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Abstract
Web crawl is a main source of large language001
models’ (LLMs) pretraining data, but the ma-002
jority of crawled web pages are discarded in003
pretraining due to low data quality. This paper004
presents CRAW4LLM, an efficient web crawl-005
ing method that explores the web graph based006
on the preference of LLM pretraining. Specifi-007
cally, it leverages the influence of a webpage in008
LLM pretraining as the priority score of the009
web crawler’s scheduler, replacing the stan-010
dard graph-connectivity-based priority. Our011
experiments on a web graph containing 900012
million webpages from a commercial search013
engine’s index demonstrate the efficiency of014
CRAW4LLM in obtaining high-quality pre-015
training data. With just 21% URLs crawled,016
LLMs pretrained on CRAW4LLM data reach017
the same downstream performances of previ-018
ous crawls, significantly reducing the crawling019
waste and alleviating the burdens on websites.020
We will make our code publicly available.021

1 Introduction022

Massive in size and diverse in topics, web data023

usually serve as the primary source of pretraining024

data for large language models (LLMs), providing025

an extensive and heterogeneous corpus that cap-026

tures a wide spectrum of human knowledge and027

real-world information (Baack, 2024; Dubey et al.,028

2024; Penedo et al., 2024). Pretraining datasets are029

typically built from large-scale web crawls such030

as Common Crawl (CommonCrawl, 2007), which031

may contain TBs of data spanning billions of web-032

pages (Penedo et al., 2024; Weber et al., 2024).033

Despite their vast scale, most of the data col-034

lected from web crawls are not used in the pretrain-035

ing of LLMs. Existing work often discards over036

90% of the raw data collected from the web (Li037

et al., 2024; Penedo et al., 2024; Tang et al.,038

2024), highlighting the inefficiency of current web039

crawlers in collecting LLM pretraining data. Com-040

mon web crawlers like Common Crawl prioritize041

Figure 1: Graph traverse process of a traditional graph-
connectivity-based crawler (green) and CRAW4LLM
(red) starting from a same seed URL (star).

pages based on graph connectivity metrics like 042

PageRank (Page et al., 1999; Cho et al., 1998) or 043

harmonic centrality (Boldi and Vigna, 2014; Baack, 044

2024), which favor documents with a high num- 045

ber of inlinks (indegree) (Fortunato et al., 2008) 046

rather than those most relevant for pretraining. This 047

misalignment not only leads to waste in computa- 048

tional resources during excessive data processing 049

for LLM developers, but also incentivizes over- 050

crawling, which burdens website operators with re- 051

dundant traffic and increases ethical and legal risks 052

related to fair use of data and copyright (Longpre 053

et al., 2024; New York Times, 2023). 054

To bridge this gap, we propose Web Crawling 055

for LLM Pretraining (CRAW4LLM). Instead of 056

relying on traditional graph-connectivity-based sig- 057

nals, CRAW4LLM improves crawling efficiency 058

by prioritizing webpages based on their influence 059

on LLM pretraining. Specifically, during each 060

crawling iteration, all newly discovered documents 061

are scored with a pretraining influence scorer de- 062

rived from data-filtering pipelines for pretrain- 063

ing (Li et al., 2024; Penedo et al., 2024), and docu- 064

ments with the highest scores are used to discover 065

new documents. By prioritizing webpages with 066

high influence scores, as illustrated in Figure 1, 067
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Figure 2: Correlations between pretraining influence
scores from DCLM fastText (Li et al., 2024) and PageR-
ank to indegrees, on randomly sampled ClueWeb22-B
documents (Overwijk et al., 2022). Spearman correla-
tion coefficients are reported in parentheses.

CRAW4LLM explores the web graph in a funda-068

mentally different manner from traditional graph-069

connectivity-based crawlers, uncovering a distinct070

subset of the web more useful for pretraining.071

We conduct large-scale crawling simulations072

on ClueWeb22-A (Overwijk et al., 2022), a snap-073

shot of the web containing 900 million English074

webpages obtained from the central index of a075

commercial search engine. Results show that, by076

crawling only 1× of the pretraining dataset size,077

CRAW4LLM can outperform traditional crawlers078

which collect 1×, 2×, and 4× more data followed by079

data selection. Compared to the baseline crawler080

that achieves the same performance, CRAW4LLM081

crawls only 21% of the webpages. Further analysis082

reveals that during crawling, CRAW4LLM quickly083

discovers documents that align with the oracle se-084

lection, which crawls the full web graph. As a085

result, it achieves 95% of the oracle performance086

while crawling only 2.2% of the data.087

2 Methodology088

In this section, we introduce Web Data Crawling089

for LLM Pretraining (CRAW4LLM), an efficient090

crawling method that integrates LLM pretraining091

preference into the crawler. The algorithm of092

CRAW4LLM is presented in Algorithm 1.093

Similar to traditional crawlers (Cho et al., 1998),094

CRAW4LLM starts with a set of seed URLs. For095

each unvisited outlink of them, CRAW4LLM as-096

signs a score using a pretraining-oriented URL scor-097

ing function SCORE_URL(·;M), where M is a098

pretraining influence scorer which rates a docu-099

ment’s influence for pretraining. M can be derived100

from data classification models for pretraining data,101

which have been used to decide whether a docu-102

Algorithm 1 CRAW4LLM Algorithm
Input: Seed URLs Useed, number of pages to be crawled

N , number of pages to be crawled in each iteration n,
pretraining influence scorerM(·)

Output: Crawled page set P
1: Initialize URL and score priority queueQ ← ∅
2: Initialize crawled page set P ← ∅
3: Initialize visited URL set V ← Useed
4: Uc ← Useed
5: while |P| ≤ N do
6: Pc ← FETCHPAGES(Uc)
7: Merge Pc into P
8: Uout ← EXTRACTURLS(Pc)
9: for all v ∈ Uout do

10: if v /∈ V then
11: ENQUEUE(Q, v, SCORE_URL(v;M))
12: ADD(V, v)
13: end if
14: end for
15: Uc ← DEQUEUE(Q, n)
16: end while
17: return P

ment should be retained in or filtered out from the 103

raw dataset (Li et al., 2024; Penedo et al., 2024). 104

Formally, given a pretraining influence scorer M, 105

the score s of a URL u is calculated as 106

s← SCORE_URL(u;M) =M(FETCHPAGE(u)), (1) 107

where FETCHPAGE(u) gets the page content of 108

u and M(·) returns the score. Once all outlinks 109

have been scored, following the standard proce- 110

dures of existing crawlers, they are inserted into 111

a priority queue, which automatically orders them 112

based on their scores. The top n highest-scoring 113

URLs are then dequeued for pretraining and serve 114

as the sources for the next round of crawling. This 115

process repeats until N documents have been col- 116

lected, forming the final pretraining dataset P . 117

In contrast, traditional crawlers typically rely on 118

graph connectivity metrics, such as PageRank (Cho 119

et al., 1998) and harmonic centrality (Baack, 2024), 120

which basically assign higher priority to pages 121

with higher indegrees (Fortunato et al., 2008). As 122

shown in Figure 2(a), the indegrees of webpages 123

exhibit a poor correlation with the scores assigned 124

by the DCLM fastText classifier, a pretraining in- 125

fluence scorer for identifying high-quality pretrain- 126

ing data (Li et al., 2024). This confirms that graph 127

connectivity-based crawlers are inefficient in crawl- 128

ing pretraining data. 129

By incorporating a pretraining influence scorer, 130

CRAW4LLM traverses the web graph in a way 131

that prioritizes high-quality pretraining documents. 132

This makes the crawling more efficient and enables 133

the discovery of documents dramatically different 134

with connectivity-based crawlers. 135
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Commonsense
Reasoning

Language
Understanding

Reading
Comprehension

Symbolic
Problem Solving

World
Knowledge Core % of

Crawling Method Selection Pool Size (4 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (23 tasks) Oracle

Oracle Selection (Upper Bound): Random sample from the top 10% rated data from ClueWeb22 using DCLM fastText for pretraining
n.a. 45× 0.2438 0.2209 0.1483 0.2039 0.2403 0.2239 100%

Crawl-then-Select: Crawl 1× and 2× more data from ClueWeb22 and select top-rated 1× data using DCLM fastText for pretraining

Random
1× 0.1906 0.1890 0.0244 0.1834 0.1930 0.1748 78.1%
2× 0.1896 0.1967 0.1260 0.2000 0.2024 0.1964 87.7%

Indegree
1× 0.1730 0.1680 0.0326 0.1616 0.1668 0.1556 69.5%
2× 0.1845 0.1856 0.0970 0.1958 0.1953 0.1865 83.3%

Ours: Crawl 1× data using CRAW4LLM for pretraining
CRAW4LLM 1× 0.2116 0.2311 0.0826 0.1979 0.2486 0.2133 95.3%

Table 1: Downstream LLM performance. All models are pretrained on 1× data, which corresponds to 20M
documents and 32.9B tokens. The evaluation metric is centered accuracy (0 = random guess) (Li et al., 2024).
Best/2nd best in the last two groups are bolded/underlined. See Appendix C for detailed results.

3 Experimental Methodology136

In this section, we introduce our experimental137

setup, with details on the crawler implementation138

and LLM training provided in Appendix A and B.139

CRAW4LLM. To run experiments in our lim-140

ited computational budget, we run a simulation of141

CRAW4LLM on the ClueWeb22 dataset (Overwijk142

et al., 2022), a snapshot of the web with graph in-143

formation from a commercial crawler. We use the144

English subset of ClueWeb22-A, which is a web145

graph containing 900M webpages with links. We146

randomly sampled 10K URLs as our seed URLs.147

We set the number of total crawled documents N148

to 20M and crawled documents each iteration n to149

10K. We use the DCLM fastText classifier (Li et al.,150

2024) as the pretraining influence scorer M(·).151

Baselines. We emulate traditional graph-152

connectivity-based crawlers by replacing the153

LLM-oriented URL scoring function (Eq. 1) with154

a function that returns the indegree for a given155

URL, since a node’s indegree closely correlates156

with PageRank, a common graph connectivity157

metric, as shown in Figure 2(b) and previous158

findings (Fortunato et al., 2008). We also introduce159

a random crawling baseline, where the scorer160

assigns random scores. We run both of them in161

a crawl-then-select setting, first crawling 1× or162

2× more documents and then selecting the top 1×163

(20M) documents based on scores assigned by the164

DCLM fastText classifier. This process mimics165

existing data-filtering pipelines, which begin with166

crawled documents and then apply filtering (Li167

et al., 2024; Penedo et al., 2024).168

Oracle. We also introduce an oracle selection169

run in which we directly apply the DCLM fastText170

classifier to the entire ClueWeb22-A document set171

and select the top 10% documents for pretraining, 172

serving as the upper bound. 173

LLM Training and Evaluation. For all runs, 174

we use the final set of 20M crawled or selected 175

documents to pretrain a 411M Transformer on 4× 176

Chinchilla-optimal tokens (Hoffmann et al., 2022), 177

totaling 32.9B tokens. The pretraining is conducted 178

using the DCLM codebase (Li et al., 2024). To eval- 179

uate the pretrained LLMs, we follow the DCLM 180

evaluation recipe, assessing performance on 23 (22 181

unique) core tasks. 182

4 Evaluation Results 183

In this section, we first present the overall perfor- 184

mance of CRAW4LLM (Sec. 4.1), followed by 185

further analysis (Sec. 4.2). 186

4.1 Overall Performance 187

In this experiment, we compare the performance 188

of CRAW4LLM with baseline crawlers by evaluat- 189

ing LLMs trained on their respective crawled data. 190

As shown in Table 1, when all methods crawl the 191

same amount of training data (1×), CRAW4LLM 192

significantly outperforms random crawling and in- 193

degree crawling. In the crawl-then-select setting, 194

where traditional crawlers are allowed to collect 195

twice as much data (2×) for later selection, they 196

still underperform compared to CRAW4LLM. This 197

suggests that incorporating pretraining-oriented sig- 198

nals early in the crawling process is more beneficial 199

than relying on post-selection. With only 1× of the 200

data, CRAW4LLM retains 95% of the performance 201

achieved by the oracle run, which directly selects 202

from a substantially larger 45× data pool. 203

In Section 4.2, we further analyze the efficiency 204

of CRAW4LLM compared to traditional crawlers 205

and explore the reasons behind it. 206
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Figure 3: Efficiency of crawlers. (a) shows the per-
formance of LLMs trained on selected data crawled
by CRAW4LLM and extended baseline crawlers. (b)
presents the number of crawled (P) and visited (V)
documents for CRAW4LLM, along with the estimated
number of crawled documents required for indegree-
based crawler to match CRAW4LLM’s performance.
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Figure 4: Precision (left) and recall (right) of the
oracle documents among the documents crawled by
CRAW4LLM, indegree, and random crawler. The upper
bound represents always crawling the oracle documents.

4.2 Analysis207

Crawling Efficiency. We evaluate the efficiency208

of CRAW4LLM by comparing the number of doc-209

uments it crawls or visits against baseline crawlers.210

As shown in Figure 3(a), even when the baselines211

crawl 4× the required pretraining data for selection,212

they still underperform compared to CRAW4LLM.213

Extrapolation suggests that the indegree-based214

crawler would need to process 4.8× more docu-215

ments (96M) to match CRAW4LLM’s performance.216

Figure 3(b) further illustrates that CRAW4LLM217

achieves the same performance while crawling only218

21% of the documents required by the indegree-219

based crawler, or 48% when considering all visited220

documents. These results highlight the efficiency221

of CRAW4LLM, demonstrating its potential to re-222

duce website burdens and mitigate over-crawling.223

Document Coverage. In this experiment, we plot224

the precision and recall of the oracle-selected doc-225

uments among those crawled by CRAW4LLM and226
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Figure 5: Correlations between the pretraining influence
scores of the documents themselves and the average
scores of their 1- and 2-hop outlink documents. Spear-
man correlation coefficients are reported in parentheses.

baseline crawlers throughout the crawling process. 227

As shown in Figure 4, the precision quickly reaches 228

1.0, while the recall increases linearly, aligning 229

with the theoretical upper bound. The saturated 230

performance remains until 13 million documents 231

have been crawled, after which the performance 232

starts to decline, likely due to the lack of connectiv- 233

ity of the ClueWeb22 subgraph. In contrast, base- 234

line crawlers exhibit minimal overlap with oracle- 235

selected data, verifying that most of their crawled 236

content is misaligned with pretraining needs and 237

should be filtered (Li et al., 2024; Penedo et al., 238

2024). These results emphasize the importance of 239

targeted crawling strategies for pretraining. 240

Score Correlations Across Links. CRAW4LLM 241

tracks the outlinks of the highest-scored documents 242

in the current iteration to enrich the queue for future 243

crawls. As shown in Figure 5, we plot the correla- 244

tions between the pretraining influence scores of 245

current documents and their 1- and 2-hop outlinks. 246

The results indicate a correlation in influence scores 247

across link hops, suggesting that highly-rated doc- 248

uments are interconnected and can be discovered 249

through previously crawled documents. 250

5 Conclusion 251

This paper presents CRAW4LLM, a step toward 252

more efficient and responsible web crawling for 253

LLM pretraining. By prioritizing documents based 254

on the pretraining needs, our method improves 255

crawling efficiency and reduces unnecessary crawl- 256

ing, easing the burden on web hosts. While fair 257

use of web data remains a critical challenge, we 258

hope that CRAW4LLM can help mitigate these con- 259

cerns and promote more compliant and sustainable 260

practices in obtaining pretraining data for LLMs. 261
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Limitations262

Web crawling raises important concerns regarding263

copyright and the fair use of web data (Longpre264

et al., 2024), necessitating a better solution from the265

entire LLM community, such as sharing benefits266

with website owners. In this paper, we propose a267

more efficient crawling method that mitigates these268

challenges by reducing crawling, though it does not269

fully resolve them. Our experiments are conducted270

on a web graph dataset ClueWeb22 (Overwijk et al.,271

2022), thereby avoiding issues associated with ac-272

tual web crawling. We hope that future advance-273

ments in web crawling will better align with ethical274

and legal standards.275

While our crawling simulation is a sufficient276

research setup, further validation is required to277

assess the effectiveness of CRAW4LLM in real-278

world crawling scenarios. Our CRAW4LLM and279

baseline crawlers implement only the selection pol-280

icy (Cho et al., 1998) of a crawler, which deter-281

mines which pages to crawl. Although we try282

to mimic real-world crawling procedures used in283

systems like Apache Nutch1, we do not imple-284

ment other web crawling policies in industrial-285

level crawlers, such as the re-visit policy (Cho286

and Garcia-Molina, 2003a), politeness policy (Cho287

and Garcia-Molina, 2003b), and parallelization pol-288

icy (Cho and Garcia-Molina, 2002). We leave289

the integration of CRAW4LLM into real-world290

crawling engines like Nutch and a comprehensive291

comparison between CRAW4LLM and traditional292

crawling methods in real-world crawling scenarios293

for future work.294
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A Details on Crawling397

Our implementation of the indegree-based crawler398

employs a static URL scoring function, which di-399

rectly returns the indegree of a given URL based400

on the full ClueWeb22 graph (Sec. 3). For real-401

world crawlers, as the true indegree value of a URL402

cannot be known in advance, a local graph must be403

maintained to track the known inlinks of discovered404

URLs. This local graph is updated iteratively as405

the discovered portion of the web expands during406

the crawling process (Cho et al., 1998).407

Maintaining such a local graph during crawling408

introduces significant computational overhead. For409

simplicity, we instead implement the static simula-410

tion, where we directly return the global indegree411

of each URL. We believe that this simplified imple-412

mentation does not underperform compared to real-413

world implementations, as our approach leverages414

global information from the entire graph, which415

should be better than the partial information from416

the local graph.417

We run our simulated crawlers on a Linux server418

equipped with two Intel(R) Xeon(R) E5-2630 v3419

CPUs (8 cores per socket, 16 cores in total, 1 thread420

Hyper-parameter Value

nlayers 24
nheads 8
dmodel 1,024
dhead 128

Warmup 2,000
Learning Rate 3e-3
Weight Decay 0.033

z-loss 1e-4
Global Batch Size 512
Sequence Length 2048

Table 2: Model and training hyper-parameters. nlayers,
nlayers, dmodel, and dhead denote the number of layers,
attention heads, width, and width per attention head,
respectively.

per core), 125GiB of memory, and an SSD. A crawl 421

of 20 million documents takes approximately one 422

day to complete. 423

B Details on LLM Training and 424

Evaluation 425

We pretrain a 411M-parameter2 decoder-only 426

Transformer model using the DCLM training 427

recipe (Li et al., 2024)3. The hyper-parameters are 428

presented in Tabel 2. To enhance training stability, 429

we extend the original 411M-1x setting to 411M- 430

4x, meaning the model is trained on 4 times the 431

Chinchilla-optimal number of tokens (Hoffmann 432

et al., 2022), which amounts to 32.9B tokens. The 433

training process takes 1 day and 12 hours on 8 434

NVIDIA L40S GPUs. For further details, please 435

refer to the DCLM paper (Li et al., 2024). Due to 436

computational constraints, each pretraining experi- 437

ment is conducted only once. 438

We use the DCLM evaluation recipe (Li et al., 439

2024) to evaluate model performance on 23 (22 440

unique) core tasks. 441

C Detailed Results 442

The raw (uncentered) accuracy of all evaluation 443

tasks is presented in Table 3, 4, 5, 6, and 7. Please 444

refer to Li et al. (2024) for more details on the 445

evaluation tasks. 446

2Sometimes referred to as 400M in the DCLM paper (Li
et al., 2024).

3https://github.com/mlfoundations/dclm
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Crawling Selection Commonsense Reasoning
Method Pool Size CommonsenseQA COPA OpenBookQA PIQA

Oracle Selection (Upper Bound)
n.a. 45× 0.2850 0.7000 0.3300 0.6812

Crawl-then-Select
Random 1× 0.2072 0.6700 0.2980 0.6746
Random 2× 0.2588 0.6200 0.3160 0.6785
Random 4× 0.2326 0.6400 0.3380 0.6757
Indegree 1× 0.3219 0.6000 0.2780 0.6513
Indegree 2× 0.1966 0.6600 0.3040 0.6752
Indegree 4× 0.2088 0.6400 0.3400 0.6817

Ours
CRAW4LLM 1× 0.2277 0.6600 0.3300 0.6926

Table 3: Results for commonsense reasoning tasks.

Crawling Selection Language Understanding
Method Pool Size BIG-Bench Lang. Id. HellaSwag (zero-shot) HellaSwag LAMBADA Winograd Winogrande

Oracle Selection (Upper Bound)
n.a. 45× 0.2515 0.3856 0.3905 0.4432 0.6557 0.5130

Crawl-then-Select
Random 1× 0.2490 0.3709 0.3716 0.3990 0.6044 0.5146
Random 2× 0.2468 0.3882 0.3925 0.4073 0.6007 0.5130
Random 4× 0.2521 0.4011 0.4019 0.4390 0.6154 0.5130
Indegree 1× 0.2566 0.3515 0.3519 0.3596 0.5971 0.5004
Indegree 2× 0.2547 0.3749 0.3771 0.3773 0.5861 0.5241
Indegree 4× 0.2562 0.3994 0.4008 0.4159 0.6190 0.5178

Ours
CRAW4LLM 1× 0.2544 0.4035 0.4048 0.4196 0.6593 0.5288

Table 4: Results for language understanding tasks.

Crawling Selection Reading Comprehension
Method Pool Size BoolQ CoQA SQuAD

Oracle Selection (Upper Bound)
n.a. 45× 0.5755 0.2479 0.3139

Crawl-then-Select
Random 1× 0.5080 0.1799 0.1882
Random 2× 0.5807 0.2053 0.2759
Random 4× 0.5911 0.2361 0.2951
Indegree 1× 0.5324 0.1666 0.1616
Indegree 2× 0.5697 0.1843 0.2390
Indegree 4× 0.5765 0.2147 0.2736

Ours
CRAW4LLM 1× 0.5440 0.2264 0.2215

Table 5: Results for reading comprehension tasks.
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Crawling Selection Symbolic Problem Solving
Method Pool Size AGI Eval LSAT-AR BIG-Bench CS Algorithms BIG-Bench Dyck Lang. BIG-Bench Operators BIG-Bench Repeat Copy Logic

Oracle Selection (Upper Bound)
n.a. 45× 0.2739 0.4341 0.2160 0.2143 0.0625

Crawl-then-Select
Random 1× 0.2391 0.4568 0.1970 0.2143 0.0000
Random 2× 0.2696 0.4538 0.2520 0.1762 0.0313
Random 4× 0.1957 0.4568 0.2600 0.1857 0.0625
Indegree 1× 0.2304 0.4371 0.1900 0.1429 0.0000
Indegree 2× 0.2609 0.4235 0.2340 0.2143 0.0313
Indegree 4× 0.2174 0.4538 0.2530 0.1667 0.0938

Ours
CRAW4LLM 1× 0.2696 0.4371 0.1620 0.2095 0.0938

Table 6: Results for symbolic problem solving tasks.

Crawling Selection World Knowledge
Method Pool Size ARC Easy ARC Challenge BIG-Bench-Bench QA Wikidata Jeopardy MMLU

Oracle Selection (Upper Bound)
n.a. 45× 0.5951 0.3166 0.4945 0.1176 0.2805

Crawl-then-Select
Random 1× 0.5152 0.2799 0.5186 0.0461 0.2552
Random 2× 0.5425 0.2807 0.5081 0.0648 0.2561
Random 4× 0.5577 0.2867 0.5126 0.0970 0.2543
Indegree 1× 0.4857 0.2509 0.4888 0.0138 0.2618
Indegree 2× 0.5248 0.2790 0.5205 0.0555 0.2464
Indegree 4× 0.5749 0.2935 0.5084 0.0959 0.2430

Ours
CRAW4LLM 1× 0.6103 0.3208 0.5143 0.1323 0.2661

Table 7: Results for world knowledge tasks.

D The ClueWeb22 Dataset447

ClueWeb22 (Overwijk et al., 2022) is distributed448

under a “TREC-style” license for research purpose.449

The dataset can be obtained by signing a data li-450

cense agreement with Carnegie Mellon University4.451

We use ClueWeb22 only for research purpose.452

E Use of AI Assistants453

We use GitHub Copilot5 to assist with coding and454

ChatGPT6 (powered by GPT-4o) to enhance the455

writing of this paper.456

4https://lemurproject.org/clueweb22/obtain.php
5https://github.com/features/copilot
6https://chatgpt.com/
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