Under review as a conference paper at ICLR 2024

ECOASSISTANT: USING LLM ASSISTANT MORE AF-
FORDABLY AND ACCURATELY

Anonymous authors
Paper under double-blind review

ABSTRACT

Today, users ask Large language models (LLMs) as assistants to answer queries
that require external knowledge; they ask about the weather in a specific city, about
stock prices, and even about where specific locations are within their neighborhood.
These queries require the LLM to produce code that invokes external APIs to answer
the user’s question, yet LLMs rarely produce correct code on the first try, requiring
iterative code refinement upon execution results. In addition, using LLM assistants
to support high query volumes can be expensive. In this work, we contribute a
framework, EcoAssistant, that enables LLMs to answer code-driven queries
more affordably and accurately. EcoAssistant contains three components.
First, it allows the LLLM assistants to converse with an automatic code executor
to iteratively refine code or to produce answers based on the execution results.
Second, we use a hierarchy of LLM assistants, which attempts to answer the query
with weaker, cheaper LLMs before backing off to stronger, expensive ones. Third,
we retrieve solutions from past successful queries as in-context demonstrations
to help subsequent queries. Empirically, we show that EcoAssistant offers
distinct advantages for affordability and accuracy, surpassing GPT-4 by 10 points
of success rate with less than 50% of GPT-4’s cost.

1 INTRODUCTION

Recently, users have been using conversational LLMs such as ChatGPT (OpenAl, [2023) for var-
ious queries. Reports indicate that 23% of ChatGPT user queries are for knowledge extraction
purposes (Fishkin, 2023)). Many of these queries require knowledge that is external to the information
stored within any pre-trained large language models (LLMs). For example, users ask about the
weather in their city: “What is the current cloud coverage in Mumbai, India?”; they ask about stock
prices: “Can you give me the opening price of Microsoft for the month of January 20237?”; some
even ask for place recommendations: “I’m looking for a 24-hour pharmacy in Montreal, can you find
one for me?”. These tasks can only be completed by calling external APIs that contain the requested
information. As such, these types of tasks—what we call code-driven question answering—require
LLMs to generate code to fetch necessary information via APIs.

Just as human coders rarely generate correct code on the first attempt, LLMs also struggle (Yang
et al.} 2023)). This is especially dire since current LLMs lack the ability to execute their generated
code and iteratively debug as most human programmers do. In addition, as ChatGPT received roughly
80M queries in July 2023, 23% of it makes up 4M knowledge queries that month itself (Fishkin,
2023} |Chen et al., 2023 |Wang et al.,|2023a). Such a high volume of user queries can be expensive
for those who aim to develop a system using online LLM services with a fee to process these queries.

To overcome these challenges, in this work, we present EcoAssistant, the first system that is
tailored for leveraging conversational LLMs to tackle code-driven question answering more affordably
and accurately. EcoAssistant doesn’t need any offline preparation or training; it is a purely
online service that improves with use. It contains three fundamental components. First, to support
iterative coding, it allows the conversational LLM as an assistant agent to converse with an automatic
code executor and iteratively refine code to make the correct API calls. We build EcoAssistant
using AutoGen (Wu et al.| |2023)), a recent framework that enables building LLM applications via
multi-agent conversation. Unlike existing practices that use LLMs to produce code or answer the

Under review as a conference paper at ICLR 2024

user query in a single generation, our system design exploits the recent advance of conversational
LLMs that can iteratively refine their outputs (OpenAll 2023} [Touvron et al.| 2023)).

Second, we employ a hierarchy of LLM assistants, referred to as assistant hierarchy, which attempts to
answer the query with weaker, cheaper LLMs before backing off to stronger, expensive ones. For each
query, we start the conversation with the most cost-effective LLM assistant, and progressively back
off to more expensive ones only when the current one fails. As LLMs typically have heterogeneous
pricing structures, such a simple strategy could reduce the overall cost of the system by reducing the
usage of expensive LLMs.

Third, we propose solution demonstration, which retrieves solutions from past successful queries as
in-context demonstrations to help subsequent queries. To achieve this, we store correct query-code
pairs in a database once a query succeeds; then when a new query enters, we retrieve the most similar
query as well as the associated code from the database as in-context demonstrations in the LLM’s
prompt. With the proven solutions demonstrated, the assistant is more likely to generate accurate and
efficient responses without redundant iterations, thereby increasing the likelihood of success.

Although the assistant hierarchy and solution demonstration offer distinct advantages when used
individually, we find that their interplay leads to a synergistic effect that amplifies their individual
benefits. This is, because the assistants in the hierarchy share the database storing query-code pairs,
these solutions from stronger, expensive LLMs serve as useful guidance for the weaker models on
subsequent queries. As a consequence, the weaker assistant is likely to solve more queries in the
future, which further reduces the systems’ reliance on expensive LLMs.

We conduct systematic experiments on various types of queries to investigate both the performance
and the dollar cost of the proposed system. Our results highlight that the assistant hierarchy can sig-
nificantly reduce the cost, while the solution demonstration largely boosts the system’s performance.
In addition, EcoAssistant, which incorporates both of these strategies, achieves superior perfor-
mance with a further reduction of the cost. In addition, we show that EcoAssistant outperforms
an individual GPT-4 assistant with a margin of 10% success rate with less than half of the expense.

2 THE TASK OF CODE-DRIVEN QUESTION ANSWERING

In this work, we focus on a practical yet challenging task called code-driven question answering,
where LLMs have to answer knowledge queries; The LLM has to generate code to invoke APIs for
acquiring the necessary information needed to answer the user’s question. For example, a user query
could be asking for dynamic or real-time information like the weather of a specific location at a certain
date. Since this information is not stored in the model’s internal knowledge or general knowledge
base, the model would rely on the weather APIs to acquire the information. To achieve this, LLMs
need to not only understand the user’s query correctly but also write decent Python code. Thus, this
new task presents a multi-faceted challenge: it demands proficiency in language understanding and
generation of both natural and programming language. This characteristic differentiates code-driven
question answering from existing question answering paradigms such as open-domain question
answering (Lee et al., 2019; |Chen et al[2017)) or browser-assistant question answering (Nakano
et al.}2021), since they typically do not challenge the LLMs’ capability of generating and refining
code. It is also different from generic code generation task (Chen et al.,2021; |Hendrycks et al.,|2021;
Austin et al.,|2021; |Lu et al.| |2021; Yang et al.,[2023) by requiring LLMs to exploit domain-specific
API based on the user query.

Iterative coding. Code-driven question answering naturally requires iterative coding (Yang et al.,
2023). We connect the underlying LLM attempting to generate the code with a code executor.
Intuitively, the code executor executes the generated code and forwards either the execution results
or the failed execution trace back to the LLM. This interaction may occur multiple times, as the
LLM uses the previous execution trace to refine its generation. One could view this process as an
automatic multi-turn chat between the LLM and the code executor, which happens completely in the
background, without the user’s involvement. We adopt chat LLMs such as GPT-3.5-turbo, allowing
us to leverage all the recent advancements of LLMs for chat-purposes.

Queries come streaming. We also consider a real-world scenario where queries come streaming
sequentially over time. Therefore, each query is not an independent task but could leverage past

Under review as a conference paper at ICLR 2024

queries as guidance. In such a setting, one could imagine deriving keeping track of successful queries
to improve future ones. Our system, described below, investigates how to utilize past queries to better
serve future ones.

3 ECOASSISTANT: USING LLM ASSISTANT MORE AFFORDABLY AND
ACCURATELY

To re-iterate, the task of code-driven question answering is both challenging and expensive. LLMs
struggle to generate the correct code at the first attempt to utilize APIs, and handling a high volume of
user queries using LLM services with a fee can be cost-intensive. To tackle this task in an affordable
and accurate manner, we develop EcoAssistant, a system that uses LLMs to answer knowledge
queries correctly while reducing dollar costs.

EcoAssistant contains three components (see Figure[I)). First, it places LLMs as an assistant
agent in conversation with a code executor. The LLM iteratively debugs its code by reading the code
executor’s outputs or failed execution trace, and finally produces the answer based on the information
obtained. Second, to reduce expenses, we use a hierarchy of LLM assistants, attempting queries with
cheaper LLM assistants before resorting to more expensive alternatives. Third, we keep track of
successful queries and the associated code and use them as in-context demonstrations for subsequent
ones. This allows LLMs in the future to use past successes as guidance. Our system requires no
offline preparation, no dataset curation, and no training.

0 0 e

Query 1 Query 2 Query 3 Current query Future queries
v X v
Save query-code Initial prompt with
whensucceed 0o ----oq solution demonstration
——————— (2}

&]

Terminate

I I
I |
I |
I |
I |
I
: y _— GPT-3.5-
i | Conversation turbo
i —e.
I 1

Code Executor Assistant Hierarchy

Figure 1: EcoAssistant: the system involves two agents, one executor agent for executing the
code and the other assistant agent backed by LLMs for suggesting code to obtain information and
address the user queries. The query-code database stores the previous successful query and code pair.
When a new query comes, the most similar query in the database is retrieved and then demonstrated in
the initial prompt with the associated code. The conversation invokes the most cost-effective assistant
first and tries the more expensive one in the assistant hierarchy only when the current one fails.

Automated conversation between LLM assistants and code executor. EcoAssistant places
the LLM as an assistant agent within a conversation with a code executor. The executor extracts
the generated code and executes it, forwarding the output back to the LLM; it then awaits the next
conversation turn, where presumably the LLM will refine its generation, learning from its past
mistake, or produce the final answer according to the execution results.

To achieve this conversation flow, we develop our system upon AutoGen (Wu et al.,|2023)), a recent
infrastructure that facilitates automated multi-agent conversation. In particular, we leverage the

Under review as a conference paper at ICLR 2024

built-in AssistantAgent and UserProxyAgent of AutoGen as the LLM assistant and code
executor, respectively. The former is configured with the dedicated system prompts proposed in
AutoGen, which instructs the LLM to 1) suggest code in a coding block when necessary, 2) refine the
code according to the execution results, and 3) append a special code "TERMINATE" at the end of
the response when it wants to terminate the conversation.

The latter, acting as a proxy of the user, automatically extracts the code from the LLM’s message, and
executes it in the local environment. It then sends the execution results back to the LLM. When there
is no code detected, it would send back a default message. Thus, the conversation is automated and
the user only needs to input the original query to trigger the conversation without manual intervention
like copying, pasting, and executing the code.

Finally, the conversation terminates when encountering one of the following cases: 1) the context
window of the LLM is exceeded; 2) the number of back-forth turns in the conversation exceeds a set
thresholcﬂ and 3) the LLM appends "TERMINATE" at the end of its response.

Assistant hierarchy. We employ a hierarchy of LLM assistants. In particular, given multiple
LLMs, we initiate an AssistantAgent for each and start the automated conversation with the
most cost-effective LLM assistant. If the conversation between the current LLM assistant and the
code executor concludes without successfully resolving the query, the system would then restarts
the conversation with the next more expensive LLM assistant in the hierarchy. Considering that
LLMs typically have varied pricing structures (e.g., GPT-3.5-turbo is an order of magnitude cheaper
than GPT-4), this strategy has the potential to significantly reduce costs by minimizing the usage of
expensive LLMs, while still effectively addressing queries.

Solution demonstration. In most practical scenarios, queries from users would appear sequentially
over time. Our system leverages past success to help the LLM assistants address future queries.
Specifically, whenever a query is deemed successfully resolved by user feedback, we capture and
store the query and the final generated code snippet. These query-code pairs are saved in a specialized
vector database. When new queries appear, EcoAssistant retrieves the most similar query from
the database, which is then appended with the associated code to the initial prompt for the new query,
serving as a demonstration. We show that this utilization of past successful query-code pairs improves
the query resolution process with fewer iterations and enhances the system’s performance.

The assistant hierarchy and solution demonstration as standalone designs offer distinct advantages:
the assistant hierarchy has the potential to reduce the cost by minimizing the reliance on expensive
LLMs, and the solution demonstration can enhance the performance of LLMs by leveraging past
success. Together, they amplify the individual benefits. Even without a specialized design, the
stronger LLM assistants implicitly advise weaker ones in the hierarchy by sharing their solutions via
the query-code database.

4 EXPERIMENT

In this section, we conduct experiments to investigate the performance and dollar cost of the
EcoAssistant on various types of queries, with both model evaluation and human evaluation.
We empirically show the individual benefits introduced by the assistant hierarchy and the solution
demonstration, and the EcoAssistant could surpass an individual GPT-4 assistant by 10% of the
success rate with less than half of the GPT-4 assistant’s expense.

4.1 SETUP

Dataset We consider three datasets from the ToolBench (Qin et al.| 2023 whose queries correspond
to the domains of Places, Weather, and Stock respectively. We randomly sample 100 queries from
each dataset. Each dataset comes with a recommended API to use. We list an example query and
the API for each dataset in Table[I] In addition to evaluating the methods on each dataset separately,
we also consider a setup where all three datasets are combined, resulting in 300 queries. We then
randomly shuffle the 300 queries to construct three datasets with different orders of queries and refer
to them as Mixed-1, Mixed-2, and Mixed-3 respectively.

'We set the maximum number of turns of a conversation to 5 in this paper.

Under review as a conference paper at ICLR 2024

Table 1: The default API and example query for each dataset.

Dataset | API | Example query
Places Google Places' I'm looking for a 24-hour pharmacy in Montreal, can you find one for me?
Weather | Weather API? What is the current cloud coverage in Mumbai, India?

Stock Alpha Vantage Stock API? | Can you give me the opening price of Microsoft for the month of January 2023?

https://developers.google.com/maps/documentation/places/web-service/overview
2https://www.weatherapi.com
3https://www.alphavantage.co/documentation/

Prompt and LLMs The initial prompt contains the query, the API name/key, and the retrieved
query-code pair when solution demonstration is used, and LLMs have to rely on their internal
knowledge of the API and coding skills to answer the query. To avoid leaking the confidential
API key to the LLM services, we randomly generate a unique four-byte text string in hexadecimal
for each API as a fake key, then whenever the code is executed, we replace the fake key in the
code with the actual API key so that the code can function as expected. We present the prompt we
used in the experiments in Appendix D] Since the techniques we propose are orthogonal to existing
prompting methods and can be synergistically applied, we also conducted experiments using the
Chain-of-Thought (CoT) prompting (Wei et al., |2022). In this work, we focus on conversational
LLMs including two black-box models with various costs (GPT-3.5-turbo and GPT-4) and one
open-source model (LLAMA-2-13B-chat (Touvron et al.,|2023))). We assume the dollar cost of the
LLAMA-2-13B-chat is zero since it can be hosted with a reasonable amount of computing resources,
while recording the cost of using black-box LLM services.

Compared methods and implementation We investigate the performance of three assistants
backed by different conversational LLMs (LLAMA-2-13B-chat, GPT-3.5-turbo, and GPT-4) as well
as two types of assistant hierarchy: AssistantHier-G (GPT-3.5-turbo + GPT-4) and AssistantHier-L
(LLAMA-2-13B-chat + GPT-3.5-turbo + GPT-4). For each assistant or assistant hierarchy, we include
its vanilla version and the following variants: + CoT (with Chain-of-Thought prompting), + SolDemo
(with solution demonstration), and + CoT + SolDemo (with both Chain-of-thought prompting and
solution demonstration). We couple each assistant or assistant hierarchy to a code executor agent in
order to tackle the code-driven question answering task. Note that the proposed EcoAssistant
system includes both assistant hierarchy and solution demonstration i.e., AssistantHier-G/L (+ CoT)
+ SolDemo. We implement all the systems based on AutoGen (Wu et al.,2023), a Python libraryﬂ for
multi-agent conversation framework. For solution demonstration, we use Chroma (Chroma, [2023)), an
open-source embedding database to store the query-code pairs; we use multi-qa-mpnet-base-dot-v1
model to embed the user query and the cosine similarity for similarity search

Evaluation protocol We focus on both the dollar cost and performance of compared methods. For
model performance, we report the success rate, i.e., the percentage of queries that are successfully
handled by the model. Since the queries usually do not have ground truth answer (Qin et al.| 2023)),
e.g., asking the weather at a certain date, we adopt both model evaluation and human evaluation. For
model evaluation, we leverage GPT-4 as a proxy of the user to judge whether the system successfully
handles the query (Zheng et al., [2023;; [Fu et al., 2023} |Wang et al., | 2023b)). In particular, after the
conversation is terminated, we prompt GPT-4 with the whole conversation history and ask it whether
the tested system successfully handles the query. The details can be found in Appendix D] We repeat
each evaluation three times with different random seeds if not otherwise specified.

4.2 MODEL EVALUATION: INDIVIDUAL DATASET

First, we conduct experiments on each of the three individual dataset to investigate the performance
of compared systems. The results are present in Table[2] We summarize our findings as below.

Finding 1: the compared LLMs have distinct performance- the more expensive the model
is, the better it performs. From the results, we can see that individual LLMs (GPT-3.5-turbo,
GPT-4, LLAMA-2-13B-chat) have heterogeneous performance. In particular, GPT-4 achieves the

https://github.com/microsoft/autogen
*https://huggingface.co/sentence-transformers/multi-ga-mpnet-base-dot-vl

https://developers.google.com/maps/documentation/places/web-service/overview
https://www.weatherapi.com
https://www.alphavantage.co/documentation/
https://github.com/microsoft/autogen
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1

Under review as a conference paper at ICLR 2024

Table 2: Success rate (%) and dollar cost on the Places, Weather, and Stock dataset.

Method | Places | Weather | Stock
| Success rate (%) Cost | Successrate (%) Cost | Success rate (%) Cost
LLAMA-2-13B-chat 27.00 0.00 6.33 0.00 6.67 0.00
+ CoT 25.00 0.00 7.67 0.00 6.33 0.00
+ SolDemo 56.00 0.00 6.00 0.00 31.33 0.00
+ CoT + SolDemo 52.00 0.00 4.67 0.00 14.00 0.00
GPT-3.5-turbo 39.33 0.47 46.00 0.41 17.00 0.36
+ CoT 61.33 0.67 69.00 0.67 50.00 0.84
+ SolDemo 77.33 0.49 79.67 0.54 68.00 0.50
+ CoT + SolDemo 70.33 0.73 78.33 0.69 64.67 0.80
GPT-4 85.00 12.58 87.33 10.73 59.33 18.49
+ CoT 78.67 15.16 75.67 11.67 57.67 19.01
+ SolDemo 88.00 11.76 87.33 10.81 75.00 14.33
+ CoT + SolDemo 87.33 13.75 84.67 11.30 77.67 15.52
AsistantHier-G 89.33 8.61 90.67 6.21 64.33 15.99
+ CoT 89.33 7.28 88.33 4.87 73.33 11.85
+ SolDemo 96.67 3.73 95.00 3.04 81.67 8.10
+ CoT + SolDemo 96.33 5.52 93.00 3.49 86.00 8.04
AsistantHier-L 91.67 5.97 91.67 5.89 66.33 15.10
+ CoT 91.33 5.89 89.00 4.36 75.33 11.01
+ SolDemo 97.00 3.33 98.00 2.24 85.00 6.70
+ CoT + SolDemo 95.33 3.52 96.33 2.82 84.33 6.86

highest success rate followed by GPT-3.5-turbo, while LLAMA-2-13B-chat underperforms the
others. On the other hand, GPT-4 has the highest cost, GPT-3.5-turbo is relatively cost-effective, and
LLAMA-2-13B-chat has zero dollar cost since it can be hosted on a local machine.

Finding 2: the Chain-of-Thought (CoT) prompting could largely enhance LLM with moderate
performance, i.e., GPT-3.5-turbo. the Chain-of-Thought (CoT) prompting consistently enhances
the performance of GPT-3.5-turbo across datasets. However, for GPT-4 and LLAMA-2-13B-chat,
the success rate doesn’t necessarily benefit from CoT. We hypothesize this could be because GPT-4
is already highly competent, leaving little room for CoT to further improve its performance, while
the performance of LLAMA-2-13B-chat does not benefit from CoT probably due to its inherent
inadequacy in tackling code-driven question answering tasks. In addition, we find that CoT tends
to increase the dollar cost, since it encourages the model to think step by step and therefore would
increase the number of tokens that LLMs input and output. Finally, when comparing AssistantHier-G
to AssistantHier-G + CoT, the latter results in a reduced cost. This is attributed to CoT enhancing the
success rate of GPT-3.5-turbo, therefore decreasing the reliance on the more expensive GPT-4.

Finding 3: solution demonstration could boost the success rate, especially when the method is
not well-performing. In almost all cases, solution demonstration could significantly improve the
success rate without introducing a notable increase in the cost, especially for less competitive LLMs.
In particular, solution demonstration almost doubles the success rate of vanilla GPT-3.5-turbo on the
Places and the Weather dataset, while introducing a 3x boost of success rate on the Stock dataset.
For LLAMA-2-13B-chat, solution demonstration also increases the success rate on the Places and
the Stock dataset by a large margin. Yet for high-performing model GPT-4, solution demonstration
does not result in a significant performance boost except for the Stock dataset where the GPT-4 only
exhibits a success rate of around 60%.

Finding 4: Compared to the GPT-4, the assistant hierarchy could significantly reduce the cost
while slightly improving the success rate. By comparing assistant hierarchy (AsistantHier-G and
AsistantHier-L) with vanilla GPT-4, we can see that the cost is significantly reduced; in particular,
AsistantHier-G achieves cost savings of approximately 10%-30%, while AsistantHier-L realizes
reductions in the range of 15%-50%. In addition, assistant hierarchy also leads to a slight boost in
success rate since it allows trying multiple assistants for a single query.

Finding 5: EcoAssistant (assistant hierarchy + solution demonstration) achieves superior
performance with moderate cost. Finally, EcoAssistant (AsistantHier-G/L (+ CoT) + Sol-
Demo) delivers the highest success rate across all datasets, surpassing the top-performing GPT-4
variants by roughly a 10 percentage point margin in success rate. Additionally, this combination
leads to a further cost reduction of approximately 30%-50% when compared to solely using the

Under review as a conference paper at ICLR 2024

assistant hierarchy approach (AsistantHier-G/L (+ CoT)). These findings are surprising, given that
the solution demonstration could only enhance the success rate when used individually. We attribute
this synergy to the fact that solutions generated by the high-performing GPT-4 subsequently guide
the more affordable, albeit weaker, LLMs. As a result, cost savings emerge, because these more
economical LLMs can tackle a greater number of tasks using the GPT-4 solution as a demonstration,
thus minimizing the reliance on the pricier GPT-4 assistant.

4.3 MODEL EVALUATION: MIXED DATASET

We also evaluate methods on mixed datasets: Mixed-1, Mixed-2, and Mixed-3. Each of them
encompasses queries from all individual datasets, distinguished by different query orderings. These
experiments investigate how the methods perform when queries span multiple domains and ordering.
Specifically, we assess six methods in this experiment: GPT-3.5-turbo, GPT-3.5-turbo + SolDemo,
GPT-4, GPT-4 + SolDemo, AsistantHier-G, AsistantHier-G + SolDemo (EcoAssistant). We
visualize the results in Figure 2]in order to demonstrate the scaling trend of cost and number of
successful queries with regard to the number of queries processed in the streaming setting.

—— AssistantHier-G + SolDemo —— GPT-4 + SolDemo —— GPT-3.5-turbo + SolDemo
AssistantHier-G — GPT-4 —— GPT-3.5-turbo

Number of successful queries

10 /
0
0 50 100 150 200 250 300 O 50 100 150 200 250 300 O 50 100 150 200 250 300

Number of queries processed
Mixed-1 Mixed-2 Mixed-3

Figure 2: The curves of the number of successful queries / cost with regard to the number of queries
processed on mixed datasets. The three datasets encompass queries from all individual datasets,
distinguished by different query orderings. We can see that EcoAssistant (AsistantHier-G +
SolDemo) leads to the best performance while maintaining relatively low cost.

From the results, we draw the following conclusions. First, because the solution demonstration relies
on the past solutions and therefore could be affected by the ordering of the queries, it is then important
to ascertain its robustness against different query sequences; the results suggest that the method
is largely order-agnostic, as evidenced by the consistency in performance curves (X + SolDemo)
across datasets. Second, the two variants of GPT-3.5-turbo are the most cost-effective since the cost
curves are nearly flat compared to other methods, yet the GPT-3.5-turbo alone underperforms all
the compared methods in terms of the success count; however, integrating solution demonstration
(GPT-3.5-turbo + SolDemo) substantially uplifts its efficacy. Third, despite the descent performance
GPT-4 renders, it is the most cost-intensive method as indicated by its steeper cost curve; fortunately,
the assistant hierarchy (AsistantHier-G) would reduce the cost as its cost curves have a smaller slop,
without sacrificing the performance. Finally, the EcoAssistant (AsistantHier-G + SolDemo)
exhibits the best performance and concurrently has a much flatter cost curve than other methods,
except for GPT-3.5-turbo variants.

Under review as a conference paper at ICLR 2024

4.4 HUMAN EVALUATION: MIXED DATASET

For human evaluation, we sample 100 queries from all the 300 queries of different datasets to form
a dataset referred to as Mixed-100. We gather one code snippet for each of the 100 queries, which
could produce the necessary information for addressing the query. In particular, for each query, we
collect all the code snippets generated by LLMs in previous experiments. From this collection, we
manually choose and validate one snippet (with necessary manual modifications) to ensure that the
code snippet can effectively obtain the needed information. Thus, one can refer to the output of the
golden code snippet when assessing whether the model successfully addresses the query. For all the
experiments in this section, we adopt this strategy to do human evaluation.

Table 3: Human evaluation results on the Mixed-100 dataset.

‘ GPT:3.5-turbo ‘ GPE3Sturbo ‘ GPT-4 it ‘ AsistantHier-G ‘ AsistantHlier- G
Metric | Main results
Success rate (%) 25 ‘ 45 ‘ 59 78 ‘ 63 ‘ 80
Cost 0.36 0.48 13.77 10.27 11.84 5.90
Model \ Avg. model calls per query
GPT-3.5-turbo

242 ‘ 291 ‘

‘ 242 ‘ 2.92

GPT-4 3.12 2.57 2.51 1.25

From the main results part of Table[3] we can see that our main conclusion still holds for the case of
human evaluation. Specifically, solution demonstration can significantly improve the success rate,
and assistant hierarchy contributes to cost savings when compared to GPT-4. More importantly,
EcoAssistant (AssistantHier-G + SolDemo) delivers top-tier performance at a moderate expense;
when comparing it against GPT-4, we can see that its success rate is 10 points higher while incurring
less than half of GPT-4’s cost. To better explain the effect of the proposed techniques, we also present
the averaged model calls per query for each method in Table 3] First, the solution demonstration
increases the model calls of GPT-3.5-turbo, because the vanilla GPT-3.5-turbo struggles to produce
formatted code that can be extracted and executed by the code executor, and therefore the conversation
terminates early without the query being appropriately addressed; with solution demonstration, GPT-
3.5-turbo is more likely to generate formatted code for the code executor to execute, thus the
conversation would proceed. Second, for GPT-4, the solution demonstration reduces the number
of model calls because it guides the model to write good code at the beginning, requiring fewer
turns to refine the code for outputting necessary information. Finally, comparing AssistantHier-G
with/without SolDemo, we can see that the averaged model calls of GPT-3.5-turbo increase while that
of GPT-4 reduces. This indicates that EcoAssistant (AssistantHier-G + SolDemo), even with
a higher success rate, relies less on expensive GPT-4 because the GPT-3.5-turbo is able to address
more queries thanks to the solution demonstration, leading to the saving of cost.

4.5 HUMAN EVALUATION: AUTONOMOUS SYSTEMS WITHOUT HUMAN FEEDBACK

In the above experiments, we incorporate a user in the loop—either an actual human or a GPT-4
model—to determine the successful completion of a query. This feedback serves three primary
functions: 1) calculating the success rate of the evaluated method; 2) for solution demonstration
to decide whether to store the query-code pair; and 3) for assistant hierarchy to decide whether
to invoke the next assistant in the hierarchy. However, in practice, users may prefer a system that
operates autonomously, without necessitating user feedback. Regarding this, we build an autonomous
system for each compared method, which requires no human feedback. Specifically, we add a GPT-4
evaluator to serve the aforementioned functions 2) and 3), and after all the queries are processed, we
manually assess the success of each query to calculate the success rate. In addition, because now we
treat the GPT-4 evaluator as part of the system, we include its cost as the system cost as well. Note
that the method without solution demonstration or assistant hierarchy (e.g., GPT-3.5-turbo alone)
would remain the same as before.

We evaluate these autonomous systems on the Mixed-100 dataset, applying the same human eval-
uation strategy as in the previous section. The outcomes are detailed in Table[d] When comparing
EcoAssistant (AssistantHier-G + SolDemo) to GPT-4, we still observe a success rate boost
exceeding 10 points and a cost reduction of over 50%. However, while EcoAssistant presents a
cost comparable to its non-autonomous counterpart (as shown in Table), its success rate is dimin-

Under review as a conference paper at ICLR 2024

ished by 8 points. This is because the GPT-4 evaluator would occasionally mistrust the GPT-3.5-turbo
and would not resort to the GPT-4 assistant, leading to the performance drop; simultaneously, as it
calls upon the GPT-4 assistant less frequently than its non-autonomous version, the cost does not
grow even when factoring in the GPT-4 evaluator’s expenses.

We also present the run-time of these autonomous systems in Table 4] We can see that the solution
demonstration can largely reduce the run-time, indicating that it streamlines the query resolution pro-
cess with fewer iterations. In addition, the assistant hierarchy (AssistantHier-G) exhibits the longest
run-time, as it often tries out both GPT-3.5-turbo and GPT-4 assistant. Remarkably, EcoAssistant
necessitates less than half of the run-time of AssistantHier-G and even outperforms a standalone
GPT-4 assistant. This underscores the synergistic effect of integrating the assistant hierarchy and
solution demonstration, further reducing the dependence on the more latency-prone GPT-4 assistant.

Table 4: Human evaluation results on the Mixed-100 for autonomous systems.

GPT-3.5-turbo GPT-4 . . AsistantHier-G
‘ GPT-3.5-turbo ‘ + SolDemo ‘ GPT-4 + SolDemo ‘ AsistantHier-G ‘ + SolDemo
Metric | Main results
Success rate (%) 25 47 59 77 54 72

Cost 0.36 2.46 13.77 12.07 12.99 5.78

Model Avg. model calls per query
GPT-3.5-turbo 242 2.84 - - 2.45 2.90
GPT-4 - - 3.12 249 2.29 0.59
Run-time (s) | 2414 \ 2073 \ 5272 \ 3873 \ 8993 \ 4033

5 RELATED WORK

Here, we briefly discuss related work of existing attempts that build LLM systems/applications upon
multi-agent conversation and prior works on cost-effective deployment of LLMs.

LLM-based multi-agent conversation LLM-based agents have attracted great attention from
both practitioners and researchers (Xi et al., [2023; Wang et al., 2023c; |Liu et al., 2023). Recently,
there have been efforts towards harnessing multi-agent conversations in LLM-based applications to
unleash the potential of among-agent collaboration (Wu et al., 2023)). Example applications include
collaborative task completion with multiple agents (Li et al.,2023;Hong et al., 2023} |Qian et al.| |2023;
Talebirad & Nadiri, |2023)) and leveraging multi-agent debate to encourage divergent thinking (Liang
et al., [2023)) or to improve factuality and reasoning (Du et al.l [2023). In this work, we focus on
exploiting the multi-agent conversation framework to tackle code-driven question answering with an
emphasis on both cost-efficiency and performance.

Cost-effective deployment of LLMs Countless efforts have been devoted to the cost-effective
deployment of LLMs. Most of the existing attempts aim to improve the time/compute efficiency via
techniques like model quantization (Yao et al.,2023) and prompt summarization (Arefeen et al.,[2023)),
compression (Mu et al.| 2023)), and batching (Lin et al.} 2023)), ezc.. In contrast, we seek to reduce the
dollar cost of using LLM API services. With a similar goal, EcoOptiGen (Wang et al., 2023a)) strives
to reduce dollar cost for hyperparameter optimization of LLM inference and FrugalGPT (Chen et al.|
2023) explores several techniques to reduce the dollar cost for single-turn text generation, while we
focus on leveraging LLM as agent in a multi-agent conversation in a cost-effective way.

6 CONCLUSION

In this study, we explore affordable and precise LLM applications for code-driven question answer-
ing. We introduce EcoAssistant, an LLM-based system built upon a two-agent conversation
framework. It involves an assistant agent backed by LLM and a code executor agent, and relies on
their interaction to address user queries. EcoAssistant also includes two simple yet effective
techniques: assistant hierarchy, which prioritizes cost-effective LLMs, and solution demonstration,
which leverages past successful solutions for new queries. Our empirical evaluations demonstrate
that EcoAssistant could simultaneously reduce the cost and enhance the performance.

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

The proposed systems would execute the code suggested by LLMs, which could be risky. Users
should carefully consider the potential risks and ensure that the system runs in an isolated environment.
In addition, letting LLMs write code to call specific APIs may cause a leak of the API key. To avoid
this, our system replaces the actual API key with a random token to keep the API keys confidential
and not visible to LLMs.

REPRODUCIBILITY STATEMENT

An anonymized repository containing the source code and data is provided with instructions for
reproducing the experiments reported in this paper: https://anonymous.4open.science/
r/EcoAssistant-submission.

REFERENCES

Md Adnan Arefeen, Biplob Debnath, and Srimat Chakradhar. Leancontext: Cost-efficient domain-
specific question answering using llms. arXiv preprint arXiv:2309.00841, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1870-1879, Vancouver, Canada, July 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1171.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Chroma. Chromadb. https://github.com/chroma-core/chromal 2023. URL https:
//github.com/chroma—-core/chromal.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Rand Fishkin. We analyzed millions of chatgpt user sessions: Visits are down
29since may, programming assistance is 30 |https://sparktoro.com/blog/
we—analyzed-millions—-of-chatgpt-user—-sessions-visits—are-down-29-since-may-progran
2023.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurlPS, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 60866096, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1612.

10

https://anonymous.4open.science/r/EcoAssistant-submission
https://anonymous.4open.science/r/EcoAssistant-submission
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://sparktoro.com/blog/we-analyzed-millions-of-chatgpt-user-sessions-visits-are-down-29-since-may-programming-assistance-is-30-of-use/
https://sparktoro.com/blog/we-analyzed-millions-of-chatgpt-user-sessions-visits-are-down-29-since-may-programming-assistance-is-30-of-use/

Under review as a conference paper at ICLR 2024

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large scale language model society, 2023.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
debate, 2023.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. Batchprompt: Accomplish more
with less. arXiv preprint arXiv:2309.00384, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. arXiv
preprint arXiv:2304.08467, 2023.

Reiichiro Nakano, Jacob Hilton, S. Arun Balaji, Jeff Wu, Ouyang Long, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. ArXiv, abs/2112.09332, 2021.

OpenAl. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://apil
semanticscholar.org/CorpusID:257532815.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng
Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2023.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint arXiv:2306.03314, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Chi Wang, Susan Xueqing Liu, and Ahmed H. Awadallah. Cost-effective hyperparameter optimization
for large language model generation inference. In AutoML’23, 2023a.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and
Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint arXiv:2303.04048,
2023b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

11

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

Under review as a conference paper at ICLR 2024

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing and
benchmarking interactive coding with execution feedback. In ArXiv, 2023.

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn, and Yuxiong He. A comprehensive study on
post-training quantization for large language models. arXiv preprint arXiv:2303.08302, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

12

Under review as a conference paper at ICLR 2024

A LIMITATIONS AND FUTURE WORK

Limitations First, our system relies on a pre-defined hierarchy of LLM assistants. Such a static
hierarchy may not always be optimal for all queries, and the system may benefit from a more adaptive
selection mechanism. Second, our system depends on a database to store past successful query-
code pairs, it may become a bottleneck when processing millions of queries. Thus, some pruning
mechanisms that delete less useful items in the database could be helpful when the number of queries
explodes. Third, while EcoAssistant attempts to handle a broad range of queries, it might not be
as adept at deeply specialized or niche queries that demand expert-level domain knowledge. Fourth,
while EcoAssistant attempts to handle a broad range of queries, it might not be as adept at
deeply specialized or niche queries that demand expert-level domain knowledge. In addition, the
back-and-forth conversational nature, especially with multiple iterative refinements, might introduce
latency, leading to longer response times for the end users. Finally, the system might struggle with
long conversational contexts, especially given the token limits of current LLMs. This could affect the
quality of responses in extended conversations.

Future work Here, we list several directions for future work. 1) Informative user feedback: In this
work, we leverage binary user feedback indicating whether the user query is successfully addressed.
Incorporating more informative user feedback to guide the conversation in EcoAssistant might
enable more targeted and efficient task completion. 2) More agents in the system: In this work, we
involve two types of agents in the system. One direction to explore could be adding more agents
to the system for better collaborative task completion. 3) Advanced retrieval mechanisms: The
current approach retrieves past solutions based on query similarity. Exploring more advanced retrieval
mechanisms might enhance the efficacy of solution demonstrations. 4) Multimodal interactions:
Extending EcoAssistant to support multimodal interactions, such as voice or images, can broaden
its applicability and cater to an even wider user base.

B MODEL EVALUATION V.S. HUMAN EVALUATION

Here, we investigate the reliability of model (GPT-4) evaluation. In particular, we treat whether the
query is successfully addressed as a binary classification task, and use the human evaluation results
as ground truth to assess the efficacy of model evaluation results. We evaluate the accuracy, precision,
and recall of model evaluation using queries and the human evaluation results in Section[d.4] The
results can be found in Table [5} we separate the results based on the methods used to process the
queries. From the results, we can see that all the recall is 100%, which means when the GPT-4
evaluator concludes that the assistant fails, it truly fails, while the precision ranges from 66% to
84%, indicating that there is still room for improvement. As the autonomous systems described in
Section [.3]rely on the GPT-4 evaluator to judge whether the user query is successfully addressed, a
better GPT-4 evaluator is likely to contribute to better autonomous systems, which we leave as future
work.

Table 5: We evaluate the efficacy of model evaluation using the human evaluation results as ground
truth for experiments in Section .4, We found that model evaluation is always correct when it
concludes that the assistant fails to address the user query, as all the recall is 100%, while the
precision ranges from 66% to 84%, which indicates that model evaluation could provide a certain
level of signal on the system performance.

Metric GPT-3.5-turbo GPT:3.5-turbo GPT-4 GPT-4 AsistantHier-G | AsistantHier-G
+ SolDemo + SolDemo + SolDemo

Accuracy

Precision 7576 72,58 75.32 84.78 72,00 66.12

91.75 ‘ 82.63 ‘ 80.41 ‘ 85.86 ‘ 85.88 ‘ 71.72

Recall 100 100 100 100 100 100

C A VISUALIZATION OF THE ASSISTANT-CODE EXECUTOR CONVERSATION

Here, we demonstrate the assistant-code executor conversation in Figure 3] In particular, we trigger
the conversation with a user query. Then the conversation between the LLM assistant and the code
executor would proceed automatically until a termination condition is satisfied.

13

Under review as a conference paper at ICLR 2024

Code Executor Assistant
What’s Microsoft stock price in the
past week?
- Let’s write python code to leverage
the Alpha Vantage API. Execute the
code below

1

1

|

:
“python :@
!

1

exitcode: 1 (execution failed)
Code output:
|
1
Great. The stock price of Microsoft |
in the past week is: :@
]
1

TERMINATE

1
]
|
It seems there are some errors |
in my code. Let’s try again. :
“python '
.

1

1

1

exitcode: O (execution succeeded)
Code output:

€ m e m m m — — — — — — — — — — — —————————————————

1
]
1

1

Figure 3: A visualization of the assistant-code executor conversation.

D IMPLEMENTATION DETAILS

Hardware All experiments ran on a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 with
512G memory and two 48G NVIDIA RTX A6000 GPUs. Note that the GPUs are only for hosting the
LLAMA-2-13b-chat model, while the GPT family models as LLM API services do not require GPU.

Prompts and default message First, we present our prompt used for each user query in Figure 4]
where the red part indicates the recommended API for the LLMs to use, the blue part is the template
for demonstrating the retrieved query-code pair when the solution demonstration is applied, and
the final black part is the user query. For Chain-of-Thought prompting, we append one sentence
"Let’s think step by step.” at the end of the prompt. Then, we present the system prompt we used
for model evaluation in Figure[5] In particular, we leverage GPT-4 for model evaluation and set
the system prompt as in Figure[5] Then we prompt the GPT-4 model with the whole conversation
history, following the template stated in the first point of the system prompt. The GPT-4 model would
generate a single indicator token (yes/no) as the judgment for whether the user query is successfully
addressed. Finally, in the code executor agent, if there is a coding block in the response generated by
the assistant, the code executor would automatically extract and execute the code, and then send back
the execution results; if no coding block is detected, we set a default message "Reply TERMINATE
if everything is done." as the response of the code executor to let the conversation proceed.

E CASE STUDY

Here, we present several case studies on how solution demonstration leads to successful query
completion. In particular, we focus on the GPT-3.5-turbo assistant, and compare the conversation
with and without solution demonstration. We showcase one query from each of the three datasets.
The mapping between the figures of the conversation and the corresponding method/dataset is in the
Table

14

Under review as a conference paper at ICLR 2024

You can use the API keys in the following dictionary (key: API, value: AP| key):
{API_DICTIONARY}

Directly use the provided API key in your code. Do not use placeholders of API key in the
code.

We provide some examples of query and python code used to solve the query below. They
may be helpful as references.

query: {RETRIEVED_QUERY}
code: {RETRIEVED_CODE}

{USER_QUERY}

Figure 4: Prompt we used for each user query.

You are a fair Al judge.

1. You will be given a user input and a conversation history between the user and one Al
assistant. Below is the schema:

USER QUERY: <user_query>
CONVERSATION HISTORY:

USER 1: <user_utterance_1>
ASSISTANT 1: <assistant_utterance_1>
USER 2: <user_utterance_2>
ASSISTANT 2: <assistant_utterance_2>

2. Your task is to judge whether the user's task is successfully completed.

3. The Al assistant may suggest code for the user to execute. If the user does not successfully
execute the code, the task is not successfully completed.

4. Your output should be the judgement and a brief explanation of your judgement following
the schema below:;

SUCCEED: Yes/No
EXPLANATION: <explanation>

Figure 5: System prompt for model evaluation.

Table 6: The look-up table for case studies.

Dataset | Method | Figure
Places GPT-3.5-turbo Figure
) GPT-3.5-turbo + SolDemo | Figure
GPT-3.5-turbo Figure/8|
Weather GPT-3.5-turbo + SolDemo ‘ Figure 9§
Stock GPT-3.5-turbo Figure
GPT-3.5-turbo + SolDemo | Figure|l2]

15

Under review as a conference paper at ICLR 2024

’[(&) GPT-35-turbo]

User

You can use the API keys in the following dictionary (key: API, value: API key):
{

'google places': '181dbb37',
'weatherapi': 'b4d5490d',
‘alphavantage': 'af8fb19b’
¥
Directly use the provided API key in your code. Do not use placeholders of API key in the code.

Can you recommend a good seafood restaurant in Boston, Massachusetts?

[® GPT-35-turbo Assistant]

To recommend a good seafood restaurant in Boston, Massachusetts, you can use the Google Places API. Here's the Python code
to get the recommendation:
* " python
import requests
api_key = '181dbb37"
location = 'Boston, Massachusetts'
keyword = 'seafood’
radius = 5000
url = f'https://maps.googleapis.com/maps/api/place/nearbysearch/"
f"json?location={location}&keyword={keyword}&radius={radius}&key={api_key}"
response = requests.get(url)
data = response.json()
if data['status'] == 'OK':
results = data['results']
if len(results) > 0:
recommendation = results[0]['name']
print(f"The recommended seafood restaurant in Boston, Massachusetts is: {recommendation}")
else:
print("No seafood restaurants found in Boston, Massachusetts.")
else:
print("Error occurred while fetching data from Google Places API.")

Please make sure to replace the 'api_key' variable with the actual API key from the dictionary provided.

Note: The code uses a radius of 5000 meters around Boston to search for seafood restaurants. You can adjust the radius as per
your preference.

Save this code to a Python file and run it to get the recommendation.

[_f’ Code Executor]

I

exitcode: 0 (execution succeeded)
Code output:
Error occurred while fetching data from Google Places API.

[® GPT-35-turbo Assistant]

1 apologize for the inconvenience. It seems like there was an error while fetching data from the Google Places API. This could
be due to various reasons such as incorrect API key, network connectivity issues, or API limitations.

Please double-check the API key for the 'Google Places' API in the dictionary provided. Make sure that it is correct and valid.
If the API key is correct, you can try the following solutions:

1. Check your internet connection to ensure that you have a stable connection.

2. Verify that you have not exceeded the API rate limits. Some APIs have limitations on the number of requests you can make
per day or per second.

3. Check the documentation of the Google Places API to ensure that you are using the correct API endpoint and parameters.
If the issue persists, please let me know and provide any additional information or error messages that you receive so that I can
assist you further.

I:_f"' Code Executor]

[Reply "TERMINATE" if you think everything is done.

[® GPT-35-turbo Assistant]

[TERMINATE

Figure 6: The GPT-3.5-turbo assistant fails to use the API due to wrong parameters.

16

Under review as a conference paper at ICLR 2024

’[®) GPT-35-turbo + SolDemo]

User

You can use the API keys in the following dictionary (key: API, value: API key):

{
'google places': '181dbb37',
'weatherapi': 'b4d5490d’,
‘alphavantage': 'af8fbi9b'
b3

Directly use the provided API key in your code. Do not use placeholders of API key in the code.

We provide some examples of query and python code used to solve the query below. They may be helpful as references.
query: Can you recommend some vegan restaurants in Seattle?

code:

*7python

filen

: google_places_api.py
import requests
api_key = '181dbb37"
api_url = 'https://maps.googleapis.con/maps/api/place/nearbysearch/json’
params = {

"key': api_key,

"location': '47.6062,-122.3321', # Coordinates for Seattle
‘radius': 5000, # Search radius in meters
"keyword': 'vegan restaurant’

¥
response = requests.get(api_url, params=params)
data = response.json()
for result in data['results']:
name = result['name']
address = result['vicinity']
print (£'{name}: {address}')

Can you recommend a good seafood restaurant in Boston, Massachusetts?

[® GPT-35-turbo Assistant]

python
filename: goog
import requests
api_key = '181dbb37'

api_url = 'https://maps.googleapis.com/maps/api/place/nearbysearch/json’
params = {

‘key': api_key,

'location': '42.3601,-71.0589', # Coordinates for Boston

‘radius': 5000, # Search radius in meters

‘keyword': 'seafood restaurant’

}
response = requests.get(api_url, params=params)
data = response.json()
for result in data['results']:
name = result['name']
address = result['vicinity']
print (£'{name}: {address}')

Please execute the above python code to get a list of seafood restaurants in Boston.

[_f"' Code Executor J

exitcode: 0 (execution succeeded)

Code output:

Summer Shack: 50 Dalton St, Boston

Atlantic Fish Company: 761 Boylston St, Boston

Union Oyster House: 41 Union St, Boston

Row 34: 383 Congress St, Boston

Legal Sea Foods - Copley Place: Second Floor @ Copley Place Mall, 100 Huntington Ave, Boston
Chart House: 60 Long Wharf, Boston

...(other results are omitted for visualization)

[@ GPT-35-turbo Assistant]

Here are some recommended seafood restaurants in Boston:

1. Summer Shack: 50 Dalton St, Boston

2. Atlantic Fish Comp 761 Boyl: St, Boston

3. Union Oyster House: 41 Union St, Boston

4. Row 34: 383 Congress St, Boston

5. Legal Sea Foods - Copley Place: Second Floor @ Copley Place Mall, 100 Huntington Ave, Boston

...(other results are omitted for visualization)
TERMINATE

Figure 7: With solution demonstration, the GPT-3.5-turbo assistant successfully obtains the restaurant
information and answers the user query.

17

Under review as a conference paper at ICLR 2024

(® cPT-35-turbo)

User

You can use the API keys in the following dictionary (key: API, value: API key):
<

'google places': '181dbb3T’,
‘weatherapi': 'b4d5490d’,
‘alphavantage': 'af8fbi9b’

}
Directly use the provided API key in your code. Do not use placeholders of API key in the code.

Can you provide me with the sunset and sunrise times for Paris this upcoming Wednesday?

[® GPT-35-turbo Assistant]

Sure! I can help you with that. First, we need to install the ‘requests’ library to make API requests. Please execute
the following code to install the library:

"7 "shell
pip install requests

Once you have installed the “requests’ library, you can use the following Python code to get the sunset and sunrise
times for Paris this upcoming Wednesday:

“*“python

£il

name: sunrise_sunset
import requests
= '181dbb37' # Rep

with your API key

ent date

response = requests.get(f'https://api.weatherapi.com/vi/forecast.json?key={api_key}tq={city}udays=7")
data = response.json()

Find Vedne

in the forecast data
for day in data['forecast']['forecastday']:
date = day['date']
if date == '2022-09-14':
sunrise = day['astro'] ['sunrise']
sunset = day['astro'] ['sunset']
break

print(f'Sunrise in Paris on Wednesday: {sunrise}')
print(f'Sunset in Paris on Wednesday: {sunset}')

Please replace *'181dbb37" with the actual Google Places API key from the di
code, you will see the sunrise and sunset times for Paris on Wednesday.
Let me know if you need any further assistance!

ry provided. After ing the

L

[@ Code Executor]

exitcode: 1 (execution failed)
Code output:

Traceback (most recent call last):

File "sunrise_sunset.py", line 14, in <module>

for day in datal'forecast']['forecastday'l:
KeyError: 'forecast'

[® GPT-35-turbo Assistant]

It seems that there is an error in the code because the API response does not contain the expected data structure.
Let's modify the code to handle this error gracefully and check if the necessary data is available. Please use the
Sfollowing updated code:

**python

filename: sunrise_sunset.p

import requests

api_key = '181dbb37' # Replace with
city = 'Paris’

Get the forecast da
response = requests.get(f'https://api.weatherapi.com/vi/forecast.json?key={api_key}tq={city}kdays=7")
data = response.json()
Check if the necessary data is availab
if 'forecast' in data and 'forecastday' in data['forecast']
Find Vednesday in the forecast
for day in data['forecast']['forecastday']:
date = day['date']
if date == '2022-09-14':
sunrise = day['astro']['sunrise']
sunset = day('astro'] ['sunset']
break
else:
print('No data available for Wednesday.')
else:
print('Unable to fetch forecast data.')
Print the sunr nd sunset time vailabl
if sunrise and sunset:
print(f'Sunrise in Paris on Wednesday: {sunrise}')
print(£'Sunset in Paris on Wednesday: {sunset}')

Please replace’'181dbb37" with the actual Google Places API key from the dictionary provided.

After executing the code, it will check if the necessary data is available and handle the error gracefully.
Please let me know if you encounter any further issues.

(@ CodeExecutor |

exitcode: 1 (execution failed)
...(omitted for visualization)

[@ GPT-3.5-turbo Assistant]

...(omitted for visualization)]

Result

The assistant re-tries multiple times, but still fail to get the code work when exceeding the maximum number of turns for conversation.]

Figure 8: GPT-3.5-turbo fails to make the code work because it mistakenly use the API key of Google
Places for the WeatherAPIL.

18

Under review as a conference paper at ICLR 2024

[®cPT-35-turbo + Solbemo |

User

You can use the API keys in the following dictionary (key: API, value: API key):
{

'google places': '181dbb37',
'weatherapi': 'b4d5490d',
'alphavantage': 'af8fb19b'

¥

Directly use the provided API key in your code. Do not use placeholders of API key in the code.

We provide some examples of query and python code used to solve the query below. They may be helpful as references.

: get_sunset_time.py
import requests
from datetime import datetime, timedelta
def get_sunset_time(city, days):
API_KEY = '181dbb37' # Provided API key for google places
BASE_URL = "https://maps.googleapis.com/maps/api/geocode/json"
Define the parameters for the request
PARAMS = {'address': city, 'key': API_KEY}
Send the request
response = requests.get (url=BASE_URL, params=PARAMS)
Extract the response json
data = response.json()
Get the latitude and longitude of the city
lat = data['results'][0]['geometry']['location']['1at']
Ing = data['results'][0]['geometry'] ['location']['lng']
Calculate the date three days from now
date = datetime.now() + timedelta(days=3)
date_str = date.strftime('%Y-%m-%d")
Get the sunset time for the s
SUNSET_URL = f'https://api.sunrise-sunset.org/json?lat={lat}&lng={lng}tdate={date_str}'
response = requests.get (url=SUNSET_URL)
Extract the response json
sunset_data = response.json()
Get the sunset time
sunset_time = sunset_data['results']['sunset']
print('The sunset time in', city, 'three days from now is', sunset_time)
get_sunset_time('Rome’, 3)

ified city and date

Can you provide me with the sunset and sunrise times for Paris this upcoming Wednesday?

[® GPT-35-turbo Assistant J

*“python

filename: get_sunrise_sunset.py

import requests

from datetime import datetime, timedelta

def get_sunrise_sunset(city, day):
API_KEY = '181dbb37' # Provided API key for google places
BASE_URL = "https://maps.googleapis.com/maps/api/geocode/json"
Define the parameters for the request
PARAMS = {'address': city, 'key': API_KEY}
Send the request

response = requests.get(url=BASE_URL, params=PARAMS)

Extract the response json

data = response.json()

Get the latitude and longitude of the city

lat = data['results'][0]['geometry']['location']['lat']
1ng = data['results'] [0]['geometry']['location']['1lng']
Calculate the date for the specified day

today = datetime.now().date()

if day == 'tomorrow’:
date = today + timedelta(days=1)
elif day == 'today':
date = today

else:
weekday = today.weekday()
days_ahead = (2 - weekday) + 7*(int(day) > weekday)
date = today + timedelta(days=days_ahead)
date_str = date.strftime('%Y-%m-%d')
Get the sunrise and s times for the specified city and date
SUNRISE_SUNSET_URL = f'https://api.sunrise-sunset.org/json?lat={lat}&lng={1ng}date={date_str}'
response = requests.get (url=SUNRISE_SUNSET_URL)
Extract the response json
sunrise_sunset_data = response.json()
Get the sunrise and sunset times
sunrise_time = sunrise_sunset_data['results']['sunrise']
sunset_time = sunrise_sunset_data['results']['sunset']
print(f"The sunrise time in {city} on {date_str} is {sunrise_time}")
print (£"The sunset time in {city} on {date_str} is {sunset_time}")
get_sunrise_sunset('Paris', 'Wednesday')

Let me know if you need any further assistance!

Figure 9: First half of GPT-3.5-turbo with solution demonstration for the query "Can you provide me
with the subset and sunrise times for Paris this upcoming Wednesday".

19

Under review as a conference paper at ICLR 2024

F[@GPT-3.5-turbo + SolDemo]
[_f"' Code Executor]

exitcode: 1 (execution failed)
Code output:
Traceback (most recent call last):
File "get_sunrise_sunset.py", line 51, in <module>
get_sunrise_sunset('Paris', 'Wednesday')
File "get_sunrise_sunset.py", line 31, in get_sunrise_sunset
days_ahead = (2 - weekday) + 7*(int(day) > weekday)
ValueError: invalid literal for int() with base 10: 'Wednesday'

[® GPT-35-turbo Assistant J

It seems that there is an issue with the way the day parameter is handled in the code. Let's modify the code to handle

the day parameter properly.

" python

filename: get_sunrise_sunset.py

import requests

from datetime import datetime, timedelta

def get_sunrise_sunset(city, day):
API_KEY = '181dbb37' # Provided API key
BASE_URL = "https://maps
Define the p te
PARAMS = {'address': city, 'key': API_KEY}
Send the request
response = requests.get(url=BASE_URL, params=PARAMS)
Extract the res

oogleapis. com/maps/api/geocode/json"

nse json

data = response.json()

Get the latitude and longitude of the city

= datal'results'] [0] ['geometry'] ['location'] ['lat']
datal'results'] [0]['geometry']['location']['1lng']

ulate the date for the cified day
today = datetime.now().date()
if day == 'tomorrow':

date oday + timedelta(days=1)

elif day == 'today':
date = today
else:
week_days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']
days_ahead = (week_days.index(day.lower()) - today.weekday() + 7) % 7
date = today + timedelta(days=days_ahead)
date_str = date.strftime(’'%Y-%m-%d")
Get the sunris and sunset times for the
SUNRISE_SUNSET_URL = f'https://api.sunrise-sunset.org/json?lat={lat}&lng={1ng}&date={date_str}
response = requests.get (url=SUNRISE_SUNSET_URL)
Extract the response json
sunrise_sunset_data esponse. json()
Get the sunr and sunset times

ified city and date

sunrise_time = sunrise_sunset_data['results']['sunrise']

sunset_time = sunrise_sunset_data['results']['sunset']

print(£"The sunrise time in {city} on {date_str} is {sunrise_time}")

print(f"The sunset time in {city} on {date_str} is {sunset_time}")
get_sunrise_sunset('Paris', 'Wednesday')

Please try executing the modified code and let me know if you encounter any further issues.

[_!’ Code Executor J

exitcode: 0 (execution succeeded)

Code output:

The sunrise time in Paris on 2023-09-20 is 5:32:27 AM
The sunset time in Paris on 2023-09-20 is 5:55:45 PM

(® GPT-35-turbo Assistant]
L J

Great! The code executed successfully and provided the sunrise and sunset times for Paris on Wednesday, September 20, 2023.
If you have any more questions or need further assistance, feel free to ask!

[_? Code Executor]

Reply "TERMINATE" if you think everything is done.

[® GPT-35-turbo Assistant]

[TERMINATE

Figure 10: Second half of GPT-3.5-turbo with solution demonstration for the query "Can you
provide me with the subset and sunrise times for Paris this upcoming Wednesday". With solution
demonstration, GPT-3.5-turbo successfully figures out the correct date and obtains the queried
information to answer the user query.

20

Under review as a conference paper at ICLR 2024

(® cPT-35-turbo |

User

You can use the API keys in the following dictionary (key: API, value: API key):
{

'google places': '181dbb37',
'weatherapi': 'b4d5490d',
'alphavantage': 'af8fbib'
b3
Directly use the provided API key in your code. Do not use placeholders of API key in the code.

How much did Amazon's stock price increase on February 1, 2022?

[® GPT-35-turbo Assistant]

To find out how much Amazon's stock price increased on February 1, 2022, we can use the Alpha Vantage API. We will need to
make a request to the API and extract the relevant data from the response.
Here's the Python code to get the stock price increase:

***python

filename: stock_price_increase.py
import requests

API key

api_key = 'af8fb19b’
Function to get stock price increase
def get_stock_price_increase(symbol, date):
url =
f'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={symbol}&outputsize=compact&apikey={api_key}'
response = requests.get (url)
stock_data = response.json()
time_series = stock_data['Time Series (Daily)']
previous_day = None
price_on_date = None
for time, data in time_series.items():
if time == date:
price_on_date = float(data['4. close'l)
elif previous_day is not None:
stock_price_increase = float(data['4. close']) - previous_day
break
previous_day = float(data['4. close'])
return stock_price_increase
Company symbol for Amazon
symbol = 'AMZN'
Date - February 1
date = '2022-02-01"'
Get the stock price increase
increase = get_stock_price_increase(symbol, date)
print(f"The stock price of Amazon increased by ${increase} on {date}")

Please note that the code requires the “requests’ library to be installed. If it's not already installed, you can install it using the

command “pip install requests’. To execute the code, run the following command in your terminal:
*Tsh
python stock_price_increase.py

This will give you the stock price increase of Amazon on February 1, 2022.
Let me know if you need any further assistance!

[_0" Code Executor J

exitcode: 0 (execution succeeded)
Code output:
The stock price of Amazon increased by $1.8700000000000045 on 2022-02-01

[® GPT-35-turbo Assistant |
1 J

Great! The code executed successfully. According to the output, the stock price of Amazon increased by $1.87 on
February 1, 2022. If you have any more questions or need further assistance, feel free to ask!

[_i’ Code Executor]

Reply "TERMINATE" if you think everything is done.

[® GPT-35-turbo Assistant]

[TERMINATE

Figure 11: The GPT-3.5-turbo assistant fails to calculate the stock price rise due to incorrect code
logic: the variable price_on_date is not used correctly.

21

Under review as a conference paper at ICLR 2024

’[@ GPT-3.5-turbo + SolDemo]

User

You can use the API keys in the following dictionary (key: API, value: API key):

{
'google places': '181dbb37',
'weatherapi': 'b4d5490d',
'alphavantage': 'af8fb19b'
b3

Directly use the provided API key in your code. Do not use placeholders of API key in the code.

We provide some examples of query and python code used to solve the query below. They may be helpful as references.
query: What was Amazon's stock price at the end of the last trading day of the year 2019?
code:
*python
import requests
import json
API_URL = "https://www.alphavantage.co/query"
API_KEY = 'af8fbi9b' # Your alphava PI KEY
data = {
"function": "TIME_SERIES_DAILY",
"symbol": "AMZN",
"outputsize": "full",
"apikey": API_KEY,

¥

response = requests.get(API_URL, params=data)

result = json.loads(response.text)

print("Amazon's closing stock price on the last trading day of 2019:")
print(result['Time Series (Daily)']['2019-12-31'1['4. close'])

How much did Amazon's stock price increase on February 1, 2022?

(@ GPT-3.5-turbo Assistant

*“python
import requests
import json
API_URL = "https://www.alphavantage.co/query"
API_KEY = 'af8fb19b' # Your alp ge API KEY
data = {

“function": "TIME_SERIES_DAILY",

“symbol®: "AMZN",

“outputsize": "full",

“apikey": API_KEY,

¥

response = requests.get(API_URL, params=data)

result = json.loads(response.text)

price_2022_02_01 = float(result['Time Series (Daily)']['2022-02-01'1['4. close'l)
price_previous_day = float(result['Time Series (Daily)'l['2022-01-31']['4. close'])
price_increase = price_2022_02_01 - price_previous_day

print("Amazon's stock price increase on February 1, 2022:")

print(price_increase)

Save the code in a Python file and execute it.

[_a Code Executor J

exitcode: 0 (execution succeeded)

Code output:

Amazon's stock price increase on February 1, 2022:
32.40000000000009

(® GPT-35-turbo Assistant

(—

The stock price of Amazon increased by $32.40 on February 1, 2022.
If you have any more questions or need further assistance, feel free to ask.

[_!’ Code Executor]

Reply "TERMINATE" if you think everything is done.

[© GPT-35-turbo Assistant]

[TERMINATE

Figure 12: With solution demonstration, the GPT-3.5-turbo assistant obtains the correct stock
information and answers the user query successfully.

22

	Introduction
	The task of code-driven question answering
	EcoAssistant: using LLM assistant more affordably and accurately
	Experiment
	Setup
	Model evaluation: individual dataset
	Model evaluation: mixed dataset
	Human evaluation: mixed dataset
	Human evaluation: autonomous systems without human feedback

	Related work
	Conclusion
	Limitations and future work
	Model evaluation v.s. human evaluation
	A visualization of the assistant-code executor conversation
	Implementation details
	Case study

