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Abstract
Meta-learning is a practical learning paradigm to transfer skills

across tasks from a few examples. Nevertheless, the existence of

task distribution shifts tends to weaken meta-learners’ generaliza-

tion capability, particularly when the training task distribution is

naively hand-crafted or based on simple priors that fail to cover

critical scenarios sufficiently. Here, we consider explicitly gener-

ative modeling task distributions placed over task identifiers and

propose robustifying fast adaptation from adversarial training. Our

approach, which can be interpreted as a model of a Stackelberg

game, not only uncovers the task structure during problem-solving

from an explicit generative model but also theoretically increases

the adaptation robustness in worst cases. This work has practical

implications, particularly in dealing with task distribution shifts in

meta-learning, and contributes to theoretical insights in the field.

Our method demonstrates its robustness in the presence of task

subpopulation shifts and improved performance over SOTA base-

lines in extensive experiments. The code is available at the project

site (https://sites.google.com/view/ar-metalearn).
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Initial Task Distribution Generated Task Distribution

Figure 1: Diagram of Generating Task Distribution as the Adversary
in Meta-Learning. Here, the initial task distribution 𝑝0 (𝜏 ) is a uni-
form distribution governed by two task identifiers [𝜈, 𝜇 ]. Then, it
is transformed into an explicit distribution 𝑝𝝓 (𝜏 ) with the help of
normalizing flows NF𝝓 .

1 Introduction
Deep learning has made remarkable progress in the past decade,

ranging from academics to industry [34]. However, training deep

learning models is generally time-consuming, and the previously

trained model on one task might perform poorly in deployment

when faced with unseen scenarios [37].

Fortunately, meta-learning, or learning to learn, offers a scheme

to generalize learned knowledge to unseen scenarios [11, 15, 24, 25].

The strategy is to leverage past experience, extract meta knowledge

as the prior, and utilize a few shot examples to transfer skills across

tasks. This way, we can avoid learning from scratch and quickly

adapt the model to unseen but similar tasks, catering to practical

demands, such as fast autonomous driving in diverse scenarios. Due

to these desirable properties, such a learning paradigm is playing

an increasingly crucial role in building foundation models [3, 29,

44, 70].

Literature Challenges: Despite the promising adaptation per-

formance in meta-learning, several concerns remain. Among them,

the automatically task distribution design is under-explored and

challenging in the field, which closely relates to the model’s gener-

alization evaluation [10, 84].

Overall, task identifiers configure the task, such as the topic

type in the corpus for large language models [5, 70], the ampli-

tude and phase in sinusoid functions, or the degree of freedom in

robotic manipulators [2, 13]. Most existing studies adopt simple

prior, such as uniform distributions over task identifiers [15, 17, 56],

or hand-crafted distributions, which heavily rely on domain-specific

knowledge difficult to acquire.

Some scenarios even pose more realistic demands for task distri-

butions. In testing an autopilot system, an ideal task distribution
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deserves more attention on traffic accidents or even generates some

while covering typical cases [53, 62]. Similar circumstances also oc-

cur during domain randomization for embodied robots [43]. These

imply that the shift between commonly used task distributions,

such as uniform, and the expected testing distributions raises ro-

bustness issues and probably causes catastrophic failures when

adapting to risk-sensitive scenarios [42].

Proposed Solutions: Rather than exploring fast adaptation

strategies, we turn to explicitly create task distribution shifts at a cer-
tain level and characterize robust fast adaptation with a Stackelberg
game [49]. To this end, we utilize normalizing flows to parame-

terize the distribution adversary in Figure 1 for task distribution

generation and the meta learner for fast adaptation in the presence

of distribution shifts.

Importantly, we constitute the solution concept, adopt the al-

ternative gradient descent ascent to approximately compute the

equilibrium [32], and conduct theoretical analysis. The optimization

process can be translated as fast adaptation robustification through
adversarially explicit task distribution generation.

Outline & Primary Contributions: The remainder starts with

related work in Section 2. We define the notation and recap fun-

damentals in Section 3. Then, we present the game-theoretical

framework to handle constrained task distribution shifts and ro-

bustify fast adaptation in Section 4. The quantitative analysis is

conducted in Section 5, followed by conclusions and limitations. In

primary, our contributions are:

• This work translates the robust fast adaptation under dis-

tribution shifts into a Stackelberg game [67]. To reveal task

structures during problem-solving, we explicitly generate

the task distribution with normalizing flows over task iden-

tifiers and optimize the meta-learner in an adversarial way.

• In theoretical analysis and tractable optimization, we consti-

tute the solution conceptw.r.t. fast adaptation, approximately

solve the game using alternating stochastic gradient descent,

and perform convergence and generalization analysis under

certain conditions.

Extensive experimental results show that our approach can reveal

adaptation-related structures in the task space and achieve robust-

ness improvement in task subpopulation shifts.

2 Literature Review
The past few years have developed a large body of work on skill

transfer across tasks or domain generalization in different ways [25,

78–80]. This section overviews the field regarding meta-learning

and adaptation robustness.

Meta Learning. Meta learning is a learning paradigm that con-

siders a distribution over tasks. The key is to pursue strategies

for leveraging past experiences and distilling extracted knowl-

edge into unseen tasks with a few shots of examples [8, 25, 45].

Currently, there are various families of meta-learning methods.

The optimization-based ones, like model agnostic meta-learning

(MAML) [15] and its extensions [12, 22, 52, 68], aim at finding a good

meta-initialization of model parameters for adapting to all tasks via

gradient descent. The deep metrics methods optimize the task repre-

sentation in ametric space and are superior in few-shot image classi-

fication tasks [1, 26, 38, 60, 81]. Typical context-based methods, e.g.,

neural processes (NPs) and variants [17, 18, 21, 30, 54, 59, 69, 72–74],

constitute the deep latent variable model as the stochastic process

to accomplish tasks. Besides, memory-augmented networks [58],

hyper-networks [23], and so forth are designed for meta-learning

purposes.

Robustness in Meta Learning. In most previous work, the

task distribution is fixed in the training set-up. In order to robustify

the fast adaptation performance, a couple of learning strategies or

principles emerge. Increasing the robustness to worst cases is a

commonly seen consideration in adaptation, and these scenarios

include input noise, parameter perturbation, and task distributions

[7, 33, 39, 41, 48, 64, 85]. To alleviate the effects of adversarial exam-

ples in few-shot image classification, Goldblum et al. [19] meta-train

the model in an adversarial way. To handle the distribution mis-

match between training and testing tasks, Zhang et al. [86] adopt

the adaptive risk minimization principle to enable fast adaptation.

Wang et al. [71] propose to optimize the expected tail risk in meta-

learning and witness the increase of robustness in proportional

worst cases. Ours is a variant of a distributionally robust frame-

work [75], and we seek equilibrium for fast adaptation.

Task Distribution Studies in Meta Learning. Task distribu-

tions are directly related to the generalization capability of meta-

learning models, attracting increasing attention recently. Aiming to

alleviate task overfitting, Murty et al. [46], Ni et al. [47], Rajendran

et al. [51], Yao et al. [82] enrich the task space with augmentation

techniques. Task relatedness can improve generalization across

tasks, Fifty et al. [14] devise an efficient strategy to group tasks in

multi-task training. In [40, 83], neural task samplers are developed

to schedule the probability of task sampling in the context of few-

shot classification. To increase the fidelity of generated tasks, Wu

et al. [77] adopt the task representation model and constructs the

up-sampling network for meta-training task augmentation. To re-

duce the required tasks, [36, 83] take the task interpolation strategy

and shows that the interpolation strategy outperforms the standard

set-up. Distinguished from the above, this work takes more interest

in explicitly understanding task identifier structures concerning

learning performance and cares about fast adaptation robustness

under subpopulation shift constraints. Optimizing the task distribu-

tion might reserve the potential to improve generative performance

in large models [6].

3 Preliminaries
Notation. Throughout this paper, we use 𝑝 (𝜏) to denote the task

distribution with T the task domain. Here, D𝜏 represents the meta

dataset with a sampled task 𝜏 . With the model parameter domain 𝚯

and the support/query dataset construction, e.g., D𝜏 = D𝑆𝜏 ∪ D
𝑄
𝜏 ,

the risk function in meta-learning is a real-value function L : T ×
𝚯 ↦→ R.

As an example, D𝜏 consists of data points {(𝑥𝑖 , 𝑦𝑖 )}𝑚+𝑛𝑖=1
in few

shot regression, and it is mostly split into the support dataset D𝑆𝜏
for fast adaptation and query dataset D𝑄𝜏 for evaluation.

3.1 Problem Statement
To begin with, we revisit a couple of commonly-used risk minimiza-

tion principles for meta-learning as follows.
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Standard Meta-Learning Optimization Objective.We con-

sider the meta-learning problem within the expected risk minimiza-

tion principle in the statistical learning theory [66]. This results in

the objective as Eq. (1), and we execute optimization in the form of

task batches in implementation.

min

𝜽 ∈𝚯
E𝑝 (𝜏 )

[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
(1)

Here, 𝜽 refers to the meta-learning model parameters for meta

knowledge and fast adaptation. The risk function depends on spe-

cific meta-learning methods. For example, in MAML, the form

can be L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 ) := L(D
𝑄
𝜏 ;𝜽 − 𝜆∇𝜽L(D𝑆𝜏 ;𝜽 )) in regression,

where the gradient update with the learning rate 𝜆 in the bracket

reflects fast adaptation.

Distributionally Robust Meta Learning Optimization Ob-
jective. Recently, tail risk minimization has been adopted for meta-

learning, effectively alleviating the effects towards fast adaptation

in task distribution shifts [71]. In detail, we can express the op-

timization objective as Eq. (2) in the presence of the constrained

distribution 𝑝𝛼 (𝜏 ;𝜽 ), which characterizes the (1 − 𝛼) proportional
𝜽 -dependent worst cases in the task space.

min

𝜽 ∈𝚯
E𝑝𝛼 (𝜏 ;𝜽 )

[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
(2)

It is worth noting that 𝑝𝛼 (𝜏 ;𝜽 ) is non-differentiable and𝜃 -dependent
with no closed-form. Meanwhile, the worst-case optimization for

meta-learning in Eq. (3) can be treated as a particular instance of

Eq. (2) when 𝛼 sufficiently approaches 1.

min

𝜽 ∈𝚯
max

𝜏∈T
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 ) (3)

Through tail risk minimization, the model’s adaptation robust-

ness can be enhanced w.r.t. the proportional worst scenarios [9, 71].

3.2 Two-Player Stackelberg Game
Before detailing our approach, it is necessary to describe elements

in a two-player, non-cooperative Stackelberg game [67].

Let us assume two competitive players are involved in the game

Γ := ⟨{P1,P2}, {𝜽 ∈ 𝚯, 𝝓 ∈ 𝚽},J (𝜽 , 𝝓)⟩, where the meta learner

as the leader P1 makes a decision first in the domain 𝚯 while the

distribution adversary as the follower P2 tries to deteriorate the

leader decision’s utility in the domain 𝚽. We refer to J (𝜽 , 𝝓) as the
continuous risk function of the leader P1, and that of the follower

P2 corresponds to the negative form −J (𝜽 , 𝝓). Without loss of

generality, all the players are rational and try to minimize risk

functions in the game.

4 Task Robust Meta Learning under
Distribution Shift Constraints

This section starts with the game-theoretic framework for meta-

learning, followed by approximate optimization. Figure 2 shows a

diagram of the constructed Stackelberg game. Then we perform

theoretical analysis w.r.t. our approach.

4.1 Generate Task Distribution within A
Game-Theoretic Framework

As part of an indispensable element in meta-learning, the task

distribution is mostly set to be uniform or manually designed from

the heuristics. Such a setup hardly identifies a subpopulation of

tasks that are tough to resolve in practice and fails to handle task

distribution shifts.

In contrast, this paper considers an explicit task distribution to

capture along with the learning progress and then automatically

creates task distribution shifts for themeta-learner to adapt robustly.

Our framework can be categorized as curriculum learning [4], but

there places a constraint over the distribution shift in optimization.

Adversarially Task Robust Optimization with Distribution
Shift Constraints. Now, we translate the meta-learning problem,

namely generative task distributions for robust adaptation, into a

min-max optimization problem:

min

𝜽 ∈𝚯
max

𝝓∈𝚽
J (𝜽 , 𝝓) := E𝑝𝝓 (𝜏 )

[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
,

s.t. 𝐷𝐾𝐿
[
𝑝0 (𝜏) ∥ 𝑝𝝓 (𝜏)

]
≤ 𝛿,

(4)

where the constraint term defines the maximum distribution shift

to tolerate in meta training.

Equivalently, we can rewrite the above optimization objective

in the form of unconstrained one with the help of a Lagrange

multiplier 𝜆 ∈ R+:

min

𝜽 ∈𝚯
max

𝝓∈𝚽
J (𝜽 , 𝝓) := E𝑝𝝓 (𝜏 )

[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
−𝜆

[
𝐷𝐾𝐿

[
𝑝0 (𝜏) ∥ 𝑝𝝓 (𝜏)

]
− 𝛿

]
.

(5)

The above can be further simplified as:

min

𝜽 ∈𝚯
max

𝝓∈𝚽
J (𝜽 , 𝝓) := E𝑝𝝓 (𝜏 )

[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
+ 𝜆E𝑝0 (𝜏 )

[
ln𝑝𝝓 (𝜏)

]
,

(6)

where the constant terms, e.g., 𝜆𝛿 ∈ R+ and E𝑝0 (𝜏 )
[
ln𝑝0 (𝜏)

]
are

eliminated.

As previously mentioned, the role of the distribution adversary

attempts to transform the initial task distribution into one that

raises challenging task proposals with higher probability. Such a

setup drives the evolution of task distributions via adaptively shifting
task sampling chance under constraints, which can be more crucial

for generalization across risky scenarios. The term 𝐷𝐾𝐿

[
𝑝0 (𝜏) ∥

𝑝𝝓 (𝜏)
]
inside Eq. (5) works as regularization to avoid the mode

collapse in the generative task distribution. In Figure 2, the goal of

the meta learner retains that of traditional meta-learning, while the

distribution adversary continually generates the task distribution

shifts along optimization processes.

Assumption 1 (Lipschitz Smoothness and Compactness).

The adversarially task robust meta-learning optimization objective
J (𝜽 , 𝝓) is assumed to satisfy

(1) J (𝜽 , 𝝓) with ∀[𝜽 , 𝝓] ∈ 𝚯 × 𝚽 belongs to the class of twice
differentiable functions C2.

(2) The norm of block terms inside Hesssian matrices ∇2J (𝜽 , 𝝓)
is bounded, meaning that ∀[𝜽 , 𝝓] ∈ 𝚯 × 𝚽:

sup{| |∇2𝜽 ,𝜽J ||, | |∇
2

𝜽 ,𝝓J ||, | |∇
2

𝝓,𝝓J ||} ≤ 𝐿max .

(3) The parameter spaces𝚯 ⊆ R𝑑1 and𝚽 ⊆ R𝑑2 are compact with
𝑑1 and 𝑑2 respectively dimensions of model parameters for two
players.
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Distribution Adversary Meta LearnerRobust Fast Adaptation
from Task Proposals

Adversarially Generate
Distribution Shifts

Figure 2: Diagram of Adversarially Task Robust Meta Learning. The proposed framework consists of two players, the distribution adversary
and the meta player, in the game of meta-learning. On the left side of the figure: the distribution adversary seeks to transform the distribution
from an initial task distribution, e.g., N(0, 𝐼𝑑 ) or U[𝑎,𝑏 ], via the neural network parameterized by 𝝓 with the purpose of deteriorating meta
player’s fast adaptation performance. On the right side of the figure: the meta player parameterized by 𝜽 attempts to learn robust strategies for
fast adaptation in sampled worst-case tasks (MAML algorithm [15] as an illustration).

Example 1 (Adversarially Task Robust MAML, AR-MAML).

Given the parameterized task distribution 𝑝𝝓 (𝜏), the risk function L
and the learning rate 𝛾 in the inner loop of MAML [15], the adver-
sarially task robust MAML corresponds to the following optimization
problem:

min

𝜽 ∈𝚯
max

𝝓∈𝚽
E𝑝𝝓 (𝜏 )

[
L

(
D𝑄𝜏 ;𝜽 − 𝛾∇𝜽L(D𝑆𝜏 ;𝜽 )

) ]
+ 𝜆E𝑝0 (𝜏 )

[
ln𝑝𝝓 (𝜏)

]
(7)

where D𝑆𝜏 is used for the inner loop with D𝑄𝜏 used for the outer loop.

Example 2 (Adversarially Task Robust CNP, AR-CNP). Given
the parameterized task distribution 𝑝𝝓 (𝜏), the risk function L, and
the conditional neural process [17], the adversarially task robust CNP
can be formulated as follows:

min

𝜽 ∈𝚯
max

𝝓∈𝚽
E𝑝𝝓 (𝜏 )

[
L(D𝑄𝜏 ; 𝑧, 𝜽2)

]
+ 𝜆E𝑝0 (𝜏 )

[
ln𝑝𝝓 (𝜏)

]
,

s.t. 𝑧 = ℎ𝜽1 (D
𝑆
𝜏 ) with 𝜽 = {𝜽1, 𝜽2},

(8)

where 𝜽1 and 𝜽2 are respectively a set encoder and the decoder net-
works.

Here, we take two typical methods, e.g., MAML [15] and CNP

[17], to illustrate the meta learner within the adversarially task

robust framework, see Examples 1/2 for details.

Explicit Task Distribution Adversary Construction with
Normalizing Flows. Learning to transform the task distribution

is treated as a generative process: 𝚽 : T → T ⊆ R𝑑 in this paper.

Admittedly, there already exist a collection of generative models to

achieve the goal of generating task distributions, e.g., variational

autoencoders [31, 55], generative adversarial networks [20], and

normalizing flows [55].

Among them, we propose to utilize the normalizing flow [55] to

achieve due to its tractability of the exact log-likelihood, flexibility
in capturing complicated distributions, and a direct understanding of
task structures. The basic idea of normalizing flows is to transform

a simple distribution into a more flexible distribution with a series

of invertible mappings G = {𝑔𝑖 }𝑀𝑖=1, where 𝑔𝑖 : T → T ⊆ R𝑑 indi-

cates the smooth invertible mapping. We refer to these mappings

implemented in the neural networks as NN𝝓 afterward. Specifically,

with the base distribution 𝑝0 (𝜏) and a task sample 𝜏0, the model

applies the above mappings to 𝜏0 to obtain 𝜏𝑀 .

𝜏𝑀 = 𝑔𝑀 ◦ . . . 𝑔2 ◦ 𝑔1 (𝜏0) = NN𝝓 (𝜏0) (9)

In this way, the task distribution of interest is adaptive and adver-

sarially exploits information from the shifted task distributions.

The density function after transformations can be easily computed

with the help of functions’ Jacobians:

ln𝑝𝝓 (𝜏𝑀 ) = ln𝑝0 (𝜏0) −
𝑀∑︁
𝑖=1

ln

����det 𝜕𝑔𝑖

𝜕𝜏𝑖−1

���� . (10)

Definition 1 ((ℓ1, ℓ2)-bi-Lipschitz Function). An invertible
function 𝑔 : 𝑥 ⊆ X ↦→ 𝑥 ⊆ X, is said to be (ℓ1, ℓ2)-bi-Lipschitz if
∀{𝑥1, 𝑥2} ∈ X, the following conditions hold:
|𝑔(𝑥1)−𝑔(𝑥2) | ≤ ℓ2 |𝑥1−𝑥2 | and |𝑔−1 (𝑥1)−𝑔−1 (𝑥2) | ≤ ℓ1 |𝑥1−𝑥2 |.

As the normalizing flow function is invertible, the Definition 1

is to describe the Lipschitz continuity in bi-directions.

4.2 Solution Concept & Explanations
This work separates players regarding the decision-making order,

and the optimization procedure is no longer a simultaneous game.

The nature of Stackelberg game enables us to technically express

the studied asymmetric bi-level optimization problem as:

min

𝜽 ∈𝚯
J (𝜽 , 𝝓), s.t. 𝝓 ∈ S(𝜽 )

(11)

with the𝜽 -dependent conditional subsetS(𝜽 ) := {𝝓 ∈ 𝚽|J (𝜽 , 𝝓) ≥
max𝝓∈𝚽 J (𝜽 , 𝝓)}. This suggests the variables 𝜽 and 𝝓 are entan-

gled in optimization.

Moreover, we can define the resulting equilibrium as a local

minimax point [27] in adversarially task robust meta-learning, due

to the non-convex optimization practice.

Definition 2 (Local Minimax Point). The solution {𝜽∗, 𝝓∗} is
called local Stackelberg equilibrium when satisfying two conditions:
(1) 𝝓∗ ∈ 𝚽

′ ⊂ 𝚽 is the maximum of the function J (𝜽∗, ·) with 𝚽
′

a neighborhood; (2) 𝜽∗ ∈ 𝚯
′ ⊂ 𝚯 is the minimum of the function

J (𝜽 , 𝑔(𝜽 )) with 𝑔(𝜽 ) the implicit function of ∇𝝓J (𝜽 , 𝝓) = 0 in the
neighborhood 𝚯′.

Moreover, there exists a clearer interpretation w.r.t. the sequen-
tial optimization process and the equilibrium in the Definition 2.

The meta learner as the leader first optimizes its parameter 𝜽 . Then
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the distribution adversary as the follower updates the parameter 𝝓
and explicitly generates the task distribution proposal to challenge

adaptation performance. In other words, we expect that meta learn-

ers can benefit from generative task distribution shifts regarding

the adaptation robustness.

Remark 1 (Entropy of the Generated Task Distribution).

Given the generative task distribution 𝑝𝝓∗ (𝜏), we can derive its en-
tropy from the initial task distribution 𝑝0 (𝜏) and normalizing flows
G = {𝑔𝑖 }𝑀𝑖=1:

H
[
𝑝𝝓∗ (𝜏)

]
= H

[
𝑝0 (𝜏)

]
+

∫
𝑝0 (𝜏)

[
𝑀∑︁
𝑖=1

ln

����det 𝜕𝑔𝑖

𝜕𝜏𝑖−1

����] 𝑑𝜏 . (12)

The above implies that the generated task distribution entropy

is governed by the change of task identifiers in the probability

measure of the task space.

4.3 Strategies for Finding Equilibrium
Given the previously formulated optimization objective, we pro-

pose to approach it with the help of estimated stochastic gradients.

As noticed, the involvement of adaptive expectation term 𝑝𝝓 (𝜏)
requires extra considerations in optimization.

Best Response Approximation. Given two players with com-

pletely distinguished purposes, the commonly used strategy to

compute the equilibrium is the Best Response (BR), which means:

𝜽𝑡+1 = argmin

𝜽 ∈𝚯
J (𝜽 , 𝝓𝑡 ) (13a)

𝝓𝑡+1 = argmax

𝝓∈𝚽
J (𝜽𝑡+1, 𝝓) . (13b)

For implementation convenience, we instead apply the gradient

updates to the meta player and the distribution adversary, namely

stochastic alternating gradient descent ascent (GDA). The opera-

tions are entangled and result in the following iterative equations

with the index 𝑡 :

𝜽𝑡+1 ← 𝜽𝑡 − 𝛾1∇𝜽J (𝜽𝑡 , 𝝓𝑡 ) (14a)

𝝓𝑡+1 ← 𝝓𝑡 + 𝛾2∇𝝓J (𝜽𝑡+1, 𝝓𝑡 ) . (14b)

This can be viewed as the gradient approximation for the BR

strategy, which leads to at least a local Stackelberg equilibrium for

the considered minimax problem [28].

Stochastic Gradient Estimates & Variance Reduction. Ad-
dressing the game-theoretic problem is non-trivial especially when

it relates to distributions. A commonly-used method is to perform

the sample average approximation w.r.t. Eq. (14). It iteratively up-

dates the parameters of the meta player and the distribution adver-

sary to approximate the saddle point.

More specifically, we can have the Monte Carlo estimates of the

stochastic gradients for the leader P1:

∇𝜽J (𝜽 , 𝝓) =
∫

𝑝𝝓 (𝜏)∇𝜽L(D
𝑄
𝜏 ,D𝑆𝜏 ;𝜽 )𝑑𝜏

≈ 1

𝐾

𝐾∑︁
𝑘=1

∇𝜽L(𝐷
𝑄
𝜏𝑘
, 𝐷𝑆𝜏𝑘 ;𝜽 ) .

(15)

The form of stochastic gradients w.r.t. the meta player parameter

𝜽 is the meta-learning algorithm specific or model dependent. We

refer the reader to Algorithm ??/?? as examples.

Now, we can derive the estimates with the help of REINFORCE

algorithm [76] for the follower P2 and obtain the score function as:

∇𝝓J (𝜽 , 𝝓) ≈
1

𝐾

𝐾∑︁
𝑘=1

L(𝐷𝑄𝜏𝑘 , 𝐷
𝑆
𝜏𝑘
;𝜽 )∇𝝓 ln𝑝𝝓 (𝜏𝑘 )

+ 𝜆
𝐾

𝐾∑︁
𝑘=1

∇𝝓 ln𝑝𝝓 (𝜏−𝑀𝑘 ),

(16)

where the particle 𝜏𝑘 ∼ 𝑝𝝓 (𝜏) denotes the task sampled from the

generative task distribution, and 𝜏−𝑀
𝑘

means the particle sampled

from the initial task distribution to enable NN𝝓 (𝜏−𝑀𝑘 ) = 𝜏𝑘 .
As validated in [16], the score estimator is an unbiased estimate

of∇𝝓J (𝜽 , 𝝓). However, such a gradient estimator in Eq. (16) mostly

exhibits higher variances, which weakens the stability of training

processes. To reduce the variances, we utilize the commonly-used

trick by including a constant baselineV = E𝑝𝝓 (𝜏 )
[
L(D𝑄𝜏 ,D𝑆𝜏 ;𝜽 )

]
≈

1

𝐾

∑𝐾
𝑘=1
L(𝐷𝑄𝜏𝑘 , 𝐷

𝑆
𝜏𝑘
;𝜽 ) for the score function, which results in:

∇𝝓J (𝜽 , 𝝓) :≈
1

𝐾

𝐾∑︁
𝑘=1

[L(𝐷𝑄𝜏𝑘 , 𝐷
𝑆
𝜏𝑘
;𝜽 ) − V]∇𝝓 ln𝑝𝝓 (𝜏𝑘 )

+ 𝜆
𝐾

𝐾∑︁
𝑘=1

∇𝝓 ln𝑝𝝓 (𝜏−𝑀𝑘 ) .

(17)

Particularly, since the normalizing flow works as the distribution

transformation in this work, please refer to Eq. (10) to obtain the

derivative of the log-likelihood of the transformed task ln𝑝𝝓 (𝜏)
w.r.t. 𝝓 inside Eq. (17). For easier analysis, we characterize the

iteration sequence in optimization as

[
𝜽0
𝝓0

]
↦→ · · · ↦→

[
𝜽𝑡
𝝓𝑡

]
↦→[

𝜽𝑡+1
𝝓𝑡+1

]
↦→ · · · .

Remark 2 (Solution as a Fixed Point). The alternating GDA

for solving Eq. (5) results in the fixed point when
[
𝜽𝐻+1
𝝓𝐻+1

]
=

[
𝜽𝐻
𝝓𝐻

]
, or

in other words
[
𝜽𝐻
𝝓𝐻

]
is stationary ∇J (𝜽𝐻 , 𝝓𝐻 ) = 0.

4.4 Theoretical Analysis
Built on the deduction of the local Stackelberg equilibrium’s ex-

istence and the Remark 2, we further perform analysis on the

considered equilibrium

[
𝜽∗
𝝓∗

]
, in terms of learning dynamics us-

ing the alternating GDA. For notation simplicity, we denote the

block terms inside the Hessian matrix H∗ := ∇2J (𝜽∗, 𝝓∗) around

[𝜽∗, 𝝓∗]𝑇 as

[
∇2𝜽𝜽J ∇2𝜽𝝓J
∇2𝝓𝜽J ∇2𝝓𝝓J

] ���
[𝜽∗,𝝓∗ ]𝑇

:=

[
A B
B𝑇 C

]
.

Theorem 1 (Convergence Guarantee). Suppose that the As-
sumption 1 and the function condition of the (local) Stackelberg
equilibrium Δ(A,B,C, 𝛾1, 𝛾2) < 1

2
are satisfied, where norms of the

corresponding matrix are involved. Then the following statements
hold:

(1) The resulting iterated parameters {· · · ↦→ [𝜽𝑡 , 𝝓𝑡 ]𝑇 ↦→ [𝜽𝑡+1,
𝝓𝑡+1]𝑇 ↦→ · · · } are Cauchy sequences;
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（a）sinusoid regression （b）system identification （c）continuous control
Figure 3: Some Benchmarks in Evaluation. Blue-marked variables in the illustration denote task identifiers that guide the configuration of a
specific task. We place distributions over these task identifiers in generating diverse tasks for meta-learning.

(2) The optimization can guarantee at least the linear convergence
to the local Stackelberg equilibrium with the rate

√
Δ.

The Theorem 1 clarifies learning rates 𝛾1 and 𝛾2’s influence on

convergence and the required second-order derivative conditions

of the resulting stationary point [𝜽∗, 𝝓∗]𝑇 . And when the game

arrives at convergence, the local Stackelberg equilibrium is the best

response to these two players, which is at least a local min-max

solution to Eq. (5).

Next, we estimate the generalization bound of meta learners

when confronting the generated task distribution shifts.

Theorem 2 (Generalization Bound with the Distribution

Adversary). Given the pretrained normalizing flows {𝑔𝑖 }𝑀𝑖=1, where
𝑔𝑖 is (ℓ𝑎, ℓ𝑏 )-bi-Lipschitz, and the pretrained meta learner 𝜽∗ ∈ 𝚯, we
can derive the generalization bound with the initial task distribution
𝑝 uniform:

𝑅𝜔𝑝 (𝜽∗) ≤ 𝑅𝜔𝑝 (𝜽∗) + Υ(T )
(
C ln 2𝐾𝑒

C + ln
4

𝛿

𝐾

) 3

8

, (18)

where C = Pdim({L(·;𝜽 ) : 𝜽 ∈ 𝚯}) denotes the pseudo-dimension
in [50], 𝑅𝜔𝑝 (𝜽∗) and 𝑅𝜔𝑝 (𝜽∗) are expected and empirical risks.

We refer the reader to Appendix F for formal Theorem 2 and

proofs. It reveals the connection between the bound and task com-

plexity Υ(T ), and more training tasks from initial distributions

decrease the generalization error in adversarially distribution shifts.

5 Experiments
Previous sections recast the adversarially task robust meta-learning

to a Stackelberg game, specify the equilibrium, and analyze theoreti-

cal properties in distribution generation. This section focuses on the

evaluation, and baselines constructed from typical risk minimiza-

tion principles are reported in Appendix Table 3. These include

vanilla MAML [15], DRO-MAML [57], TR-MAML [9], DR-MAML

[71], and AR-MAML (ours).

Technically, we mainly answer the following Research Ques-
tions (RQs):

(1) Does adversarial training help improve few-shot adaptation
robustness in case of task distribution shifts?

(2) How does the type of the initial task distribution influence the
performance of resulting solutions?

(3) Can generative modeling the task distribution discover mean-
ingful task structures and afford interpretability?

Implementation & Examination Setup. As our approach is agnos-

tic to meta-learning methods, we mainly employ AR-MAML as the

implementation of this work. Concerning the meta testing distribu-

tion, tasks are from the initial task distribution and the adversarial

task distribution, respectively. The latter corresponds to the gener-

ated task distribution under shift constraints after convergence.

Evaluation Metrics. Here, we use both the average risk and con-

ditional value at risk (CVaR𝛼 ) in evaluation metrics, where CVaR𝛼

can be viewed as the worst group performance in [57].

5.1 Benchmarks
We consider the few-shot synthetic regression, system identifi-

cation, and meta reinforcement learning to test fast adaptation

robustness with typical baselines. Notably, the task is specified by

the generated task identifiers as shown in Figure 3.

Synthetic Regression. The same as that in [15], we conduct exper-

iments in sinusoid functions. The goal is to uncover the function

𝑓 (𝑥) = 𝑎 sin(𝑥 −𝑏) with 𝐾-shot randomly sampled function points.

And the task identifiers are the amplitude 𝑎 and phase 𝑏.

System Identification. Here, we take the Acrobot System [61]

and the Pendulum System [35] to perform system identification. In

the Acrobot System, we generate different dynamical systems as

tasks by varying masses of two pendulums. And the task identifiers

are the pendulum mass parameters𝑚1 and𝑚2. In the Pendulum

System, the system dynamics are distinguished by varying the mass

and the length of the pendulum. And the task identifiers are the

mass parameter 𝑚 and the length parameter 𝑙 . For both bench-

marks, we collect the dataset of state transitions with a complete

random policy to interact with sampled environments. The goal

is to predict state transitions conditioned on randomly sampled

context transitions from an unknown dynamical system.

Meta Reinforcement Learning. We evaluate the role of task dis-

tributions in meta-learning continuous control. In detail, the Point

Robot in [15] and the Ant-Pos Robot in Mujoco [65] are included

as navigation environments. We respectively vary goal/position

locations as task identifiers within a designed range to generate

diverse tasks. The goal is to seek a policy that guides the robot to the

target location with a few episodes derived from an environment.

We refer the reader to Appendix I for set-ups, hyper-parameter

configurations and additional experimental results.
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Table 1: Averagemean square errors in 5-shot sinusoid regression/10-shot Acrobot system identification/10-shot Pendulum system identification
with reported standard deviations (5 runs). With 𝛼 = 0.5, the best results are in pink (the lower, the better). U/N in benchmarks denote
Uniform/Normal as the initial distribution type.

Benchmark Meta-Test Average CVaR
Distribution MAML TR-MAML DR-MAML DRO-MAML AR-MAML MAML TR-MAML DR-MAML DRO-MAML AR-MAML

Sinusoid-U
Initial 0.499±0.01 0.539±0.01 0.479±0.01 0.481±0.01 0.459±0.01 0.858±0.01 0.868±0.02 0.793±0.02 0.816±0.02 0.782±0.03

Adversarial 0.508±0.01 0.548±0.01 0.499±0.01 0.502±0.02 0.405±0.01 0.883±0.02 0.879±0.02 0.836±0.01 0.826±0.03 0.671±0.01

Sinusoid-N
Initial 0.578±0.03 0.628±0.01 0.556±0.01 0.562±0.02 0.554±0.02 1.017±0.05 1.017±0.02 0.932±0.02 0.983±0.03 0.947±0.03

Adversarial 0.496±0.01 0.511±0.01 0.492±0.02 0.493±0.01 0.404±0.02 0.838±0.03 0.827±0.02 0.807±0.03 0.835±0.01 0.672±0.03

Acrobot-U
Initial 0.244±0.01 0.233±0.00 0.222±0.00 0.237±0.00 0.219±0.01 0.336±0.01 0.320±0.00 0.303±0.00 0.322±0.01 0.298±0.00

Adversarial 0.243±0.00 0.238±0.01 0.235±0.01 0.244±0.00 0.230±0.00 0.341±0.01 0.320±0.01 0.325±0.01 0.333±0.01 0.306±0.01

Acrobot-N
Initial 0.231±0.00 0.225±0.00 0.227±0.00 0.222±0.00 0.215±0.00 0.321±0.01 0.311±0.00 0.316±0.01 0.309±0.01 0.301±0.01

Adversarial 0.246±0.00 0.237±0.00 0.241±0.00 0.242±0.00 0.229±0.00 0.338±0.00 0.327±0.01 0.327±0.00 0.332±0.01 0.314±0.01

Pendulum-U
Initial 0.648±0.02 0.694±0.01 0.634±0.01 0.630±0.02 0.627±0.01 0.799±0.03 0.780±0.02 0.744±0.01 0.751±0.03 0.733±0.02

Adversarial 0.672±0.01 0.724±0.01 0.669±0.01 0.674±0.00 0.660±0.01 0.845±0.02 0.854±0.02 0.808±0.02 0.826±0.01 0.7780.01

Pendulum-N
Initial 0.596±0.00 0.637±0.01 0.574±0.01 0.582±0.00 0.586±0.01 0.715±0.01 0.720±0.01 0.685±0.01 0.695±0.01 0.694±0.01

Adversarial 0.664±0.02 0.702±0.01 0.660±0.02 0.677±0.02 0.635±0.01 0.861±0.03 0.837±0.02 0.817±0.03 0.860±0.04 0.777±0.03

5.2 Empirical Result Analysis
Here, we report the experimental results, perform analysis and

answer the raised RQs (1)/(2).
Overall Performance: Table 1 shows that AR-MAML mostly out-

performs others in the adversarial distribution, seldom sacrificing

performance in the initial distribution. Similar to observations in

[71], task distributionally robust optimization methods, like DR-

MAML and DRO-MAML, not only retain robustness advantage

on shifted distribution but also sometimes boost average perfor-

mance on the initial distribution. Cases with two types of initial

task distributions (Uniform/Normal) come to similar conclusions on

average and CVaR𝛼 performance. Figures 4/5 show the meta rein-

forcement learning results for Point Robot and Ant Pos navigation

tasks. AR-MAML exhibits similar superiority on both continuous

control benchmarks compared to baselines.
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Figure 4: Meta Testing Returns in Point Robot Navigation Tasks (4
runs). The charts report average and CVaR𝛼 returns with 𝛼 = 0.5

in initial and adversarial distributions, with standard error bars
indicated by black vertical lines. The higher, the better.

Multiple Tail Risk Robustness: Note that CVaR metrics imply the

model’s robustness under the subpopulation shift. Figure 6 reports

CVaR𝛼 values with various confidence values on pendulum system

identification. The AR-MAML’s merits in handling the proportional

worst cases are consistent across diverse levels. We also illustrate

and include these statistics on other benchmarks in Appendix J.

Moreover, as suggested in [63], a robust learner seldom encounters

a performance gap between a standard (initial) test set and a test set
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Figure 5: Meta Testing Returns in Ant Pos Tasks (4 runs). The charts
report average and CVaR𝛼 returns with 𝛼 = 0.5 in initial and ad-
versarial distributions, with standard error bars indicated by black
vertical lines. The higher, the better.

with a distribution shift (adversarial). Figure 7 validates the meta-

learners’ robustness on sinusoid regression, where AR-MAML’s

results are more proximal to the 𝑦 = 𝑥 line than other baselines.
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Figure 6: CVaR𝛼 MSEs with Various Confidence Level 𝛼 . Pendulum-
U/N denotes Uniform/Normal as the initial distribution type. The
plots report meta testing CVaR𝛼 MSEs in initial and adversarial
distributions with standard error in shadow regions.

Random Perturbation Robustness: We also test meta-learners’ ro-

bustness to random noise from the support dataset. To do so, we
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Figure 7: Meta testing MSEs on the initial distribution (x-axis) and
on the adversarial distribution (y-axis). The 𝑦 = 𝑥 line serves as
a baseline for comparison. Models above this line show increased
losses when faced with distribution shifts, indicating a decline in
performance compared to the standard test set.

take sinusoid regression and inject random noise into the support

set, i.e., the noise is drawn from a Gaussian distribution N(0, 0.12)
and added to the output 𝑦. Figure 8 illustrates that AR-MAML’s

performance degradation is somewhat less than others on the adver-

sarial distribution. The noise exhibits similar effects on AR-MAML

and DR-MAML on the initial distribution, harming performance

severely. AR-MAML and DR-MAML still exhibit lower MSEs than

other baselines for all cases. This indicates the adversarial train-

ing mechanism can also bring more robustness to challenging test

scenarios with random noise.

MAML TR-MAML DR-MAML DRO-MAML AR-MAML
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

CV
aR

_0
.5

Sinusoid-UInitial
clean
noisy

MAML TR-MAML DR-MAML DRO-MAML AR-MAML
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Adversarial

clean
noisy

Figure 8: Meta Testing Performance in Clean and Noisy Tasks. The
noisy tasks are constructed by adding noise on the outputs of the
support dataset. Reported are testing CVaR𝛼 MSEs with 𝛼 = 0.5,
where black vertical lines indicate standard error bars.

5.3 Task Structure Analysis
In response to RQ (3), we turn to the analysis of the learned dis-

tribution adversary. As a result, we visualize the adversarial task

probability density.

Explicit Task Distribution: As displayed in Figure 9, our approach

enables the discovery of explicit task structures regarding problem-

solving. The general learned patterns seem to be regardless of the

initial task distributions. In sinusoid regression, more probability

mass is allocated in the region with [3.0, 5.0] × [0.0, 1.0], which
reveals more difficulties in adaptation with larger amplitude de-

scriptors. For the Pendulum, the distribution adversary assigns less

probability mass to two corner regions, implying that the combi-

nation of higher masses and longer pendulums or lower masses

and shorter pendulums is easier to predict. Similar phenomena are

observed in mass combinations of Acrobat systems. Consistently,

the existence of constraint decreases all task distribution entropies

to a certain level, which we report in Appendix I. Though such a de-

crease brings more concentration on some task subsets, AR-MAML

still probably fails to cover other challenging combinations in mode

collapse.

Initial Task Distributions’ Influence on Structures: Comparing

the top and the bottom of Figure 9, we notice that the uniform

and the normal initial distribution results in similar patterns after

normalizing flows’ transformations on separate benchmarks. The

normal initial distribution can be transformed into smooth ones

and captures high-density regions around centroids.
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Figure 9: Adversarial Task Probability Distribution. The plots show
the adversarial distributions resulting from two different initial
distributions: uniform (top row) and normal (bottom row).

5.4 Other Investigations
Here, we conduct additional investigations through the following

perspectives.

Impacts of Shift Distribution Constraints: Our studied framework

allows the task distribution to shift at a certain level. In Eq. (6),

larger 𝜆 values tend to cause the generated distribution to collapse

into the initial distribution. Consequently, we empirically test the

naive and severe adversarial training, e.g., setting 𝜆 = {0.0, 0.1, 0.2}
on sinusoid regression. As displayed in Figure 10, the generated

distribution with 𝜆 = 0.0 suffers from severe mode collapse, merely

covering diagonal regions in the task space. Such a curse is allevi-

ated with increasing 𝜆 values. In Figure 11, the meta learner, after

heavy distribution shifts, catastrophically fails to generalize well

in the initial distribution, illustrating higher adaptation risks in

𝜆 = 0.0.
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Figure 10: Adversarial Task Probability Distribution on Sinusoid
Regression with Various Lagrange Multipliers 𝜆.

Compatibility with Other Meta-learning Methods: Besides the AR-
MAML, we also check the effect of adversarially task robust training

with other meta-learning methods. Here, AR-CNP in Example 2

is employed in the evaluation. Take the sinusoid regression as an

example. Table 2 observes comparable performance between AR-

CNP and DR-CNP on the initial task distribution, while results on

the adversarial task distribution uncover a significant advantage
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Figure 11: Meta testing MSEs with various lagrange multiplier 𝜆.
Reported are testing average and CVaR𝛼 MSEs with 𝛼 = 0.5 with
standard error in shadow regions.

over others, particularly on robustness metrics, namely CVaR𝛼

values.

Table 2:Meta testingMSEs in 5-shot sinusoid regression.With𝛼 = 0.5,
the best results are in pink (the lower, the better).

Average CVaR
Method Initial Adversarial Initial Adversarial

CNP 0.023±0.001 0.026±0.004 0.041±0.003 0.045±0.007
TR-CNP 0.048±0.002 0.050±0.002 0.076±0.004 0.079±0.004
DR-CNP 0.021±0.001 0.023±0.002 0.034±0.003 0.037±0.003
DRO-CNP 0.023±0.001 0.025±0.002 0.039±0.003 0.041±0.004

AR-CNP(Ours) 0.019±0.001 0.018±0.002 0.033±0.001 0.029±0.003

6 Conclusions
Discussions & Society Impacts. This work develops a game-

theoretical approach for generating explicit task distributions in

an adversarial way and contributes to theoretical understandings.

In extensive scenarios, our approach improves adaptation robust-

ness in constrained distribution shifts and enables the discovery of

interpretable task structures in optimization.

Limitations & Future Work. The task distribution in this work

relies on the task identifier, which can be inaccessible in some

cases, e.g., few-shot classification. Also, the adopted strategy to

derive the game solution is approximate, leading to suboptimality

in optimization. Hence, future efforts can be made to overcome

these limitations and facilitate robust adaptation in applications.

Other Supplementary Information
We refer the reader to https://arxiv.org/pdf/2407.19523 and the

project homepage https://sites.google.com/view/ar-metalearn for

detailed proofs of mentioned theorems and more supplementary

information.
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