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Abstract

Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring
semantic knowledge from seen classes to unseen ones. Typically, to guarantee
desirable knowledge transfer, a common (latent) space is adopted for associating
the visual and semantic domains in ZSL. However, existing common space learning
methods align the semantic and visual domains by merely mitigating distribution
disagreement through one-step adaptation. This strategy is usually ineffective
due to the heterogeneous nature of the feature representations in the two domains,
which intrinsically contain both distribution and structure variations. To address
this and advance ZSL, we propose a novel hierarchical semantic-visual adaptation
(HSVA) framework. Specifically, HSVA aligns the semantic and visual domains by
adopting a hierarchical two-step adaptation, i.e., structure adaptation and distribu-
tion adaptation. In the structure adaptation step, we take two task-specific encoders
to encode the source data (visual domain) and the target data (semantic domain)
into a structure-aligned common space. To this end, a supervised adversarial dis-
crepancy (SAD) learning is proposed to adversarially minimize the discrepancy
between the predictions of two task-specific classifiers, thus making the visual and
semantic feature manifolds more closely aligned. In the distribution adaptation
step, we directly minimize the Wasserstein distance between the latent multivari-
ate Gaussian distributions to align the visual and semantic distributions using a
common encoder. Finally, the structure and distribution adaptation are derived in a
unified framework under two partially-aligned variational autoencoders. Extensive
experiments on four benchmark datasets demonstrate that HSVA achieves superior
performance on both conventional and generalized ZSL. The code is available at
https://github.com/shiming-chen/HSVA .

1 Introduction

Over the past decade, significant progress has been made in zero-shot learning (ZSL), which aims
to recognize new classes during learning by exploiting the intrinsic semantic relatedness between
seen and unseen categories [1, 2, 3]. Inspired by the way humans learn unknown concepts, side-
information (e.g., attributes [4], word vectors [5], and sentences [6]) related to seen/unseen classes is
employed to guarantee knowledge transfer between the seen/unseen data. Common space learning is
one typical method for representing the relationship between the visual and semantic domains for
ZSL, which is key to dealing with the knowledge transfer [7]. However, existing common space

∗Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://github.com/shiming-chen/HSVA


Image

Side-
Information

Manifold 1 Manifold 2 Semantic features

Mapping

Mapping

Visual featuresClass 1 Class 2 

Image

Side-
Information

Mapping

Mapping

Mapping

Manifold 3 

(a) One-step adaptation (b) Hierarchical adaptation

30 20 10 0 10 20 30
30

20

10

0

10

20

30

CADA-VAE: seen classes

30 20 10 0 10 20

20

10

0

10

20

30

CADA-VAE: unseen classes

30 20 10 0 10 20

20

10

0

10

20

HSVA: seen classes

30 20 10 0 10 20 30

20

10

0

10

20

30
HSVA: unseen classes

(c) t-SNE visualization of features for CADA-VAE (d) t-SNE visualization of features for HSVA
Figure 1: Illustration of HSVA. Common space learning methods learn domain-aligned feature
representations for semantic and visual domains in latent embedding space with semantic-visual
adaptation. However, the heterogeneous feature representations of the semantic and visual domains
vary in both distribution and structure. (a) One-step adaptation focuses on distribution alignment
between visual and semantic domains, neglecting structure variation. This causes the semantic and
visual distributions to be located in different manifolds, resulting in the misclassification of some
samples. (b) Hierarchical adaptation, in contrast, can learn an intrinsic and discriminative common
space for semantic and visual feature representations by adopting sequential structure adaptation and
distribution adaptation. We provide t-SNE visualizations [14] of features learned by (c) CADA-VAE
[11] and (d) our HSVA on 10 classes from AWA2 (the "o" and "x" indicate visual and semantic
features, respectively, and different colors denote different classes). Best viewed in color.

learning methods align the distributions of the semantic and visual domains with one-step adaptation
[8, 9, 7, 10, 11, 12, 13], while neglecting the fact that the heterogeneous feature representations of
distinct semantic and visual domains have both distribution and structure variations. Thus, their
performance is limited. In this work, we propose a novel common space learning formulation that
leverages a hierarchical semantic-visual adaptation to learn an intrinsic common space for a better
alignment of the two heterogeneous representation domains.

The heterogeneous feature representations of the semantic and visual domains are distinct [15, 16].
Although one-step adaptation learns distribution-aligned feature representations for the semantic
and visual domains using two different mapping models (e.g., encoders) and distribution alignment
constraints (e.g., maximum mean discrepancy (MMD)), the two distributions are located in different
manifolds since the one-step adaptation does not consider the manifold structure relationship between
visual and semantic representations, as shown in Figure 1 (a) and (c). If we take the Euclidean distance
or manifold distance [17, 18] to measure the relationship between different classes, the classifier
inevitably misclassifies some samples, thus leading to inferior ZSL performance. As such, mapping
the semantic and visual domains into an intrinsic and desirable common space for conducting an
effective ZSL is highly necessary.

To learn structure- and distribution-aligned feature representations for distinct visual and semantic
domains, we propose a hierarchical semantic-visual adaptation (HSVA) framework to learn an
intrinsic common space that contains the essential multi-modal information associated with unseen
classes (Figure 1 (b) and (d)). HSVA aligns the semantic and visual domains with structure adaptation
(SA) and distribution adaptation (DA) in a unified framework, under two partially-aligned variational
autoencoders. In the SA, we use two task-specific encoders to encode source data (visual domain)
and target data (semantic domain), respectively, into a structure-aligned space, which is learned
through supervised adversarial discrepancy (SAD) learning to minimize the discrepancy between
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the predictions of the two task-specific classifiers. This encourages the visual and semantic feature
manifolds to be closer to each other, thus aligning the manifold structure variation. In the DA,
we map the structure-aligned features into a distribution-aligned common space using a common
encoder, which is optimized by minimizing the Wasserstein distance between the latent multivariate
Gaussian distributions of the visual and semantic domains. The common encoder preserves the
structure-aligned representations in the DA. Thus, HSVA can learn a structure and distribution-
aligned common space for visual and semantic feature representations, which is better than the
distribution-aligned feature representations learned by existing common space learning methods
[8, 9, 7, 10, 11, 19]. To the best of our knowledge, this is the first work that leverages hierarchical
semantic-visual adaptation to address heterogeneous feature alignment in ZSL. Following [11], we
conduct extensive experiments on four challenging benchmark datasets, i.e., CUB, SUN, AWA1,
and AWA2, under both conventional and generalized ZSL settings. The proposed HSVA achieves
consistent improvement over the existing common space learning methods on all datasets. We show
qualitatively that the structural variation is important for the interaction between visual and semantic
domains. Moreover, we show significantly better common space for visual and semantic feature
representations than the existing common space learning methods, e.g., CADA-VAE [11].

2 Related Work

Zero-Shot Learning. In practice, the relationship between visual and semantic domains is
determined by learning an embedding space where semantic vectors and visual features interact [20,
21, 22, 23, 24, 25, 26, 19]. There are three mapping methods for learning such an embedding space,
including direct mapping, model parameter transfer, and common space learning [7]. Direct mapping
learns a mapping function from visual features to semantic representations [4, 20, 27]. However,
its generalization is limited by the high intra-class variability of the visual domain. Meanwhile, the
lower-dimensional semantic space shrinks the variance of the projected data points, resulting in the
hubness problem [28]. Model parameter transfer, in contrast, takes place in the visual space, where
the model parameters for unseen classes are usually obtained [29, 30]. In essence, generative ZSL
follows this methodology, simultaneously learning semantic→visual mapping and data augmentation
[22, 31, 32, 22, 33]. However, since the inter-class relationships among unseen classes are not taken
into account, model parameter transfer is often limited [7]. Finally, common space learning learns
a common representation space into which both visual features and semantic representations are
projected for effective knowledge transfer [34, 9, 7, 10, 11]. By calibrating the common space using
bidirectionally aligned knowledge of the visual and semantic representations, it can simultaneously
avoid the issues of direct mapping and model parameter transfer. As such, common space learning
is a promising methodology for ZSL. However, existing common space learning methods align the
semantic and visual distributions with one-step adaptation, which neglects the distinct heterogeneous
feature representations of the semantic and visual domains that are characterized by structure and
distribution variations. This causes the distribution-aligned common space to be located in a different
manifold, and samples to thus inevitably misclassified. In contrast, we propose an effective framework
with both structure adaptation and distribution adaptation to address these challenges.

Domain Adaptation. Domain adaptation aims to learn domain-invariant representations by min-
imizing the discrepancy between the distributions of source and target via distribution alignment,
domain adversarial learning, or task-specific methods. It can be divided into homogeneous and
heterogeneous domain adaptation according to the characteristics of the source and target data. In
the homogeneous domain adaptation setting, the feature spaces of the source and target domains are
identical, with the same dimensions. Thus, one-step adaptation can be employed [35, 36, 37]. In
contrast, in the heterogeneous setting, the feature spaces of the source and target domains are distant,
and their dimensions also typically differ. Since there is little overlap between the two domains,
one-step domain adaptation is not effective in the heterogeneous domain adaptation [38, 39]. Thus,
multi-step (or transitive) domain adaptation methods are used for heterogeneous domain adaptation.
However, these methods cannot be directly used in ZSL. Since ZSL has four domains (i.e., seen,
unseen, semantic, and visual), knowledge cannot be transferred between two domains only, i.e., the
distributions of the source and target domains cannot be aligned. We argue that the structure variation
should also be taken into account when aligning the visual and semantic domains in ZSL.
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Figure 2: The framework of the proposed hierarchical semantic-visual adaptation (HSVA). HSVA
consists of two partially-aligned variational autoencoders, which simultaneously perform structure
adaptation and distribution adaptation with various constraints. Our two-step adaptation formulation
helps HSVA learn structure and distribution-aligned feature representations for visual and semantic
in an unified framework, which avoids the adverse effects of heterogeneous feature representations
between distinct visual and semantic domains.

3 Hierarchical Semantic-Visual Adaptation

The task of ZSL is formulated as follows. Let S = {(xs, ys, as) | xs ∈ X, ys ∈ Y s, as ∈ A} be
a training set consisting of image features x extracted by a convolutional neural network (CNN)
Backbone (e.g., ResNet-101), where seen class embeddings as are learned by a language model and
seen class labels ys. In addition, an auxiliary training set U = {(yu, au) | yu ∈ Y u} from unseen
classes is used, where yu denotes unseen classes from a set Y u, which is disjoint from Y S . xu ∈ X
are the unseen visual features in the test set. Note that x = xs ∪ xu and a = as ∪ au. The goal of
conventional ZSL (CZSL) is to learn a classifier for unseen visual features, i.e., fCZSL : X → Y U ,
while for generalized ZSL (GZSL) the goal is to learn a classifier for seen and unseen visual features,
i.e., fGZSL : X → Y U ∪ Y S .

In the following, we introduce our HSVA, which learns an intrinsic common space for semantic and
visual feature representations to conduct ZSL. As shown in Figure 2, our framework consists of two
partially-aligned autoencoders, which conduct structure adaptation (SA) and distribution adaptation
(DA). In the end of this section, we demonstrate how we perform zero-shot learning using the feature
representations extracted from the intrinsic common manifold space.

3.1 Partially-Aligned Variational Autoencoders

Our HSVA model consists of two partially-aligned variational autoencoders. The first includes two
feature encoders (visual encoder Ex and common encoder Ez) and one decoder (visual decoder
Dx). Ex and Ez are used to learn structure and distribution-aligned visual embeddings, respectively,
which share two common spaces (i.e., structure and distribution-aligned spaces) with the semantic
embeddings. Dx aims to decode the distribution-aligned embeddings from the visual and semantic
features to be similar to the visual features. Analogously, the second variational autoencoder has a
similar structure to the first (i.e., it includes a semantic encoder Ea, the Ez , and a semantic decoder
Da), but it is employed to learn semantic embeddings. The partially-aligned variational autoencoders
are first optimized by two variational autoencoders (VAE) losses:

LxV AE(Ex, Ez) = E[logDx(zx
s

)]− γKL(Ez(Ex(xs)))‖p(zx
s

|xs)), (1)

LaV AE(Ea, Ez) = E[logDa(za
s

)]− γKL(Ez(Ea(as)))‖p(za
s

|as)), (2)

where zx
s

and za
s

are the visual and semantic embeddings in the distribution-aligned space, γ is
the weight of the KL-divergence, and p(za

s |as) and p(zx
s |xs) are the prior distributions assumed to

be N (0, 1). To make the visual and semantic embeddings in the structure- and distribution-aligned
spaces more consistent, we then use a cross reconstruction loss to constrain the two partially-aligned
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variational autoencoders:

LREC(Ex, Ea, Ez, Dx, Da) = LxREC(Ex, Ez, Dx) + LaREC(Ea, Ez, Da) (3)

where

LxREC(Ex, Ez, Dx) =
∥∥∥xs −Dx(za

s

)
∥∥∥
1
, (4)

LaREC(Ea, Ez, Da) =
∥∥∥as −Da(zx

s

)
∥∥∥
1
. (5)

Finally, the two partially-aligned variational autoencoders conduct structure and distribution adapta-
tion for the visual and semantic features, which will be introduced in the following.

3.2 Structure Adaptation

Structure adaptation (SA) is used to guide the encoder Ex and Ea to learn a structure-aligned space
for the visual and semantic features. Previous methods [7, 11] directly align the semantic and visual
features with distribution distance constraints (e.g., MMD), which neglects the structure variation
between the heterogeneous feature representations of the two domains. Furthermore, these methods
fail to learn discriminative features as they do not take category relationships into account, as shown
in Figure 1 (a). Motivated by task-specific unsupervised domain adaptation [36, 37], we propose a
supervised adversarial discrepancy (SAD) learning to minimize the discrepancy between the outputs
of two task-specific classifiers (CLS1, CLS2). This enables us to learn a class decision boundary
and embed semantic and visual features into a structure-aligned common space for SA. Thus, SA can
learn discriminative structure-aligned representations for semantic and visual features. Different from
[36, 37], which only detect the target samples (e.g., semantic embeddings Ea(a)) to learn a single
encoder (generator), SAD simultaneously detects the source samples (e.g., visual embeddings Ex(x))
and target samples (e.g., semantic embeddings Ea(a)) to learn a good structure-aligned common
space with two task-specific encoders. Specifically, SAD includes three steps for optimization:
1) semantic and visual embedding classification for Ex, Ea, CLS1 and CLS2; 2) discrepancy
maximization for CLS1 and CLS2; and 3) discrepancy minimization for Ex and Ea.

Semantic and Visual Embedding Classification. We trainEx,Ea,CLS1 andCLS2 by minimizing
the softmax cross-entropy to collectly classify the structure-aligned semantic and visual embeddings.
This is crucial for enabling classifiers and encoders (Ex, Ea) to obtain task-specific discriminative
features. The visual and semantic classification loss is formulated as:

LCLS(Ex, Ea, CLS1, CLS2) = LCLS1(Ex(xs), ys) + LCLS2(Ex(xs), ys)

+ LCLS1(Ea(as), ys) + LCLS2(Ea(as), ys),
(6)

where

LCLS1(x,y) = LCLS2(x,y) = −E
K∑
k=1

I[k=y] log p (y | x) . (7)

Here K is the number of seen classes, I[k=y] is an indicator function (i.e., it is one when k = y,
otherwise zero), and p (y|x) is the prediction of x. We use two classifiers to simultaneously classify
the visual and semantic embeddings to initialize the classifiers, which are used for discrepancy
learning later.

Discrepancy Maximization for Classifiers. In this step, we freeze the parameters of the encoders
(Ex, Ea) and update the classifiers (CLS1, CLS2) to maximize the discrepancy between the
outputs of the two classifiers on the visual and semantic embeddings. Thus, the source and target
samples outside the support of task-specific decisions are identified, providing the positive signals to
separate the class decision boundaries. Since sliced Wasserstein discrepancy (SWD) [37] provides
geometrically meaningful guidance for capturing the natural notion of dissimilarity, we use it to
measure the discrepancy between two classifier predictions for visual embeddings (p1(ys|Ex(xs)),
p2(y

s|Ex(xs))) and semantic embeddings (p1(ys|Ea(as)), p2(ys|Ea(as))):

LDIS1(CLS1, CLS2) = −LSWD(E
x(xs))− LSWD(E

a(as)), (8)

LSWD (x) =
∑
m

(Rθmp1(y|x),Rθmp2(y|x)) , (9)
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whereRθm is the mth one-dimensional linear projection operation, and θ is a uniform measure on
the unit sphere S(d−1) in Rd. The larger the LDIS , the larger the discrepancy.

Discrepancy Minimization for Encoders. To encourage the visual embedding (Ex(xs)) and
semantic embedding (Ea(as)) to be aligned well in the structure-aligned space, we freeze the
parameters of the two classifiers and update the two encoders (Ex, Ea) to minimize the discrepancy
between the outputs of the two classifiers on Ex(xs) and Ea(as):

LDIS2(Ex, Ea) = LSWD(E
x(xs)) + LSWD(E

a(as)). (10)

This encourages the visual and semantic feature manifolds to be closer to each other, and thus the
manifold structure variation is circumvented.

3.3 Distribution Adaptation

After structure adaptation, HSVA can learn a structure-aligned common space to avoid manifold
structure difference between visual and semantic embeddings. However, the structure-aligned
common space is still limited by distribution variation. To further learn a distribution-aligned
common space for visual and semantic feature representations, we propose distribution adaptation.
Existing common space learning methods [8, 9, 7, 10, 11] employ two different mapping functions
(encoders) to align the visual and semantic distributions to learn distribution-aligned embedding.
In contrast, our main idea is to protect the structure-aligned visual and semantic embeddings in
a distribution-aligned space using a common encoder Ez , which preserves the structure-aligned
representations in the DA. Our DA is first optimized by minimizing the Wasserstein distance between
the latent multivariate Gaussian distributions, formulated as follows:

LDA(Ex, Ea, Ez) =
(∥∥∥µxs

− µa
s
∥∥∥2
2
+
∥∥∥(δxs

)
1
2 − (δa

s

)
1
2

∥∥∥2
F

) 1
2

, (11)

where ‖ · ‖2F denotes the squared matrix Frobenius norm.

In essence, our HSVA is also a generative model, which is different to the GAN/VAE based methods
[40, 31, 33] (i.e., learning mechanism and optimization). Due to the bias problem that arises when
using generative models for ZSL, the synthesized unseen samples (Ez(Ea(au))) in the distribution-
aligned common space might be unexpectedly close to the seen ones. We propose to explicitly
tackle this seen-unseen bias problem by preventing the encoded unseen samples (Ez(Ea(au))) from
colliding with the encoded seen ones (Ez(Ex(xs)))2. Since correlation alignment (CORAL) [41]
has been shown effective for asymmetric transformations in domain adaptation, we take the CORAL-
based metric to measure the discrepancy between seen and unseen class samples. Different from
[41], which takes CORAL to decrease the discrepancy between two domains, we aim to increase the
discrepancy. Hence, we employ the inverse CORAL (iCORAL), defined upon the numerical negation
of CORAL:

LiCORAL(Ex, Ea, Ez) = −CORAL(Ez(Ex(xs)), Ez(Ea(au))). (12)

3.4 Optimization

Our full model optimizes the partially-aligned variational autoencoders, DA and SA, simultaneously
with the following objective function:

LHSV A(Ex, Ea, CLS1, CLS2, Ez, Dx, Da) = LxV AE + LaV AE + λ1LREC + LCLS
+ λ2(LDIS1 + LDIS2) + λ3(LiCORAL + LDA),

(13)

where λ1, λ2, λ3 are the weights that control the importance of the related loss terms. Similar to
the alternative updating policy for generative adversarial networks (GANs), we alternately train Ex,
Ea, CLS1, CLS2 when optimizing SA. Although, HSVA has three components in total, the whole
training process are simultaneous and loss weights of all terms in Eq. 13 are the same for all datasets.
The consistently significant results on all datasets show that our model is robust and easy to train.

2Since Ez(Ex(xs)) and Ez(Ea(au)) are used to train a ZSL classifier later, we take the visual features of
seen classes and semantic features of unseen classes into account.
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3.5 Classification

Once our HSVA model is learned, the visual and semantic features are encoded as new feature
representations in a distribution-aligned common space, where structure variation is aslo considered
for classification. Using the reparametrization trick [42], we take Ex and Ez to encode the visual
features of seen classes (xs) and unseen classes (xu) into structure- and distribution-aligned feature
representations, i.e., zx

s

= Ez(Ex(xs)) and zx
u

= Ez(Ex(xu)). Analogously, we take Ea and Ez

to encode the semantic embeddings a as za = Ez(Ea(a)), where za = za
s ∪ zau . We employ zx

s

(xs from the training set) and za
u

to train a supervised classifier (e.g., softmax). Once the classifier
is trained, we use zx

s

(xs from the test set) and zx
u

to test the model. Note that our HSVA is an
inductive method as we do not use the visual features of unseen classes for training.

4 Experiments

Datasets. We conduct extensive experiments on four well-known ZSL benchmark datasets, includ-
ing fine-grained datasets (e.g., CUB [43] and SUN [44]) and coarse-grained datasets (e.g., AWA1 [4]
and AWA2 [45]). CUB includes 11,788 images of 200 bird classes (seen/unseen classes = 150/50)
with 312 attributes. SUN contains 14,340 images from 717 scene classes (seen/unseen classes =
645/72) with 102 attributes. AWA1 and AWA2 contain 30,475 and 37,322 images from 50 animal
classes (seen/unseen classes = 40/10) with 85 attributes.

Implementation Details. We use the training splits proposed in [46]. Meanwhile, the visual
features are extracted from the 2048-dimensional top-layer pooling units of a CNN backbone (i.e.,
ResNet-101) pre-trained on ImageNet. The encoders and decoders are multilayer perceptrons (MLPs).
We employ the Adam optimizer [47] with β1 = 0.5 and β2 = 0.999. We use an annealing scheme [48]
to increase the weights γ, λ1, λ2, λ3 with same setting for all datasets. Specifically, γ is increased by
a rate of 0.0026 per epoch until epoch 90, λ1 is increased from epoch 21 to 75 by 0.044 per epoch,
and λ2, λ3 are increased from epoch 0 to epoch 22 by a rate of 0.54 per epoch. In the CZSL setting,
we synthesize 800, 400 and 200 features per unseen class to train the classifier for AWA1, CUB and
SUN datasets, respectively. In the GZSL setting, we take 400 synthesized features per unseen class
and 200 synthesized features per seen class to train the classifier for all datasets. The dimensions of
the structure-aligned and distribution-aligned spaces are set to 2048 and 64 for three datasets (i.e.,
CUB, AWA1, AWA2), respectively, and 2048 and 128 for SUN benchmark.

Evaluation Protocols. During testing, we follow the unified evaluation protocols proposed in [45].
Specifically, we measure the top-1 accuracy of unseen class (Acc) for the CZSL setting. In the
GZSL setting, we take the top-1 accuracy on seen classes (S) and unseen classes (U), as well as their
harmonic mean (defined as H = (2× S × U)/(S + U)).

Method AWA1 CUB SUN
Acc Acc Acc

DeViSE(NeurIPS’13) [34] 54.2 52.0 56.5
DCN(NeurIPS’18) [10] 65.3 56.2 61.8

CADA-VAE(CVPR’19) [11] 63.0 59.8 61.7

Our HSVA 70.6 62.8 63.8

Table 1: Results of common space learning methods under the CZSL setting on three datasets.

4.1 Experimental Results

Results of Conventional Zero-Shot Learning. Table 1 presents the results of CZSL on various
datasets. Our HSVA, with a softmax classifier, significantly outperforms other common space learning
methods [34, 10, 11] by at least 5.3%, 3.0% and 2.0% on AWA1, CUB and SUN, respectively. Our
significant performance improvements demonstrate that hierarchical semantic-visual adaptation
can effectively learn an intrinsic common space to represent visual and semantic features. This
space is structure- and distribution-aligned and alleviates the gap between heterogeneous feature
representations.
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Method AWA1 AWA2 CUB SUN
U S H U S H U S H U S H

N
on

-c
om

m
on

sp
ac

e

CRnet(ICML’19) [49] 58.1 74.7 65.4 - - - 45.5 56.8 50.5 34.1 36.5 35.3
PQZSL(CVPR’19) [50] - - - 31.7 70.9 43.8 43.2 51.4 46.9 35.1 35.3 35.2

TCN(ICCV’19) [51] 49.4 76.5 60.0 61.2 65.8 63.4 52.6 52.0 52.3 31.2 37.3 34.0
SGMA(NeurIPS’19) [52] 37.6 87.1 52.5 - - - 36.7 71.3 48.5 - - -

DVBE(CVPR’20) [53] - - - 63.6 70.8 67.0 53.2 60.2 56.5 45.0 37.2 40.7
DAZLE(CVPR’20) [54] - - - 60.3 75.7 67.1 59.6 56.7 58.1 52.3 24.3 33.2
RGEN(ECCV’20) [55] - - - 67.1 76.5 71.5 60.0 73.5 66.1 44.0 31.7 36.8

Composer(NeurIPS’20) [23] - - - 62.1 77.3 68.8 63.8 56.4 59.9 55.1 22.0 31.4
APN(NeurIPS’20) [25] - - - 56.5 78.0 65.5 65.3 69.3 67.2 41.9 34.0 37.6

f-CLSWGAN(CVPR’18) [46] 57.9 61.4 59.6 - - - 43.7 57.7 49.7 42.6 36.6 39.4
f-VAEGAN(CVPR’19) [31] - - - 57.6 70.6 63.5 48.4 60.1 53.6 45.1 38.0 41.3

LisGAN(CVPR’19) [56] 52.6 76.3 62.3 - - - 46.5 57.9 51.6 42.9 37.8 40.2
LsrGAN(ECCV’20) [22] 54.6 74.6 63.0 - - - 48.1 59.1 53.0 44.8 37.7 40.9

AGZSL(ICLR’21) [26] - - - 65.1 78.9 71.3 41.4 49.7 45.2 29.9 40.2 34.3

C
om

m
on

sp
ac

e DeViSE(NeurIPS’13) [34] 13.4 68.7 22.4 17.1 74.7 27.8 23.8 53.0 32.8 16.9 27.4 20.9
ReViSE(ICCV’17) [9] 46.1 37.1 41.1 46.4 39.7 42.8 37.6 28.3 32.3 24.3 20.1 22.0

DCN(NeurIPS’18) [10] 25.5 84.2 39.1 - - - 28.4 60.7 38.7 25.5 37.0 30.2
CADA-VAE(CVPR’19) [11] 57.3 72.8 64.1 55.8 75.0 63.9 51.6 53.5 52.4 47.2 35.7 40.6

SGAL(NeurIPS’19) [19] 52.7 74.0 61.5 52.5 86.3 65.3 40.9 55.3 47.0 35.5 34.4 34.9
Our HSVA 59.3 76.6 66.8 56.7 79.8 66.3 52.7 58.3 55.3 48.6 39.0 43.3

Table 2: State-of-the-art comparison under the GZSL setting on four datasets. The best and second-
best results are marked in red and blue, respectively. The "Common space" and "Non-common space"
denote common space learning and non-common space learning methods, respectively. Meanwhile,
the non-common space learning methods include the non-generative methods and generative methods.

Method AWA1 AWA2 CUB SUN
U S H U S H U S H U S H

HSVA w/o LSA 55.2 71.5 62.3 53.9 77.2 63.5 49.3 57.9 53.2 49.7 37.2 42.6
HSVA w/o LDA and LiCORAL 31.3 70.6 43.4 26.3 78.4 39.3 41.9 56.1 47.9 42.2 35.5 38.6

HSVA w/o LiCORAL 54.3 73.5 62.4 51.3 82.6 63.3 51.1 57.0 53.9 45.1 38.9 41.8
HSVA (full) 59.3 76.6 66.8 56.7 79.8 66.3 52.7 58.3 55.3 48.6 39.0 43.3

Table 3: Ablation study of HSVA under the GZSL setting on four datasets. "HSVA w/o LSA" denotes
HSVA without the constraints in SA, "HSVA w/o LDA and LiCORAL" denotes HSVA without the
constraints in DA, "HSVA w/o LiCORAL" denotes HSVA without LiCORAL, and "HSVA (full)"
denotes our full model HSVA.

Results of Generalized Zero-Shot Learning. Table 2 shows the GZSL performances of various
methods, including non-generative methods (direct mapping and model parameter transfer), generative
methods, and common space learning methods. Compared to other common space learning models
[34, 9, 10, 11, 19], our HSVA achieves significant improvements of at least 2.7%, 1.0%, 2.9% and
2.7% in harmonic mean on AWA1, AWA2, CUB and SUN, respectively. Especially, our HSVA
outperforms the latest common space learning method (i.e., SGAL [19]) by a large margin, resulting
in harmonic mean improvements of 5.3%, 1.0%, 8.3% and 8.4% on AWA1, AWA2, CUB and SUN,
respectively. Since our method can also act as a generative method, we compare it with other state-of-
the-art generative methods. The results show that our method performs significantly better on AWA1,
CUB and SUN datasets. Our model also achieves competitive results compared to non-generative
methods. For example, HSVA performs best results (e.g., the harmonic mean of 43.3) on SUN that is
the most challenging benchmark in ZSL. These results consistently demonstrate the superiority and
great potential of hierarchical semantic-visual adaptation.

Ablation Study. We conduct ablation studies to evaluate the effectiveness of our HSVA in terms
of the structure adaptation constraints (denoted as LSA), distribution adaptation constraints (i.e.,
LDA + LiCORAL), and only inverse CORAL LiCORAL. Our results are shown in Table 3. HSVA
performs poorer than its full model when no constraints are used during structure adaptation, i.e.,
the harmonic mean drops by 4.5% on AWA1 and 2.1% on CUB. If constraints are not used during
distribution adaptation, HSVA achieves very poor results compared to its full model, i.e., the harmonic
mean drops by more than 23.4% on coarse-grained datasets and 4.7% on fine-grained datasets. These
results show that distribution alignment is essential for common space learning, while structure
adaptation is necessary for semantic-visual adaptation. This is typically neglected by distribution
alignment methods with one-step adaptation [8, 9, 7, 10, 11, 19]. Moreover, LiCORAL pushes
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Figure 3: t-SNE visualization [14] of visual/semantic features learned by our HSVA and CADA-VAE
[11] for the same seen and unseen classes. Different colors denote different classes. The "o" and "x"
indicate visual and semantic features, respectively. We conduct experiments on 10 classes of (a) CUB
and (b) AWA1. CADA-VAE clearly maps the visual and semantic features into various manifolds
focusing on distribution alignment, while HSVA learns an intrinsic common space for discriminative
feature representations by adopting sequential structure and distribution adaptation.

unseen classes away from seen classes, which explicitly tackles the seen-unseen bias problem. HSVA
cooperates with iCORAL to improve the accuracy of classification using softmax, achieving harmonic
mean improvement of 4.4%, 3.0%, 1.4%, and 1.5% on AWA1, AWA2, CUB, and SUN, respectively.

Qualitative Results. We first qualitatively investigate the difference between our HSVA and one-
step adaptation methods (e.g., CADA-VAE [11]) for common space learning. We conduct t-SNE
visualization [14] of visual/semantic features mapped by our HSVA and CADA-VAE on 10 classes
from (a) CUB and (b) AWA1. As shown in Figure 3, CADA-VAE maps semantic and visual features
into different manifolds, which confuses the visual and semantic features of various categories,
resulting in misclassification for some samples. This intuitively shows that the existing common
space learning methods neglect the different structures of the heterogeneous feature representations
in the visual and semantic domains. In contrast, HSVA learns an intrinsic common space that better
bridges the gap between the heterogeneous feature representations for effective knowledge transfer,
using structure and distribution adaptation. Thus, hierarchical semantic-visual adaptation is an
effective solution for common space learning in ZSL.

In addition, unlike other methods [8, 9, 7, 10, 11] that can only align visual and semantic distribu-
tions, our HSVA can take class relationships into account to learn discriminatively aligned feature
representations. As shown in Figure 3, CADA-VAE maps visual and semantic features into compact
manifolds, resulting in confused class relationships. In contrast, HSVA learns discriminative structure-
and distribution-aligned features for the visual and semantic feature representations, which enables
HSVA to achieve better ZSL classification.

5 Conclusion

In this work, we develop a zero-shot learning framework, i.e. hierarchical semantic-visual adaptation
(HSVA), to learn an intrinsic common space for visual and semantic feature representations. By
conducting structure and distribution adaptation using two partially-aligned variational autoencoders,
our model effectively tackles the problem of heterogeneous feature representations and bridges the
gap between the visual and semantic domains. We demonstrate that HSVA achieves consistent
improvement over the current state-of-the-art methods on four ZSL benchmarks. We qualitatively
verify that our hierarchical semantic-visual adaptation framework can align the visual and semantic
domains in terms of both structure and distribution, while other common space learning methods only
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take distribution alignment into account. This intuitively shows that the learned feature representations
of HSVA are more discriminative and accurate than other methods. To the best of our knowledge, we
are the first to investigate the different structural characteristics of the visual and semantic domains
in ZSL. We believe that our work will facilitate the development of stronger visual-and-language
learning systems, including zero-shot learning, visual question answering [57], image captioning
[58], natural language for visual reasoning [59], heterogeneous domain adaptation [60].
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