as a collection of all radii and angles. This
transformation effectively mitigates outliers, as both the radii and polar angles become smoothly
distributed. Building on this, we propose a novel quantization method, PolarQuant, which significantly
simplifies the quantization of the key cache. PolarQuant reduces the problem of quantizing key
vectors to asymmetrically quantizing p and 6 into an r-bit and an ¢-bit integer. Intuitively, PolarQuant
defines 271 distinct regions based on 2" angles and 2 radii. Each sub-vector is then encoded by the
index of the region it belongs to. Figure[I|c) illustrates PolarQuant for » = 2 and ¢ = 3.

PolarQuant achieves superior quantization effectiveness and efficiency over previous methods.
On one hand, polar transformation enables smoother distributions of radii and angles, which alleviates
the burden of channel-wise quantization outliers. The superior performance on downstream tasks
further demonstrates PolarQuant’s superiority in quantization error reduction.

On the other hand, PolarQuant offers a brand new perspective on key cache quantization,
which enables a novel decoding acceleration method. Unlike pre-RoPE quantization like [13]],
PolarQuant eliminates the overhead of RoPE recomputation. In the attention mechanism, it replaces
the standard query-key multiplication with inner products between two-dimensional query sub-
vectors and a quantized polar coordinate representation of key sub-vectors, which have finite and
deterministic states. This transforms matrix multiplication to a table lookup, greatly speeding up
attention computation. Our contributions are threefold:

(1) We introduce polar transformation for key cache quantization for the first time and derive
PolarQuant, a novel and efficient quantization approach;

(2) We propose a new decoding acceleration algorithm as a natural byproduct of PolarQuant. We
implement custom Triton kernels to perform fused dequantization and query-key multiplication,
which achieves up to 3.18x speedup in long-context generation;

(3) We conduct comprehensive experiments on tasks and models, which further demonstrate the
superiority and robustness of our PolarQuant across a wide range of model families and tasks.

2 Background

Consider a specific Transformer layer where the input hidden states to the attention block are denoted
as X € REXD | where L is the sequence length and D is the hidden state dimension. For any
attention head, the d-dimensional query, key, and value vectors are obtained by applying three linear
transformations to X. Specifically, for each head h, the corresponding computations are as follows:

Q=XW,, K=XWg, V=XWy,

where each W, € RP*d and the resulting variables have shapes of RELxd,

The query and key vectors are then applied with RoPE [26] to incorporate positional information.
For a query or key vector at position m € [1, L], the corresponding rotary matrix R,, ¢ € Rx4 ig
defined as:

Tm,éq o e O ) g .
Rm,<I> = O Tm,¢a " O , Tm,¢; = CPS((mg?)) SH(I(WQL;[))Z) , (D
o o S sin(ma; cos(ma;

where O is a zero matrix, and each r,, ¢, is a 2 X 2 orthogonal matrix. Here, ¢; is typically defined
as ¢; = b—2/9, where b is the hyperparameter for RoPE base.

This formulation encodes the relative distance m — n between a query at position m > n and a key
at position n into their inner product, as shown by:

(Qm Rm,@) (Kn Rn,@)T = Qm Rm—n,q) KI:

*For readers unfamiliar with RoPE, please refer to Section



the keys (after applying RoPE) and values, specifically K, R,, 5 (which we abbreviate as K,,) and
V., are thus cached to avoid re-computation, known as the KV cache. The KV cache leads to
increased memory usage when processing long-context inputs.

Quantization is a simple but effective way to reduce the KV cache size. To clarify the mechanism, we
provide a brief overview of key-value quantization below. For the value at position n, we follow the
token-wise paradigm in [19] and quantize V,, € R? into b-bit, denoted as Q(V,).

For an arbitrary dimension 0 < j < d, we have:

Q(V.[j]) = Clamp QV[JS]_Z} 10,20 1) ,

where z, = min(V,[]) is the zero-point, s, = (max(V,[:]) — min(V,[])) / (2° — 1) is the
scaling factor. The colon here denotes iteration over all dimensions, following Python indexing
syntax. The function Clamp(x, min, max) restricts x to integers within the range [min, mazx].

Outliers in key states make per-token quantization challenging, as we discussed earlier and illustrated
in Figure[T|(a). To address this, previous approaches [19l[13]] quantize key vectors channel-wise.

For an arbitrary dimension j, a quantized key Q(K,,) at position n is given by:
. Kn[.ﬂ_z[]]
Q(i<, ) = cramp (| L 0.2 1)
sp 1]
where the zero-point and scaling factor alternate as:
max (K [j]) — min(K{y[5])
20 —1 '

Here, the colon in the subscript denotes iteration over all token positions.

21l = min(Ky[5]), s =

3 Method

We begin by presenting the key findings of the activation patterns in the key cache (Section[3.1)). These
insights serve as the foundation for our proposed quantization approach, PolarQuant (Section [3.2).

3.1 Motivation
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Figure[I] (b) maps the paired dimensions from Fig-
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SFor efficiency, the rotary matrix is typically applied in an element-wise multiplication manner [26]. To
simplify implementation, dimensions ¢ and ¢ 4+ d/2 are often rotated together, rather than 7 and ¢ + 1. This
results in non-adjacent outliers in Figure[T}a), but it does not affect our analysis, which is based on the matrix
multiplication formulation (Eq. E])



Despite large variations in individual x and y values (which would indicate outliers in isolation),
the mapped vectors form a well-structured pattern. In other words, when transformed into polar
coordinates, the outliers are characterized by a smoothly distributed radial coordinate 7 and a polar
angle 0. This structure significantly alleviates the quantization challenges faced by key caches.

Figure 2] provides a supplementary illustration of how this polar transformation improves quantization.
The top figure illustrates a pair of dimensions exhibiting outliers, each with a large individual value
range. Quantizing this large range inevitably results in a loss of precision. In the bottom figure, by
combining these dimensions into a 2D vector, the norm (i.e., the polar radius) shows a significantly
narrowed value range, facilitating quantization.

3.2 PolarQuant: Polar-coordinate-based quantization of post-RoPE key cache

Building on these insights, we introduce a novel key cache quantization approach based on polar
transformation. Since the benefits of adopting a polar-coordinate have been outlined in the previous
subsection, here we focus on the implementation details.

For an arbitrary 2-dimensional subvector (Kn [27], K, [2] + 1]) in the key cache at position n, where

0 < j < d/2, we interpret (Kn[Qj], K,[2j + 1]) as Cartesian coordinates in the xy-plane. This 2D

vector is then converted to polar coordinates, where the radius p,, [7] is given by:

puli] = VKnl2]? + K2 + 17,
and the polar angle is:
On[j] = atan2 (Kn[2j + 1], Kn[2j]) + 7, 0n[5] € (0,27),

where atan? (y, x) returns the angle between the positive x-axis and the point (x, y).

We perform asymmetric group-wise quantization on p,,[j] and 6,,[j], using a group size of g, with
r-bit precision for p,,[j] and ¢-bit precision for 6, [;]:

Qo) = cramp (| 2222 | o 1),

81 (7]
Q(6a1j]) = Clamp QWJ 0,2 — 1) ,

where z,11[j], zg[[j] are the zero-points and s,;[j], s¢[[j] are the scaling factors:

max(ppy[j]) — min(p[4])
2 ’

sali] = max(p] [j])2—r min(pp UD’ eyl =

sop ] = max (0 [j]) — min(fp, [JD7 zopgli] =

max (0 [4]) — min(6p;[4])
2t .

2t

Intuitively, PolarQuant partitions the two-dimensional plane into 2”1 regions, spanned by 2" radii
and 2¢ polar angles. Each 2D sub-vector of the key vector is then represented by the center of
the region in which it resides. Figure [T| provides an illustration of the quantization process. The
corresponding Cartesian coordinates in the key vector at dimensions 2j and 25 + 1 are then calculated

for the quantized representation (Q( onlil), Q60 []])) , which is formulated as:

[Kal2j], Ral2j+1]] = [fuls] - cos (8uli]) , puli] -sin (8al7])]
where /5, [4] and 6,,[j] are the dequantized radius and polar angle:

ali] = (@Uonli) + 5) - spali) + 2aldls Ouli) = (QUOnli)) + 3) - s0ald] + 20l



3.3 Efficient decoding with PolarQuant

In this section, we present PolarQuant’s design for query-key multiplication, which incorporates
the idea of post-multiplication dequantization to achieve acceleration of the decoding process. We
begin by reviewing the conventional approach to dequantized generation. Specifically, during the
generation phase, the cached keys must be dequantized before being multiplied by the current query
Q@ at position m. For each dimension 0 < j < d, we have:

K, [j] = Q(Kals)) - spli] + 2],

where K, denotes the dequantized key, and the inner product is then computed as Q,,, - IN([:].

The standard dequantization-then-multiplication operation introduces overhead for PolarQuant, as
it demands extra computation. We argue that this overhead is redundant. At any dimension j, the
dequantized outcomes come from a finite set of size 2" 1%, Since the cache size far exceeds this set,
it is more efficient to pre-compute and reuse the post-multiplication intermediate results using a
lookup table (LUT). This approach of leveraging LUTs has been explored in prior studies [13}35].
KVQuant adopts an LUT to dequantize the key cache and restores positional information via RoPE
recomputation. PolarQuant, in contrast, avoids RoPE recomputation by directly constructing a LUT
for QK product on the fly. This is the key insight behind how PolarQuant accelerates decoding.

Specifically, PolarQuant builds its lookup table within each channel by mapping quantized polar
coordinates to Cartesian coordinates and computing the dot products with the query sub-vectors. We
implement custom Triton kernels to perform fused dequantization and query-key multiplication for
efficient GPU execution of PolarQuant. The breakdown time analysis presented in Section [.2]further
demonstrates the effectiveness of our PolarQuant implementation. More implementation details can
be found in Appendix [A]and our released code.

4 Experiment

In this section, we evaluate the performance of PolarQuant to highlight its effectiveness and efficiency.
Our empirical results confirm that PolarQuant can be integrated with LLMs, while maintaining near-
lossless performance of generative tasks (Section[d.T). We also highlight the speedup achieved by
PolarQuant to showcase the superiority of our decoding algorithm and implementation (Section [4.2)).

4.1 Preserving performance in quantized language and reasoning models

General setup. To ensure fair comparisons, we retain the value cache in full precision to avoid
potential bias from its quantization in downstream tasks. We evaluate PolarQuant against several
quantization baselines built on HuggingFace Transformers codebase [31]. For all group-wise quanti-
zation methods, the group size is fixed at g = 128. Additional details about the baseline methods and
experimental setup are provided in Appendix [B] We evaluate all baselines alongside our PolarQuant on
a range of models from mainstream model families, including Llama [1, 28] and Qwen [27]].

Quantizing language models. In real-world applications of language models, the key-value cache
often becomes the primary memory bottleneck when processing long-context inputs. We evaluate
PolarQuant and baseline methods on LongBench [5]], a widely used benchmark for long-context
evaluation. Table[I] presents results on Qwen and Llama. There are two advantages of PolarQuant:

1. PolarQuant performs robustly across different model backbones. Quantization is especially
challenging for Qwen models, which exhibit extreme channel-wise outliers in their key
cache)’| When applied to these models, token-wise quantization methods — such as per-
token Int. and ZipCache — tend to collapse. In contrast, KIVI-4 and PolarQuant constrain
the accuracy drop to within 10%. For Llama-3.1-8B-Instruct, PolarQuant even improves
average performance under 3-bit quantization, whereas all baseline methods, including
KIVI, result in performance degradation.

2. Averaged across all evaluated settings—covering both model families and quantization
precisions—PolarQuant achieves the best overall performance preservation.

Qwen2.5 language models are configured with attention bias that can introduce outliers in specific channels.



Table 1: Performance comparison of quantization methods on LongBench. Cell colors reflect the
degree of performance degradation compared to the backbone model. QJL results for Qwen2.5 are
excluded due to incompatibility with its official kernel. Parenthetical values in the last column denote
the performance drop of the quantized model relative to its backbone.

Single Doc. QA Multi Doc. QA Code Completion

Quantization Bits NtrvQA Qasper MF-en 2Wiki Hotpot Musique Lcc  RepoBench Avg. 1
Owen-2.5-1.5B-Instruct (128K)

Bf16 16 19.44 37.22 49.69  32.68  41.57 23.99 41.86 48.55 38.88
Int-4 4.25 5.11 8.80 10.60 11.99 5.90 32.82 24.65 22.57 15.30 (-23.58)
ZipCache, 4.25 4.35 8.52 12.07 14.14 17.04 7.57 23.68 21.48 13.61 (-25.27)
KIVI-4 4.25 19.89 36.52 49.83  32.18 41.51 22.89 40.69 48.72 36.53 (-2.35)
PolarQuant,, 4.25 19.34 36.48 50.80 32.80 43.25 23.25 38.62 46.76 36.41 (-2.47)
Int-3 3.25 3.37 6.96 8.31 9.53 10.79 3.64 22.32 20.69 10.70 (-28.18)
ZipCache, 3.25 5.28 7.81 9.38 10.30 12.66 6.36 26.53 22.72 12.63 (-26.25)

QJL 3.13
KIVI-2 3.00 18.39 36.07 47.94 3251 42.09 23.33 39.50 45.31 35.64 (-3.24)
PolarQuant,; 3.25 19.09 35.60 49.47  32.16 4347 23.02 35.77 44.16 35.34 (-3.54)
Llama-2-7B-Chat (4K)

Bf16 16 18.95 21.14 37.70  30.64  27.81 6.94 58.30 52.17 31.71
Int-4 4.25 18.24 21.79 37.56 2980 26.24 8.83 57.95 52.70 31.64 (-0.07)
ZipCache, 4.25 19.53 19.80 36.35 3147  26.35 8.23 58.91 51.80 31.55 (-0.16)
KIvI-4 4.25 18.38 21.16 37.19  31.67 26.90 7.85 58.32 51.99 31.68 (-0.03)
PolarQuant,, 4.25 18.40 21.37 35.05 30.18 27.92 8.59 58.82 51.95 31.54 (-0.17)
Int-3 3.25 16.51 21.41 36.59 2934  27.59 9.74 57.75 51.42 31.29 (-0.42)
ZipCache, 3.25 18.73 20.11 3432 28,50  26.53 8.39 57.51 51.42 30.69 (-1.02)
QJL 3.13 19.13 20.51 3593  30.74  25.60 5.79 57.79 50.92 30.80 (-0.91)
KIVI-2 3.00 18.79 20.46 35.51 27.52  26.36 8.12 56.82 50.26 30.48 (-1.23)
PolarQuant;; 3.25 19.75 18.26 3547  31.15 26.60 7.68 58.26 52.41 31.20 (-0.51)

Llama-3.1-8B-Instruct (128K)

Bf16 16 31.38 46.65 56.81 49.46  57.85 32.63 62.38 56.43 49.26
Int-4 4.25 31.76 45.49 56.47  49.52  57.67 32.82 63.17 55.46 49.05 (-0.21)
ZipCache, 4.25 32.26 45.97 56.77 4950  58.67 33.03 63.41 55.97 49.45 (+0.19)
KIVI-4 4.25 31.23 47.15 57.14  49.14  58.05 32.67 63.05 56.45 49.36 (+0.10)
PolarQuant,, 4.25 31.36 46.78 56.72 4947  58.54 32.23 63.28 56.73 49.39 (+0.13)
Int-3 3.25 29.66 45.07 55.15  49.79  58.31 32.73 60.56 54.80 48.26 (-1.00)
ZipCache, 3.25 31.98 44.70 55.61  49.16  58.33 31.53 61.93 54.19 48.43 (-0.83)
QJL 3.13 3241 44.75 56.18 4850  57.34 32.07 61.66 55.99 48.61 (-0.65)
KIvVI-2 3.00 31.90 45.39 5496  49.88 58.08 32.25 62.03 54.93 48.68 (-0.58)
PolarQuant,; 3.25 32.49 46.72 56.56  49.96 5833 32.20 63.45 56.54 49.53 (+0.27)

Beyond long-context processing, we also apply PolarQuant on LLMs to examine their generative
abilities with normal-length inputs. To explore how quantization affects the emergent capabilities
of LLMs, such as chain-of-thought reasoning [30] and in-context learning [6], we benchmark
PolarQuant’s performance on the 5-shot CoT GSM8K [§]. The results, presented in Table 2] show
that PolarQuant effectively supports both short- and long-context inputs, without compromising
performance on reasoning or knowledge-intensive tasks.

Table 2: Evaluations on 5-shot CoT GSMS8K.

Llama-2 Quantization Bf16 Int-4 ZipCache-4 KIVI-4 PolarQuant,,
7B-Chat Acc. (Bits) 2092 (16) 19.79 (4.25) 23.12(4.25) 21.61(4.25) 22.61 (4.25)
Llama-3.1 Quantization Bf16 Int-4 ZipCache-4 KIVI-4 PolarQuant,,
8B-Instruct  Acc. (Bits)  78.85(16) 76.35 (4.25) 78.70 (4.25) 7832 (4.25)  78.77 (4.25)

Quantizing reasoning models. Large reasoning models (LRMs) exhibit remarkable capability
in solving complex problems by long chains of thought. Recent studies [[18] have shown that
complex tasks—such as mathematics 16 8] and reasoning [23]—are sensitive to the accumulation
of quantization errors. Given that LRMs rely on both long-context processing and the generation of
lengthy outputs, quantization techniques are particularly critical for their application. Moreover, the



underlying mechanisms of LRMs differ from those of LLMs, making quantization more challenging
and offering valuable insights into the effectiveness of different approaches.

We apply key quantization to the distillation-based reasoning models of DeepSeek-R1 [20]. The
accuracy scores across different quantization methods and tasks are presented in Table [3] The
quantized reasoning models of PolarQuant achieve substantial improvements over the baselines,
which provides strong supplementary evidence of PolarQuant’s superiority.

Table 3: Overall performance comparison of quantized DeepSeek-R1-Distill models across various
reasoning benchmarks. Results for ZipCache on Qwen2.5 are omitted due to its performance collapse.
Cell colors represent the degree of performance degradation compared to the backbone model.
Parenthetical values in the last column denote the performance drop of the quantized model relative
to its backbone. Best results are highlighted in bold.

AIME
Quantization MATH GPQA Overall 1
AIME24 AIME25 AVG.

DeepSeek-R1-Distill-Qwen-1.5B

Bf16 36.67 23.33 30.00 85.20 39.90 51.70
ZipCache-4 N.A
KIVI-4 20.00 23.33 21.67  80.40 33.84 4530 (-6.40)

PolarQuant 30.00 20.00 25.00  80.20 37.88  47.69 (-3.31)
DeepSeek-R1-Distill-Llama-8B

Bfi6 50.00 36.67 4333  91.20 51.52 62.01
ZipCache-4 43.33 43.33 4333 91.60 48.48  61.13 (-0.88)
KIvI-4 43.33 33.33 3833  89.80 51.01  59.71 (-2.30)

PolarQuant 60.00 36.67 48.33  89.00 50.00  62.44 (+0.43)

4.2 Superior efficiency of PolarQuant

To evaluate the efficiency of the customized decoding algorithm, we provide a comprehensive time
breakdown analysis of our PolarQuant implementation. In all experiments, we use the Llama-3.1-8B-
Instruct model configuration, which includes 32 query heads of dimension 128, and 8 key/value heads
(grouped-query attention [2]]). We benchmark the latency of our tailored kernel implementation, as
well as the end-to-end generation throughput.

Latency for query-key multiplication kernel. We make comparisons of the query-key multipli-
cation implementations for LLM decoding. Specifically, we evaluate the wall-clock latency across
different sequence lengths and batch size settings. We benchmark the runtime by summing across
10K iterations of the calculations, and report results for: Fp16, KIVI-4, KIVI-2, PolarQuant,, and
PolarQuantss. Figure[3]illustrates the performance comparison among kernel implementations, while
Table ] reports the multiplication latency with a batch size of 8. We see that, PolarQuant achieves up
to 2.7 x speedup compared with KIVI and 1.6 x speedup compared with Fp16 Torch implementation.

Batch Size 1 Batch Size 4 Batch Size 8

—&- Fplé
—e—  KIVIa
——  KIVI2
—e—  PolarQuantaa
—e—  PolarQuant33
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w
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w
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4k 8k 16k 32k 64k 128k ak 8k 16k 32k 64k 128k 4k 8k 16k 32k 64k 128k
Context Length Context Length Context Length

Figure 3: Latency comparisons of PolarQuant across varying batch sizes and context lengths



Throughput comparison. We incorporate our custom kernels into the generation pipeline and
measure their end-to-end performance. We determine the maximum supported batch size with
a sequence length of 32K tokens, with Hugging Face’s implementation. We fix the input length
at 256 tokens and measure throughput across different generation lengths. Table ] presents the
results; entries marked with T indicate the application of 2-bit value quantization. As is shown in
Table[d] PolarQuant achieves up to 3.18 x throughput improvements, and demonstrates significant
improvements over KIVI in both latency and throughput. Values in parentheses denote the speedup.

Table 4: Latency, throughput and memory usage comparisons.

Latency (s)

Operation
4K 8K 32K 128K
Fplé6 0.22 0.42 1.58 6.22
KIVI-4 0.41 (0.54%) 0.82 (0.51%) 3.19 (0.50%) N.A
PolarQuant,, 0.24 (0.92x) 0.42 (1.00x) 1.49 (1.06x) 5.79 (1.07x)
KIVI-2 0.32 (0.69%) 0.61 (0.69%) 2.35(0.67x) N.A
PolarQuant. 0.18 (1.22x) 0.30 (1.40%) 1.03 (1.53x%) 3.97 (1.57x)
Configuration TP. (token/s) / Mem. (GB)
4K 8K 16K 32K
Fplé6 119.1/20.78 84.5/25.21 53.6 / 34.07 15.3/51.79
KIVI-4 129.0 (1.09%)/19.03 969 (1.15%x)/21.88  65.1 (1.21x)/27.59  39.0 (2.54x)/38.96
PolarQuant,, 138.8 (1.17x)/19.04 108.5(1.28%)/21.90 759 (1.42x)/27.61  46.8 (3.05x)/39.06
KIVI-2 133.2(1.12x)/18.89  99.9 (1.18%x)/21.55  67.7(1.26x)/2691  40.5 (2.64x)/37.62
PolarQuant,;  144.8 (1.22x)/19.04 111.1(1.31x)/21.90  78.6 (1.46x)/27.61 48.7 (3.18%) /39.06
KIVI-4* 129.0 (1.09%)/17.08 115.8 (1.37x)/17.99  90.8 (1.69x)/19.92  30.13 (1.97x)/23.60
PolarQuantE,1 144.1 (1.21x)/17.06  128.0 (1.51x)/17.97 111.6(2.08x)/19.81 46.86 (3.06x)/23.46

5 Discussions

5.1 Ablation studies of PolarQuant

Effect of group size g. PolarQuant applies group-wise quantization along the channel dimension.
‘We conduct ablation studies to investigate the impact of the group size g on model performance.

Table 5: Ablation study of group size g on LongBench.

Group Size 32 64 128 256
LongBench KIVI-4 49.48 (5.00) 49.47 (4.50) 49.36 (4.25) 49.52 (4.13)
(Bits) PolarQuant,, 49.50(5.00) 49.33 (4.50) 49.39 (4.25) 49.58 (4.13)

Specifically, we benchmark PolarQuant and KIVI on LongBench using the Llama-3.1-8B-Instruct
model. The results, presented in Table [5] indicate that PolarQuant performs competitively with
KIVI across all tested group sizes. It is noteworthy that the quantization parameters occupy 32/g
bits; therefore, smaller values of g result in higher average bit widths. To strike an optimal balance
between performance and parameter overhead, we set g as 128 throughout this paper.

Impact of RoPE configuration. We conduct experiments to test the sensitivity of PolarQuant to
different RoPE configurations and draw the following conclusions:

(1) PolarQuant exhibits consistent performance across LLMs with different RoPE base frequen-
cies (see Table . The experimental results for basic values of {10000, 500000, 1000000}, highlight
PolarQuant’s insensitivity to the choice of base frequency.

(2) PolarQuant is adaptable to different RoPE variants. We employ NTK RoPE scaling [24] to extend
the LLM’s context and apply PolarQuant to the key cache. Critically, mo significant performance
drop is observed. We provide detailed experimental results and setups in Appendix



Bitwidth allocation for radii and polar angles. In PolarQuant, we assign bitwidth asymmetrically
between radii and angles. To determine which component requires higher precision, we conduct
ablation studies on various bitwidth configurations, enabling a more flexible allocation strategy.

Table 6: Ablation study on asymmetrical bitwidth allocation in PolarQuant.

Bits (r5,t3) (r4,t4) (r3,t5) Bits (r4,t2) (r3,t3) (r2,t4)
4.25 49.41 49.39 49.51 325  47.66 49.53 49.00

LongBench

We take Llama-3.1-8B-Instruct as backbone and benchmark PolarQuant on LongBench, to assess the
impact of different bitwidth settings. From Table[6] we have the following observations:

Observation 1: Angle quantization is more sensitive to bitwidth. Allocating fewer than 3 bits to
angles often results in a significant drop in performance.

Observation 2: Despite the asymmetry in bitwidth allocation, a more balanced distribution between
radii and angles can still achieve strong performance.

5.2 Compatibility with existing KV cache compression techniques

In this section, we explore the integration of existing KV compression techniques with PolarQuant,
which allows for further reductions in KV cache memory occupation. We present the experimental
results of Llama-3.1-8B-Instruct on LongBench. As stated in Section .1} we retain the value
cache in full precision, as key cache is more sensitive to low-precision quantization. Appendix
provides further analysis to support this. We combine value quantization with PolarQuant to verify
its compatibility. A standard token-wise quantization is applied to the value cache, consistent with
KIVI[19]. Table[7]presents the results. The introduction of value quantization results in only marginal
performance degradation, even at 2-bit precision.

Table 7: LongBench results of PolarQuant with value cache quantization .

Quantization  Value Bits. NtrvQA Qasper MF-en 2Wiki Hotpot Musique Lcc  RepoBench Avg.
16 31.36 46.78 56.72 49.47 58.54 32.23 63.28 56.73 49.39
PolarQuant,, 4 3167 4651 5648 4974 5848 3241  63.50 56.59 49.42 (+0.03)
2 31.26 46.69 57.59 47.88 58.51 32.98 63.24 55.95 49.26 (-0.13)

We further explore the integration of PolarQuant with token-eviction strategies [[15]. As shown in
Table[8] PolarQuant does not exhibit significant performance degradation. We left it for future work to
combine PolarQuant with existing mixed-precision quantization for further memory saving [3}10}/33]].

Table 8: LongBench Evaluations of PolarQuant with SnapKV.

LLM NtrvQA Qasper MF-en 2Wiki Hotpot Musique Lce  RepoBench Avg.

Full KV 31.36 46.78 56.72 4947 5854 32.23 63.28 56.73 49.39
SnapKV: 4096 31.31 46.51 57.03  49.71  57.99 32.79 62.90 55.75 49.25 (-0.14)
w. PolarQuant  31.21 46.38 56.45 4938  58.05 31.99 62.90 55.75 49.01 (-0.38)

SnapKV: 1024 31.51 43.45 56.14  49.61 57.78 32.01 62.45 56.00 48.62 (-0.77)
w. PolarQuant ~ 31.27 42.61 55.18  48.60  57.49 31.12 61.54 54.57 47.80 (-1.59)

6 Conclusion

In this paper, we view the outliers in the key cache of LLMs from a novel polar-coordinate-based
perspective, which provides an efficient and effective solution, PolarQuant, to reduce the complexity
and quantization costs in previous methods. PolarQuant well preserves downstream performance
even in long-context understanding and long chain-of-thought generation, comparable to previous
works under 4-bit precision while achieving superior efficiency. We hope the polar coordinate view
can inspire the community to advance new low-bit precision quantization techniques.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we claim that PolarQuant serve as a novel key cach quantization,
while PolarQuant enhances the quantization performance of the downstream tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a separate "Limitations" section, i.e., Section[E]in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not introduce theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have submited our code in the supplementary materials, enabling easy
reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have submited our code in the supplementary materials, enabling easy
reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section [B]in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The statistical significance of the experiment has not been reported in this
work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the computing resources required to
reproduce the experiments in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have conformed to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: We have not included a discussion of the potential positive and negative
societal impacts of the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have correctly cited all the data, scripts, and models we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have included a README document with our code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Accelerated Query-Key Inner Product with Cached Keys in PolarQuant

For a quantized representation (Q( pnli]), Q60 []])), we first dequantize the polar coordinates back
into Cartesian coordinates, which serves as the at dimensions 2j and 25 + 1:

{Nﬁn[zj] ]T il cos (3.03)]
K,[2j + 1] pnlj] - sin (enm) ’

where f,[j], 0, [5] is the dequantization for (p, #) respectively. j,,[j] and 6,,[j]) are formulated as:

1

ali] = (@UenliD) + 5) - spalil + 2aldls Ouli] = (QUOnli)) + 3) - soald] + 2ol

(Q(pn [7]), Q(6, [j])) represents [IN(H 125], Kn[2j + 1]] as a state in the lookup table.
When computing the query-key inner product for the dimensions 25 and 25 + 1, the result is:

product,; ;1 = Qu[2j] - K, [2j] + Qu[27 + 1] - K4 [2) + 1],

and the final inner product is the sum:

E producty; ;4.
0<j<4

Figure [ presents a naive PyTorch [22]] implementation of the aforementioned dequantization-and-
multiplication operation. We implement a fused Triton kernel that reproduces the functionality of the
PyTorch code for improved computational efficiency. More details can be found in our code.

import torch

def attention_decode_forward_pytorch_impl(
q, # q’s shape: (B, N, 1, 2, D)
r, rscale, rmn, # r’s shape: (B, N, G, D)
t, tscale, tmn, # t’s shape: (B, N, G, D)
# rscale, rmn, tscale and tmn’s shape: (B, N, 1, 1, D)
rbits: int = 4, tbits: int = 4,

# phi: finite set for theta
phi torch.arange (0, 2 #** tbits) [None, None, :, None, Nonel]
phi (2 * phi + 1) / 2 % tscale + tmn

# rho: finite set for rho

rho = torch.arange(0, 2 ** rbits) [None, None, :, None, Nomnel
rho = (2 * rho + 1) / 2 * rscale + rmn
phi = torch.cat([phi.cos(), phi.sin()], dim=-2)

accumulator torch.sum(q * phi, dim=-2) # (B, N, 2~tbits, D)

accumulator torch.gather (accumulator, 2,
t.unsqueeze (-1) .expand_as (accumulator))

accumulator *= torch.gather (rho.squeeze(-2), 2,
r.unsqueeze (-1) .expand_as (accumulator))

accumulator = accumulator.sum(-1)

return accumulator

Figure 4: Pytorch implementation of the accelerated Query-Key Inner Product in PolarQuant.

22



B Details experiment setup

In this section, we provide additional details about the experimental setups.

B.1 Setup of baseline methods

This section provides an overview of the baseline methods. Following this, we outline the quantization
configurations and variants for both the baselines and our proposed PolarQuant. We also explain how
the average number of bits for the quantization parameters is calculated.

Int-N applies token-wise N-bit quantization to the key states. This token-wise quantization incurs
32/d bits quantization parameters (16 bits for zero-points and 16 bits for scaling factors per token),
which amounts to 0.25 bits per token when d = 128.

ZipCache-N [12] introduces a channel-separable, token-wise scheme for key quantization, where N
denotes the quantization bits. Each key channel is normalized by the square root of its maximum
magnitude before quantization. Similar to Int-N, this method performs token-wise quantization,
allocating 0.25 bits for zero-points and scales.

KIVI-N [[19] employs an asymmetric strategy for KV cache quantization, applying channel-wise
quantization to the key cache and token-wise quantization to the value cache. For 4-bit quantization,
we use KIVI-4 with a group size of 128. For 3-bit quantization, we use KIVI-2 with a group size of
32, as the official implementation does not support 3-bit quantization. This channel-wise quantization
introduces (16 + 16)d bits of quantization parameters per group, which increases the average bitwidth
by 32/g: 1 bit for g = 32 and 0.25 bits for g = 128 respectively.

QJL [34] applies Johnson-Lindenstrauss transformation to key states, removing the memory over-
heads associated with storing quantization constants. For a 3-bit quantization schema, this method
achieves a key cache bitwidth of 3.13 bits.

PolarQuant,., assigns r bits for radii quantization and t bits for polar angles, resulting in (r + ¢)/2
bitwidth for key states quantization. PolarQuant also employs channel-wise quantization with
grouping; this group partitioning adds an overhead of 32/g bits.

Nearly all methods discussed here require a buffer size or residual length for applying quantization.
We exclude the contribution of these residual key states to bit counts for comparisons.

B.2 Configurations of the open-sourced LLMs

¢  Qwen-2.5-1.5B-Instruct [27] is the instruction-tuned 1.5B Qwen2.5 model, which supports a
context length of up to 131,072 tokens and features a base RoPE frequency of 1,000,000.

¢ Llama-2-7B-Chat [28] has a context length of 4096 and base RoPE frequency of 10,000.

¢ Llama-3.1-8B-Instruct [1] is an 8 billion parameter language model, designed to handle a context
length of up to 131,072 tokens, and has the base RoPE frequency set to 500,000.

B.3 Reasoning model evaluation

For fair comparison, the evaluation code is built on the Huggingface Lighteval framework [11]. We
use the default generation configuration for datasets splitting, and the EM score is reported in Table[3]
More implementation details can be found in our released code.

C NTK RoPE scaling experiment

We adopt NTK RoPE scaling [24] to extend the context window of the Llama-2-7B-Chat model
from 4096 to 8192. Specifically, we implement dynamic RoPE updates based on the Hugging Face
codebase. PolarQuantachieve an average performance of 32.44 on LongBench. Compared to the
32.15 score of the Bf16 baseline, PolarQuant’s performance remains competitive.
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D Sensitivity Analysis of Key-Value Quantization

In Section[5.2] we combine 4-bit key quantization PolarQuant,, with 2-bit value quantization and
observe minimal performance degradation. We further evaluate value quantization (KIVI, group size
128) on LongBench. By retaining the key cache at full precision, KIVI result in no performance drop.
However, when the key is quantized to the same bitwidth while the value is kept at full precision,
the performance drops significantly. Table@]presents the results, the notation (Kp, V) denotes key
quantization to b-bit and value quantization to c-bit.

Table 9: Impact of key and value quantization bitwidths on LongBench performance.

LongBenc!

L | (K16,V16) | (K16,V4) | (K16,V2) | (K2,V16)
4926 | 4954 | 4930 | 4773

E Limitation

Although PolarQuant achieves promising results in reducing storage and computational resources,
we also discuss the limitations of our current work. This work focuses exclusively on decoder-only
Transformer-based large language models (LLMs) that utilize rotary position embedding (RoPE)
as the underlying position encoding mechanism. RoPE has become a prevalent choice in many
state-of-the-art open-source LLMs. However, the effectiveness of PolarQuant when applied to models
with alternative position encoding methods or attention mechanisms remains an open question and
warrants further investigation. Furthermore, exploring more recent LLM backbones [32]] is necessary,
but due to time and computational limitations, we leave this part of the work for future research.
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