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Figure 1. We introduce EAGLE, Eigen AGgregation LEarning for object-centric unsupervised semantic segmentation. (a) We first leverage
the aggregated eigenvectors, named EiCue, to obtain the semantic structure knowledge of object segments in an image. Based on both
semantic and structural cues from the EiCue, we compute object-centric contrastive loss to learn object-level semantic representation. (b) An
illustration of the EiCue generation process. From the input image, both color affinity matrix Acolor and semantic similarity matrix Aseg are
derived, which are combined to form the Laplacian Lsym. An eigenvector subset V̂ of Lsym are clustered to produce EiCue.

Introduction. Semantic segmentation has innately relied
on extensive pixel-level annotated data, leading to the emer-
gence of unsupervised methodologies. Among them, lever-
aging self-supervised Vision Transformers for unsupervised
semantic segmentation (USS) [2, 5] has been making steady
progress with expressive deep features. Yet, for semantically
segmenting images with complex objects, a predominant
challenge remains: the lack of explicit object-level semantic
encoding in patch-level features particularly with diverse
structures. To address this gap, we present a novel approach,
which emphasizes object-centric representation learning for
unsupervised semantic segmentation, named EAGLE.
Spectral Techniques for Object-centric Perspective. We
introduce EiCue, a spectral technique providing semantic
and structural cues through an eigenbasis derived from the
semantic similarity matrix. We use the Spectral Cluster-
ing [1, 4, 6] to obtain unsupervised feature representations
that capture the underlying non-linear structures for handling
data with complex patterns. This classically operates only in
the color space but may easily extend to utilize the similarity
matrix constructed from any features. The overall EiCue
generation process follows the following procedure: (1) from
an adjacency matrix A (a combination of color space affinity
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matrix Acolor and deep feature similarity matrix Asim), (2)
construct the graph Laplacian L from A, and (3) perform
the eigendecomposition on L to derive the eigenbasis V
from which the eigenfeatures are used for the differentiable
clustering, resulting in EiCue.
Object-Centric Contrastive Learning. Further, we incor-
porate ObjNCELoss, a newly designed EiCue-based object-
centric contrastive loss method designed to refine feature
embeddings through capturing complex inter-object relation-
ships and enhancing feature discriminability for improved
semantic segmentation. This loss function uses EiCue to cap-
ture complex inter-object relationships, enhancing feature
discriminability and establishing object-level prototypes in a
projected semantic space. These prototypes act as anchors,
attracting similar features while repelling dissimilar ones,
thereby promoting semantic clarity among detected object
classes in the image. Through a comprehensive learning
process, our model effectively captures inherent structures
within images, allowing it to precisely identify semantically
plausible object representations, the key to advancing feature-
based USS.
Experiments. We evaluate EAGLE on COCO-Stuff,
Cityscapes, and Potsdam-3 datasets to demonstrate the state-
of-the-art USS results with accurate and consistent semantic
segmentation.
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