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Abstract

Fine-tuning the entire set of parameters of a001
large pretrained model has become the main-002
stream approach for transfer learning. To in-003
crease its efficiency and prevent catastrophic004
forgetting and interference, techniques like005
adapters and sparse fine-tuning have been de-006
veloped. Adapters are modular, as they can007
be combined to adapt a model towards dif-008
ferent facets of knowledge (e.g., dedicated009
language and/or task adapters). Sparse fine-010
tuning is expressive, as it controls the behav-011
ior of all model components. In this work, we012
introduce a new fine-tuning method with both013
these desirable properties. In particular, we014
learn sparse, real-valued masks based on a sim-015
ple variant of the Lottery Ticket Hypothesis.016
Task-specific masks are obtained from anno-017
tated data in a source language, and language-018
specific masks from masked language model-019
ing in a target language. Both these masks020
can then be composed with the pretrained021
model. Unlike adapter-based fine-tuning, this022
method neither increases the number of param-023
eters at inference time nor alters the original024
model architecture. Most importantly, it out-025
performs adapters in zero-shot cross-lingual026
transfer by a large margin in a series of mul-027
tilingual benchmarks, including Universal De-028
pendencies, MasakhaNER, and AmericasNLI.029
Based on an in-depth analysis, we addition-030
ally find that sparsity is crucial to prevent both031
1) interference between the fine-tunings to be032
composed and 2) overfitting. We release the033
code and models at ANONYMOUS-URL.034

1 Introduction035

Fine-tuning of pretrained models (Howard and036

Ruder, 2018; Devlin et al., 2019, inter alia) is ar-037

guably the dominant paradigm in NLP at present.038

Originally, “fine-tuning” involved supervised learn-039

ing of all the parameters of a model pretrained040

on unlabeled texts. However, given the size of041

Transformer-based architectures, this approach is042

often time- and resource- inefficient, and may result 043

in catastrophic forgetting and interference (Wang 044

et al., 2020) during multiple adaptations. To over- 045

come these limitations, two main alternatives have 046

emerged: 1) through adapters, new parameters can 047

be added to a pretrained model in the form of extra 048

intermediate layers (Rebuffi et al., 2017; Houlsby 049

et al., 2019) and fine-tuned while keeping all the 050

pretrained parameters fixed; 2) sparse fine-tuning 051

(SFT) of a small subset of pretrained model param- 052

eters (Guo et al., 2021; Zaken et al., 2021). 053

Adapters have proven especially useful in multi- 054

lingual NLP (Bapna and Firat, 2019; Üstün et al., 055

2020; Pfeiffer et al., 2020b, 2021b; Ansell et al., 056

2021, inter alia) because they exhibit a surprising 057

degree of modularity. This ability to disentangle 058

and recombine orthogonal facets of knowledge in 059

original ways (Ponti et al., 2021; Ponti, 2021) al- 060

lows for separately learning a task adapter from 061

labeled data in a source language and dedicated lan- 062

guage adapters from unlabeled data in the source 063

language and target languages. By stacking these 064

components, it is possible to perform zero-shot 065

cross-lingual transfer. Compared to sequentially 066

fine-tuning the full model on both the task and tar- 067

get language, this yields superior performance and 068

efficiency (Pfeiffer et al., 2020b). 069

Meanwhile, the advantage of SFTs over adapters 070

is their expressivity: rather than a non-linear trans- 071

formation of the output of Transformer layers (e.g., 072

using a shallow MLP as with adapters), they can 073

operate directly on a pretrained model’s embedding 074

and attention layers. It therefore seems natural to 075

search for a parameter-efficient fine-tuning method 076

that is both modular and expressive. 077

To this end, we propose Lottery Ticket Sparse 078

Fine-Tuning (LT-SFT), a simple and general- 079

purpose adaptation technique inspired by the Lot- 080

tery Ticket Hypothesis (LTH; Frankle and Carbin, 081

2019; Malach et al., 2020), which was originally 082

conceived for pruning large neural networks. In 083
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Figure 1: A graphical representation of Lottery Ticket Sparse Fine-Tuning: from the parameters of a pretrained
model (gray, left), we generate sparse fine-tunings for task and language knowledge (blue and red, center). Finally,
we sum these three components (right) to obtain the adapted/fine-tuned model. Best viewed in color.

particular, after fine-tuning a pretrained model for a084

specific task or language, we select the subset of pa-085

rameters that change the most. Then, we rewind the086

model to its pretrained initialization (without set-087

ting any value to zero, contrary to the original LTH088

algorithm). By re-tuning again only the selected089

subset of parameters, we obtain a sparse fine-tuning090

in the form of a vector of differences with respect091

to the pretrained model. Multiple SFTs can be com-092

posed by simply summing them with the pretrained093

model. We provide a graphical representation of094

our method in Figure 1.095

We benchmark LT-SFT on a series of multilin-096

gual datasets, including Universal Dependencies097

(Zeman et al., 2020) for part-of-speech tagging and098

dependency parsing, MasakhaNER (Adelani et al.,099

2021) for named entity recognition, and Americas-100

NLI (Ebrahimi et al., 2021) for natural language in-101

ference. We evaluate it in a zero-shot cross-lingual102

transfer setting on 35 typologically and geographi-103

cally diverse languages that include both languages104

seen and unseen during masked language modeling105

of the pretrained model. The results in all transfer106

tasks indicate that LT-SFT consistently achieves107

substantial gains over the current state-of-the-art108

adapter-based method for cross-lingual transfer,109

MAD-X (Pfeiffer et al., 2020b).110

In addition to its superior performance, modu-111

larity, and expressivity, LT-SFT offers a series of112

additional advantages over adapters: 1) the number113

of parameters remains constant, which prevents the114

decrease in inference speed observed when adapter115

layers are added; 2) the neural architecture remains116

identical to the pretrained model, which makes117

code development model-independent rather than118

requiring special modifications for each possible ar- 119

chitecture (Pfeiffer et al., 2020a). Finally, 3) we em- 120

pirically demonstrate that the peak in performance 121

for LT-SFT is consistently found with the same per- 122

centage of tunable parameters, whereas the best re- 123

duction factor for MAD-X is task-dependent. This 124

makes our method more robust to the choice of 125

hyper-parameters. 126

In addition, we find that a high level of spar- 127

sity in language and task fine-tunings is beneficial 128

to performance, as this makes overlaps less likely 129

and poses a lower risk of creating interference be- 130

tween the knowledge they contain. Moreover, it 131

makes fine-tunings less prone to overfitting due to 132

their constrained capacity. Thus, sparsity is a fun- 133

damental ingredient for achieving modularity and 134

composability. These properties in turn allow for 135

systematic generalization to new combinations of 136

tasks and languages in a zero-shot fashion. 137

2 Background 138

To establish a broader context for our research, we 139

first provide a succinct overview of current methods 140

for efficient fine-tuning, such as adapters and SFT. 141

We then recapitulate the Lottery Ticket Hypothesis, 142

upon which our newly proposed method is built. 143

Adapters and Composition. An adapter is a com- 144

ponent inserted into a Transformer model with the 145

purpose of specializing it for a particular language, 146

task, domain, or modality (Houlsby et al., 2019). 147

Previous work in multilingual NLP has mainly 148

adopted the lightweight yet effective adapter vari- 149

ant of Pfeiffer et al. (2021a). In this setup, only one 150

adapter module, consisting of a successive down- 151

projection and up-projection, is injected per Trans- 152
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former layer, after the feed-forward sub-layer. The153

adapter Ab at the b-th Transformer layer performs154

the following operation:155

Ab(hb, rb) = Ub a(Dbhb) + rb. (1)156

hb and rb are the Transformer hidden state and the157

residual at layer b, respectively. Db ∈ Rm×h and158

Ub ∈ Rh×m are the down- and up-projections, re-159

spectively (h being the Transformer’s hidden layer160

size, and m the adapter’s dimension), and a(·) is161

a non-linear activation function. The residual con-162

nection rb is the output of the Transformer’s feed-163

forward layer whereas hb is the output of the sub-164

sequent layer normalization. During fine-tuning of165

a pretrained model with adapters, only the adapter166

parameters U and D are modified while the pre-167

trained model’s parameters are kept fixed.168

In the MAD-X adapter composition framework169

for cross-lingual transfer (Pfeiffer et al., 2020b),170

a language adapter (LA) for a massively multi-171

lingual Transformer (MMT) is learned for each172

source and target language through masked lan-173

guage modeling (MLM), and a task adapter (TA)174

is learned for each target task, where the LA for the175

source language is inserted during TA training. At176

inference time, the task adapter and target language177

adapter are composed by stacking one on top of178

the other. This adapter composition approach has179

been shown to be highly effective for cross-lingual180

transfer (Pfeiffer et al., 2020b, 2021b; Ansell et al.,181

2021), especially for low-resource languages and182

target languages unseen during MMT pretraining.183

Sparse Fine-Tuning. We call F ′ = F (·;θ + φ)184

a sparse fine-tuning (SFT) of a pretrained neural185

model F (·;θ) if φ is sparse. We sometimes refer186

to φ itself as an SFT, or as the SFT’s difference187

vector. Previously proposed SFT methods include188

DiffPruning (Guo et al., 2021) and BitFit (Zaken189

et al., 2021). DiffPruning simulates sparsity of the190

difference vector during training by applying a con-191

tinuous relaxation of a binary mask to it. BitFit on192

the other hand allows non-zero differences only for193

bias parameters. Both methods have been shown194

to be competitive with full fine-tuning on GLUE195

(Wang et al., 2019), despite the difference vector φ196

having fewer than 0.5% non-zero values.197

Lottery Ticket Hypothesis (LTH; Frankle and198

Carbin, 2019; Malach et al., 2020) states that each199

neural model contains a sub-network (a “winning200

ticket”) that, if trained again in isolation, can match201

or even exceed the performance of the original202

model. To achieve this, after a pruning stage where 203

some parameters are zero-masked and frozen ac- 204

cording to some criterion (e.g., weight magnitude), 205

the remaining parameters are restored to their orig- 206

inal values and then re-tuned. This process of prun- 207

ing and re-training can be iterated multiple times. 208

The LTH has so far been used mostly for model 209

compression through network pruning; to our 210

knowledge, we are the first to use it for pretrained 211

model adaptation. 212

Multi-Source Task Training. Ansell et al. (2021) 213

showed that training task adapters using data from 214

multiple source languages can result in sizable im- 215

provements in downstream zero-shot transfer per- 216

formance even when the total number of training 217

examples is held constant. In their training setup, 218

each batch consisted of examples from a single, 219

randomly selected source language, the language 220

adapter for which is activated for the duration of 221

the training step. 222

3 Methodology 223

3.1 Lottery Ticket Sparse Fine-Tuning 224

Training. In this work, we propose Lottery Ticket 225

Sparse Fine-Tuning (LT-SFT). Similar to the Lot- 226

tery Ticket algorithm of Frankle and Carbin (2019), 227

our LT-SFT method consists of two phases: 228

(Phase 1) Pretrained model parameters θ(0) are 229

fully fine-tuned on the target language or task data 230

D, yielding θ(1). Parameters are ranked according 231

to some criterion, in our case greatest absolute dif- 232

ference |θ(1)i − θ
(0)
i |, and the top K are selected 233

for tuning in the next phase: a binary mask µ is 234

set to have 1 in positions corresponding to these 235

parameters, and 0 elsewhere. 236

(Phase 2) After resetting the parameters to their 237

original values θ(0), the model is again fine-tuned, 238

but this time only the K selected parameters are 239

trainable whereas the others are kept frozen. In 240

practice, we implement this by passing the masked 241

gradient µ �∇θL(F (·;θ),D) (where � denotes 242

element-wise multiplication and L a loss function) 243

to the optimizer at each step. From the resulting 244

fine-tuned parameters θ(2) we can obtain the sparse 245

vector of differences φ = θ(2) − θ(0). 246

In addition, we experiment with applying a 247

regularization term which discourages parameters 248

from deviating from their pretrained values θ(0). 249

Specifically, we use L1 regularization of the form 250

J(θ) = λ
N

∑
i |θi − θ

(0)
i |. 251
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Composition. Although we often use the term252

“sparse fine-tuning” to refer to the difference vector253

φ itself, an SFT is most accurately conceptualized254

as a functional which takes as its argument a param-255

eterized function and returns a new function, where256

some sparse difference vector φ has been added to257

the original parameter vector. Suppose we have a258

language SFT SL and a task SFT ST defined by259

SL(F (·;θ)) = F (·;θ + φL)260

ST (F (·;θ)) = F (·;θ + φT ).261

Then we have262

SL ◦ ST (F (·;θ)) = F (·;θ + φT + φL).263

3.2 Zero-Shot Transfer with LT-SFT264

We adopt a similar cross-lingual transfer setup to265

MAD-X (Pfeiffer et al., 2020b, see also §2). We266

start with an MMT F with pretrained parameters267

θ learned through masked language modeling on268

many languages, such as mBERT (Devlin et al.,269

2019) or XLM-R (Conneau et al., 2020).270

For each language of interest l, we learn a lan-271

guage SFT φ
(l)
L through LT-SFT (also with an272

MLM objective) on text from language l.273

For each task of interest t, we learn a task SFT274

φ
(t)
T through LT-SFT on annotated data from some275

source language s. When learning the task SFT, we276

first adapt to the source language by applying the277

language SFT for s. The language SFT is removed278

again after training. That is, we perform LT-SFT279

on F (· ;θ + φ
(s)
L ) to obtain fine-tuned parameter280

vector θ′. We then calculate φ(t)
T = θ′ − (θ +281

φ
(s)
L ). Note that during task training, we also learn282

a classifier head, which is fully fine-tuned during283

both phases of LT-SFT adaptation, with the same284

random initialization applied at the beginning of285

each phase.286

We perform zero-shot adaptation of F to target287

language l for task t by composing language and288

task SFTs to obtain Ft,l = F (· ;θ + φ
(t)
T + φ

(l)
L ).289

On top of this, we stack the classifier head learned290

for t. For a formal algorithm of LT-SFT and the291

transfer procedure, we refer to Appendix A.292

4 Experimental Setup293

To evaluate our new method extensively, we bench-294

mark its zero-shot cross-lingual performance on295

four distinct tasks: part-of-speech tagging (POS),296

dependency parsing (DP), named entity recogni-297

tion (NER), and natural language inference (NLI).298

Table 1 summarizes our experimental setup, includ- 299

ing the datasets and languages considered in our 300

experiments. We put emphasis on low-resource 301

languages and languages unseen during MMT pre- 302

training, although we also evaluate on a few high- 303

resource languages. In total, we cover a set of 35 304

typologically and geographically diverse languages, 305

which makes them representative of cross-lingual 306

variation (Ponti et al., 2019, 2020). 307

4.1 Baselines and Model Variants 308

The main baseline is MAD-X, the state-of-the-art 309

adapter-based framework for cross-lingual trans- 310

fer (Pfeiffer et al., 2020b). We use the “MAD- 311

X 2.0” variant, where the last adapter layers are 312

dropped. Pfeiffer et al. (2021b) found that this im- 313

proved performance, which we could confirm in 314

our preliminary experiments. Since adapters with 315

the configuration used by Pfeiffer et al. (2020b) are 316

unavailable for many languages in our evaluation, 317

we train our own for all languages. In Appendix 318

D we also provide an evaluation with comparable 319

language adapters from AdapterHub (Pfeiffer et al., 320

2020a) where available. 321

We also perform experiments with BITFIT (Za- 322

ken et al., 2021) to establish a baseline for an exist- 323

ing SFT technique. In addition to the main LT-SFT 324

model variant, on POS and DP we test a RAND- 325

SFT variant as an ablation, where the K parame- 326

ters to be fine-tuned are selected at random rather 327

than based on an informed criterion. 328

For both LT-SFT and MAD-X, we also evaluate 329

a task adaptation (TA)-ONLY configuration, where 330

only the task SFT/adapter is applied, without the 331

target language SFT/adapter. 332

4.2 Language SFT/Adapter Training Setup 333

MLM Training Data. For all languages in our 334

POS and DP evaluation, we perform MLM lan- 335

guage SFT/adapter training on Wikipedia corpora. 336

We also use Wikipedia for all languages in our NER 337

evaluation if available. Where this is not the case, 338

we use the Luo News Dataset (Adelani et al., 2021) 339

for Luo and the JW300 corpus (Agić and Vulić, 340

2019) for Nigerian Pidgin. The main corpora for 341

the languages in our NLI evaluation are those used 342

by the dataset creators to train their baseline models 343

(Ebrahimi et al., 2021); however, since the sizes of 344

these corpora are restricted due to containing only 345

parallel data, we augment them with data from 346

Wikipedia and the corpora of indigenous Peruvian 347

languages of Bustamante et al. (2020) where avail- 348

4



Task Target Dataset Source Dataset MMT Target Languages

Part-of-Speech
Tagging (POS), De-
pendency Parsing
(DP)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

mBERT

Arabic†, Bambara, Buryat, Cantonese,
Chinese†, Erzya, Faroese, Japanese†,
Livvi, Maltese, Manx, North Sami, Komi
Zyrian, Sanskrit, Upper Sorbian, Uyghur

Named Entity
Recognition
(NER)

MasakhaNER
(Adelani et al.,
2021)

CoNLL 2003
(Tjong Kim Sang
and De Meulder,
2003)

mBERT
Hausa, Igbo, Kinyarwanda, Luganda,
Luo, Nigerian-Pidgin, Swahili∗, Wolof,
Yorùbá∗

Natural Language
Inference (NLI)

AmericasNLI
(Ebrahimi et al.,
2021)

MultiNLI
(Williams et al.,
2018)

XLM-R
Aymara, Asháninka, Bribri, Guarani,
Náhuatl, Otomí, Quechua, Rarámuri,
Shipibo-Konibo, Wixarika

Table 1: Details of the tasks, datasets, MMTs and languages involved in our zero-shot cross-lingual transfer eval-
uation. ∗ denotes low-resource languages seen during MMT pretraining; † denotes high-resource languages seen
during MMT pretraining; all other languages are low-resource and unseen. The source language is always English.
Further details of all the language and data sources used are provided in Appendix B.

able. More details on data sources are provided in349

Appendix B.350

Training Setup and Hyper-parameters. For351

both SFTs and adapters, we train for the lesser352

of 100 epochs or 100,000 steps of batch size 8 and353

maximum sequence length 256, subject to an ab-354

solute minimum of 30,000 steps since 100 epochs355

seemed insufficient for some languages with very356

small corpora. Model checkpoints are evaluated ev-357

ery 1,000 steps (5,000 for high-resource languages)358

on a held-out set of 5% of the corpus (1% for high-359

resource languages), and the one with the smallest360

loss is selected at the end of training. We use the361

AdamW optimizer (Loshchilov and Hutter, 2019)362

with an initial learning rate of 5e-5 which is linearly363

reduced to 0 over the course of training.364

Following Pfeiffer et al. (2020b), the reduction365

factor (i.e., the ratio between model hidden size366

and adapter size) for the adapter baseline was set367

to 2 for a total of ∼7.6M trainable parameters. For368

comparability, we set the same number of trainable369

parameters K for our language LT-SFTs. This370

results in language SFTs with a sparsity of 4.3%371

for mBERT and 2.8% for XLM-R. Since BITFIT372

tunes exclusively the bias parameters, its language373

SFTs have a fixed sparsity of 0.047% for mBERT374

and 0.030% for XLM-R.375

Importantly, during language sparse fine-tuning,376

we decouple the input and output embedding ma-377

trices and fix the parameters of the output matrix;378

otherwise, we find that the vast majority of the K379

most changed parameters during full fine-tuning380

belong to the embedding matrix, seemingly due to381

its proximity to the model output, which damages382

downstream performance. We also fix the layer383

normalization parameters; all other parameters are 384

trainable. For language adaptation, we apply L1 385

regularization as described in §3.1 with λ = 0.1. 386

Note that the specified training regime is applied in 387

the same way during both phases of LT-SFT. 388

For language adapter training in the MAD-X 389

baseline, we use the Pfeiffer configuration (Pfeiffer 390

et al., 2021a) with invertible adapters.1 391

4.3 Task SFT/Adapter Training Setup 392

For POS tagging, DP, and NER,2 we train task 393

SFTs/adapters on the datasets indicated in Table 1 394

for 10 epochs with batch size 8, except during the 395

first phase of LT-SFT training where we train for 396

only 3 epochs.3 Model checkpoints are evaluated 397

on the validation set every 250 steps, and the best 398

checkpoint is taken at the end of training, with the 399

selection metric being accuracy for POS, labeled 400

attachment score for DP, and F1-score for NER. 401

Similarly to language fine-tuning, we use an initial 402

learning rate of 5e-5 which is linearly reduced to 403

0 over the course of training. For POS and NER 404

we use the standard token-level single-layer multi- 405

class model head. For DP, we use the shallow 406

variant (Glavaš and Vulić, 2021) of the biaffine 407

dependency parser of Dozat and Manning (2017). 408

For NLI, we employ the same fine-tuning hyper- 409

1Invertible adapters are special sub-components designed
for adapting to the vocabulary of the target language, which
yields consistent gains.

2MasakhaNER and CoNLL 2003 datasets respectively use
the DATE and MISC tags which are not used by the other; we
replace these with the O tag at both train and test time.

3This is because full fine-tuning is more prone to overfit-
ting than sparse/adapter fine-tuning. Early stopping somewhat
addresses overfitting, but it is insufficient in a cross-lingual set-
ting because the target language performance generally starts
to deteriorate faster than it does on the source language.
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POS DP NER NLI
Accuracy UAS LAS F1 score Accuracy

LT-SFT 71.1 (1) 57.1 (1) 37.8 (1) 71.7 (1) 51.4 (1)
RAND-SFT 69.2 (1) 54.3 (1) 33.9 (1) - -
MAD-X 68.6 (16) 54.6 (2) 34.1 (1) 69.9 (8) 49.5 (2)
BITFIT 58.1 45.7 23.9 54.9 38.3
LT-SFT TA-ONLY 51.3 (32) 39.1 (1) 19.9 (1) 55.3 (8) 39.9 (4)
MAD-X TA-ONLY 52.1 (32) 38.9 (1) 19.5 (1) 52.4 (32) 41.7 (4)

Table 2: Results of zero-shot cross-lingual transfer evaluation averaged over all languages when best equivalent
reduction factor (shown in parentheses after each result) is chosen.

32 16 8 4 2 1
(Equivalent) reduction factor

65

66

67

68

69

70

71

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

LT-SFT MAD-X rand-SFT

(a) Part-of-Speech Tagging

32 16 8 4 2 1
(Equivalent) reduction factor

50

52

54

56

Av
er

ag
e 

U
AS

LT-SFT MAD-X rand-SFT

(b) Dependency Parsing (DP)

32 16 8 4 2 1
(Equivalent) reduction factor

67

68

69

70

71

Av
er

ag
e 

F1
 s

co
re

LT-SFT MAD-X

(c) Named Entity Recognition (NER)

32 16 8 4 2 1
(Equivalent) reduction factor

44

46

48

50

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

LT-SFT MAD-X

(d) Natural Language Inference (NLI)

Figure 2: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT), Random
Sparse Fine-Tuning (RAND-SFT), and adapter-based MAD-X over four tasks with varying numbers of trainable
parameters during task adaptation. Results are averages over all target languages.

parameters as Ebrahimi et al. (2021): 5 epochs with410

batch size 32, with checkpoint evaluation on the val-411

idation set every 625 steps, and an initial learning412

rate of 2e-5. We apply a two-layer multi-class clas-413

sification head atop the MMT output corresponding414

to the [CLS] token.415

We found that the number of trainable param-416

eters during task adaptation (governed by K for417

SFTs and reduction factor for adapters) has a large418

effect on performance: we thus experiment with a419

range of values. Specifically, we test adapter reduc-420

tion factors of 32, 16, 8, 4, 2, and 1, and equivalent421

values of K4 for SFT.422

During task adaptation, we always apply the423

source language adapter following Pfeiffer et al.424

(2020b), or source language SFT (see §3.2).425

4Approximately 442K, 884K, 1.7M, 3.5M, 7.1M, and
14.2M respectively, amounting to sparsity levels of 0.25%,
0.50%, 1.0%, 2.0%, 4.0% and 8.0% for mBERT and 0.16%,
0.32%, 0.63%, 1.3%, 2.6% and 5.1% for XLM-R.

4.4 Multi-Source Training 426

To validate that task LT-SFT training, like task 427

adapter training, benefits from the presence of mul- 428

tiple source languages in the training data, and to 429

push the boundaries of zero-shot cross lingual trans- 430

fer, we perform multi-source training experiments 431

on DP and NER. 432

We adopt a similar setup to Ansell et al. (2021): 433

we obtain the training set by concatenating the train- 434

ing data for all source languages. We randomly 435

shuffle the training set and train as in the single- 436

source case, except that each batch is composed 437

of examples from a single source language, whose 438

language SFT is applied during the training step. 439

We prioritize maximizing performance rather 440

than providing a fair comparison against the single- 441

source case, so unlike Ansell et al. (2021), we use 442

the entirety of the training sets. In derogation of 443

this principle, we set a maximum of 15K examples 444

per language for DP to better balance our sample. 445
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For DP, we train our models on the UD treebanks446

of 11 diverse high-resource languages. For NLI,447

we train on MultiNLI (Williams et al., 2018) plus448

the data for all 14 non-English languages in the449

XNLI dataset (Conneau et al., 2018). Full details450

of the source languages can be found in Appendix451

B. We use an equivalent reduction factor of 1 for452

both tasks, as this was the strongest setting in our453

single-source experiments. Except as stated above,454

the training configuration and hyper-parameters are455

the same as for single-source training.456

5 Results and Discussion457

We report the average test performance of zero-458

shot cross-lingual transfer for the best reduction459

factor (or equivalent K) in Table 2. Some pat-460

terns emerge across all four tasks: first, LT-SFT461

consistently outperforms all the baselines. In par-462

ticular, it surpasses the state-of-the-art MAD-X463

across all tasks, with gains of 2.5 accuracy in part-464

of-speech tagging, 2.5 UAS and 3.7 LAS in de-465

pendency parsing, 1.8 F1 score in named entity466

recognition, and 1.9 accuracy in natural language467

inference. Compared to RAND-SFT, its superior468

performance demonstrates the importance of select-469

ing “winning tickets” rather than a random subset470

of parameters. Secondly, the results demonstrate471

the importance of language SFTs/adapters for spe-472

cializing pretrained models to unseen languages,473

as they bring about a large increase in performance474

across the 4 tasks compared to the corresponding475

settings with task adaptation only (TA-ONLY).476

In Figure 2, we provide a more detailed overview477

of average cross-lingual model performance across478

a range of different reduction factors. The results479

for the LT-SFT and RAND-SFT methods gener-480

ally improve or stay steady as the number of train-481

able task parameters increases. On the contrary,482

there is not such a trend for MAD-X, as lower483

reduction factors may degrade its results. This484

makes it easier to choose a good setting for this485

hyper-parameter when using SFT. Moreover, it is486

worth stressing again that, contrary to MAD-X,487

this hyper-parameter does not affect inference time.488

BITFIT performs much worse than the other489

methods which perform language adaptation across490

all tasks. Bearing in mind the strong trend towards491

increasing performance with increasing K for the492

other SFT methods, it seems likely that BITFIT,493

with two orders of magnitude fewer trainable pa-494

rameters, lacks the capacity to learn effective task495

and language SFTs. 496

For additional results at the level of individual 497

languages and an analysis of the efficacy of lan- 498

guage adaptation for high- versus low- resource tar- 499

get languages, we refer the reader to Appendix C. 500

5.1 Multi-Source Training 501

DP UAS DP LAS NLI Accuracy

SINGLE SOURCE 57.1 37.8 51.4
MULTI-SOURCE 64.3 47.6 53.1

Table 3: Results of zero-shot cross-lingual transfer eval-
uation of single- vs. multi-source LT-SFT task training
averaged over all target languages.

As shown in Table 3, multi-source LT-SFT train- 502

ing brings about a large improvement in zero-shot 503

cross-lingual transfer performance on DP, and a 504

modest improvement for NLI. This may be a result 505

of the fact that the training set for NLI contains a 506

relatively small number of non-English examples 507

compared to the DP training set. Also, the Amer- 508

icasNLI target languages generally have a lower 509

degree of genealogical relatedness to the source 510

languages compared to the DP target languages. 511

5.2 Benefits of Sparsity 512

Finally, we address the following question: is spar- 513

sity responsible for preventing the interference of 514

separate fine-tunings when they are composed? To 515

support this hypothesis with empirical evidence, 516

we use LT-SFT to train language5 and task fine- 517

tunings with different levels of density, i.e. the 518

percentage of non-zero values (from 5% to 100%). 519

We then evaluate all possible combinations of den- 520

sity levels. The results are visualized in the form of 521

a contour plot in Figure 3 for selected combinations 522

of tasks and languages: Buryat, Cantonese, Erzya, 523

Maltese, and Upper Sorbian for DP, and Hausa, 524

Igbo, Luganda, Swahili and Wolof for NER. 525

From Figure 3, it emerges that the performance 526

decreases markedly for SFTs with a density level 527

greater than ~30% of fine-tuned parameters.6 We 528

speculate that this is due to the fact that sparser 529

fine-tunings have a lower risk of overlapping with 530

5To reduce computational cost, we train language fine-
tunings for a maximum of 30K steps rather than the 100K of
our main experiments.

6Note, furthermore, that levels of task fine-tuning density
greater than ~60% do not vary in performance. This is because
their subsets of parameters include embeddings of tokens
never encountered during task training, which are therefore
never updated even if trainable.
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Figure 3: Performance of LT-SFT on DP and NER controlling for the sparsity of task and language fine-tuning.
Results are averaged over several selected languages. Denser fine-tunings may interfere with each other and
consequently degrade the model performance.

each other, thus creating interference between the531

different facets of knowledge they encapsulate. It532

must be noted, however, that alternative hypothe-533

ses could explain the performance degradation in534

addition to parameter overlap, such as overfitting535

as a result of excessive capacity. While we leave536

the search for conclusive evidence to future work,537

both of these hypotheses illustrate why enforcing538

sparsity in adaptation, as we propose in our method,539

is crucial to achieving modularity.540

6 Related Work541

Within the framework of the Lottery Ticket Hypoth-542

esis, a series of improvements have been suggested543

to make the original algorithm to find winning tick-544

ets (Frankle and Carbin, 2019) more stable: after545

fine-tuning, Frankle et al. (2019) rewind the param-546

eters to their values after a few iterations rather than547

their values before training, whereas Renda et al.548

(2020) also rewind the learning rate. In addition,549

Zhou et al. (2019) found that 1) different criteria550

can be used to select weights as an alternative to the551

magnitude of their change; 2) different rewinding552

methods are also effective, such as restoring the553

original sign, but not the value. In future work, we554

will investigate whether these variants also benefit555

our method for cross-lingual transfer, where the556

LTH is used for adaptation rather than pruning.557

Whereas the LTH was originally conceived in558

the vision domain for convolutional architectures,559

it is also effective for pruning models trained on560

NLP tasks (Yu et al., 2020), such as neural machine561

translation, and based on Transformer architectures562

(Prasanna et al., 2020). Recently, Xu et al. (2021)563

adapted the LTH specifically to prune pretrained564

models after fine-tuning.565

To the best of our knowledge, Wortsman et al.566

(2020) is the only instance where winning tickets 567

were composed in previous work. In their exper- 568

iment, a set of task-specific masks were linearly 569

combined at inference time, in order to generalize 570

to new tasks in a continuous learning setting. 571

7 Conclusion and Future Work 572

We have presented a new method to fine-tune pre- 573

trained models that is both modular (like adapters) 574

and expressive (like sparse fine-tuning). This 575

method is based on a variant of the algorithm to find 576

winning tickets under the framework of the Lottery 577

Ticket Hypothesis. We infer a sparse vector of dif- 578

ferences with respect to the original model for each 579

individual language (by modeling unlabeled text) 580

and each individual task (with supervised learning). 581

The adaptations for a language and a task can then 582

be composed with the pretrained model to enable 583

zero-shot cross-lingual transfer. Comparing our 584

method with the state-of-the-art baseline in several 585

multilingual tasks, the results have indicated sub- 586

stantial gains across the board in both languages 587

seen and unseen during pretraining (which includes 588

many truly low-resource languages). 589

In future work, our method offers several po- 590

tential extensions. In addition to the variants to 591

the Lottery Ticket algorithm surveyed in §6, given 592

the importance of sparsity for modularity (§5.2), 593

we plan to experiment with additional algorithms 594

previously applied to pruning that can identify and 595

fine-tune a subset of the model parameters, such as 596

DiffPruning (Guo et al., 2021). Finally, given its 597

simplicity and generality, our method is suited for 598

many other applications of transfer learning in ad- 599

dition to cross-lingual transfer, such as multimodal 600

learning and debiasing. The code and models are 601

available online at ANONYMOUS-URL. 602
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Željko Agić, Amir Ahmadi, Lars Ahrenberg, 919
Chika Kennedy Ajede, Gabrielė Aleksandravičiūtė, 920
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ský, Shorouq Zahra, Amir Zeldes, Hanzhi Zhu, and 1064
Anna Zhuravleva. 2020. Universal Dependencies 1065
2.7. LINDAT/CLARIAH-CZ digital library at the 1066
Institute of Formal and Applied Linguistics (ÚFAL), 1067
Faculty of Mathematics and Physics, Charles Uni- 1068
versity. 1069

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin- 1070
ski. 2019. Deconstructing lottery tickets: Zeros, 1071

12

http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424
https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf


signs, and the supermask. In Advances in Neural1072
Information Processing Systems, volume 32. Curran1073
Associates, Inc.1074

13

https://proceedings.neurips.cc/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf


A Algorithm of Cross-Lingual Transfer with LT-SFT1075

Algorithm 1 Cross-Lingual Transfer with Lottery-Ticket Sparse Fine-Tuning

function LTSFT(D, L, θ(0), η, K)
θ(1) ← θ(0)

while not converged do
θ(1) ← θ(1) − η∇L(θ(1),D)

µi ←

{
1 if θ

(1)
i ∈ argmaxθ1,...,θK |θ

(1) − θ(0)|
0 otherwise

θ(2) ← θ(0)

while not converged do
θ(2) ← θ(2) − µ� η∇L(θ(2),D)

φ← θ(2) − θ(0)
return φ

end function

function CROSSLINGUALTRANSFER(Dsrc, Dtar, Dtask, Ltask, θ(0), η, K)
φsrc ← LTSFT(Dsrc,LMLM,θ

(0), η,K)
φtask ← LTSFT(Dtask,Ltask,θ

(0) + φsrc, η,K)
φtar ← LTSFT(Dtar,LMLM,θ

(0), η,K)
return θ(0) + φtask + φtar

end function
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B Languages 1076

Task Language ISO Code Family UD Treebank Corpus source(s)

Source

Arabic† ar Afro-Asiatic, Semitic

Wikipedia

Basque∗ eu Basque BDT
Bulgarian† bg Indo-European, Slavic
Chinese† zh Sino-Tibetan
Czech∗ cs Indo-European, Slavic PDT
English∗,†, en Indo-European, Germanic EWT
Estonian∗ et Uralic, Finnic EDT
French∗,† fr Indo-European, Romance GSD
German† de Indo-European, Germanic
Greek∗,† el Indo-European, Greek GDT
Hindi∗,† hi Indo-European, Indic HDTB
Korean∗ ko Korean GSD
Persian∗ fa Indo-European, Iranian PerDT
Russian† ru Indo-European, Slavic
Spanish† es Indo-European, Romance
Swahili† swa Niger-Congo, Bantoid
Thai† th Tai-Kadai, Kam-Thai
Turkish∗,† tr Turkic, Southwestern BOUN
Urdu† ur Indo-European, Indic
Vietnamese∗ vi Austro-Asiatic, Viet-Muong VTB

POS/DP

Arabic ar Afro-Asiatic, Semitic PUD

Wikipedia

Bambara bm Mande CRB
Buryat bxr Mongolic BDT
Cantonese yue Sino-Tibetan HK
Chinese zh Sino-Tibetan GSD
Erzya myv Uralic, Mordvin JR
Faroese fo Indo-European, Germanic FarPaHC
Japanese ja Japanese GSD
Livvi olo Uralic, Finnic KKPP
Maltese mt Afro-Asiatic, Semitic MUDT
Manx gv Indo-European, Celtic Cadhan
North Sami sme Uralic, Sami Giella
Komi Zyrian kpv Uralic, Permic Lattice
Sanskrit sa Indo-European, Indic UFAL
Upper Sorbian hsb Indo-European, Slavic UFAL
Uyghur ug Turkic, Southeastern UDT

NER

Hausa hau Afro-Asiatic, Chadic

N/A

Wikipedia
Igbo ibo Niger-Congo, Volta-Niger Wikipedia
Kinyarwanda kin Niger-Congo, Bantu Wikipedia
Luganda lug Niger-Congo, Bantu Wikipedia
Luo luo Nilo-Saharan Luo News Dataset (Adelani et al., 2021)
Nigerian-Pidgin pcm English Creole JW300 (Agić and Vulić, 2019)
Swahili swa Niger-Congo, Bantu Wikipedia
Wolof wol Niger-Congo, Senegambian Wikipedia
Yorùbá yor Niger-Congo, Volta-Niger Wikipedia

NLI

Aymara aym Aymaran

N/A

Tiedemann (2012); Wikipedia

Asháninka cni Arawakan
Ortega et al. (2020); Cushimariano Romano and
Sebastián Q. (2008); Mihas (2011); Bustamante
et al. (2020)

Bribri bzd Chibchan, Talamanca Feldman and Coto-Solano (2020)
Guarani gn Tupian, Tupi-Guarani Chiruzzo et al. (2020); Wikipedia
Náhuatl nah Uto-Aztecan, Aztecan Gutierrez-Vasques et al. (2016); Wikipedia
Otomí oto Oto-Manguean, Otomian Hñähñu Online Corpus
Quechua quy Quechuan Agić and Vulić (2019); Wikipedia
Rarámuri tar Uto-Aztecan, Tarahumaran Brambila (1976)
Shipibo-Konibo shp Panoan Galarreta et al. (2017); Bustamante et al. (2020)
Wixarika hch Uto-Aztecan, Corachol Mager et al. (2018)

Table 4: Details of the languages and data used for training and evaluation of SFTs and adapters. The corpora
of Bustamante et al. (2020) are available at https://github.com/iapucp/multilingual-data-peru; all
other NLI corpora mentioned are available at https://github.com/AmericasNLP/americasnlp2021. ∗

denotes source languages for multi-source DP training; † denotes source languages for multi-source NLI training.
English is the source language in all single-source task training experiments.
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C Results by Language1077

LT-SFT RAND-SFT MAD-X BITFIT LT-SFT TA MAD-X TA

ar 68.7 69.3 70.1 69.8 70.6 70.8
bm 57.0 55.6 51.0 41.7 34.2 37.2
bxr 73.2 71.4 71.9 64.2 59.5 62.0
fo 87.9 86.5 85.7 77.3 72.9 74.1
gv 72.0 68.4 66.9 44.3 35.4 37.5
hsb 83.1 82.4 81.8 77.2 69.2 69.6
ja 53.9 54.3 51.1 53.9 54.1 51.2
kpv 61.8 56.0 58.5 39.6 37.1 35.8
mt 80.6 77.6 73.7 53.6 32.6 30.9
myv 80.3 71.5 75.6 54.7 45.7 48.5
olo 82.3 81.7 79.7 73.1 62.2 63.4
sa 65.3 63.2 60.9 50.3 39.8 45.0
sme 78.0 70.4 72.0 50.6 43.3 39.4
ug 59.1 64.7 63.7 43.2 34.0 36.8
yue 66.8 65.6 66.8 66.2 64.5 64.1
zh 67.5 68.0 67.6 69.2 65.9 67.6

avg 71.1 69.2 68.6 58.1 51.3 52.1

(a) POS accuracy (%)

LT-SFT RAND-SFT MAD-X BITFIT LT-SFT TA MAD-X TA LT-SFT MS

ar 70.8/53.6 68.7/51.6 69.5/51.5 64.0/48.6 68.7/53.0 68.6/52.3 81.5/69.8
bm 43.1/16.5 39.3/14.8 39.1/13.6 33.3/8.1 30.0/7.8 29.9/6.8 46.4/20.6
bxr 49.2/25.9 48.3/24.1 48.3/24.0 44.9/19.7 40.7/17.3 41.0/18.0 60.2/35.4
fo 68.2/55.5 65.7/53.1 66.3/52.5 57.7/43.4 54.3/39.8 53.6/38.5 67.2/55.6
gv 60.0/42.4 59.0/39.1 61.2/37.0 43.3/14.7 28.1/5.0 26.4/5.4 66.1/52.0
hsb 73.7/60.5 72.1/58.7 72.1/61.1 61.7/47.7 55.4/42.1 53.5/40.9 87.0/79.5
ja 36.9/19.7 34.8/18.9 33.0/18.9 34.4/18.8 36.0/19.3 33.8/18.3 44.0/26.9
kpv 50.5/27.2 45.1/20.7 47.3/22.6 35.8/11.3 24.7/7.5 25.4/7.1 57.1/35.9
mt 74.6/55.4 68.9/48.8 69.4/50.8 51.0/25.0 29.2/5.7 28.9/5.0 81.0/67.9
myv 65.9/45.3 59.8/36.3 59.6/35.7 42.2/17.2 32.1/11.7 30.3/10.4 73.8/57.4
olo 66.4/47.8 64.5/43.1 60.9/42.0 52.4/29.3 42.2/20.0 42.5/18.3 74.9/62.4
sa 49.5/25.2 48.9/20.8 46.8/19.5 42.8/13.9 32.5/8.7 36.0/9.9 62.1/39.5
sme 58.0/42.1 49.9/29.6 50.6/29.0 31.7/10.7 23.2/7.0 22.3/6.6 63.4/50.7
ug 36.4/16.7 37.3/15.8 42.1/19.2 35.3/13.5 21.9/7.7 23.5/8.4 56.3/35.9
yue 51.1/34.0 48.7/31.2 48.8/31.8 44.5/27.0 47.4/30.0 47.0/29.4 52.1/36.3
zh 59.8/37.0 58.2/35.6 58.5/37.2 55.9/33.7 58.4/36.3 59.1/36.9 55.3/35.9

avg 57.1/37.8 54.3/33.9 54.6/34.1 45.7/23.9 39.1/19.9 38.9/19.5 64.3/47.6

(b) DP UAS/LAS

LT-SFT MAD-X BITFIT LT-SFT TA MAD-X TA

hau 83.5 83.4 50.2 46.5 44.0
ibo 76.7 71.7 57.2 56.8 54.5
kin 67.4 65.3 56.0 52.9 50.2
lug 67.9 67.0 50.9 53.8 53.3
luo 54.7 52.2 35.6 37.7 33.0
pcm 74.6 72.1 66.8 74.4 71.0
swa 79.4 77.6 67.4 69.5 69.6
wol 66.3 65.6 45.0 37.1 29.8
yor 74.8 74.0 64.7 69.3 66.6

avg 71.7 69.9 54.9 55.3 52.4

(c) NER F1-score

LT-SFT MAD-X BITFIT LT-SFT TA MAD-X TA LT-SFT MS

aym 57.9 51.6 40.8 38.3 40.7 59.9
bzd 44.4 44.0 36.7 37.1 38.3 46.3
cni 47.9 47.6 34.5 40.9 44.1 50.3
gn 63.5 58.8 46.4 44.8 43.3 69.1
hch 42.9 41.5 36.3 38.4 40.7 44.4
nah 52.7 53.7 38.8 41.6 44.2 53.8
oto 48.5 46.8 39.8 39.7 40.8 43.3
quy 62.0 58.3 34.5 38.3 41.5 68.4
shp 50.3 48.9 38.8 42.1 44.4 53.2
tar 43.5 43.9 36.7 37.6 38.8 42.5

avg 51.4 49.5 38.3 39.9 41.7 53.1

(d) NLI accuracy (%)

Table 5: Results achieved by various zero-shot cross-lingual transfer methods across all tasks for each language.
For each (method, task) pair, the (equivalent) reduction factor with the best mean score is selected as shown in
Table 2. LT-SFT MS denotes LT-SFT with multi-source training. Bold denotes best-performing method per
language, excluding LT-SFT MS as its larger, more diverse dataset gives it an unfair advantage.

POS (accuracy) DP (UAS) NER (F1)
ar ja zh avg. ar ja zh avg. swa yor avg.

LT-SFT 68.7 53.9 67.5 63.4 70.8 36.9 59.8 55.9 79.4 74.8 77.1
RAND-SFT 69.3 54.3 68.0 63.9 68.7 34.8 58.2 53.9 - - -
MAD-X 70.1 51.1 67.6 62.9 69.5 33.0 58.5 53.7 77.6 74.0 75.8
BITFIT 69.8 53.9 69.2 64.3 64.0 34.3 55.9 51.4 67.4 64.7 66.0
LT-SFT TA-ONLY 70.6 54.1 65.9 63.5 68.7 36.0 58.4 54.4 69.5 69.3 69.4
MAD-X TA-ONLY 70.8 51.2 67.6 63.2 68.6 33.8 59.1 53.8 69.6 66.6 68.1

Table 6: Results for zero-shot cross-lingual transfer evaluation of the seen languages included in the POS, DP and
NER evaluations. For each method/metric pair, the best equivalent reduction factor from Table 2 is used.
Arabic, Japanese and Chinese, which were included in the POS/DP evaluation, can be considered high-resource
languages; Swahili and Yorùbá, on the other hand, were included in the NER evaluation and are arguably resource-
poor. In keeping with previous work, we find that language adaptation benefits seen languages less than unseen
languages and—among the former—resource-rich languages less than resource-poor languages. This agrees with
the intuition that lower-resource languages have greater scope for improvement through language adaptation due
to the fact that they receive less signal during MMT pretraining. Interestingly, BITFIT performs much more
competitively on the high-resource languages than low-resource and unseen languages, suggesting that its lack of
capacity is more problematic for language adaptation rather than for task fine-tuning.
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D MAD-X Results with AdapterHub Adapters 1078
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(a) Part-of-Speech Tagging
(ar, bxr, ja, kpv, mt, myv, sme, ug, yue, zh)
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(b) Dependency Parsing (DP)
(ar, bxr, ja, kpv, mt, myv, sme, ug, yue, zh)
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(c) Named Entity Recognition (NER) (swa, wol)
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(d) Natural Language Inference (NLI) (gn, quy)

Figure 4: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT) and MAD-
X when pretrained language adapters from AdapterHub (Pfeiffer et al., 2020a) are used during task training and
evaluation. These adapters are trained for 250,000 steps with a batch size of 64, as opposed to the 100,000 steps
of batch size 8 used in our experiments. LT-SFT nevertheless maintains an edge in performance across all tasks.
Since AdapterHub adapters are only available for some of the languages in our evaluation, the results shown are
averaged over only the languages for which they are available, indicated in the subfigure captions.

E Parameter Overlap between Languages 1079
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Figure 5: Percentage of parameters selected for the sparse fine-tuning of both languages in a pair.
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In order to understand whether similar languages1080

also share similar sub-networks, we plot the pair-1081

wise overlap (in percentage) between parameter1082

subsets of language SFTs in Figure 5. Except for a1083

single instance (Mandarin Chinese and Cantonese)1084

where the high overlap reflects the fact that both1085

languages are genealogically related, we find that1086

the overlap is small for most language pairs. The1087

explanation, we believe, is two-fold. Firstly, most1088

of the languages in the multilingual datasets con-1089

sidered in our experiments belong to separate gen-1090

era and families. Therefore, a lack of correlation1091

in parameter subsets is expected. Secondly, for1092

a pretrained model, there exist multiple parame-1093

ter subsets (“winning tickets”) with comparable1094

performance (Prasanna et al., 2020). The Lottery1095

Ticket algorithm selects randomly among these1096

equally valid subsets. Hence, a lack of overlap1097

does not necessarily imply the reliance on disjoint1098

sub-networks.1099
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