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Abstract
Summary: Machine learning-derived embeddings are a compressed representation of high content data modalities. Embeddings can capture 
detailed information about disease states and have been qualitatively shown to be useful in genetic discovery. Despite their promise, embed-
dings have a major limitation: it is unclear if genetic variants associated with embeddings are relevant to the disease or trait of interest. In this 
work, we describe EmbedGEM (Embedding Genetic Evaluation Methods), a framework to systematically evaluate the utility of embeddings in 
genetic discovery. EmbedGEM focuses on comparing embeddings along two axes: heritability and disease relevance. As measures of heritabil-
ity, we consider the number of genome-wide significant associations and the mean χ2 statistic at significant loci. For disease relevance, we 
compute polygenic risk scores for each embedding principal component, then evaluate their association with high-confidence disease or trait 
labels in a held-out evaluation patient set. While our development of EmbedGEM is motivated by embeddings, the approach is generally applica-
ble to multivariate traits and can readily be extended to accommodate additional metrics along the evaluation axes. We demonstrate 
EmbedGEM’s utility by evaluating embeddings and multivariate traits in two separate datasets: (i) a synthetic dataset simulated to demonstrate 
the ability of the framework to correctly rank traits based on their heritability and disease relevance and (ii) a real data from the UK Biobank, in-
cluding metabolic and liver-related traits. Importantly, we show that greater disease relevance does not automatically follow from greater 
heritability.
Availability and implementation: https://github.com/insitro/EmbedGEM.

1 Introduction
Representation learning is a crucial aspect of modern-day 
machine learning (ML), whose aim is to discover compact 
and informative representations of high-dimensional data. 
ML-derived representations are often simply called 
“embeddings.” Deep neural networks have emerged as a 
powerful tool for representation learning, demonstrating re-
markable success across various domains. Representation 
learning was first introduced in the form of unsupervised pre- 
training (Hinton et al. 2006), where a deep neural network 
was trained on unlabeled data to initialize weights for subse-
quent supervised learning tasks. Autoencoders inaugurated 
the next generation of representation learning algorithms, 
which are neural networks trained to reconstruct their input, 
enabling the learning of compact and informative representa-
tions (Vincent et al. 2008). More recently, self-supervised 
learning has gained attention as a promising approach, where 
the model learns representations by maximizing agreement 
between differently augmented views of the same data (Chen 

et al. 2020, Caron et al. 2021). Self-supervised pre-training 
has significantly improved performance on tasks including 
image classification, natural language processing, and recom-
mendation systems (Grill et al. 2020).

In recent years, embeddings have become increasingly used 
in genetic discovery (Dadousis et al. 2017, Mukherjee et al. 
2020, Kirchler et al. 2022, Patel et al. 2022, Xie et al. 2022, 
Yun et al. 2023), identifying novel associations between ge-
netic variants and disease indications. While some studies 
have heuristically evaluated the utility of embeddings for ge-
netic discovery, there is currently little systematic work evalu-
ating their added value. In (Yun et al. 2023), genome-wide 
association studies (GWASs) were performed on relatively 
uncorrelated embeddings extracted from β variational 
autoencoders (Higgins et al. 2017). The authors established 
disease relevance by generating polygenic risk scores (PRSs) 
from embedding-associated variants, and demonstrating im-
proved discrimination between cases and controls in indepen-
dent cohorts as compared with PRSs composed of variants 
associated with existing multivariate traits. While this was 
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not developed into an explicit framework for evaluating the 
disease relevance of embeddings, it served as a motivation for 
our approach. In (Kirchler et al. 2022), the authors con-
ducted univariate GWAS of embedding principal components 
(PCs). Subjects with extreme values in PC space were 
inspected to qualitatively interpret the PCs, and related phe-
notypes were identified by performing PheWAS (Denny et al. 
2010) on the PCs. Similarly, (Patel et al. 2022, Xie et al. 
2022) performed GWAS on each dimension of the embed-
dings and conducted genetic correlation analysis with other 
relevant traits to evaluate the relevance of the different em-
bedding dimensions. Mukherjee et al. generated unsupervised 
2D representations learned from bulk RNA-Seq data and 
used a metric based on patient distance from the prototypical 
baseline as a quantitative phenotype in GWAS (Mukherjee 
et al. 2020). The authors validate the metric against other 
known clinical metrics to quantify disease severity.

Unlike prior works, which focused on simply performing 
genetic discovery with embeddings, here we propose a formal 
framework for evaluating the utility of embeddings for ge-
netic discovery. EmbedGEM (Embedding Genetic Evaluation 
Methods) evaluates embeddings along two dimensions: heri-
tability and disease relevance. Using both simulated and real 
datasets, we demonstrate the utility of EmbedGEM for evalu-
ating embeddings and multivariate traits more broadly. 
Finally, we release a software implementation of EmbedGEM 
(https://github.com/insitro/EmbedGEM) along with a tutorial 
on how to use it.

2 Preliminaries
2.1 Mathematical formulation of 
representation learning
Let X denote the input data space and Y denote a lower- 
dimensional learned representation space. Given a dataset of 
the form D¼ ðx1; l1Þ; ðx2; l2Þ; . . . ; ðxn; lnÞ, where xi 2X is an 
input sample (e.g. image) and li is an optional corresponding 
label, the goal of representation learning is to find a mapping 
f : X ! Y that captures meaningful features and the underly-
ing structure of the data. This is often formulated as a super-
vised learning problem, where the objective is to minimize a 
loss function Lðg ◦ fðxiÞ; liÞ that measures the discrepancy be-
tween the predicted labels using the learned representations 
g ◦ fðxiÞ and the true label li. Here gð�Þ is a projection that 
maps the representation f ðxiÞ into the space where the loss is 
calculated. In the absence of meaningful labels, representa-
tion learning can also be formulated as an unsupervised or 
self-supervised learning problem where the loss function is of 
the form Lðg ◦ fðxiÞ;xiÞ (e.g. for an auto-encoder) or 
Lðg ◦ fðxi1Þ;g ◦ fðxi2ÞÞ, where xi1 and xi2 are two different 
views of xi (e.g. for SimCLR). In any case, the primary output 
of the representation learning algorithm is yi ¼ f ðxiÞ, which is 
a lower dimension representation of the input (commonly re-
ferred to as embeddings).

2.2 Genome-wide association studies
GWAS (Visscher et al. 2017) involves analyzing a large num-
ber of single-nucleotide polymorphisms (SNPs) across the ge-
nome to identify associations between specific genetic 
variants and phenotypes of interest. Mathematically, GWAS 
of a quantitative trait is posed as a linear regression problem, 
where the phenotype Y is regressed on the genotype G, i.e. 

the number of risk alleles an individual carries at a genomic 
location, adjusting for a vector of covariates X: 

Y ¼ β0þ βGþ γTXþ ϵ: (1) 

Here, β is the regression coefficient of interest, γ is a vector of 
coefficients for the adjustment variables, and ϵ a residual with 
mean zero and finite variance. Variants associated with the phe-
notype are identified by rejecting the null hypothesis H0 : β¼ 0. 
Due to the large number of variants in the genome, standard 
practice is to run a separate association test for each SNP G.

2.3 Linkage disequilibrium-based clumping
Nearby genetic variants on a chromosome tend to be inherited 
together, leading to correlations among variants known as 
linkage disequilibrium (LD). Clumping is the process by which 
variants in high LD with the most significant variant in a re-
gion, the “index variant,” are pruned, or removed, to reduce 
redundancy (Adam et al. 2021). Clumping can be performed 
using common statistical genetic software, notably plink 
(Purcell et al. 2007). Mathematically, clumping can be formu-
lated as a greedy selection process, where for each LD region 
Ri, only the variant with the lowest P-value is retained: 

S ¼ fsi : pðsiÞ ¼ min
sj2Ri

pðsjÞg:

Here S is the clumped set of variants, pðsiÞ is the P-value of 
variant si, and Ri is the set of variants in the same LD region 
as si. The LD neighborhood of a variant is typically defined by 
the set of variants correlated at an R2 threshold of 0.5 or 0.1.

2.4 Polygenic risk scores
PRS (Lewis and Vassos 2020) have emerged as a powerful 
tool in genetic epidemiology for predicting an individual’s 
risk of developing complex traits and diseases. A PRS is cal-
culated by summing the contributions of multiple genetic var-
iants across the genome, weighted by their association with 
the phenotype of interest from (1): 

PRSi ¼
XJ

j¼1

βjGij:

Here, PRSi is the polygenic score for subject i, Gij represents the 
number of risk alleles subject i carries at genetic variant j, and βj 
represents the estimated genetic effect size. By aggregating the 
effects of multiple genetic variants, PRS provides a quantitative 
measure of genetic predisposition to a particular trait or disease.

3 Materials and methods
The EmbedGEM workflow, consisting of heritability and disease 
relevance evaluations, is summarized Fig. 1. The heritability eval-
uation comprises of deriving multivariate GWAS summary statis-
tics from univariate GWAS summary statistics of the 
orthogonalized embedding PCs (Section 3.1.1). These summary 
statistics are used to compute metrics that quantify the total heri-
tability of the embeddings (Section 3.1.2). For evaluating disease 
relevance, we assess the performance of PRSs, composed of var-
iants associated with the orthogonalized embedding dimensions, 
for predicting a disease trait of interest (Section 3.1.3).

Aside from introducing the different components of the 
workflow, this section introduces the datasets used to 
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evaluate EmbedGEM. First, we describe a simulated dataset 
that we use to demonstrate the ability of EmbedGEM to cor-
rectly order different embeddings (Section 3.2). Then we in-
troduce a real-world example, along with the methods used 
to process the data and generate embeddings (Section 3.3).

3.1 Evaluation methods
3.1.1 GWAS methodology for multivariate traits
Given K traits or embedding dimensions ðY1; . . . ;YKÞ, we 
perform Principal Component Analysis (PCA) to obtain K 
orthogonal PCs, denoted as PC1; . . . ;PCK. Subsequently, we 
conduct single-trait GWAS for the first m ≤ K PCs (where m 
was either user-selected or determined through an automated 
procedure) using the following association model: 

PCk ¼ βkGþ γT
k Xþ ε (2) 

Here, PCk is kth PC, G is genotype at the variant of interest, 
and X is a vector of covariates, such as age, sex, and ancestry 
PCs. The effect of genotype on the kth PC is captured by βk. 
Because the PCs are orthogonal by construction, the per- 
component Wald statistics Zk ¼ β̂k=SEðβ̂kÞ are independent 
and multivariate normal asymptotically (i.e. as the number of 
subjects ! 1). Under the null hypothesis of no association, 
the combined test statistic T ¼

Pm
k¼1 Z2

k follows a central 
χ2

mð0Þ distribution with m degrees of freedom (Aschard et al. 
2014). We use T � χ2

mð0Þ to evaluate the hypothesis: 

H0 : G is not associated with any of the m PCs
Ha : G is associated with at least one of the m PCs 

Note that although the embeddings were orthogonalized via 
PCA in this work, EmbedGEM does not depend on any par-
ticular method of orthogonalizing the traits.

3.1.2 Evaluating heritability
The goal of evaluating heritability is to compare the different 
multivariate traits (e.g. embeddings) in terms of their ability 
to manifest genetic associations. In EmbedGEM, we examine 
the following summary statistic-based metrics, which are 
commonly reported in the field:

� Number of independent genome-wide significant 
(GWS) variants (P-value ≤ 5 × 10−8) after LD-based 
clumping. 

� The mean and median χ2 statistics of the independent 
(clumped) GWS variants. 

The mean χ2 statistic at independent GWS variants is an as-
sessment of signal strength. An approach that provides a 
higher mean χ2 provides better power, allowing for detection 
of a genetic association with a smaller sample size. The total 
number of GWS variants instead gauges the heritability of 
the trait. We provide a theoretical rationale for using these 
metrics in Section 6 of the online supplementary methods. 
We also provide empirical experiments to demonstrate their 
relationship to the commonly used LD-score regression 
method for evaluating heritability (Bulik-Sullivan 
et al. 2015).

3.1.3 Evaluating disease relevance
The purpose of the disease relevance evaluation is to assess 
the extent to which the embedding-associated variants are 
predictive of an outcome of interest. More specifically, we 
evaluate the strength of association between the orthogo-
nalized trait PRSs and user-provided disease labels by com-
paring a full disease prediction model, which includes 
all PRSs: 

Figure 1. Overview of EmbedGEM’s genetic validation workflow. Green boxes indicate inputs, yellow boxes indicate intermediates, and red boxes 
indicate final output metrics. Parts of the workflow that utilize plink commands are mentioned in the figure.
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Full : gfEðDijPRSik;XiÞg ¼
XK

k¼1

βkPRSikþ γTXi;

with a reduced model, which excludes them: 

Reduced : gfEðDijXiÞg ¼ γTXi 

Each equation represents a generalized linear model (GLM) 
in which Di is the disease or evaluation trait for the ith sub-
ject, ðPRSikÞ that subject’s PRS with respect to the kth embed-
ding, and Xi a vector of covariates, which can differ from 
those included in the GWAS model (2). For a binary trait, lo-
gistic models are fit, while for a continuous trait, linear re-
gression models are fit.

From a fitted GLM, a prediction D̂i of the disease trait is 
obtained, which can be compared with the observed Di using 
various metrics. For binary traits, we calculate the area under 
the receiver operating characteristic and the area under the 
precision-recall curve. For continuous traits, we calculate the 
square correlation and the mean absolute prediction error 
(MAE). Metrics for the full and reduced models are com-
pared with respect to a contrast Δ (e.g. difference or ratio). 
To assess whether addition of the PRSs significantly improves 
disease relevance, we estimate the distribution of Δ under the 
null by first permuting the PRSs, rendering them non- 
informative, then taking B bootstrap resamples of the data 
(with replacement). For each resample b, the full and reduced 
models are fit, and metric contrast Δb calculated. Letting Δobs 
denote the observed contrast (on the unpermuted data), the 
final P-value is: 

p ¼
1

1þB
1þ

XB

b¼1

I jΔbj≥ jΔobsjð Þ

8
<

:

9
=

;
:

3.2 Simulated dataset
To validate that the proposed workflow can disentangle heri-
tability and disease relevance, we simulated orthogonalized 
embeddings and outcome phenotypes in a setting where the 
generative architecture is known. We sampled variants in 
linkage equilibrium at R2 ≤ 0:1 for �350K unrelated subjects 
of white British ancestry from the UK Biobank (UKB). Each 
PC was generated from an infinitesimal model: 

βk � N 0;
h2

k

nk
I

 !

; Zk ¼ Gkβkþ ϵk;

where Gk is the set of genetic variants affecting Zk, standard-
ized to have mean 0 and variance 1, βk is the effect size vec-
tor, ϵk �Nð0;1 − h2

kÞ is a residual, h2
k is the heritability of Zk, 

and nk is the number of causal variants. Each simulated em-
bedding depended on nk ¼ 1000 variants, and effect sizes for 
Z1 and Z2 were drawn independently, such that the correla-
tion of Z1 and Z2 had expectation zero.

We simulated a continuous disease liability trait Y from the 
following model: 

Y ¼ γ1Z1þ γ2Z2þ γAAgeþ γSSexþ ε; ε � Nð0; 1Þ:

The liability Y was simulated such that each PC, age, and sex 
independently explained 10% of the variation. Three scenar-
ios were considered:

i) High heritability and high disease relevance: Here, each 
embedding PC had 20% heritability, and 20% of the 
variation in Y was explained by Z1 and Z2. 

ii) High heritability but low disease relevance: Here, Y was 
permuted such that Z1 and Z2 remained heritable but 
the outcomes no longer depended on the embed-
ding PCs. 

iii) Low heritability and low disease relevance: Here, all of 
Z1, Z2, and Y were permuted such that neither the em-
bedding PCs nor the outcomes were heritable. 

3.3 Real-world dataset
3.3.1 Non-Alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and 
complex chronic liver condition, characterized by the accumula-
tion of excess fat in the liver of individuals who consume little 
to no alcohol (Younossi et al. 2016). It is considered the hepatic 
manifestation of metabolic syndrome. NAFLD encompasses a 
wide spectrum of liver damage, ranging from simple steatosis to 
non-alcoholic steatohepatitis, advanced fibrosis, and cirrhosis. 
The global prevalence of NAFLD is estimated to be �25%, 
making it a significant public health concern.

The UKB is a large-scale biomedical database and research 
resource, containing in-depth genetic and health information 
from 500K UK individuals aged 40–69 years (Bycroft et al. 
2018). The resource includes data on a wide range of health- 

Figure 2. Overview of process used to generate embeddings from neck-to-knee MRIs. An imageNet pre-trained ResNet-50 was used to first generate 
the “ResNet” embeddings. This model was then subjected to end-to-end finetuning using the method outlined in (Langner et al. 2021) for two separate 
traits, LF% and anterior thigh fat-free muscle volume of the left side (ATFMVL), to obtain supervised embeddings.
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related outcomes, which are being further enriched via link-
age to diverse medical, social, and environmental records. 
Neck-to-knee MRIs from UKB have previously been used to 
extract various adiposity and organ traits (Langner et al. 
2021, Somineni et al. 2024). We followed the method out-
lined in (Langner et al. 2021) to process the neck-to-knee 
MRIs and impute adiposity traits for �36K patients (Figure 
2). These deep imputation models were also the source for 
our supervised embeddings.

In consultation with subject-matter experts, we identified 
203 fields that have a known or suggested association with 
the disease of interest (included in the online supplementary 
materials). These traits were grouped into: (i) nuclear mag-
netic resonance metabolomics, (ii) abdominal composition 
variables, and (iii) blood biochemistry markers. We also iden-
tified 48 covariates that might affect traits of interest inde-
pendently from the disease processes of interest. The list of 
covariates were grouped into: (i) body size, (ii) addiction in-
formation, (iii) medical status information, (iv) medication 
usage information, and (v) baseline characteristics.

To curate a cohort for evaluating disease relevance, 
we identified 1774 NAFLD cases and 2209 NAFLD controls 
using ICD-10 codes found in UKB. These individuals were re-
moved from the discovery cohort (individuals with neck-to- 
knee MRIs).

3.3.2 Learning supervised embeddings
Supervised embeddings were learned using the process de-
scribed in Langner et al. (2021) for each adiposity trait sepa-
rately (see list of traits in Supplementary materials). The 
modeling procedure involved replacing the last layer of an 
ImageNet pre-trained ResNet-50 (He et al. 2016) model with 
a linear layer (to obtain regression predictions). The model 
was then fine-tuned end-to-end using 80% of the labeled 
data for training and 20% of the data for testing. An adaptive 
learning rate schedule was used for the Adam optimizer, as 
stated in (Langner et al. 2021). A total of 2048 dimensional 
embeddings were extracted from the flattened output of the 
last convolutional layer.

3.3.3 Type 2 diabetes
In Section 4 of the online supplementary methods, we present 
an analysis on the relevance of embeddings extracted from 
color fundus images to Type 2 diabetes status in the UKB.

4 Results
4.1 EmbedGEM correctly distinguishes embedding 
heritability from disease relevance
As described in Section 3.2, we simulated data from three ge-
netic architectures in order to demonstrate the utility of 

EmbedGEM namely, (i) high heritability and high disease rel-
evance, (ii) high heritability and low disease relevance, and 
(iii) low heritability and low disease relevance. Table 1 dem-
onstrates that EmbedGEM correctly differentiates between 
heritability and disease relevance. For instance, in both of the 
high heritability scenarios, we observe a substantial number 
of GWS associations and a significantly elevated mean χ2. 
However, only in the case of the high disease relevance trait 
do the embedding PRSs significantly improve association 
with the disease liability, as evidenced by the significant r2 

and MAE. Note that the magnitudes of the r2 and MAE 
should be interpreted with caution since the baselines for dif-
ferent architectures can, and in this case do, differ.

4.2 Higher heritability need not imply greater 
disease relevance
To evaluate the utility of embedding-derived traits with re-
spect to standard uni- and multi-variate traits in a real data 
setting, we selected the following comparators in the UKB 
NAFLD cohort:

� Liver fat percentage predictions from a supervised ML 
model trained on neck-to-knee MRIs. 

� Embeddings extracted from the penultimate layer of the 
above model. 

� 203 NAFLD relevant traits with and without adjustment 
for covariates, treated as a multivariate trait. 

Liver fat percentage is known to be a highly predictive bio-
marker for NAFLD, and MRI imputed LF% has previously 
been used for genetic discovery in NAFLD (Langner et al. 
2021), hence it provides a strong univariate baseline. The 
203 NAFLD relevant traits were selected as a non-embedding 
but multivariate baseline. Many of these traits are expected 
to be heritable and at least partially disease relevant. To en-
sure a fair comparison among traits, we only included indi-
viduals who had no missing values for any of the traits, 
thereby ensuring that all GWAS analyses were conducted on 
the same sample size. For each multivariate trait, we took the 
first five PCs as the input to the EmbedGEM workflow.

Figure 3, shows that while LF% embeddings manifest 
lower mean χ2 and fewer GWS hits than the 203 traits, the 
associations derived from the embeddings have far greater 
disease relevance. Interestingly, we observe that the LF% 
embeddings lead to more GWS hits and slightly higher dis-
ease relevance than univariate LF predictions, suggesting that 
embeddings from a performant supervised model might offer 
more power for genetic discovery than the model’s final pre-
dictions. Furthermore, Fig. 3 underscores the risks of viewing 
heritability alone, and in particular, the number of GWS 

Table 1. EmbedGEM correctly distinguishes embedding heritability from disease relevance.

Genetic architecture Disease relevance Heritability

Heritability Disease relevance r2 ratio r2 P-value MAE ratio MAE P-value No. of hits Mean χ2

High " High " 1.20 0.001 0.97 0.001 2207 100.29
High " Low # 3.25 0.434 0.999 0.513 2207 100.29
Low # Low # – – – – 0 –

The table shows the results of our EmbedGEM for three scenarios, differing by the heritability of the embeddings and of the final disease labels. The 
framework correctly orders the three scenarios in terms of heritability and disease relevance. The scenarios with high embedding heritability have a high 
mean χ2 and number of genome-wide significant (GWS) hits, while the scenario with low heritability has no GWS hits. The disease relevance is also correctly 
identified, with only the high disease relevance trait exhibiting a significant r2 and MAE.
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associations, as a meaningful gauge of utility for genetic dis-
covery: traits can be highly heritable and yet not dis-
ease relevant.

4.3 Not all embeddings are equally useful
Having demonstrated that, compared to a strong univariate 
biomarker and non-embedding multivariate traits, embed-
dings can be both more heritable and more disease relevant, 
we next examined whether these benefits extend to embed-
dings trained on less disease-specific tasks. To study this, we 
compared LF% embeddings with embeddings derived from 
two other models: (i) a supervised model trained to predict 
anterior thigh fat-free muscle volume of the left side from 
whole-body MRIs, which has a low correlation with LF% 
(r2 ¼ 0:21), and (ii) ImageNet pre-trained ResNet model (He 
et al. 2016).

As seen in Table 2, embeddings derived from LF% are 
both more heritable and more relevant to NAFLD than the 
other embeddings. Note that although seven variants reached 
GWS when aggregating across the ImageNet pre-trained 

embedding PCs, these variants were not GWS for any individ-
ual PC, and hence no per-PC PRSs were available for disease 
relevance evaluation. It seems likely that the paucity of asso-
ciations with the ImageNet pre-trained embedding is due to 
the model being tailored for motifs appearing in natural 
images rather than human biology, or MRIs in particular. 
Finetuning the ImageNet model on an MRI-related task 
would likely increase embedding heritability, but not neces-
sarily the disease relevance, unless that task was related 
to NAFLD.

5 Conclusion
Here, we introduced the first framework specifically intended 
to evaluate the utility of embeddings for genetic discovery. 
The genetic validation pipeline is implemented using a combi-
nation of several commonly used plink commads within a 
redun-based workflow (insitro 2021). The workflow com-
prises two main portions: evaluation of heritability and eval-
uation of disease relevance. To evaluate heritability, 

Figure 3. Comparison of heritability and disease relevance between LF embeddings and other traits. The figure illustrates the heritability and disease 
relevance of liver fat (LF) embeddings, LF percentage predictions, and 203 NAFLD relevant traits. LF embeddings, despite having lower heritability than 
the 203 traits, show higher disease relevance and heritability than the univariate LF predictions, suggesting that strong supervised embeddings might be 
more powerful than strong univariate biomarkers.

Table 2. Comparison of heritability and disease relevance between different embeddings.

Traits Disease relevance Heritability

AUC ratio AUC P-value AUPRC ratio AUPRC P-value No. of hits Mean χ2

LF% embedding 1.088 0.001 1.162 0.001 30 66.615
ATFMVL embedding 1.017 0.51 1.046 0.29 20 33.556
ResNet embedding – – – – 7 32.440

The table illustrates the heritability and disease relevance of embeddings derived from different machine learning models. We show that depending on how 
the embeddings are trained, they may have dramatically different utility in genetic discovery. While, a LF% embedding has both high heritability and disease 
relevance, embeddings of a weaker disease proxy (anterior thigh fat-free muscle volume of the left side; ATFMVL) has much lower disease relevance and 
embeddings from ResNet pre-trained on ImageNet show no disease relevance at all.
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summary statistics from univariate GWAS of orthogonal 
traits are first aggregated to obtain the equivalent of multi-
variate GWAS summary statistics, then clumped to obtain in-
dependent signals. Metrics for evaluating heritability include 
the number of independent GWS associations and the mean 
χ2 statistic at GWS loci. To evaluate disease relevance, we ex-
amine the collective association of PRSs for the orthogonal-
ized embeddings with a gold-standard set of labels. Whether 
the embedding-associated variants significantly improve dis-
ease prediction, relative to a set of baseline covariates, is 
ascertained via a non-parametric paired bootstrapping proce-
dure. The entire workflow can be run end-to-end using a sin-
gle Python script, available on GitHub at https://github.com/ 
insitro/EmbedGEM, ensuring reproducibility and traceability 
of results.

We showed that EmbedGEM can successfully disentangle 
heritability from disease relevance on simulated data. We then 
demonstrated the utility of EmbedGEM on real data from the 
UKB using a variety of traits related to NAFLD. We illustrated 
several important considerations regarding GWAS on embed-
dings that have not been thoroughly discussed in the literature. 
First, not all embeddings are equally useful for genetic discov-
ery, and the value of an embedding is tied to the training process 
by which it was generated. Embeddings adapted to natural 
images from a ResNet pre-trained on ImageNet show low 
heritability and (unsurprisingly) no relevance to NAFLD. MRI- 
adapted embeddings from a model trained to predict an adipos-
ity trait unassociated with NAFLD were more heritable but still 
not disease relevant. By contrast, embeddings from a MRI- 
adapted model trained to predict LF%, a key biomarker of 
NAFLD, were both heritable and significantly disease relevant.

Second, heritability and disease-relevance are separate and 
distinct properties. A phenotype that yields more GWS asso-
ciations is not necessarily more useful for genetic discovery. It 
is crucial to further examine whether the variants associated 
with the phenotype are predictive of the trait or disease of ul-
timate interest. We showed that the heritability of a multivar-
iate collection of 203 traits loosely coupled to NAFLD was 
significantly higher than that of either ML-derived LF% or 
LF% embeddings, yet the smaller collection of variants asso-
ciated with the latter were significantly more disease relevant.

Third, there is evidence that embeddings can in fact facilitate 
the discovery of disease-relevant genetic variants. Embeddings 
extracted from a supervised LF% prediction model were more 
heritable than the original LF% predictions and simultaneously 
exhibited greater association with NAFLD. A future direction is 
to develop embeddings tailored for diseases of interest by fine-
tuning foundation models toward the prediction of the disease 
label itself, or key biomarkers (such as LF%). Our proposed 
EmbedGEM evaluation framework provides a conceptual and 
practical means of selecting embeddings that can uncover 
disease-relevant signals from among alternatives.

Building on this, the software implementation of 
EmbedGEM has been designed to offer easy extensibility, allow-
ing the computation of additional metrics using the intermediate 
outputs produced by a highly standardized workflow. For ex-
ample, users seeking to expand EmbedGEM with novel meth-
ods for assessing disease relevance, such as survival analysis or 
multiple traits, can achieve this by leveraging the PRSs for each 
PC of the trait. Similarly, if users wish to modify the PRS com-
putation process and employ their own custom tool, they can 
do so using the clumped summary statistics of each PC. 
Furthermore, the introduction of new methods for evaluating 

heritability is feasible by leveraging the multivariate summary 
statistics generated by EmbedGEM.

We envision EmbedGEM as a key framework for the sys-
tematic evaluation of different embeddings and multivariate 
traits with respect to their utility for genetic discovery. By 
providing a standardized evaluation workflow, EmbedGEM 
gives researchers a framework for deciding among various 
embedding models. We anticipate EmbedGEM will help 
streamline the process of genetic discovery and encourage re-
producibility by enabling results tracking and provenance.

Acknowledgements
The authors would like thank the participants of the UK 
Biobank, whose data were used with permission. This re-
search was conducted using the UK Biobank Resource under 
approved Application Number 51766.

Author contributions
Sumit Mukherjee (Conceptualization [equal], Formal analysis 
[lead], Investigation [lead], Methodology [equal], Project ad-
ministration [lead], Software [equal], Writing—original draft 
[lead], Writing—review & editing [lead]), Zachary R. 
McCaw (Conceptualization [equal], Formal analysis [sup-
porting], Investigation [supporting], Methodology [equal], 
Software [supporting], Supervision [equal], Writing—original 
draft [supporting], Writing—review & editing [supporting]), 
Jingwen Pei (Investigation [supporting], Writing—original 
draft [supporting], Writing—review & editing [supporting]), 
Anna Merkoulovitch (Software [equal], Writing—original 
draft [supporting], Writing—review & editing [supporting]), 
Tom Soare (Formal analysis [supporting], Investigation [sup-
porting], Writing—original draft [supporting], Writing—re-
view & editing [supporting]), Raghav Tandon (Formal 
analysis [supporting], Software [supporting], Writing—re-
view & editing [supporting]), David Amar (Formal analysis 
[supporting], Writing—original draft [supporting], Writing— 
review & editing [supporting]), Hari Somineni (Data cura-
tion [supporting], Writing—original draft [supporting], 
Writing—review & editing [supporting]), Christoph Klein 
(Software [supporting], Writing—original draft [supporting], 
Writing—review & editing [supporting]), Santhosh Satapati 
(Data curation [supporting], Investigation [supporting], 
Writing—review & editing [supporting]), David Lloyd (Data 
curation [supporting], Investigation [supporting], Writing— 
review & editing [supporting]), Christopher Probert 
(Software [supporting], Writing—original draft [supporting], 
Writing—review & editing [supporting]), Daphne Koller 
(Funding acquisition [lead], Writing—original draft [support-
ing], Writing—review & editing [supporting]), Colm 
O’Dushlaine (Conceptualization [supporting], Project admin-
istration [supporting], Supervision [supporting], Writing— 
original draft [supporting], Writing—review & editing [sup-
porting]), and Theofanis Karaletsos (Conceptualization [sup-
porting], Methodology [supporting], Project administration 
[supporting], Supervision [equal], Writing—original draft 
[supporting], Writing—review & editing [supporting])

Supplementary data
Supplementary data are available at Bioinformatics 
Advances online.

EmbedGEM                                                                                                                                                                                                                                     7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/4/1/vbae135/7759701 by guest on 16 January 2025

https://github.com/insitro/EmbedGEM
https://github.com/insitro/EmbedGEM
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae135#supplementary-data


Conflict of interest
None declared.

Funding
None declared.

Data availability
All data used in this project is sourced from the UK Biobank 
or simulated data. UK Biobank data is accessible to research-
ers through a permission process governed by UK Biobank. 
The simulated data can be accessed via the link provided in 
the GitHub repository.

References
Adam Y, Samtal C, Brandenburg J-T et al. Performing post-genome- 

wide association study analysis: overview, challenges and recom-
mendations. F1000Res 2021;10:1002.

Aschard H, Vilhj�almsson B, Greliche N et al. Maximizing the power of 
principal-component analysis of correlated phenotypes in genome- 
wide association studies. Am J Hum Genet 2014;94:662–76. 
https://doi.org/10.1016/j.ajhg.2014.03.016

Bulik-Sullivan BK, Loh P-R, Finucane HK et al.; Schizophrenia 
Working Group of the Psychiatric Genomics Consortium. LD score 
regression distinguishes confounding from polygenicity in genome- 
wide association studies. Nat Genet 2015;47:291–5.

Bycroft C, Freeman C, Petkova D et al. The UK biobank resource with 
deep phenotyping and genomic data. Nature 2018;562:203–9.

Caron M, Touvron H, Misra I et al. Emerging properties in self- 
supervised vision transformers. In: 2021 IEEE/CVF International 
Conference on Computer Vision (ICCV), Montreal, QC, Canada, 
pp. 9630–40. IEEE, 2021. https://doi.org/10.1109/ICCV48922. 
2021.00951

Chen T, Kornblith S, Norouzi M et al. A simple framework for contras-
tive learning of visual representations. In: International Conference 
on Machine Learning, pp. 1597–607. PMLR, 2020.

Dadousis C, Pegolo S, Rosa GJ et al. Genome-wide association and 
pathway-based analysis using latent variables related to milk protein 
composition and cheesemaking traits in dairy cattle. J Dairy Sci 
2017;100:9085–102.

Denny JC, Ritchie MD, Basford MA et al. PheWAS: demonstrating the 
feasibility of a phenome-wide scan to discover gene–disease associa-
tions. Bioinformatics 2010;26:1205–10.

Grill J-B, Strub F, Altch�e F et al. Bootstrap your own latent-a new ap-
proach to self-supervised learning. Adv Neural Inf Process Syst 
2020;33:21271–84.

He K, Zhang X, Ren S et al. Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, Las Vegas, NV, USA, pp. 770–8. 
IEEE, 2016.

Higgins I, Matthey L, Pal A et al. beta-VAE: Learning basic visual con-
cepts with a constrained variational framework. In: International 
Conference on Learning Representations 2017. https://openreview. 
net/forum?id=Sy2fzU9gl (30 July 2024, date last accessed).

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep 
belief nets. Neural Computation 2006;18:1527–54.

insitro. Redun: A Python Package for Managing Computational 
Workflows. 2021. https://github.com/insitro/redun (30 July 2024, 
date last accessed).

Kirchler M, Konigorski S, Norden M et al. Transfergwas: GWAS of 
images using deep transfer learning. Bioinformatics 2022;38:3621–8.

Langner T, Gustafsson FK, Avelin B et al. Uncertainty-aware 
body composition analysis with deep regression ensembles on 
UK biobank MRI. Comput Med Imaging Graph 2021; 
93:101994.

Lewis CM, Vassos E. Polygenic risk scores: from research tools to clini-
cal instruments. Genome Med 2020;12:44.

Mukherjee S, Heath L, Preuss C et al. Molecular estimation of neurode-
generation pseudotime in older brains. Nat Commun 2020; 
11:5781.

Patel K, Xie Z, Yuan H et al. New phenotype discovery method by 
unsupervised deep representation learning empowers genetic associ-
ation studies of brain imaging. medRxiv, December 2022, preprint: 
not peer reviewed.

Purcell S, Neale B, Todd-Brown K et al. Plink: a tool set for whole- 
genome association and population-based linkage analyses. Am J 
Hum Genet 2007;81:559–75.

Somineni H, Mukherjee S, Amar D et al.; insitro Research Team. 
Machine learning across multiple imaging and biomarker modalities 
in the uk biobank improves genetic discovery for liver fat accumula-
tion. medRxiv, January 2024, preprint: not peer reviewed.

Vincent P, Larochelle H, Lajoie I et al. Extracting and composing robust 
features with denoising autoencoders. In: Proceedings of the 
25th International Conference on Machine learning, Helsinki, 
Finland, pp. 1096–103. Association for Computing 
Machinery, 2008.

Visscher P, Wray N, Zhang Q et al. 10 years of GWAS discovery: biol-
ogy, function, and translation. Am J Hum Genet 2017;101:5–22. 
https://doi.org/10.1016/j.ajhg.2017.06.005

Xie Z, Zhang T, Kim S et al. igwas: image-based genome-wide associa-
tion of self-supervised deep phenotyping of human medical images. 
medRxiv, May 2022, preprint: not peer reviewed.

Younossi ZM, Koenig AB, Abdelatif D et al. Global epidemiology of 
nonalcoholic fatty liver disease—meta-analytic assessment of 
prevalence, incidence, and outcomes. Hepatology 2016; 
64:73–84.

Yun T, Cosentino J, Behsaz B et al. Unsupervised representation learn-
ing improves genomic discovery and risk prediction for respiratory 
and circulatory functions and diseases. medRxiv 2023, preprint: not 
peer reviewed.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics Advances, 2024, 00, 1–8
https://doi.org/10.1093/bioadv/vbae135
Original Article

8                                                                                                                                                                                                                             Mukherjee et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/4/1/vbae135/7759701 by guest on 16 January 2025

https://doi.org/10.1016/j.ajhg.2014.03.016
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.1109/ICCV48922.2021.00951
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.1016/j.ajhg.2017.06.005

	Active Content List
	1 Introduction
	2 Preliminaries
	3 Materials and methods
	4 Results
	5 Conclusion
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


