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Abstract

During recent years the interest of optimiza-
tion and machine learning communities in high-
probability convergence of stochastic optimiza-
tion methods has been growing. One of the main
reasons for this is that high-probability complex-
ity bounds are more accurate and less studied
than in-expectation ones. However, SOTA high-
probability non-asymptotic convergence results
are derived under strong assumptions such as
the boundedness of the gradient noise variance
or of the objective’s gradient itself. In this pa-
per, we propose several algorithms with high-
probability convergence results under less restric-
tive assumptions. In particular, we derive new
high-probability convergence results under the
assumption that the gradient/operator noise has
bounded central a-th moment for & € (1,2] in
the following setups: (i) smooth non-convex /
Polyak-tojasiewicz / convex / strongly convex /
quasi-strongly convex minimization problems, (ii)
Lipschitz / star-cocoercive and monotone / quasi-
strongly monotone variational inequalities. These
results justify the usage of the considered meth-
ods for solving problems that do not fit standard
functional classes studied in stochastic optimiza-
tion.
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1. Introduction

Training of machine learning models is usually per-
formed via stochastic first-order optimization methods, e.g.,
Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951)

it =gk — 7Vf§k(xk), 1))

where V fex (x*) represents the stochastic gradient of the
objective/loss function f at point 2*. Despite numerous
empirical studies and observations validating the good per-
formance of such methods, it is also important for the field
to understand their theoretical convergence properties, e.g.,
under what assumptions a method converges and what the
rate is. However, since the methods of interest are stochastic,
one needs to specify what type of convergence is considered
before moving on to further questions.

Typically, the convergence of the stochastic methods is stud-
ied only in expectation, i.e., for some performance metric!
P(z), upper bounds are derived for the number of iterations
K needed to achieve E[P(z%)] < &, where z¥ is the out-
put of the method after K steps, € is an optimization error,
and E[-] is the full expectation. These bounds can be “blind”
to some important properties like light-/heavy-tailedness of
the noise distribution and, as a result, such guarantees do
not accurately describe the methods’ convergence in prac-
tice (Gorbunov et al., 2020). In contrast, high-probability
convergence guarantees are more sensitive to the noise dis-
tribution and thus are more accurate. Such results provide
upper bounds for the number of iterations K needed to
achieve P{P(z%) < e} > 1 — /3 for some confidence level
B € (0,1], where P{-} denotes some probability measure
determined by a setup.

With the ultimate goal of bridging the theory and practice
of stochastic methods, recent works on high-probability
convergence guarantees (Nazin et al., 2019; Davis et al.,
2021; Gorbunov et al., 2020; 2021; 2022a; Cutkosky &
Mehta, 2021) focus on an important direction of the relaxing
the assumptions under which these guarantees are derived.

xamples of performance metrics for minimization of func-
'E les of perfi trics f tion of f

tion f: P(z) = f(z) - f(z"), P(x) = |Vf(@)|*, P(z) =

||z — x|, where ™ € argmin,cga f(z).
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Our paper further extensively complements this line of works
in two main aspects: for a plethora of settings, we derive
new high-probability results allowing the variance of the
noise and the gradient of the objective to be unbounded.

1.1. Technical Preliminaries

Before we move on to the main part of the paper, we intro-
duce the problems considered in the work and all necessary
preliminaries. In particular, we consider stochastic uncon-
strained optimization problems

min {f(z) = Ee~p [fe(2)]} )
where ¢ is a random variable with distribution D. Such prob-
lems often arise in machine learning, where f¢ () represents
the loss function on the data sample £ (Shalev-Shwartz &
Ben-David, 2014).

Another class of problems that we consider this work is
unconstrained variational inequality problems (VIP), i.e.,
non-linear equations (Harker & Pang, 1990; Ryu & Yin,
2021):

find z* € R? such that F(z*) =0, 3)

where F(z) = E¢op[F¢(x)]. These problems arise in
adversarial/game formulations of machine learning tasks
(Goodfellow et al., 2014; Gidel et al., 2019).

Notation. We use standard notation: ||z|| = +/(z, z) de-
notes the standard Euclidean norm in R, E¢[-] denotes an
expectation w.r.t. the randomness coming from random vari-
able &, Br(x) = {y € R? | ||y — z|| < R} is a ball with
center at x and radius R. We define restricted gap-function
as Gapg(r) = max,cp, ) (F(y),z — y) — a standard
convergence criterion for monotone VIP (Nesterov, 2007).
Finally, O(-) hides numerical factors and O(-) hides poly-
logarithmic and numerical factors.

Assumptions on a subset. Although we consider uncon-
strained problems, our analysis does not require any assump-
tions to hold on the whole space. For our purposes, it is
sufficient to introduce all assumptions only on some subset
of RY, since we prove that the considered methods do not
leave some ball around the solution or some level-set of the
objective function with high probability. This allows us to
consider quite large classes of problems.

Stochastic oracle. We assume that at given point x we have
an access to the unbiased stochastic oracle returning V fe ()
or F¢(x) that satisfy the following conditions.

Assumption 1.1. We assume that there exist some set () C
R? and values o > 0, € (1, 2] such that for all z € Q

(i) for problem (2) E¢p[V fe(z)] = Vf(z) and

Eepl[|Vfe(z) = V()] < 0, €))

(ii) for problem (3) E¢p[F¢(z)] = F(x) and
Ecpl||Fe(x) - F(x)["] < 0. )

When o = 2, the above assumption recovers the standard
uniformly bounded variance assumption (Nemirovski et al.,
2009; Ghadimi & Lan, 2012; 2013). However, Assump-
tion 1.1 allows the variance of the estimator to be unbounded
when a € (1, 2), i.e., the noise can follow some heavy-tailed
distribution. For example, the distribution of the gradient
noise in the training of large attention models resembles
Lévy a-stable distribution with o < 2 (Zhang et al., 2020b).
There exist also other versions of Assumption 1.1, see (Patel
et al., 2022).

Assumptions on f. We start with a very mild assumption
since without it, problem (2) does not make sense.

Assumption 1.2. We assume that there exist some set () C
R? such that f is uniformly lower-bounded on Q: f, =
infeeq f(z) > —o0.

Moreover, when working with minimization problems (2),
we always assume smoothness of f.

Assumption 1.3. We assume that there exist some set () C
R? and constant L > 0 such that for all 2,y € Q

IVi(@) =Vl < Llz—yl (©)
Vi@ < 2L(f(z)=f), (D

where f, = inf,cq f(x) > —o0.

We notice here that (7) follows from (6) for Q = R?, but in
the general case, the implication is slightly more involved
(see the details in Appendix B). When () is a compact set,
the function f is allowed to be non-L-smooth on the whole

R?, which is related to local-Lipschitzness of the gradients
(Patel et al., 2022; Patel & Berahas, 2022).

In each particular special case, we also make one of the
following assumptions about the structured non-convexity of
the objective function. The previous two assumptions hold
for a very broad class of functions. The next assumption —
Polyak-L.ojasiewicz condition (Polyak, 1963; Lojasiewicz,
1963) — narrows the class of non-convex functions.
Assumption 1.4. We assume that there exist some set
@ C R? and constant ;1 > 0 such that f satisfies Polyak-
Lojasiewicz (PL) condition/inequality on @), i.e., for all
z € @Qand z* = arg min cra f(x)

IVF@)IIP > 20 (f(z) = f(z7)). ®

When function f is u-strongly convex, it satisfies PE. condi-
tion. However, PL inequality can hold even for non-convex
functions. Some analogs of this assumption have been ob-
served for over-parameterized models (Liu et al., 2022).

We also consider another relaxation of convexity.
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Assumption 1.5. We assume that there exist some set () C
R? and constant ;1 > 0 such that f is p-quasi-strongly
convex, i.e., for all z € @ and z* = arg min cga f(x)

@) 2 (@) + (V). 2" =) + Slle —a*%. ©)

As PL condition, this assumption holds for any p-strongly
convex function but does not imply convexity. Nevertheless,
for the above two assumptions, some standard deterministic
methods such as Gradient Descent (GD) converge linearly;
see more details and examples in (Necoara et al., 2019).

In the analysis of the accelerated method, we also need
standard (strong) convexity.

Assumption 1.6. We assume that there exist some set () C
R? and constant ;1 > 0 such that f is u-strongly convex,
ie., forallz,y € Q

) 2 @)+ (Vf(@)y =)+ Slly =% (10
When p = 0 function f is called convex.

Assumptions on F'. In the context of solving (3), we assume
Lipschitzness of F' — a standard assumption for VIP.

Assumption 1.7. We assume that there exist some set () C
R? and constant L > 0 such that for all z,y € Q

[1F(x) = F(y)ll < Lllz = yll; (11)

Similarly to the case of minimization problems, we make
one or two of the following assumptions about the structured
non-monotonicity of the operator F'. The first assumption
we consider is the standard monotonicity.

Assumption 1.8. We assume that there exist some set () C
R? such that F is monotone on Q, i.e., for all 2,y € Q

(F(z) = F(y),r —y) > 0. (12)

Monotonicity can be seen as an analog of convexity for VIP.
When (12) holds with p||z — y||? in the r.h.s. instead of just
0, operator F' is called pu-strongly monotone.

Next, we consider quasi-strong monotonicity (Mertikopou-
los & Zhou, 2019; Song et al., 2020; Loizou et al., 2021) —
a relaxation of strong monotonicity. There exist examples
of non-monotone problems such that the assumption below
holds (Loizou et al., 2021, Appendix A.6).

Assumption 1.9. We assume that there exist some set
Q C R? and constant y > 0 such that F is p-quasi
strongly monotone on @, i.e., for all x € @ and «* such
that F'(z*) = 0 we have

(F(x),z —2*) > pllz — z*|?. (13)

Another structured non-monotonicity assumption that we
consider in this paper is star-cocoercivity.

Assumption 1.10. We assume that there exist some set
@Q C R and constant £ > 0 such that F is star-cocoercive
on @, i.e., forall z € @ and z* such that F'(z*) =0

|F(2)|* < (F(z),z — x*). (14)

This assumption can be seen as a relaxation of the standard
cocoercivity: ||F(z) — F(y)||? < U{F(z) — F(y),z — y).
However, unlike cocoercivity, star-cocoercivity implies nei-
ther monotonicity nor Lipschitzness of operator F' (Loizou
etal., 2021, Appendix A.6).

1.2. Closely Related Works and Our Contributions

In this subsection, we overview closely related works and
describe the contributions of our work. Additional related
works are discussed in Appendix A.

Convex optimization and monotone VIPs. Classical high-
probability results for (strongly) convex minimization (Ne-
mirovski et al., 2009; Ghadimi & Lan, 2012) and mono-
tone VIP (Juditsky et al., 2011) are derived under the so-
called light-tails assumption, meaning that the noise in
the stochastic gradients/operators is assumed to be sub-
Gaussian: E¢p[exp(IV/e(@)-VI(@)I°/o2)] < exp(1) or
E¢plexp(IFe(@)—=F(@)lI*/*)] < exp(1). In these settings,
optimal (up to logarithmic factors) rates of convergence are
derived in the mentioned papers.

The first high-probability results with logarithmic depen-
dence? on 1/ under just bounded variance assumption are
given by Nazin et al. (2019), where the authors show non-
accelerated rates of convergence for a version of Mirror
Descent with a special truncation operator for smooth con-
vex and strongly convex problems defined on the bounded
sets. Then, Davis et al. (2021) derive accelerated rates in the
strongly convex case using robust distance estimation tech-
niques. Gorbunov et al. (2020; 2021) propose an accelerated
method with clipping for unconstrained (strongly) convex
problems with Lipschitz / Holder continuous gradients and
derive the first high-probability results for clipped-SGD. In
the context of VIP, Gorbunov et al. (2022a) derive the first
high-probability results for the stochastic methods for solv-
ing VIP under bounded variance assumption and different
assumptions on structured non-monotonicity.

Note that from in-expectation convergence guarantee, one
can always get a high-probability one using Markov’s inequality.
For example, under bounded variance, smoothness, and strong
convexity assumptions SGD achieves E||z* — z*||* < ¢ after
k = O(max{L/u, 7*/uc}) iterations. Therefore, taking k such
that E|lz* — z*||? < &8 we get from Markov’s inequality that
P{||l2* — 2*||*> < e} < B. However, in this case, we get bound
k = O(max{L/u, °*/ucp}), having undesirable inverse-power
dependence on 3.
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Table 1: Summary of known and new high-probability complexity results for solving smooth problem (2). Column “Setup” indicates the assumptions made in addition to
Assumptions 1.1 and 1.3. All assumptions are made only on some ball around the solution with radius ~ R > on — || (unless the opposite is indicated). By the complexity
we mean the number of stochastic oracle calls needed for a method to guarantee that P{Metric < €} > 1 — B forsome e > 0, 3 € (0, 1] and “Metric” is taken from
the corresponding column. For simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “a” shows the allowed values of «, “UD?” shows
whether the analysis works on unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation: L = Lipschitz
constant; D = diameter of the domain (for the result from (Nazin et al., 2019)); o = parameter from Assumption 1.1; R = any upper bound on |[|z° — 2*||; u = (quasi-)strong
convexity/Polyak-Eojasiewicz parameter; A = any upper bound on f(2°) — f.; G = parameter such that E¢ p ||V f¢ (@) || < G (for the result from (Cutkosky & Mehta,

2021)). The results of this paper are highlighted in blue.

[ Setup ] Method Citation Metric Complexity ] UD?  UG? |
RSMD (Nazin et al., 2019)V F@X) — f(z) max {LiDQ, "257?2} X v
. (Gorbunov et al., 2020) _K « . LR2 (,2 Rz
As 16 clipped-SGD (Gorbunov et al., 2021) f@) = f=7) mdx{ ’ } 2 4 4
s L. ) Gorb tal., 2020 . T .2g
(w=0) | clipped-SST™M EGg:bE:g‘v/ Zl ZI., 20215 F™) = f@) max{ LR = } 2 v v
clipped-SGD Theorems 3.1 & E.6 FEE) = f(z*) max { ,(2B)a=1T } (1,21 v v
clipped-SSTM Theorems 3.2 & F.2 FWS) = f(z*) max {./LRZ, (28) =T } (1,2] v v
restarted-RSMD (Nazin et al., 2019)V @) — f(z™) max {7, ui 2 X v
proxBoost (Davis et al., 2021 F(E@K) — f(z*) max{,/w o }<2' 2 v v
As. 1.6 ; (Gorbunov et al., 2020) K «
(>0 | RoliPPed-SGD  (Gounoy etal. 2021) F@7) = £=7) max { £, 221 2 oo
g i (Gorbunov et al., 2020) Ky . Z o2
R-clipped-SSTM (Gorbunov et al., 2021) ™) = ") max { \ v’ ke } 2 v 4
R-clipped-SSTM Theorems 3.2 & F.3 FW) = f(z*) max { %, (Z—:) A@=T) } (1,2] v v
As. 1.5 . L K _ %2 L (o2 2(aa—1)
(150 | clipped-SGD Theorems 3.1 & E.8 2% — z*|] max 4 L, (MQE) (1,2 v v
K 2,2 4
MSGD (Li & Orabona, 2020)" («")|2 max{ L2482 o X v
. ; 2 o\ Ba=2
As.12 | clipped-NMSGD  (Cutkosky & Mehta, 2021)" <K1 X Vi )H) @ (i) 2a=2 (1,2 v X
;( o
clipped-SGD Theorems 3.1 & E2 © - gﬂnw(zk)uz max{L ,(VLEAU) CH} (1,2 v v
As. 14 clipped-SGD Theorems 3.1 & E.4 © F(eE) — f(z*) max {5, (ﬁgZ ) 2(a-1) } 1,2 v v

(1 All assumptions are made on the whole domain.
@ Complexity has extra logarithmic factor of In(L/p).

© Li & Orabona (2020) assume that the noise is sub-Gaussian: E [cxp (ll Vie(@)=V @)l 2/02)] < exp(1) for all z from the domain.

2
) We notice that (ﬁ K LIV F(®) H) < ﬁ S K IV £(2z*)|? and in the worst case the left-hand side is K + 1 times smaller than the right-hand side.

©) All assumptions are made on the level set Q = {z € R |3y e R :

However, there are no high-probability results (with log-
arithmic dependence on the confidence level) for smooth
(strongly) convex minimization problems and Lipschitz VIP
without imposing bounded variance assumption. Only re-
cently, Zhang & Cutkosky (2022) derived optimal regret-
bounds under Assumption 1.1 in the convex case with
bounded gradients on R?. However, the bounded gradients
assumption is quite restrictive when assumed on the whole
space. Thus, a noticeable gap in the stochastic optimization
literature remains.

Contribution. We obtain new high-probability convergence
results under Assumption 1.1 for smooth convex minimiza-
tion problems and Lipschitz VIP; see the summary in Ta-
bles 1 and 2. In particular, for Clipped Stochastic Similar
Triangles Method (clipped-SSTM) (Gorbunov et al., 2020)
and its restarted version, we derive high-probability con-
vergence results for smooth convex and strongly convex
problems. The high-probability complexity in the strongly
convex case matches (up to logarithmic factors) the known
in-expectation lower bound (Zhang et al., 2020b) and deter-

f) < fu+20and ||z — y|| < VA/20vI}.

ministic lower bound (Nemirovskij & Yudin, 1983). In other
words, we derive the first optimal high-probability complex-
ity results for smooth strongly convex optimization. No-
ticeably, the derived results have clear separation between
accelerated part and stochastic part that emphasizes a poten-
tial of clipped-SSTM for efficient parallelization. Next, we
derive high-probability results for clipped-SGD for smooth
star-convex and quasi-strongly convex objectives under As-
sumption 1.1. Finally, under the same assumption, we prove
the high-probability convergence of Clipped Stochastic Ex-
tragradient (clipped-SEG) (Korpelevich, 1976; Juditsky
et al., 2011; Gorbunov et al., 2022a) for Lipschitz mono-
tone and quasi-strongly monotone VIP and also obtain high-
probability results for Clipped Stochastic Gradient Descent-
Ascent (clipped-SGDA) for star-cocoercive and monotone
/ quasi-strongly monotone VIP. In the special case of o = 2,
our analysis recovers SOTA high-probability results under
bounded variance assumption.

Non-convex optimization. Under the light-tails and
smoothness assumption Li & Orabona (2020) derive high-
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Table 2: Summary of known and new high-probability complexity results for solving (3). Column “Setup” indicates the assumptions made in addition to Assumption 1.1. All
assumptions are made only on some ball around the solution with radius ~ R > Ha;o — 2| (unless the opposite is indicated). By the complexity we mean the number of
stochastic oracle calls needed for a method to guarantee that P{Metric < €} > 1 — B forsome ¢ > 0, 8 € (0, 1] and “Metric” is taken from the corresponding column. For
simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “c” shows the allowed values of v, “UD?” shows whether the analysis works on
unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation: %ffg = %_H Ei,;o Z* (for clipped-SEG),

K
avg

= ﬁ Zf:o x* (for clipped-SGDA); L = Lipschitz constant; D = diameter of the domain (used in (Juditsky et al., 2011)); Gap p (z) = maxyecx (F(y), z — y),

where X is a bounded domain with diameter D where the problem is defined (used in (Juditsky et al., 2011)); D = diameter of the domain (for the result from (Juditsky et al.,
2011)); o = parameter from Assumption 1.1; R = any upper bound on Hwo — ™ ||; p = quasi-strong monotonicity parameter; £ = star-cocoercivity parameter. The results of

this paper are highlighted in blue.

etup Metho itation Metric omplexity a UD? UG?
S hod Citati i Complexi ? G?
Mirror-Prox (Juditsky et al., 2011)V Gapp (L) max L§2 , "QE—EZ x? X v/
As. 17&138 | clipped-SEG  (Gorbunov et al., 2022a) Gapp(FX,) max { L% o212 2 v v
o
clipped-SEG Theorems 4.1 & G.2 GapR(EaKVg) max {Laﬁ, (e8)a-1 } (1,2] v v
p)

clipped-SEG (Gorbunov et al., 2022a) zF — %2 max {A, s } 2 v v

As. 1.7 & 1.9 PP I I u2,1,25 —
clipped-SEG Theorems 4.1 & G.4 llz* — z*||2 max {g, (:T) 2(a—1 } a2 v v
e L8& 110 | CiPPEd-SGDA  (Gorbunovetal, 20220 Gapp(zX,) max {@ =5 } 2 v v

s. L. . o
clipped-SGDA Theorems 4.2 & H.3 GapR(mgg) max {@, (ef)e-1 } (1,2] v v
Clipped-SGDA  (Gorbunov etal, 2022a) - 3° [[F(z*)|2 max { 2R 2o°R? 2 v v
pp - K+1 s 0 o2
As. 1.10 kI:(O
@
clipped-SGDA Theorems 4.2 & H.4 - go [FE5)|2  max { 282 (L2R)aoT } (1,2 v v
P

clipped-SGDA  (Gorbunov et al., 2022a) =i — |2 max {A , = } 2 v v

As. 1.9 & 1.10 PP I I " wre J .
clipped-SGDA Theorems 4.2 & H.6 |lz® — z*||? max {ﬁ, (ﬁ) 2(a—1 } (1,2] v v

(D All assumptions are made on the whole domain.

@ Juditsky et al. (2011) assume that the noise is sub-Gaussian: [exp (HFg (w)*F(m)HQ/oz)] < exp(1) for all « from the domain.

probability convergence rates to the first-order stationary
point for SGD. These rates match the known in-expectation
guarantees for SGD and are optimal up to logarithmic fac-
tors (Arjevani et al., 2022). Recently, Cutkosky & Mehta
(2021) derived the first high-probability results for non-
convex optimization under Assumption 1.1 for a version
of SGD with gradient clipping and normalization of the
momentum. The results are obtained for the non-standard
metric — SR IV f(2*)]|| - and match in-expectation
lower bound for the expected (non-squared) norm of the
gradient from (Zhang et al., 2020b). However, Cutkosky &
Mehta (2021) make an additional assumption that the norm
of the gradient is bounded?® on R¢, which is quite restrictive.

Contribution. We derive the first high-probability result
with logarithmic dependence on the confidence level for
finding first-order stationary points of smooth (possibly, non-
convex) functions without bounded gradients assumption.
The result is derived for simple clipped-SGD. Moreover,
we extend the analysis to the functions satisfying Polyak-
Lojasiewicz condition; see Table 1 for the summary.

Gradient clipping received a lot of attention in the machine
learning community due to its successful empirical applica-
tions in the training of deep neural networks (Pascanu et al.,
2013; Goodfellow et al., 2016). The clipping operator is de-

*More precisely, instead of Assumption 1.1, Cutkosky & Mehta
(2021) assume E¢ ||V fe(x)]|* < G for some G > 0. This
assumption implies Assumption 1.1 and boundedness of ||V f(z)]|.

fined as clip(z, A) = min{1,*/|lz|} x (clip(z, \) =0,
when x = 0). From the theoretical perspective, gradient clip-
ping is used for multiple different purposes: to handle struc-
tured non-smoothness in the objective function (Zhang et al.,
2020a), to robustify aggregation (Karimireddy et al., 2021)
and to provide privacy guarantees (Abadi et al., 2016) in
the distributed training. Moreover, as we already mentioned
before, gradient clipping is used to handle heavy-tailed
noise (satisfying Assumption 1.1) in the stochastic gradients
(Zhang et al., 2020b) and, in particular, to derive better high-
probability guarantees under bounded variance assumption
(Nazin et al., 2019; Gorbunov et al., 2020). However, there
are no results showing the necessity of modifying standard
methods like SGD and its accelerated variants to achieve
high-probability convergence with logarithmic dependence
on the confidence level under bounded variance assumption.

Contribution. We construct an example of a strongly con-
vex smooth problem and stochastic oracle with bounded
variance such that to achieve P{||z¥ — z*||2 > ¢} < 8
SGD requires (Uz/u@) iterations, i.e., the algorithm
has inverse-power dependence on the confidence level. This
justifies the importance of using some non-linearity such as
gradient clipping to achieve logarithmic dependence on the
confidence level even in the bounded variance case.
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2. Failure of Standard SGD

It is known that SGD z*+1 = 2% — 4V fex (2%) can diverge
in expectation, when Assumption 1.1 is satisfied with v < 2
(Zhang et al., 2020b, Remark 1). However, it does con-
verge in expectation when o« = 2, i.e., when the variance
is bounded. In contrast, there are no high-probability con-
vergence results for SGD having logarithmic dependence
on 1/g. The next theorem establishes the impossibility of
deriving such high-probability results.

Theorem 2.1. For any ¢ > 0 and sufficiently small 3 €
(0, 1) there exist problem (2) such that Assumptions 1.1, 1.3,
and 1.6 hold with () = R a=20< w < L and for the
iterates produced by SGD with any stepsize v > 0

P{||lz* - 2*||2 >} < k=0 ”).
et = P2 e} <8 — (u@

The proof is deferred to Appendix D. We believe that similar
examples can be constructed for any stochastic first-order
methods having linear dependence on the stochastic gra-
dients in their update rules. Thus, Theorem 2.1 motivates
the use of non-linear operators such as gradient clipping in
stochastic methods to achieve logarithmic dependence on
the confidence level in the high-probability bounds.

3. Main Results for Minimization Problems
3.1. SGD with Clipping
We start with clipped-SGD:

where £* is sampled from D}, independently from previous
steps. We emphasize here and below that distribution of
the noise is allowed to be dependent on k: we require just
independence of £* from the the previous steps. Our main
convergence results for clipped-SGD are summarized in
the following theorem.

Theorem 3.1 (Convergence of clipped-SGD). Let k > 0
and 3 € (0,1] are such that A = In AEFD >

Case 1. Let Assumptions 1.1, 1.2, 1.3 hold
for Q = {z € R* | Iy € R? fly) <
fe +2Aand ||z — y” < \/Z/QO\/E}y A > f(xo) — fa
and 0 < v < O (min{l/ra,VB/ovIK"/*a DoY),
A = A= O(VA/VIqA).

Case 2. Let Assumptions 1.1, 1.3, 1.4 hold
for Q = {z € R" | Iy e R? fly) <
fo + 20 and ||z — y|| < VA20vI} A > f(2°) — f.
and 0 < v = O (min{l/ra, n(Bx)/(Kx+1)}), Bk =
S} (max{2, (K+1)* T2 A 2 g2 ln2(BK)});

Ak = O(exp(—yu(1++/2))VA/ /T A).

Case 3. Let Assumptions 1.1, 1.3, 1.6 with

0 hold for @ = Bsp(z*), R > |2° — 27|
< O(min{Y/ra, Blox"/>a"Via}),

M =
and 0 < v
Ak = A = O(B/y4).
Case 4. Let Assumptions 1.1, 1.3, 1.5 with p > 0
hold for @ = Bag(z*), R > |2° — 2*|| and
0 < 7 = O(min{l/rLa,nBx)/(Kk+1)}), Bx =
o (max{Z, (K+1)2(a71)/”u2R2/02A2(“‘1)/u 1n2(BK)}),

A = O(exp(—vu(1++/2)) R/ 4).

Then to guarantee %ﬂ Zl,z:o |V f(z")||? < ¢ in Case 1,
f(@®) — f(z*) < e in Case 2, f(zX) — f(x*) < cin
Case 3 with 7% = ﬁZf:o a:k oK —2¥2 < cin
Case 4 with probability > 1 — 3 clipped-SGD requires

LA,( LA“) 7 (16)
€ €
2\ @D
(G2
p\ p2e
~ 2 a1
Case 3: O(max{LR,<0R) }) (18)
€ 3
2 a=T
<max{L,(02>( )}> (19)
p'\ p2e

The complete formulation of the result and full proofs are
deferred to Appendix E. As one can see from Table 1, for
o = 2 the derived complexity bounds match the best-known
ones for clipped-SGD in the setups where it was analyzed.
Next, we emphasize that the second term under the maxi-
mum in (19) (quasi-strongly convex functions) is optimal up
to logarithmic factors (Zhang et al., 2020b). In the convex
case, there are no lower bounds, but we conjecture that the
second term in (18) is optimal (up to logarithms) in this case
as well.

Casel: O

max

Case2: O

Cased4: O

oracle calls.

Next, in the case of PL-functions, we are not aware of any
high-probability convergence results in the literature. In the
special case of @ = 2, the derived complexity bound (17)
matches the best-known in-expectation complexity bound
for SGD (Karimi et al., 2016; Khaled & Richtarik, 2020)
and the first term coincides (up to logarithms) with the
lower bound for deterministic first-order methods in this
setup (Yue et al., 2022).

Finally, in the non-convex case, bound (16) is the first
high-probability result under Assumption 1.1 without the
additional assumption of the boundedness of the gradi-
ents. For ¢ = 2 it matches (up to logarithms) in-
expectation lower bound (Arjevani et al., 2022). How-
ever, when o < 2, bound (16) is inferior to the exist-

ing one O ((GQ/E) (3&4)/2(0_1)) by Cutkosky & Mehta
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(2021), which relies on the stronger assumption that
Eep ||V fe(z)||* < G* for some G > 0 and all z € RY,
and also do not match the lower bound by Zhang et al.
(2020b) derived for E||V f (z*)]|, where x* is the output of
the stochastic first-order method. It is also worth mentioning
that Cutkosky & Mehta (2021) use a different performance

2
metric: Px = (ﬁ S ||Vf(a:k)||) . This metric is
always smaller than Prc = 715 S o IV £(@%)]|2, which
we use in our result. In the worst case, Px can be K + 1
times larger than 751(. Moreover, the lower bound from
(Zhang et al., 2020b) is derived for E||V f(z*)| that is
also always smaller than the standard quantity of interest
E|V f(z*)||?. Therefore, the question of optimality of the
bound (16) remains open for o < 2. Moreover, it will also
be interesting to modify our analysis in this case to derive a
better bound for metric Px than (16).

3.2. Acceleration

Next, we focus on the accelerated version of clipped-SGD
called Clipped Stochastic Similar Triangles Method clipped-
SSTM (Gorbunov et al., 2020). The method constructs three
sequences of points {2*}r>0, {y* } x>0, {2 } x>0 satisfying
the following update rules: z° = y° = 20 and

k k
E+1 Ay + agqa2

v (20)
Akt1
Zk‘+1 = Zk — Qg1 Cllp (Vf&k (-’Ek+1), )\k) ) (21)
A k k+1
y]”l _ kY ;akﬂz (22)
k+1
where Ay = ag = 0, a1 = %’ Ap1 = Ap + g1,

and £F is sampled from D}, independently from previous
steps. Our main convergence result for clipped-SSTM is
given in the following theorem.

Theorem 3.2 (Convergence of clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with y = 0 hold for
Q = Bsp(*), R > |2° — 2*||*> and a =
O(max{A?, oK AT LR A = O(R/ (x4 4)),
where A = In %, B € (0,1] are such that A > 1. Then
to guarantee f(y*) — f(a*) < & with probability > 1 — 3
clipped-SSTM requires

- 2 sy
@ (max{ Li , (UR> }) oracle calls. (23)
€ €

Moreover, with probability > 1 — [ the iter-
ates of clipped-SSTM stay in the ball Bag(z*):

{xk}gj(}’ {yk}fzm {Zk}szo C Bar(z™).

The derived high-probability bound matches (see the proof
in Appendix F.1) the best-known one in the case of o = 2.
For av < 2 there are no lower bounds in the convex case.

However, the first term in (23) is optimal and matches the
deterministic lower bound in the convex case (Nemirovskij
& Yudin, 1983). The second term is the same as in the bound
for clipped-SGD (18) and we conjecture that it cannot be
improved.

In the strongly convex case, we consider clipped-SSTM
with restarts (R-clipped-SSTM). This method consists of 7
stages. On the t-th stage R-clipped-SSTM runs clipped-
SSTM for K| iterations from the starting point 2, which is
the output from the previous stage (&' = x°), and defines
the obtained point as #¢*!; see Algorithm 3 in Appendix F.2.
For this procedure we have the following result.

Theorem 3.3 (Convergence of R-clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with p > 0 hold for QQ =
Bag(z*), R > |2° — 2*||* and R-clipped-SSTM
runs clipped-SSTM 7 = [log,(#R?/2:)| times. Let
Ko = O(max(yIR o (oFsfe) ), a, =
O(max{1, 7K. /LR, }), AL = O(R/a,,) be the param-
eters for the stage t of R-clipped-SSTM, where R;_1 =
2-UV2R o, = uR} /4, In 4TTK‘ >1forallt=1,....7
and some [ € (0, 1]. Then to guarantee f(Z7)— f(z*) < e
with probability > 1 — 3 R-clipped-SSTM requires

. L 2 2(aa—1)
O | max -, <a> oracle calls. (24)
B\ pe

Moreover, with probability > 1— f3 the iterates of R-clipped-
SSTM at stage t stay in the ball Bag, ,(x*).

The obtained complexity bound (see the proof in Ap-
pendix F.2) is the first optimal (up to logarithms) high-
probability complexity bound under Assumption 1.1 for
the smooth strongly convex problems. Indeed, the first
term cannot be improved in view of the deterministic lower
bound by Nemirovskij & Yudin (1983), and the second term
is optimal due to Zhang et al. (2020b).

4. Main Results for Variational Inequalities
4.1. Clipped Stochastic Extragradient

For (quasi strongly) monotone VIPs we consider Clipped
Stochastic Extragradient method (clipped-SEG):

¢ =" — - clip(Fe(z"), ), (25)
ef = 2b — . clip(Fe (7%), M), (26)

where ¢¥, ¢& are sampled from Dy, independently from
previous steps. Our main convergence results for clipped-
SEG are summarized below.

Theorem 4.1 (Convergence of clipped-SEG).
Case 1. Let Assumptions 1.1, 1.3, 1.8 hold for Q = Byg(x™*)
and 0 < vy = O (min{l/LA’ R/Kl/ao_A(ﬂ—l)/a})’
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A = A = O(Fya), where A = In®EEL > )
B € (0,1].

Case 2. Let Assumptions 1.1, 1.3, 1.9 with
w > 0 hold for @ = Bsg(z*) and 0 <
v = O(min{l/La,n(Bx)/u(k+1)}), Bg =

2(a—1) a—
@(max{Q,(KH) TP R? 52 42 1)/“1&(13[()}),

A = O(exp(=vu(1+4/2))R/y4), where A = In w’
B € (0,1] are such that A > 1.

Then to guarantee GapR(Egg) < ¢ in Case 1 with

ik, = SR @, (|2 — 2*||? < e in Case 2 with

probability > 1 — 3 clipped-SEG requires

_ 2 aeT
Case I: o<max{LR ,(”R) }) 27)
19 g
- L [ o2)\D
Case2: O (max{ , <2> }) (28)
p\ e

oracle calls.

The proofs are deferred to Appendix G. When o = 2, the
above bounds recover SOTA high-probability bounds for
monotone and quasi-strongly monotone Lipschitz VIP (Gor-
bunov et al., 2022a). For the case of a < 2 (27) and (28) are
the first high-probability results for the mentioned classes.
Next, the first terms in these complexity bounds are optimal
(up to logarithms) due to the lower bounds for the deter-
ministic methods (Ouyang & Xu, 2021; Zhang et al., 2022).
The second term in (28) is also optimal (up to logarithms)
due to the lower bounds for stochastic strongly convex mini-
mization (Zhang et al., 2020b). Similarly to the convex case
in minimization, we conjecture that the second term in (27)
cannot be improved in the monotone case as well.

4.2. Clipped Stochastic Gradient Descent-Ascent

In the star-cocoercive case, we focus on Clipped Stochastic
Gradient Descent-Ascent (clipped-SGDA):

a" =2k — . clip(Fer (@), \), (29)

where £* is sampled from D}, independently from previous
steps. For this method we derive the following convergence
guarantees.

Theorem 4.2 (Convergence of clipped-SGDA).

Case 1. Let Assumptions 1.1, 1.10, 1.8 hold for Q =
Bog(z*) and 0 < v = O (min{l/ea, B/gY>oA" VoY),
A = A= 0O (B/y4), B € (0,1] are such that A > 1.

Case 2. Let Assumptions 1.1, 1.10 hold for QQ = Bap(x™*)
and 0 < ~ = O (min{l/ea, B/K"oga @V},
A = A= 0O (R/yA), where A = 1n %, B € (0,1] are
such that A > 1.

Case 3. Let  Assumptions 1.1,
with > 0 hold for Q =

1.10, 1.9
Bsgr(z*) and

0 < 7 = O@min{Yea, B ux+1}), Bx =
© (maX{Q’ (K+1)2(a71>/a”2R2/U2A2(“’1)/“ 1112(BK)}>,
A = O(p(-(+Y/2)R)y4), where A = In 2D

/8 ’
B € (0,1] are such that A > 1.

Then to guarantee Gapp(Tl,) < ¢ in Case 1 with

~ K~ k -
Toyg = %H D k—o T, ﬁ >oheo IF(@M)]? < fein
Case 2, |2* — 2*||? < ¢ in Case 3 with probability > 1 — 3
clipped-SGDA requires

~ 2 a-1
Caseland2: O <max {M:, <GER> }) (30)
- 2 u;im
Case2: O <max {é, (2) }) 31)
o\ poE

oracle calls.

One can find the proofs in Appendix H. The derived high-
probability results generalize the existing SOTA results from
the case of a = 2 (Gorbunov et al., 2022a) to the case of
o< 2.

5. Key Lemma and Intuition Behind the Proofs

The proofs of all results in this paper follow a very sim-
ilar pattern. To illustrate the main idea, we consider the
analysis of clipped-SGD in the non-convex case. Mimick-
ing the proof of deterministic GD we derive the following
inequality:

K
VY NVFEM)? € Ao — Ak 32)
k=0
K K-1
— > (V@) 00 + L7 D |10k,
k=0 k=0

where Ay = f(2*) — f. and 0 = Vfer(z¥) — Vf(zF).
In other words, we separate the deterministic part of the
method from its stochastic part. To obtain the result of
Theorem 3.1 (Case 1) it remains to upper bound with high-
probability the sums from the second line of the formula
above. We do it with the help of Bernstein’s inequality
(Lemma B.2). However, it requires several preliminary steps.
In particular, Bernstein’s inequality needs the random vari-
ables to be bounded. The magnitudes of summands depend
on V f(z*) that can be arbitrarily large due to the stochastic-
ity in 2*. However, (32) allows to bound A, inductively
and, using smoothness, to bound ||V f(z+1)||. Secondly,
Bernstein’s inequality requires knowing the bounds on the
bias and variance of the clipped stochastic estimator. For
such purposes, we derive the following result, which is a
generalization of Lemma F.5 from (Gorbunov et al., 2020);
see also Lemma 10 from (Zhang et al., 2020b).



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Lemma 5.1. Let X be a random vector in R? and X =
clip(X,A). Then, | X — E[X]|| < 2X. Moreover, if for
some ¢ > 0 and a € (1,2] we have E[X] = x € RY,
E[||X — z[|%] < 0% and ||z|| < M2, then

o < 25 o
E [H)? _ 33”2] < 18297, (34)
E [HS{ — E[)?]m < 18A2%gC, (35)

This lemma can be useful on its own for analyses involving
clipping operators. Moreover, our high-probability analysis
does not rely on the choice of clipping explicitly: in the
proofs, we use only || X|| < X and inequalities (33)-(35).
Therefore, our results hold for the methods considered in
this work with any other non-linearity ¢, (z) (not necessary
clipping), if it satisfies the conditions from the above lemma
for X = ¢r(X).

6. Discussion

In this work, we contributed to the stochastic optimization
literature via deriving new high-probability results under
Assumption 1.1. Our results can be extended to the min-
imization of functions with Holder continuous gradients
using similar ideas to (Gorbunov et al., 2021). Another
prominent direction is in obtaining new high-probability
results for other types of non-linearities, e.g., like in (Polyak
& Tsypkin, 1980; Jakovetic et al., 2022).
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A. Additional Related Work

In this section, we provide an overview of the existing in-expectation convergence results under Assumption 1.1.

Convex minimization. The first in-expectation result under Assumption 1.1 is given by Nemirovskij & Yudin (1983),
who derive* O(e~*/(*~) complexity for Mirror Descent applied to the minimization of convex functions with bounded
gradients. This result was recently extended by Vural et al. (2022) to the uniformly convex functions, and matching lower
bounds were derived. In the strongly convex case, Zhang et al. (2020b) prove O(s~ />~ complexity for clipped-SGD.
However, all these results rely on the boundedness of the gradient. To the best of our knowledge, there are no results for
smooth convex problems under Assumption 1.1 without assuming that the gradient is bounded even in terms of expectation.

Non-convex minimization. In the non-convex smooth case, Zhang et al. (2020b) prove O(e~“*~?/(>=1) complexity
for clipped-SGD to produce a point « such that E||V f(x)|| < e. In the same work, the authors derive the matching lower
bound. However, both upper and lower bounds are derived for E||V f(z)|| which is smaller than \/E||V f(z)||?. The later
one is stronger and is more standard performance metric for stochastic non-convex optimization. Therefore, the question of
deriving lower and matching upper bounds for the standard metric remains open.

*In this section, we hide in O(-) all dependencies except the dependency on ¢.

13



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

B. Useful Facts
Smoothness. If f is L-smooth on convex set Q@ C R?, then for all z,y € Q (Nesterov et al., 2018)
L
fy) < f@) +(Vf(2)y —2) + Sy — =] (36)

In particular, if x and y = = — %V f() lie in @, then the above inequality gives

F() < @)~ LIV @I + 52 IV @I = £&) — 52 IV )P
and

IVf(@)I? < 2L (f(2) = f(y)) < 2L (f(z) = f+)

under the assumption that f, = inf,eq f(z) > —oc. In other words, (7) holds for any € @ such that (z — +V f(z)) € Q.
For example, if 2* is an optimum of f, then L-smoothness on Bog(x*) implies that (7) holds on Br(z*): indeed, for any
x € Br(z*) we have

1 i} | © .
¢ = 2Vf(z) 27| < o =2+ V@)l < 2|z — 27| < 2R.

This derivation means that, in the worst case, to have (7) on a set ) we need to assume smoothness on a slightly larger set.

Parameters in clipped-SSTM. To analyze clipped-SSTM we use the following lemma about its parameters v and Ay.
Lemma B.1 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {cy, }r>o and { Ay} >0 satisfy

k+2
ag=Ag =0, Apy1=Ar+ar1, arp1=—5— V>0, (37)

2a L

where a > 0, L > 0. Then forall k > 0
(k+1)(k+4)

A = — 38
k+1 Tl ) (38)
Agy1 2 aLai_H. 39)

Bernstein inequality. One of the final steps in our proofs is in the proper application of the following lemma known as
Bernstein inequality for martingale differences (Bennett, 1962; Dzhaparidze & Van Zanten, 2001; Freedman et al., 1975).

Lemma B.2. Let the sequence of random variables {X,;};>1 form a martingale difference sequence, i.e.

E[X;| Xi-1,...,X1] = 0 forall i > 1. Assume that conditional variances O'i2 =4 E [XZ2 | Xiz1,... ,Xl] exist and
are bounded and assume also that there exists deterministic constant ¢ > 0 such that | X;| < ¢ almost surely for all i > 1.
Then forallb > 0,G >0andn > 1

P{‘iXi
=1

n b2
>band§ a?<G} < 2exp (—) (40)
P 2G + 2¢b/3

14
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C. Proof of Lemma 5.1
Lemma C.1 (Lemma 5.1). Let X be a random vector in R¢ and X=cI ip(X, A). Then,

H)? —E[X]H < 2. 41)
Moreover, if for some o > 0 and o € [1,2)
EX] =z €cR% E[|X —z|* <o (42)
and ||z|| < 2, then
%) -4|| < ot (43)
No—1
flf o] = e

IN

~ ~ 112
E[HX—EWHH] 18A22 g, (45)

Proof. Proof of (41): by definition of a clipping operator, we have

|Z-elz]| < %]+ = l%]|
le1ip(X, 3)] + [ [c11p(X, M)

Jin {1 g ] 2 o {2 2 1

= min {|| X[, A} + E [min {[|X||, A}]
< A+A=2)

IN

IN

Proof of (43): To start the proof, we introduce two indicator random variables. Let

1, if | X[ > A 1, if | X —z| >3
=T, " T T 27 46
X HXAXI>AY {O, otherwise T xlx-al> 3} 0, otherwise (46)
[|z||<M/2

Moreover, since | X || < |lz|| + | X —z| < 3+ X — x|, we have x < 5. We are now in a position to show (43).
Using that

~ A A
X=mindl, > Lx =y 2 x4 X,
{ |X||} TR

we obtain

WW—%=H
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Since 1 — »/| x| € (0,1) when y # 0, we derive

[£[%] -] < Epaxn
< ERIX)
< ERIX — ol +nlel]
Y ®IX -2l (E [r72))
€ o) + N

where in (%) we applied Holder’s inequality. By Markov’s inequality,

B[] = Ell=p{Ix 21 >3} =P

IN

2(,Y
SE(X - a7

<Gy

Thus, in combination with the previous chain of inequalities, we finally have

[e[5] <] < «(2)" +3(

Proof of (44): Using || X — z|| < || X[ + ||lz]| < A+ 2 =32 we have

20\%  2%°
Y Toya-1°

«

a—1

E|IX-al?] = E[IX-a|IX -a>]
2—«
- (3
SAN2 7 T |l A
= = E|x||—X—
(2) _thn !
2—
(3
lzl<3  /3A\2"“ 3N\
= (2) (EP(2> *”ﬂ)’

where in the last inequality we applied (42) and 1 — y < 1. By (47) and x < 7, we obtain

)

(0%

>\a

- 9A2 /20\* /3
2

_ < = [ == -
ENX “W = ‘4<A> +<2

9A2 20

< (o4 2

<2 ( v

< 18\%TTp,

Proof of (45): Using variance decomposition and (44), we have

2—a
) O-a

Ewi—mﬁw1<Ewi—mw]<wv<ww

16

[}

X =" > o5

3

2()4

X = all*x + X = 2| *(1 - )]

© [’ )]

+wx—wwu—xﬂ

(|| #1et) 1 st -0

(47)
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D. Proof of Theorem 2.1

In this section, we give an example of the problem for which SGD without clipping leads to a weak high-probability
convergence guarantee even under the strong assumption of bounded variance. Theorem below formally states our result,
showing that, in the worst-case, the bound for SGD scales worse than that of clipped-SGD in terms of the probability 3.

Theorem D.1. Foranye > 0, 8 € (0,1), and SGD parameterized by the number of steps K and stepsize vy, there exists
problem (2) such that Assumptions 1.1, 1.3, and 1.6 hold with o = 2, 0 < u < L and for the iterates produced by SGD
with any stepsize 0 < v < 1/u

P{|lzX —2*|?>c} <B = KQ(#\;B?) (48)

Proof. To prove the above theorem, we consider the simple one-dimensional problem f(x) = #?/2. It is easy to see that the
considered problem is p-strongly convex, p-smooth, and has optimum at * = 0. We construct the noise in an adversarial
way with respect to the parameters of the SGD. Concretely, the noise depends on the number of iterates N, stepsize -y, target
precision ¢, the starting point 2°, and bound on the variance o2 such that

Ve, (%) = pa* — oz,
where

0, ifk < K —1or(1—~yu)%|z% >/,

—A, with probability 515
o = N Z A . Vke{0,1,....K —1}, (49)
0 with probability 1 — 7, otherwise
A,  with probability 51,

where A = max { 2,;?, 1}. We note that E [2*] = 0. Therefore, E [V fe, (2¥)] = pa* = V f(2*). Furthermore,

Var [5] = E [(+6)2] < - A% + L

2
— 242 2A2A =1

which implies that Assumption 1.1 holds for « = 2. We note that our construction depends on the parameters of the
algorithm and the target value . However, our analysis of the methods with clipping works in such generality.

Let us now analyze the properties of the introduced problem. We are interested in the situation when
P{lla® —a*|?>c} <8

for 3 € (0,1). We first prove that this implies that (1 — yu)¥|2°| < \/z. To do that we proceed by contradiction and
assume that

(1 —yu)X)2° > Ve (50)

By construction, this implies that z; = 0, Yk € {0,1,..., K}. This, in turn, implies that 2% = (1 — vu)®% 20, and, further,
by (50) and since x* = 0, that

P{||J:K—x*||2 25} :P{||J:KH2 Zs} =1.

VE
[20]

VE
|0

In 0
1 _ |z” | .
W) 2 = 2 5 = 77 Using (49)

Thus, the contradiction shows that (1 — yu)® |2 < /&, which yields K >

0
with K > # log ILEI, we obtain

2 =¥ = (1 = yu) "2 + yozx).

17
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Furthermore,

P{lla" —a*|> = e} =P {|(1 — yu)*2° + vozk]| > V}
=P {yozx > Ve — (1 —yp) 2"} + P {yozx < —ve — (1 —yp)*a"}
>P{yozk > Ve+ (1 —yp)*a} + P {yozg < —ve— (1 —ypu)¥a’}
=P {|yozk| > Ve + (1 — yu)¥2}

> P{losd 2 22} =B {lanl 2 227},

AN

Now if 2% < 1 then A = 1. Therefore,

2,/

1=P{|zK| > }SP{llmK—x*lF >e} < B,

yielding contradiction, which implies that if PP {||xK —z* ||2 > a} < f for our constructed problem, then QW‘—f >1,1.e.,

v < Qf. For v < 2;/5, we have
2/e 1 20?2
>P{|zf —z*|2>el >P > b= = ,
B2 P (o~ a2 e} 2 P{Jaal 2 22} = 4 =T
This implies that v < % Combining this inequality with K > % log lx—\/(g yields
o ||
K> log —
2u/Be 7 e
and concludes the proof. O

18
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E. Missing Proofs for clipped-SGD

In this section, we provide all the missing details and proofs of the results for clipped-SGD. For brevity, we will use the
following notation: V fex (2%) = c1ip(V fer (z%), Ap).

Algorithm 1 Clipped Stochastic Gradient Descent (clipped-SGD) (Pascanu et al., 2013)

Input: starting point 2°, number of iterations K, stepsize v > 0, clipping levels {)\k}sz_Ol
1: fork=0,..., K —1do
2 Compute V fer (z%) = clip (V fer (2¥), Ai) using a fresh sample £F ~ Dy,
3; okl =gk — "/%fgk (zF)
4: end for
Output: =%

E.1. Non-Convex Functions

We start the analysis of clipped-SGD in the non-convex case with the following lemma that follows the proof of deterministic
GD and separates the stochasticity from the determinisitc part of the method.

Lemma E.1. Let Assumptions 1.2 and 1.3 holdon Q = {x € R? | 3y e R?: f(y) < f. +2A and ||z — y|| < V2/20vL},
where A > Ag = f(2°) — f., and let stepsize v satisfy y < % Ifzk € Q forallk =0,1,..., K, K > 0, then after K
iterations of clipped-SGD we have

K-—1
(1—>Z|Vf WP < (F@®) = f) = (F@") = f) =11 = L) Y (¥
2K 1 w0

ZIIHkII2 (51)

O Y Vfeleh) - Vih). )

Proof. Using zF+1 = 2F — ’Y%fgk (x*) and smoothness of f (1.3) we get that forall k = 0,1,..., K — 1

f(karl) < f(JZk) + <Vf(:£k),f£k+1 _ $k> + énkarl _ kaQ
~ 2 ~
= F) AT, Ve (@) + L e ()
2
2 ) AV - AT F ). 0 + T
L’)ﬂ ky (12 2 k
VA2 + Ly (). 60)

2
= @)=y (1= ) IV - 1= 2T 00 + ol

We rearrange the terms and get

2
3 (1= ) IVAEOIE < £ = £ = 2= LTS + -l

19
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Finally, summing up these inequalities for K =0, ..., K — 1, we get

v(1-2 ) Z V£

=
N

A
—
~
oY

a®) — f(@* ) —4(1 - Ly) <Vf( "), 0k)

Z 101

K-1
= (@) = f) = (f@") = £) =9(1 = Ly) D_(V(a"),00)
2 K-1 e
Z 16112,
which concludes the proof. O

Using this lemma, we prove the main convergence result for clipped-SGD in the non-convex case.

Theorem E.2. Let Assumptions 1.1, 1.2, 1.3 holdon Q = {x € R? | 3y e R?: f(y) < f.+2A and ||z —y| < VB/20vT},
where A > Ao = f(2°) — f., stepsize

1 VA
v < min ; = (> (53)
80L In AKA+1) 1 1 A(K+1 aTl
7 27e200VIK s (In 205
and clipping level
VA
Ao = A= VI~ In 2D (54)

for some K > 0 and 8 € (0,1] such that In % > 1. Then, after K iterations of clipped-SGD the iterates with
probability at least 1 — (3 satisfy

24
~ B (K +1)

In particular, when v equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

(55)

K
Z IV £()]? <
k: ’Y(

LAWE IAs %% K

2
K+1Z”Vf N2 = O | max L =T , (56)

K
meaning that to achieve ﬁ S IV F(x®)||? < e with probability at least 1 — 3 clipped-SGD requires
k=0

LA LA LA =1 1 LA =1
K = 0O | max —lnE < . 0) In ﬂ( 5 U) iterations/oracle calls. &)

Proof. Let Ay, = f(x*) — f. forall kK > 0. Next, our goal is to show by induction that A; < 2A with high probability,
which allows to apply the result of Lemma E.1 and then use Bernstein’s inequality to estimate the stochastic part of the

upper-bound. More precisely, for each k£ = 0, ..., K + 1 we consider probability event E}, defined as follows: inequalities
2 t—1 t—1

H9 1P =71 =Ly) Y (Vf(),0) < A, (58)
=1

Ay < 2A (59)

20
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hold for all ¢ = 0,1,..., % simultaneously. We want to prove via induction that P{Ey} > 1 — *8/(x+1) for all k =
0,1,...,K 4+ 1. For k = 0 the statement is trivial. Assume that the statement is true for some £k = T — 1 < K:
P{Er_1} > 1 — (T-1)8/(k+1). One needs to prove that P{Er} > 1 — T8/(k+1). First, we notice that probability event
Er_; implies that Ay < 2A forallt = 0,1,..., 7 — 1,ie., 2t € {y € R? | f(y) < fu +2A} fort =0,1,...,T — 1.
Moreover, due to the choice of clipping level A we have

T T—1 = T_1 (54) VA VA
xt —x = 5|V fer-1(x <A\ = < .
[ | = AV fer—(z™ )| < 20VI K < 20T

Therefore, E7_ implies {z* o € @, meaning that the assumptions of Lemma E.1 are satisfied and we have
t—1 2 t—1
AZHW P < Bo— Ay —y(1= L) Y (VFh). 00) + == D 101, (60)
k=0 1=0
A%, (1 - L;) (523) 0 61)

forallt =0,1,...,T simultaneously and for all ¢ = 1,...,7T — 1 this probability event also implies that

t—1 Qt 1 I ) 2A
ZHVf )2 <A Y1 —Ly)Y (Vf ZW |2> : (62)

k=0
T-1
Taking into account that A Y ||V f(z!)|> > 0, we also derive that E7_; implies
=0

2T1

AT<A+ Zne 2 = ~(1 = L) Z (63)
t=0

Next, we define random vectors
: {Vf(xtL if |V f(2")]| < 2VIA,
t p—

0, otherwise,

forallt =0,1,...,T — 1. By definition these random vectors are bounded with probability 1
[l < 2VLA. (64)

Moreover, fort = 1,...,T — 1 event Ep_; implies

(5'5) (54)
IV £ 2 2L(F(ah) — f.) = /2LA; < 2VIA A 65)

meaning that F7_ implies that n; = V f(x?) forallt = 0,1, ...,T — 1. Next, we define the unbiased part and the bias of
0; as 0} and 67, respectively:

0 = V(@) B [Vie )|, 0 =Ee [V ()] - V). (66)

We notice that §; = 0% + #2. Using new notation, we get that F_; implies

_ T—1 T-1
Ar S A1) S A I S @) 1 S (16x11° — Eee [Ho1))
t=0 t=0 t=0
[©) @ ®
T-1 T-1 9
+ Ly Y B [l0317] + 102 D ot 67)
t=0 t=0
@ ®

21
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It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive
proof we need to show that ©® + @ + ® + @ + ® < A with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of % and 6?. First, by definition of clipping operator,
we have with probability 1 that

6] < 2A. (68)

Moreover, since Er_ implies that |V f(x!)|| < A2 fort = 0,1,...,T — 1 (see (65)), then, in view of Lemma 5.1, we
have that E'7_q implies

2(10.(¥
[CH s (69)
Ee [|167]?] < 18A* %0 (70)
Upper bound for @. By definition of 6}, we have E¢: [#}'] = 0 and
E¢e [=y(1 = L) {67, m0)] = 0.
Next, sum @ has bounded with probability 1 terms:
" CE N, (64),(68) (54) A def
YA = Ly) (0 ne) | < ANOLN - [Imell < AVLA = S Ak ¢ (71)
The summands also have bounded conditional variances o2 < Eer [v3(1 — Ly)*(0%, ne)?):
2 2 21 pu |2 21 @ o 2 u2) & 42 w2
o2 < Bee 21— I PI0YIR - Inl?) € 49201 - 1P LABg [I021P) S aLake 6217 (72

In other words, we showed that {—~y(1 = Lv) (6%, m:)}1=;' is a bounded martingale difference sequence with bounded
conditional variances {07} _'. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —~(1 — Lv) (0, n;),
parameter c as in (71), b = ?, G = ’

150 In 74“;*1) :
— A2 b? 6]
D> = —— > <2 - = .
{' ‘> ZO " 1501n 2D } - eXp( 2G+2“*’/3> 2(K +1)
Equivalently, we have
-1
B . 9 A? A
P{Es} >1— —————, for Eg = | either Zat > ———— or [®[< . (73)
+1
2(K + 1) e 150 In 25D 5
In addition, Er_; implies that
T-1 - T-1
Yo7 < 4LAY Ee [||67] } 7272LA<7°‘T)\2"’
t=0 t=0
G 9- 20%/Z4_°‘0“T\an 63 A2 »
- 50 In?~ 2UCED T 15010 AL i
Upper bound for @. From Ep_; it follows that
- 69,69 2. 20~vgT/LA
@ = —y(1-1Lv) Z (607, 70) < VZHQbH [nell < B v E—
=0 t=0
a a e a (53)
(54) ﬂ.a T\/E \/E’y Sé- (75)
10 lnlfa 4(K,8+1) 5
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Upper bound for ®. First, we have

Ee [Lv? (1617 — Eer [161°])] = 0.
Next, sum @ has bounded with probability 1 terms:
222 (161 = Eee [l021P])| < L9® (N2 12 + B [l16217))
(68) 2,2 69 A A def

< 8Ly 5012 2D = gy AKED) = (76)
B B

, 2
The summands also have bounded conditional variances &2 & E¢t {LQVZl (HG? I? - E¢t [H@f ||2D ] :

_, (9 A y . 2Ly2A .
7S e Be (D771 - Be {16017 |] < ey e (1611 ()

T—1
since In 2 B > 1. In other words, we showed that { 2 (HQ"HQ — Eg [||0“||2} ) } is a bounded martingale difference
t=0
sequence with bounded conditional variances {77 }f 01 Next, we apply Bernstein’s inequality (Lemma B.2) with X; =

2
(||9}J|| — B¢t [||9§‘|| D, parameter c as in (76), b = g, G = mlAw

A — A2 b2 i
PlI®>2 and 22— =2 Ly _ - .
{| S Zatwmn“”{;”} eXp< 2G”r”/ﬁ) 2(K +1)

t=0

Equivalently, we have

3 T—1 , A2 A
P{Es}>1— ——————, for Eg = | either o> —————— or O —;. 78
W} 2 1= oy B ;"t 1501n 2570 o< 3 78)
In addition, Ep_; implies that
T-1 T-1
9 D 2Lfy2A ( )36L72A)\2 *oc*T
2 u
th < 4(K+1) ZE? 16:11%) s
t=0
G4 9-20% oo TVA I e 52 A? 2
~ 500 e AL T 501y 2D 7
Upper bound for @. From Ep_; it follows that
— o 2—a
_ 9 wn?2 2)2-a 0 (54) 9.20¢ \/Z ’yO‘O'O‘T\/Z (53) A
® = Ly ;Egt {H@t [ } 2181422 = e D © = (80)
Upper bound for ®. From Er_ it follows that
(69) 4a 2aTL 1 a 2aTLa 2aA1 a (53) A
- WZ ez < L < @D

(a—1) 400 1p20-o) 4(K6+1) =5

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event E_; implies

(67)
A < A+D4+@0+0+@+06,
(75) (80) (81)
023 23 823

T-1 (79) A2

(74) A2
tzo ~ 1501n 4<K+1) Z - 1501n74<K5+”'
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Moreover, we also have (see (73), (78) and our induction assumption)

(T-1)p B B
P{Er_4}>1——~——, PlEg}>1— ———, PlEg}>1— ——
{ Tl}— K+1 ) { ®}_ Q(K—l—l)’ { @}_ Q(K—l—l)’
where
T-1
A? A
_ : 2 =
Ey = {enher 2 o; > ol 4(Kﬁ+1) or @ < 7 },
T-1
A2 A
Es = ith Gl > ——— Bl < — .
® {el er > o3 ol 4(KB+1) or |® < E }
Thus, probability event Er_1 N Eg N Eg implies
A A A A A
Ar < A — 4+ =4+ =+ —==2A
TS ATETETE TG ’
which is equivalent to (58) and (59) for t = T', and
— I — — — — T
P{Er} >P{Er_1NEsNEg}=1— IP{ET_1 UFEeoU E@} >1-P{Er_1} —P{Eo} —P{Es} >1- Ki—fl

This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{Fy} > 1 — k¥8/(kx+1). In particular,
for kK = K + 1 we have that with probability at least 1 — 3

||2 62) 2A (53) 2A

K+12va A(K+1)_7(1—%)(K+1)

and {z*}&_ | C @, which follows from (59).

Finally, if
o 1 VA
7 = i K+’ a1 (o
80LIn =55 orlon,/IEE (1n LKB“)) :
then with probability at least 1 — 3
Z IVFE? < 2A < 4A
K“ y(1-5) (k1) " E+D
a—1
320ALIn 2 80VA2ToVIK % (In UG )
- K+1 K+1
LA ln VLAcIn= E
= O [ max ,

K Kt

To get 5 +1 Z |V £(z*)||?> < e with probability at least 1 — £3 it is sufficient to choose K such that both terms in the

maximum above are O(e). This leads to

e @

K = O | max LAIHLA< LAU) In ;( LAU)
€

eB’ € €

which concludes the proof. O
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E.2. Polyak-L.ojasiewicz Functions

In this subsection, we provide a high-probability analysis of clipped-SGD in the case of Polyak-f.ojasiewicz functions. As
in the non-convex case, we start with the lemma that handles optimization part of the algorithm and separates it from the
stochastic one.

Lemma E.3. Let Assumptions 1.3 and 1.4 holdon Q = {x € R | Iy e R%: f(y) < fu +2A and ||z — y| <

where A = f(z°) — f., and let stepsize v satisfy v < % Ifz¥ € Qforallk =0,1,...,K +1, K > 0, then after K
iterations of clipped-SGD for all x € Q we have

K
@Y = fo < Q=) T E0) = £) = (1= Ly) Y (1= ) TRV f(*), 6r)
k=0

2 K
Z L=y 6k, (82)
k=0
where 0y, is defined in (52).

Proof. Using z#*! = zF — 'Y%fgl« (x*) and smoothness of f (1.3) we get that forall k = 0,1,..., K

f(xszrl) < f(xk) + <Vf(l‘k),$k+1 _ xk> + ngkJrl _ kaQ
~ I~2 ~
< @M = (VR Ve (@) + TV fer (@)1

2
D gty =y (1= G IR =91 = IV 60 + S 10

< b = IVAEIP =21 - L)V, 00 + %H@kll?
F@) = yn(f*) = fo) = (1= L)V F ("), 0) + L%lleku?

By rearranging the terms and subtracting f,, we obtain

L 2
FEH = £ £ (=) (") = £) =91 = LT F(E), 00) + =2 6]
Unrolling the recurrence, we obtain (82). O]

Theorem E4. Let Assumptions 1.1, 1.3, 1.4 holdon Q = {x € R? | Iy € R? : f(y) < fu+2A and ||z —y| < VA/20vT},
where A > Ag = f(z%) — f., stepsize

. 1 IH(BK)
0 < 83
<7 < mln{250L1nW’u(K+1) ; (83)
2((! 1)
Bx = max{ 2, . (K+ )71 A (84)
2646002 Lo2 In™" (%) In?(B)
2((y 1)
K~ 2A

= O | max< 1, ) ) (85)

Lo? lnz(aail) (%) In? [ max 2,%

Lo?2In~ « (%)

and clipping level
—yu(l+* A

_ exp(—yu(l ++/2))VA (86)

120v/LyIn 28D
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for some K > 0 and 8 € (0,1] such that In % > 1. Then, after K iterations of clipped-SGD the iterates with
probability at least 1 — (3 satisfy
F (@) = o < 2exp(—yu(K +1))A. (87)

In particular, when ~ equals the minimum from (83), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

97 2@=D (g o P N
Lo“In™ = £ )In* | maxq 2, ——H£=—
uk 7 Loz 5 (1)
f (™) = fo=0| max{ Aexp | — ,

Lln%

(88)

meaning that to achieve f (Z‘K) — f« < & with probability at least 1 — (3 clipped-SGD requires

L A L A Lo2\ ZTa-D 1 /Lo2\ oD N
K=0 <u n (5) In (uﬂ In ) ’ (/ﬂe) In (5 (M25> > Ine= (Ba)> ; (89)

iterations/oracle calls, where

A
cln <;3 (fgi)”““)

Proof. As in the previous results, the proof is based on the induction argument and shows that the iterates do not leave
some set with high probability. More precisely, for each k = 0,1, ..., K + 1 we consider probability event E}, as follows:
inequalities

B: = max < 2,

Ay < 2exp(—yut)A (90)

hold for t = 0,1,...,k simultaneously, where A, = f(z') — f.. We want to prove P{E)} > 1 — *8/(k+1) for all
k=0,1,..., K 4+ 1 by induction. The base of the induction is trivial: for k = 0 we have Ay < A < 2A by definition.
Next, assume that for k = T'— 1 < K the statement holds: P{Er_1} > 1 — (T-18/(kx+1). Given this, we need to
prove P{Er} > 1 — T8/(k+1). Since A; < 2exp(—yut)A < 2A, we have 2t € {y € R? | f(y) < f. + 2A} for
t=0,1,...,T7 — 1, where function f is L-smooth. Thus, Ep_; implies

(83),(86) \;

IVFE) € VREF@) — ) < 2y/Texp(—auhA & 5 1)
forallt =0,1,...,7 — 1. Moreover
(86) VA
T _ T-1 T-1
x =~||V <A ,
| | =NV fer—1(z" ) <A1 < VI

meaning that Er_; implies 7 € {z ¢ R? | Iy e R?: f(y) < fo +2A and ||z — y|| < VA/20vT}. Using Lemma E.3
and (1 — yu)? < exp(—yuT), we obtain that E7_; implies

Ar < exp(—yuT)A - 71—L721—WT”<W( ), 0r)
1=0

9 T—1

T Z(l — )" 67

1=0
To handle the sums above, we introduce a new notation:

m= {Vfw), it [V ()] < 2T exp(~ 42 VA,

. (92)
0, otherwise,
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fort =0,1,...,T — 1. These vectors are bounded almost surely:
Ine ]| < 2V L exp(—mt/2) VA (93)
forallt =0,1,...,T — 1. In other words, Er_1 implies n; = V f(a?) forallt = 0,1,...,T — 1, meaning that from E_;

it follows that

T—1
Ap < exp(—yuT)A — (1= Ly) Y (1 =)™ o, 00)
=0

T-1

2
+L7 da

=0

— i)

Tflleng?'

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of 6;:

08 =V fer () — Eer [% fer (mf)} . 0 =Eg [% fer (xf)] — Vf(ah). (94)
foralll =0,...,T — 1. By definition we have 6, = 6} + 0? forall | = 0,...,T — 1. Therefore, Er_; implies
T-1 T-1
Ar < exp(—ypT)A—y(1 = Ly) > (1 =)™, 6) —y(1 = L9) Y (1= yw) " i, 67)
=0 =0
6} &)
T-1
+IY Y (=) T T B (10717 + Ly Y (1= )" (11611 — B [J165401%])
=0
@ @
T-1
o 2o S 7 i 171 o 95)
=0

®

where we also apply inequality [a + b||? < 2||a/|? + 2||b||? holding for all a, b € R? to upper bound ||6;||%. It remains to
derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive proof we need to
show that ® + @ + ® + @ + ® < exp(—~yuT)A with high probability. In the subsequent parts of the proof, we will need
to use many times the bounds for the norm and second moments of 6 and #?. First, by definition of clipping operator, we
have with probability 1 that
161 < 2A:.

Moreover, since E7_1 implies that ||V f(2!)||? < \/2 forall [ = 0,1, ...
that £ implies

(96)

,T — 1 (see (91)), from Lemma 5.1 we also have

67]] < Aa T (97)
Ee: [161°] < 183770, 98)
foralll=0,1,...,7 — 1.
Upper bound for ®. By definition of 6}, we have E¢.[0}'] = 0 and
Egt [=7(1 = Ly)(1 =)™~ . 0)] = 0
Next, sum @ has bounded with probability 1 terms:
T—-1-1 U ®3) u
| =71 = Ly)(L —yu) (011 < yexp(=yu(T —1=1)llm] - 16/
(93),(96)
< AVLAyexp(—yu(T —1-1Y2))N
N 5In 74(](/;1) B
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The summands also have bounded conditional variances o2 & Eer [v2(1 — Ly)2(1 — yp)?T =272y, 01)?]:

of < Ea [¥2(1— Ly)?exp(—yu(2T — 2 = 21)) |m|* - 116}*]1°]

(93),(83) 9 w2
< 4P LAexp(—yp(2T —2 —1))Eq [16/]%]
(83)
< 10y°LAexp(—yu(2T — 1)) R*Eq [[161]1%] - (100)

In other words, we showed that {—~(1 — Ly)(1 — yu)"=*~!(m, ) }-;! is a bounded martingale difference sequence

with bounded conditional variances {UZQ}IT:_Ol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —~(1 —

2
Ly)(1 = yp)T =1y, ), parameter c as in (99), b = 1 exp(—yuT)A, G = %.

T-1
< xp(=2pT)A? b? B
{@I > *eXp( ’}/ILLT Aand Z =~ W S 2€Xp — =

=0

Equivalently, we have

T—

—2uT)A?
P{Eo}>1— —L for Eo= {either Z o Xp(=2yT)

1
. 4K+l <- —yuL)A 5. (101
2(K +1) — 150 In 4(Kﬁ+1) @] < 5 exp(—yuT) } (101)

In addition, Ep_; implies that

T-1 ul|2
(100) E 0
E of < 1072 LA exp(—2yuT) M

= exp(—ypul)
K 2—«
98), T<K+1 )\
< 1802 LA exp(—2yuT)o® _
= lz: exp(—ypul)
(86) 1807"‘\@ \/Z exp(—2'yﬂT)oa 1 9
= - (exp(—yu(l + /2
12070 1y~ A0CED ; s Pl + 1)
A—
= 180y VL VA exp(2uT)o Z exp(yu(a — 2)) - exp (7“al>
—ala2—a 4(K+1
12020 n?~* 2D prd 2
4—
< 180y*VL VA exp(—2yuT)o*(K + 1) exp(%)
B 1202 [p? @ %
@) exp(—2yuT)A?

1501 40D o

where we also show that E'r_; implies

K 9_ « 4— aK
)\ o a L A K 7#
VLA § VL ( +4);Xf)( ). (103)
< exp( T 12020 n?~* AL
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Upper bound for @. From Ep_; it follows that

@ Ll - 116711
® <
= e Z exp(—ypul)
T-1

(93),097) 1

< 21 oxp(—yu(T — 1))V Ac®

< yexp(—yu(T = 1)V ; T o ( o)

_ _ l
gt 1907 WL VAT exp(—yulT — 1))y%0 In® ! AU Z exp(1r/2)
5 exp (—yu(l+1/2))""

T<K+1 11—« 22—« l

< 21t 120 WL VAT T exp(—yu(T — 1))y%e® In®! 4(KB+1) Zexp ('y,t;oz)

=0

—a —a K
< olta. 1200‘71\FL1 \/Z2 exp(—yp(T — 1))y%e® In®* %(K +1)exp (fﬂtgé >

1
< 3 exp(—yuT)A. (104)

Upper bound for ®. From E;_ it follows that

< Ee [l6117]

® = Ly?exp(—yu(T -1
v* exp(—yp( ) ;:O oxp(—ul)
T-1 2—a
(98) A
< 18Lyexp(—yu(T — 1)o* Y —L—
= exp(—ypul)

(103) 1870*\@“&2“ exp(—ypu(T — 1))o*(K +1 )exp(V“aK)

1202—@ 2=« LKB*”

@33 1
< gexp(—wT)A. (105)

Upper bound for @. First, we have
Ly2(1 = )" B [16711% — By [116712]] =
Next, sum @ has bounded with probability 1 terms:
e ©0) 8Ly exp(—ypuT)A}
L’Y21_")//JJT1I 0u2_El 9u2 < l
(1 =)™ [16711° — Ee [ll67117]| oxp(—7( £ 1)
so exp(—yu(T +1))A

1800 In® 25D

exp(—yuT)A
51n 2L

= c (106)
The summands also have conditional variances

o def o ” “ 2

57 & Bt [L2 (1 — )72 [ 67> - Eer [llo1%] "]
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that are bounded

~o (109 Ly exp(=2yuT)A

 Sexp(—yu(l+1)) 1n%
2L~2 exp(—2yuT)A

5exp(—yu(l+1))In % ¢

Ee [[161% - Ee [10/17]])

[1163117] - (107)

In other words, we showed that {Ly2(1 —yu)T =27 (]|6}]]? — Eq [||t9}‘||2])}lT:_01 is a bounded martingale difference
sequence with bounded conditional variances {Elz}ngol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; =
L2 (1 = )T (105412 — Eer [1161]12] ), parameter c as in (106), b = & exp(—yuT)A, G = CC ATl JESS

150 In 2D
PJ1@] > L exp(—yuT)A and Tz_l”l < Sp(2 DAL s b
—exp(— —_— xp | — = .
5 PATIE 200 = 150In A0 f = P\ 772G 1205 ) T 2(K +1)
Equivalently, we have
P{Eo}>1——D for [y either TEIABM or @] < L exp(—yuT)A S . (108)
@5 = 2K 1 1) ® = £ 01 150 In 4(Kﬁ+1) =5 Xp{—=7TH .
In addition, Ep_; implies that
T-1 T-1 “
Z 52 a 2L7% exp(—yp(2T = 1))A Z Ee [167%]
pard - 51n 2D = exp(—yul)
ODTZK+L 3619 exp(—ypu(2T — 1) Ac® EK: A2
- 51n 2L = exp(—ypul)

(103) 36v/ Ly exp(—yu(2T — 1))\/Z4_a00‘(K +1) exp(%)
5 - 1202~ In®~ 2D

63 exp(—2yuT)A?

150 In 2E£ED (1o

Upper bound for ®. From Er_ it follows that

T-1
® = Ly* ) exp(—yu(T — 1= 1)[167)1?
=0
T-1
7 1
< 22 Ly® exp(—yu(T — 1)) —
; AP 2 exp(—ypl)

Z exp

86, T<K+1 2-22. 1202a—272aﬁ2“ exp(—yuT)o?* In2e—2 % K l
< (w(2a -2) (1 + )> exp(yul)

\/Z2a—2 e
4. 92 120204—272(1@2‘1 exp(—yuT)o?* In?*~2 % K
= 5a=3 > exp(yual)
VA =
4220120222920 /I* exp(—quT)o? =2 LD ()¢ 4 1) exp(ypak)
< \/ZQQ—Q
(53) 1
< gexp(—'y,uT)A. (110)
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Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Er_; implies

95)
Ar < exp(—ywINA+D+@+@+ D+ 6,

104) 1 (105) 1 (110) 1
@ < cexp(-wD)A, @ < pexp(—wD)A, © < cexp(—yuT)A,
Til o2 (122) exp(—2yuT)A? Tzl (109) exp(—2yuT)A?
= 7 1omAEE) T T 501 AEHD

Moreover, we also have (see (101), (108) and our induction assumption)

T-1
P{Er_1}>1- %,
P{Es}>1— — D PEy>1- -
- 2(K +1)’ - 2(K +1)’
where
) - exp (—2yuT)A?
E@ = {elther Z W or |®| < eXp( ’Y‘UT)A s
B
) exp (—2yuT)A? 1
E@ = {elther Z W or |@| < exp( ’Y/lT)A .
=0

Thus, probability event E7r_1 N Egp N Eg implies

95)
Ar < exp(—ypT)A+0+@4+@®+@+6

< 2exp(—yuT)A,
which is equivalent to (90) for ¢ = T, and

— — — T
P(Er} 2 P(Fr 11 FoN Ba} =1~ B{Br 1 UToUTe} 21— 2.

This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{F}} > 1 — k¥8/(kx+1). In particular,
for kK = K + 1 we have that with probability at least 1 — 3

F@STY) = £ < 2exp(—yu(K +1))A.

Finally, if
N = min 1 IH(BK)
250L1n%’u(1<+1) 7
Bxg = max< 2 (K+1) pA

2646002 Lo? In "= (%) In?(Bx)

2(a 2(a—1)

K WA
1) 2(a—1)
Lo2ln™ = (%)ln2 max 2,%
Lo2In~ « (%)
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then with probability at least 1 — 3

F@) = fo < 2exp(—yu(K +1)A

K+1 1
= 2Amax< exp 7M—1L(K)+1) ,—
250LIn #=5= | B

2(a—1) 9 KL“ 1 N
LU InT o (E) In max 27T
,LLK p Lo2Iln~ « (%)
O | max{ Aexp | — ,

Lln % e 12

To get ||#%+1 — 2*||2 < & with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum

above are O(e). This leads to

L (A L A\ [(Lo*\7 0 (1 (Lo2\7=D\
K=0(=Zm(=)m(=m=), (= (= (= In="1 (B.) |,
O(un<€)n<uﬁn€)’<u2€> n(ﬂ(u2€> )n ( )>

where

This concludes the proof. O

E.3. Convex Functions

Now, we focus on the case of convex functions. We start with the following lemma.

Lemma E.5. Let Assumptions 1.3 and 1.6 with i = 0 hold on Q = Bag(x*), where R > ||2° —
satisfy v < % Ifz* € Qforallk =0,1,..., K +1, K > 0, then after K iterations of clipped-SGD we have

2% — 2| — fla™* — 2|

v (f@") - fa") <

K+1
2y o 2
] Za: — 2" =4V f(z"),0 K—f—lZH Ol”, (111)
K
K = Z (112)
k:

where 0y, is defined in (52).
Proof. Using z#*! = zF — ’Y%f&k (x%), we derive for all k = 0, 1,..., K that
2" =2 = [laf =2 = 29(ah — 2%, V fer (@) + 7|V fer ()P
= |la® =P = 29(a" =2t V(@) = 29(2® — 2%, 0k) + AV f (@) + 0k

S |laF — 2|2 = 2y (F(@F) — F(27)) — 29(a — aF — AV F(2"), 0k)
A2V @)1 + 2202

< flaf =P =2y (1 —AL) (f(=¥) = f(z7)) — 29(a" — 2" — 4V F(z"), 0)
+72]10k I

2% = 2| = (f(2*) = f(27)) = 29(a" — 2% =9V [ ("), 0k) + 7|0
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Summing up the above inequalities for k = 0, 1, ..., K and rearranging the terms, we get
K K 9 K
I(’Y—Hko (f(xk)ff(x*)) < ; ||xk7x*|‘27 ka+1 7x*||2) I(J’_’yl;)<xkaj*fyvf(l’k),0k>

2

KHZII il

Ja® — |2 — [+ — o
- K+1 K+1Zx_z —1VF @), 0)
2
e Z 16:1.
Finally, we use the definition of Z¥ and Jensen’s inequality and get the result. O

Using this lemma we prove the main convergence result for clipped-SGD.

Theorem E.6 (Case 3 from Theorem 3.1). Let Assumptions 1.1, 1.3 and 1.6 with n = 0 hold on Q = Bag(x*), where
R> |2 -2

1 R
< mi ) — > (113)
(K 11) a1
80LIn === 10g1 90,k L <ln 74“‘[;1))

R
M E=EA= ————— (114)
4071n%

for some K > 0and 3 € (0,1] such that In % > 1. Then, after K iterations of clipped-SGD the iterates with probability
at least 1 — (8 satisfy

2
FE) = @) € s and (U € By(e”) 113

In particular, when ~ equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

LR?In % ocR lnan1 %

—K *\
f(x )_f(x)_o max K ) Kanl )

(116)
meaning that to achieve f(T%) — f(x*) < e with probability at least 1 — 3 clipped-SGD requires

LR2 o=t 1 asT
K=0 (max{ f , (O€R> In (ﬂ (UsR> ) }) iterations/oracle calls. (117)

Proof. Let Ry, = ||x* — x*|| for all k& > 0. Next, our goal is to show by induction that R; < 2R with high probability,
which allows to apply the result of Lemma E.5 and then use Bernstein’s inequality to estimate the stochastic part of the

upper-bound. More precisely, for each £ =0, ..., K + 1 we consider probability event Ej, defined as follows: inequalities
t—1 t—1

=2y (2t —a* Vi), 0) +2 ) [0)° < R (118)
=0 =0

R, < V2R (119)

hold for all t = 0,1, ...,k simultaneously. We want to prove via induction that P{Fy} > 1 — *8/(x+1) for all k =
0,1,..., K + 1. For k = 0 the statement is trivial. Assume that the statement is true for some k = T — 1 < K:
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P{Er_1} > 1 — (T-1)8/(kx+1). One needs to prove that P{Er} > 1 — T8/(x+1). First, we notice that probability event
Ep_q implies that z; € BﬂR(w*) forallt =0,1,...,T — 1. Moreover, E1_, implies

- . (114)
lz” = 2*| = []a77! = 2" =V fer (@™ < ||~’CT*1 —z*|| + 7|V fer-1 (@Y < V2R +9A < 2R,

ie, 20 2, ..., 2T € Byg(x*). Therefore, Er_1 implies {z*}7_, C Q, meaning that the assumptions of Lemma E.5 are
satisfied and we have
L . |$O—J)*2— LIZ‘t—LIJ*Q
2’}/ t—1 72 t—1
l 2
—= D (el =2t =V f(a'),0) +7le9 [ (120)
1=0

forallt =1,...,T simultaneously and for all ¢ = 1,...,T — 1 this probability event also implies that

1 =1 (118) 2R2
f@h - fl@r) < po (32 —27) (@' —a" =V f(a'),0) + 7 Z ||9z||2> e (121)
=0

Taking into account that f(z7 1) — f(z*) > 0, we also derive from (120) that Ez_; implies

t—1 —1
R} < R* =27 (al —a* =V (a),0) ++° > _[I6i]*. (122)
=0 =0

Next, we define random vectors

{xt — 2" — 4V f(at), if |at —2* — 4V f(h)|? < 2R,
m =

0, otherwise,
forallt =0,1,...,T — 1. By definition, these random vectors are bounded with probability 1
|| < 2R. (123)
Moreover, fort = 0,...,T — 1 event Er_; implies

©) 113014 A
IVl 2 Llat 2" 'S VILR 5 (124)

. . . iy 129 (113)
lz* —a* =V i) < ll2* =2+ V@) < V2R(L+Ly) < 2R.
Next, we define the unbiased part and the bias of 6, as 6 and 62, respectively:
03 =V fer () — Ber [6 fer (xt)} .0 =Eq [6 fer (xf)] — Vf(ah). (125)

We notice that §; = 6 + 6?. Using new notation, we get that Ep_; implies

T-1 T-1 T—1
By < R2-29 (00 m) -2 Y (0hm) + 292 Y (16007 — Eee [16711))
t=0 t=0 t=0
) @ @
T-1 T-1 9
+29° Y Ee [||9}:||2} +292 3|02 (126)
t=0 t=0
@ ®

It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, @, ®, i.e., to finish our inductive
proof we need to show that ® + @ + ® + @ + ® < R? with high probability. In the subsequent parts of the proof, we will
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need to use many times the bounds for the norm and second moments of #% and 6?. First, by definition of clipping operator,
we have with probability 1 that

041 < 2. (127)
Moreover, since E7_; implies that |V f(x!)|| < M2fort =0,1,...,T — 1 (see (124)), then, in view of Lemma 5.1, we
have that E'7_q implies
2%«
ol < Sa (128)
Ee [|167]7] < 18A* %0 (129)

Upper bound for @. By definition of #}', we have E¢: [#}'] = 0 and

Eee [=27(0)',n1)] = 0.
Next, sum @ has bounded with probability 1 terms:

23),(127

(123), (114) R? def
29 (0% ) | < 29116 - Nmell < =

)

The summands also have bounded conditional variances o2 & Ee. [4y2(62, 1;)?):

(123)
o? < Eet 171617 - Imll?] < 1672 R*Ee: [[l6F1] . (131)

In other words, we showed that {—2~v (6}, n;) }tT:_ol is a bounded martingale difference sequence with bounded conditional
variances {o? f:_ol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —2~ (0¥, 1), parameter c as in (130),
4

R g ___R .
b= 5’G_1501n%'

R2 [t R* b2 3
P{|®| > and 3 L QP — — .
{ e ;Jt_mom‘“l(;” - eXp( 2G+2d’/3) 2(K +1)

Equivalently, we have

B T-1 R4 R2
_——_— — 1 2 —e —
P{Ep} > 1 KT for Eg {euher ; ol > S or | < } (132)
In addition, F'r_1 implies that
T—1 T—1
a31) (129)
Yo7 < 16y°R*) Ee [0F)°] < 28892 R20TAT
t=0 t=0
a4 9- 40 R g Ty™ (113) R4 33
C s0m?e dEED T 50, AUCED (139
Upper bound for @. From Er_; it follows that
T—1 T—1
(123),(128) 4 . 2%yg*T R
@ = -2y Z<9i)777t> <2y Z 1621 - lImell - < B Vs
t=0 t=0
80 ozTRQ—oz @ (113) R2
o2 gt 7 T (134)
10 pt-« % 5

Upper bound for ®. First, we have
Ee [29° (16717 — Ee: [I61°])] = 0.
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Next, sum @ has bounded with probability 1 terms:

202 (lo21P = Eee [loP])| < 292 (6w + B [li6207))

a27) R? R?
242 (L4 def
< 16yTAT = 100 1n2 4(KB+1) = Sn 4(1(/;1) = (135)

2
The summands also have bounded conditional variances 77 &ef E¢: [474 (\\9;‘\\2 — Egt [||9,§‘||2D } :

L, u3%) R? wn2 w2 442 R? u
7S ey Be 2210017 — Ee [1011°]|] < =gy (10017 (136)
5In ==— 5In 25

. 4(K+1) 9 2 o\ T-L . .
since In === > 1. In other words, we showed that {27 (||9?|| — Egt [||9,?|| D} is a bounded martingale
t=0

difference sequence with bounded conditional variances {5,52}?:_01. Next, we apply Bernstein’s inequality (Lemma B.2) with

X, =29 (11031 = Bee [16311°] ), parameter cas in (135), b = 22, G = ﬁ
R’ = R* b B
® — d _— 3 <2 - = .
{ SRR PL e 1w [ = exf’( 2G+2€b/s> 2(K +1)

Equivalently, we have

B T—1 ) R4 R2
P{Es}>1— ————, for Eg = | either 0y > —————— or [® < — (137)
) 2(K +1) ; "7 15010 2D o=
In addition, F'r_1 implies that
(136) 4’}/2R2 T-1 ( 9) 72’72R2/\2 @ ozT
Zat = & K+1) ZEF 167(1%] 5 g AEFD)
t=0 t=0 -5

(i 9-40%  g*TR*™y™ (113 R*

1000 p3- % T 1501 AEEDS (139

Upper bound for @. From Ep_1 it follows that
@ = 292 Z_:Eg [||9;L||2] 2 369202 gop (19 943(())@ &2% 2 R;. (139)

Upper bound for ®. From Ep_ it follows that
— 292 Z H 5H2 (128) 2 . 492 T~? (114) 6400% o2aTy2e R22 (113) R2 (140)

A2(a—1) T 800 1 2(1—a) 4(Kﬁ+1) = 5

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Ep_; implies

, (1200
RAE < R+D+@+0+@+0,
(134) R2 (139) R2 (140) R?
< = S = S =
5 5 5
T—1
(133) (1?8) R4
2
o; < , o, < —m——.
; "7 150l 4<K+1) Z © 7 1501 A
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Moreover, we also have (see (132), (137) and our induction assumption)

(T-1)p B B
P{Er 4} >1— ——— P{Esp} >1— ——— PlEg} > 1 —
{Bri} = ki1 [ibelz 2K +1) {Ba} = 2K +1)
where
T—1
R* R?
EFy = either P> —— _ or |®<—=— ,
{ Z; "7 1501 A @ 5}
T—1
R* R?
Es = either GE> —————— or [®<—/—3.
{ ; FT 1501 AUSHD @l 5}

Thus, probability event Er_; N Eg N Eg implies

R> R?* R R? RZ?
R2T < R2+?+?+?+?+?:2R2a

which is equivalent to (118) and (119) for ¢ = T, and
s

IP{ET} > P{ET_l NEpN E@} =1- ]P){ET_l UE@ UE@} >1 7P{ET_1} - P{F@} 7P{E@} >1-— Kil

This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{F}} > 1 — ¥8/(kx+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

(121) 2R?
—K *
%) — f(x
ra) - )2 2
and {J;k}f:o C Q, which follows from (119).
Finally, if
< mi 1 R
T 0L A = (7

71087 200K % (In 2UGED)

then with probability at least 1 — 3

2R?
=K\ _ * <
160LR2 In 2USHD 401085 0 RE & (m%) ¢
= mhax K+1 ’ K+1
LR2ImE sRIn“+ K
= (O | max B B

K 7 gt

To get f(zX) — f(2*) < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum
above are O(¢). This leads to

K=0 <max{mlnm, <0R>Mln <1 <0R>M>}> ,
€ B £ B\ ¢

which concludes the proof.
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E.4. Quasi-Strongly Convex Functions

Finally, we consider clipped-SGD under smoothness and quasi-strong convexity assumptions. As the next lemma shows,
the gradient of such function is quasi-strongly monotone and star-cocoercive operator.

Lemma E.7. Consider differentiable function f : RY — R. If f satisfies Assumption 1.5 on some set () with parameter |,
then operator F(x) = V f(x) satisfies Assumption 1.9 on Q with parameter /2. If [ satisfies Assumptions 1.3 and 1.5 with
= 0 on some set Q, then operator F(x) = V f(x) satisfies Assumption 1.10 on Q with { = 2L.

Proof. We start with the first part. Assumption 1.5 on set () means that for any = € @
* * /’I/ *
f@*) 2 f(z) +(Vf(z), 2" —a) + Tlz — ™|,
For F(z) = V f(z) it implies that for all z € Q

(F(x).a—a") > f(2) = f@) + Sl — |2 = Sl — 2|2,

i.e., Assumption 1.9 holds on @) with parameter #/2 for operator F'(z).

Next, we prove the second part. Assume that f satisfies Assumptions 1.3 and 1.5 with ¢ = 0 on some set (). Our goal is to
show that F'(z) = V f(z) satisfies Assumption 1.10 on Q. In view of (Gorbunov et al., 2022b, Lemma C.6), this is equivalent
to showing that operator Id — + F is non-expansive around z*, i.e., we need to show that ||(Id— 1+ F)(z) — (Id— + F) (z*)|| <
||z — «*|| for any = € Q. We have

[(10- 28 - (10- 1) o

2 2

1
x—a" — ZF(x)

. 2 . 1
lz = 2" = £ (= 2" F(2)) + 7 |1 F(@)]”

e~ = 24— 0, V(@) + 25 V@)

OL e - % (f(z) — f(a*)) + % (f(z) = f(z7))

o — ]|,

IN
8

This finishes the proof. O

Therefore, using the result of Theorem H.6 with ¢ := 2L and p := #/2, we get the convergence result for clipped-SGD
under smoothness and quasi-strong convexity assumptions.

Theorem E.8 (Case 4 in Theorem 3.1). Let Assumptions 1.1, 1.3, 1.5, hold for Q = Bagr(z*) = {x € R? | ||z —z*|| < 2R},
where R > ||2° — z*||, and

0<~v < min , , (141)
{800L1n4<K6“> u(KH)}
2(a—1)
K 1 - 2 D2
Bx = max{?2, 2( J;QL) wR (142)
4540020210 = (%) In?(B)
2(a—1)
K= 2 P2
— 0| max{2, wER (143)

)
2(a—1) M 2 P2
c2ln” = <%)1n2 max 2,%
()

exp(—y(#/2)(1 + ¥/2))R
M= 120y In 2EHD 7 (14
i ——s
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for some K > 0 and 8 € (0, 1] such that In % > 1. Then, after K iterations the iterates produced by clipped-SGD
with probability at least 1 — (3 satisfy

||.’L'K+1 _ x*HQ < 26Xp(—’y(ﬂ/2)(K + 1))R2 (145)

In particular, when ~y equals the minimum from (141), then the iterates produced by clipped-SGD after K iterations with
probability at least 1 — (3 satisfy

2(a—1 2(a=1)
o21n e (5) In? [ max < 2, Kgaai_fw
K ) uk ? o2 )(%)
2% —2*||* = O | max { R*exp TILE ) e ,  (146)
5 =

112

meaning that to achieve ||z — z*||? < e with probability at least 1 — 3 clipped-SGD requires

L (R L, R (o2\@0 (1 /g2\7@D\ .

iterations/oracle calls, where
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F. Missing Proofs for clipped-SSTM and R-clipped-SSTM

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and the
missing proofs. For brevity, we will use the following notation: V fex (#*71) = clip (V fer (2FT1), Ap).

Algorithm 2 Clipped Stochastic Similar Triangles Method (clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point z°, number of iterations K, stepsize parameter a > 0, clipping levels {)\k}kK:*Ol, smoothness constant

L.
0 0

1: Set Ag =g =0,y =2 ==z
2: fork:O,...,K—ldo
30 Setoy41 = Q,LL, Ak+1 = Ap + o1
4 okl Apy*+opgq 2"
: Akt
5:  Compute fok( FH) = clip (Vfer (z%1), \y) using a fresh sample &% ~ D,
6:  oREtl — Sk _ g1V fer (1)
k1 _ Axytong 2t

7: Y = At

8: end for

Output: y%

F.1. Convex Functions

We start with the following lemma, which is a special case of Lemma 6 from (Gorbunov et al., 2021). This result can be seen
the “optimization” part of the analysis of clipped-SSTM: the proof follows the same steps as the analysis of deterministic
Similar Triangles Method (Gasnikov & Nesterov, 2016; Dvurechenskii et al., 2018) and separates stochasticity from the
deterministic part of the method.

Lemma F.1 (Special case of Lemma 4.1 from (Gorbunov et al., 2021)). Let Assumptions 1.3 and 1.6 with u = 0 hold
on Q = Bsgr(x*), where R > ||2° — x*||, and let stepsize parameter a satisfy a > 1. If ¥, y* 2% € Bsg(z*) for all
k=0,1,...,N, N >0, then after N iterations of clipped-SSTM for all z € B3r(z*) we have

N-1
1 1
An (Fy™M) = f(2) < 5\\20 ] §||ZN — 2P+ ) g (Orrr, 2 — 2 + e V()
k=0
N—-1
+ Y i [0l (148)
k=0
Opir L V(@) = V@A), (149)

Proof. For completeness, we provide the full proof. Using zF+1 = 2F — ak+1€f£k (xF*+1) we get that for all z € Bsg(z*)
andk=0,1,...,.N —1

Q1 <6f£k (2Ft1), 2% — z> 1 Vfgk 2k 1), 2F Zk+1> + gt <€ff"' (2 H1), 2R+ z>

= a1 <Vf£k Ry ok Zk+1> + <Zk+1 k- Zlc+1>

1
= g Vfgk gk 1), Zk+1>_§HZk_Zk+1”2

1 1
+5 1% —20* - 5||z’“+1 - =% (150)

k+1

where in the last step we apply 2(a,b) = ||a + b||? — ||a|?* — ||b||* with @ = 2**1 — 2* and b = 2 — 2**1. The update rules

(22) and (20) give the following formula:

k k+1
1 Ary® 4 appa 2t

A k k
_ ArY a2 4 k41 (Zk+1 _ Zk) — gkl k41 (Zk+1 _ Zk). (151)
A1 Ak Ak Ak
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It implies
~ (149),(150) ) 1
Qi1 <Vf§k ($k+1)7zk _ z> < Aot <Vf(xk+1),zk _ Zk+1> . §HZk _ Zk+1||2
1 1
o (O, 20— 20 4 ol = 2P = Sl - 2
(150 A k+1\ k+1 _  k+1 _1 E _ k412
T R B EL el
1 1
Fapsr (Bri1, 2 = )+ S = 2P = Sl 1)
(36) Ag1 L 1
< A1 (FE*) = F5) + TH%kH — " P - §||Zk — ZFH?
1 1
i1 <9k+1’zk _ Zk+1> + §sz _ ZH2 _ §sz+1 _ ZH2
2
(151) 1 /ai, L
= A (fE) = FPY) + 5 (k“ - 1) 1% — 252
2\ Appr
1 1
+ak41 <9k+1,2k - Zk+1> + §|\Zk - ZH2 - *HZkH - ZHQa

2

where in the third inequality we use z**1

continue our derivation as follows:

,y* 1 € Bygp(x*). Since Ajyq > aLkHaﬁH (Lemma B.1) and @ > 1 we can

k41 <6f§k ("), 2 — Z> < Appr (FET) = FOFY) + akpn Ok, 28— 24

1 1
51128 =2l = Sl - 2 (152)

Convexity of f gives

<§f5k ("), 4% — :v’““> I A e R I (LWL sy
< FOF) = FEETY) 4 (Opar,yt - 2T (153)

The definition of zF+1 (20) implies
k11 (ask'H - zk) = A (yk - xk“) (154)

since Agy11 = Ay + ai41. Putting all inequalities together, we derive that

Qpt1 <6f§k (zk+1), 2P+t — z> = k11 <€f£k (zFHL), gk +t — zk> + 11 <€f£k (zF+1), 2 — z>

(= Ay <§f5k (xk+1)7yk - 33k+1> + Qg1 <§f§k(i’3k+1), 2* - Z>

(153),(152)
< AR (fOF) = FEETY) 4+ Ap (Orga,yb = 2T

+Apg1 (f@) = F@F) + g (Opgr, 27 — 25T

1 1
#3118 = 2 = S 2

AfW") = Appr fT) + angr (Opgr, 21— 2F)

tappr f(@ ) + apgr (Orgr, 25 = 25

1 1
#3118 = P = S )2

= A f(y*) = A f ) + g f (@)
1 1
k+1 Zk+1> + §||Zk _ ZH2 o 7sz+1 _ ZH2

(154)

g1 (Ops1, @
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Rearranging the terms, we get

A SO AF6Y) < (FEE + (Tha ),z = ) Dl - P

_%sz-&-l — 2+ apgr (Bpgr, 2P — 2P
(%) Q1 (f(mk+1) + <Vf(:ck+1), z— xk+1>)
e (B, = ) ek — 22 = S 2|
+ g1 <9k+1,xk+1 — zk+1>
S @)+ 5l =l = I = 2P g (B, 2 — )

where in the last inequality we use the convexity of f. Taking into account Ag = ag = O and Ay = Z,ICV:_Ol Q41 We sum
up these inequalities for k = 0,..., N — 1 and get

N-1
1 1
AnfyY) < Anf(z)+ §HZO —z||* - gHZN —2|* + Z g1 (Opyr, 2 — 2F1)
k=0
1 1 N-1 _
= ANFE 310 =22 = 1 =224+ Y aner (renz = 2+ e Ve (@)
k=0
(149) 1 1 =
= Anf(x)+ §HZO — 2| - §\|ZN =22+ > a1 (Orsr, 2 — 2P + o Ve (@FT)
k=0
N-1
2
+ > iy 10kl
k=0
which concludes the proof. O

Using this lemma we prove the main convergence result for clipped-SSTM.

Theorem F.2 (Full version of Theorem 3.2). Let Assumptions 1.1, 1.3 and 1.6 with . = 0 hold on () = Bsgp(x™*), where
R > [|2° — 2*|, and

|2 4K 9000(K + K# " 4K
S LR ’

B R
30041 In 27

a > max | 48600

(155)

Ak (156)

forsome K > 0and 5 € (0,1] such that In % > 1. Then, after K iterations of clipped-SSTM the iterates with probability
at least 1 — (3 satisfy

2
F69) = 1) < gy od S G () € Bana). (157)

In particular, when parameter a equals the maximum from (155), then the iterates produced by clipped-SSTM after K
iterations with probability at least 1 — (3 satisfy

2142 K ot K
LR*In 5 ocRIn 5

K *\
f(y )—f(.lf )_O max K2 ) Ka;1 )

(158)

meaning that to achieve f(y*) — f(z*) < e with probability at least 1 — j3 clipped-SSTM requires

LR2 LR2 5T 1 oo
K=0 \/T In i, ﬁ In| = ﬂ iterations/oracle calls. (159)
€ el € B\ €
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Proof. The proof starts similarly to the proof of Theorem 4.1 from (Gorbunov et al., 2021). Let Ry, = ||z — 2|, Ro = Ry,
Rp+1 = max{Ry, Ri4+1} for all k > 0. We first show by induction that for all k& > 0 the iterates xk“, zk, yk lie

0 0
in Bfik (x*). The induction base is trivial since y° = 20, Ry = Ry, and 2! = ’%?JA# = 29, Next, assume that
xl Tyl e By, («*) for some [ > 1. By definitions of R; and R; we have that 2! € Bp,(2*) € By, (z*). Since y!
is a convex combination of y' ! € By (¢*) C Bj (¢*), 2! € By (z*) and Bj (z*) is a convex set we conclude that

y' € By, («*). Finally, since 2! is a convex combination of ' and z' we have that 2/ lies in By (¢*) as well.
Next, our goal is to show by induction that R, < 3R with high probability, which allows us to apply the result of Lemma F.1

and then use Bernstein’s inequality to estimate the stochastic part of the upper-bound. More precisely, foreach k =0, ..., K
we consider probability event E, defined as follows: inequalities

t—1 t—1
ZO&[+1 <9[+1,5L‘* — Zl + Oél+1Vf§l(:L‘l+1)> + Zalﬂl ||91+1||2 < RQ, (160)
1=0 =0

Ry < 2R (161)

hold forall ¢t = 0,1, ..., k simultaneously. We want to prove via induction that P{E}} > 1 — *8/k forall k = 0,1,..., K.
For k = 0 the statement is trivial: the left-hand side of (160) equals zero and R > R by definition. Assume that the
statement is true forsome k =7 — 1 < K — 1: P{Er_1} > 1 — (T-1)8/Kk. One needs to prove that P{Er} > 1 — T8/k.
First, we notice that probability event Er_; implies that Et <2Rforallt=0,1,...,T — 1. Moreover, it implies that

@) ~ (156)
||zT -z < ||zT — " +QT||Vf§T—1(£CT)H < 2R+ ardr—_1 < 3R.

Therefore, Er_ 1 implies {x*}7_,, {z*}I_,, {v*}1_, C Bsr(z*), meaning that the assumptions of Lemma F.1 are satisfied
and we have

1 1 t—1 t—1
A (fly') = f(a%) < 533 - §Rf +) o (O, — 2 o V)Y + D afyy [61]1*  (162)
=0 1=0

forallt =0,1,...,T simultaneously and for all £ = 1,...,T — 1 this probability event also implies that

1 1
9 (160)162) iR3 — iR + R? - 3R*  6aLR?

b — — = . 163
Taking into account that f(y”) — f(x*) > 0, we also derive that E7_ implies
T-1 T-1
Ry < R3+2) ap(n,2" =2 + o V™)) +2) ol (16044
t=0 t=0
2By
< R?42Br. (164)

Before we estimate Br, we need to derive a few useful inequalities. We start with showing that E7_ implies ||V f(2z!*1)| <
M/ forallt =0,1,...,T — 1. Fort = 0 we have 2 = 2° and

(©6) R A 601n 2 (155 Y
IVf(Y] = [V < Llja® -2 € — =22 — 2 < 20

~ aay 2 a - 2

(165)
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Next, fort =1,...,T — 1 event E'p_; implies

where in the last row we use (

V£

IN

IVf(@) = VO + IV
6),(7)

< L™ =yl + V2L (F(y') — f(2%))

(1542163> Loty [+ — 12aL?R?
A, (t+3)
< 4LRovyyq 12aL2R?
= A, t(t + 3)
2
_ R 240La?, | In % 12aL%07, | In %
60cs 1 In % Ay t(t+3)
G856 ), [ 240L (%)2 In % 12a L2 (%)2 In? %
< — 60
=3 (i3 + i+ 3)

_ A 240(t + 2)? In 4% 3(t +2)%In 4
2 t(t+3)a t(t +3)a
A 540111% 90\/§ln% (155) ),

< - + < —,
2 a Vva 2

: < 2 forall t > 1. Therefore, probability event E_; implies that

tijfl)}) 4 p y p
. . (161),(165),(166) R
2% = 2" + V(| < Jla* = 28] + apa [V F ()] < 2R+ ok <
B

forallt =0,1,...

forallt =0,1,...

and probability event Ex_; implies that 1, = 2* — 2! + oy 1 Vf(2tF!) forall t = 0,1,. ..

follows that

|

, T —1. By

,T'— 1. Next, we define random vectors

v — 2t V(Y if 2% — 2t + a1 V(2] < 3R,
0, otherwise,

definition these random vectors are bounded with probability 1

el < 3R

T-1 T-1

2
Br = Y a1 Orm) + Y iy [0l
t=0 t=0

Next, we define the unbiased part and the bias of 6,1 as 6%, ; and 67, ; respectively:

0%, =V fer(21) — Ee [6 fer (xt“)} 0, =Ee [6 fer (xtﬂ)} — Vf(atth).
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(168)

,,T"— 1. Then, form Ep_q it
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We notice that 01 = 0, + 95 1. Using new notation, we get that /71 implies

T—1 T—1
Br = Zat—H t+1+9t+1v77t>+zat+1 ||9t+1+9t+1||
t=0 t=0
T—1 T—1 T—1 , ,
< Zat+1 <9f+1777t>+204t+1 <‘9?+1777t>+22af+1 <||97+1|| — Bee [HH?HH D
t=0 t=0 t=0
) ® ®
T—1
+2) af B [HatHH ]+2Z i H9t+1H : (170)
t=0 t=0
® ®

It remains to derive good enough high-probability upper-bounds for the terms @, @, ®, ®, ®, i.e., to finish our inductive
proof we need to show that ® + @ + @ + @ + ® < R? with high probability. In the subsequent parts of the proof, we
will need to use many times the bounds for the norm and second moments of ¢!, ; and 0% 1. First, by definition of clipping
operator, we have with probability 1 that

10851 ]] < 2. (171)

Moreover, since Er_1 implies that ||V f(z!™1)| < A/2fort = 0,1,...,T — 1 (see (165) and (166)), then, in view of
Lemma 5.1, we have that Ep_; implies

20{0.04

0 =7 172
bl < S5 (172

Ee: []|04117)

A\

IN

18AZ g, (173)

Upper bound for @©. By definition of 6}, ;, we have E¢: [0}, ;] = 0 and

Eét [Oét+1 <9;J+1,’I7t>} = 0
Next, sum @ has bounded with probability 1 terms:

(168),(171) asey  R% e
e (B0 me) | < a0l - Il < 6arp MR S = (174)

4K
511’17

. . def 2
The summands also have bounded conditional variances o7 = Eet[af 4 <9§‘+1, 77t> ):

(168)
op < Eee [a§+1|‘eg+1||2 ‘ H77tH2] < 90‘?—4—1321@8 [HGZ{Q—IHﬂ . (175)

In other words, we showed that { ;41 <6‘t ‘1, nt>}tT ~, is a bounded martingale difference sequence with bounded conditional
variances {o? }t 01 Next, we apply Bernstein’s inequality (Lemma B.2) with X; = a1 <9§+1, 77t>’ parameter c as in

R? _ R* .
(174),b= %,G = W'

R? = R b B
P<|@ — d 2 V<9 —_ | = —.
{' > an ;Ut = 1501n4§<} = eXp( 2G+2cb/3) 2K

Equivalently, we have

5 4 R2
>1-— — L <X
P{Es} >1 5K for FEg either Z ol > 0l 4K or |@] (176)
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In addition, E7_; implies that

T-1 (175) T—1 T-1
o2 IR " af Eer [[l0F, 4] ] 2 16207 R > e\
t=0 t=0 t=0
(56 1620°R1- = . 1620 R4~ = (¢ 42
S oo 2o 4K 1 = e oaaT ol 2—a AK
3027 In""" 5 =g 302-« . 2% Lo In™* 53 =
1 1620°R*T(T +1)* 155 R4
< —. < . 177
- oa 0L In?*~* 4K ~ 150l 4% a7
Upper bound for @. From Er_; it follows that
T-1 T-1 a—17.a—1 4K T—
(168),(172) o (156) 30% " In 2=
b : t+1 B
@ < D ownlblal- Il SR 20" 3 S S 2R g o
3600 R?~ In®~ ! 4K T— 1 1800"R2_(’T(T—|— Do 4K (155 p2
B B
< t+2) < — < —. 178
- 2aaaLa Z + - a® La - 5 ( )
Upper bound for ®. First, we have
B [2at2+1 (H9t+1H — B¢ [H9t+1|\ D] =0.
Next, sum @ has bounded with probability 1 terms:
202, (0 * ~ Bec [Joal])| < 20t (U0 + e [l ]])
71 156)  R2 4ot
< 160740 < LS = (179)
B
2
The summands also have bounded conditional variances 57 & E. {404“ L (HQ#H ||2 — Eg [HG;‘H HQD } :
., 179 R2 w N2 w
CAS 1 4K e [20‘t+1 ‘||9t+1 — g [HHH-IH m < afp RPEe [[10441%] (180)
B

T-1
since In 4% > 1. In other words, we showed that {20[?+1 (HH;‘H H2 —Eg [HG#HHQ] )} is a bounded martingale
=0

difference sequence with bounded conditional variances {572 }ip 01 Next, we apply Bernstein’s inequality (Lemma B.2) with

X =203, (||9t+1H — Be [H9t+1|| D’ parameter ¢ as in (179), b = R?’ G = 15011%:4’(

R? — R b2 3
PG> and S a2<—— L comp(-— -2
{' > an ;Ut S 150K [ eXp< 2G+2d’/3> oK

Equivalently, we have

P{Eg} >1— —, for Es={eith Gl > ————r Q| < — 181
{Eo} > 5K or Fg {el er ; o} 15()111% or |®)] = } (181)
In addition, E_; implies that
T—1 T-1 T-1
. (180) 7) R4
Z Ut2 < R? Z O‘t+1EEt [H6‘t+1H } <9R? Z O‘t+1Eft [||9t+1|| ] = W' (182)
t=0 t=0 t=0 N5
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Upper bound for @. From Ep_; it follows that

T— T—1
(177) R? R?
Z E,. [||9 I } RS o2 Ee {||9 I ] v (183)
+1=€ t+1 D2 t+1-5¢€ t+1 = 4K —
=0 R P 150In 4% = 5
Upper bound for ®. From Ep_1 it follows that
T-1 2 22a+1 . 302(1—20.2(1 1n2a 24K T
_ 2041 _2a Qi1 (156) B
® = QZatH H9t+1 <2 g Z \2a—2 R2a—2 Z eV
t=0 7't t=0
22a+1 . 30202452 11120(72 4K 18000.20/T(T + 1)20/ ln2a 2 4K

(155)
S % (184)

T_
_ B 2 1
- Z(t+2) o< a2 [20 R20—2
t=0

22aa2aL2aR2a72
Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Ep_; implies
70

Br < R2+®+®+®+@+®
178) R2 (183) R2 (184) R2
DR QP E GPER

?7 = ?7 = ?7
T—1 T—1
g2 D 177) Z (182) R4
A 1501 150 47 T 7 1501 4K

Moreover, we also have (see (176), (181) and our induction assumption)

(T-1)p B B
PlEp 4V >1——— = P{Ept>1—-—-——, P{Egl>1— —
{ T 1}_ K ) { @}_ 2Ka { @}_ 2K7
where
4 R2
Esy = either E or @ <— 5,
® o OUt 150 1n 4K ‘ |— 5
T-1
R* R?
Esy = either F2>—— or |®<—%.
@ {1 tho RENE S ®= = }

Thus, probability event Er_; N Eg N Eg implies

(164)
R% < R?*+2R*<(2R)%

which is equivalent to (160) and (161) for ¢ = T, and

— — — — — — T
P{ET} > P{ETfl N Eg N E@} =1- P{ETfl UFEpU E@} >1-— P{ETfl} — P{E@} - P{E@} >1-— ?B

This finishes the inductive part of our proof, i.e., for all k = 0,1,..., K we have P{F}} > 1 — ¥8/k. In particular, for
k = K we have that with probability at least 1 — 8

L, 163 6aLR?
f(yK)—f(x ) < m

and {0 (2R {yFHE ) € Bag(a*), which follows from (161).
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Finally, if
a—1
4K 9000(K +1)K&In"s 2K
a = max { 48600 In” R ( ;JR 5\
then with probability at least 1 — 3
K o o _6aLR® 291600LR In® 4K 54000 R(K + 1)K & In“% 4K
fly™) = f@*) < m—max KK+ 3) , RT3

LR2In? & URIH%K
O | max 5, ]

K2 K%

To get f(y®) — f(z*) < e with probability at least 1 — f3 it is sufficient to choose K such that both terms in the maximum

above are O(g). This leads to
[ R2 2 a1 o1
€ B € B\ e

that concludes the proof. O

F.2. Strongly Convex Functions

In the strongly convex case, we consider the restarted version of clipped-SSTM (R-clipped-SSTM). The main result is
summarized below.

Algorithm 3 Restarted clipped-SSTM (R-clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point z°, number of restarts 7, number of steps of Clipped SSTM between restarts {K;}7_,, stepsize

parameters {a; }7_1, chppmg levels {\} flo e L St smoothness constant L.

1: 20 =20

2. fort=1,...,7do

3:  Run Cllpped -SSTM (Algorithm 2) for K, iterations with steps1ze parameter a;, clipping levels {\ th0—1’ and
starting point 2!~ 1. Define the output of clipped-SSTM by #*

4: end for

Output: 7

Theorem F.3 (Full version of Theorem 3.3). Let Assumptions 1.1, 1.3, 1.6 with u > 0 hold for Q = Bsg(x™), where
R > [|2° — 2*||? and R-clipped-SSTM runs clipped-SSTM 7 times. Let

R2 2160@/LR T 4 =T 4 4l aoT
K; = |max 1080,/ Biiy i (5 OOURt‘l) In (; (5 OOURH) . (185)
Et €t

pR? R uRQ 4Kt

€ = — Ri1 = ST logy — lnT > 1, (186)

L a—1

4K, 9000 (K, + 1 Kf* In o 27
a; = max { 48600 In2 ﬂ”, (K 2 Rf RN (187)
t
R

X = P (188)

300, , In

fort=1,... 7. Then to guarantee f(z") — f(x*) < e with probability > 1 — 3 R-clipped-SSTM requires

o (s {y/En () (L () (2) ™ T (3(2) 0 ()] am
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iterations/oracle calls. Moreover, with probability > 1 — [ the iterates of R-clipped-SSTM at stage t stay in the ball
BQRt—l (‘T*)

Proof. We show by induction that for any ¢ = 1, ..., 7 with probability at least 1 — ¢8/r inequalities

S * -, * R2
F@) = f@) <, |3 =t < RE = o7 (190)
hold for [ = 1,...,t simultaneously. First, we prove the base of the induction. Theorem F.2 implies that with probability at
least 1 — B/~
, . 6a,LR? (s 291600LR? In* 21T 54000 R(K; + 1)K§ In“s s
JE) 1@ = gy - ") T ks K1 (K1 +3)
291600LR? In® 417 54000 RIn"5" 45
< max -
K2 ) a—1
1 K, ®
(185) R2
< a=E"

4

and, due to the strong convexity,

2(f(@") — f(="))
o

The base of the induction is proven. Now, assume that the statement holds for some ¢ = 1" < 7, i.e., with probability at least
1 — T8/~ inequalities

&' —2*|* < <~ =Rl

R2
2

RQ
20
hold forl = 1,..., T simultaneously. In particular, with probability at least 1 — 78/7 we have |27 — 2*||? < R2. Applying
Theorem F.2 and using union bound for probability events, we get that with probability at least 1 — (T+1)8/>

f@) — fz*) <e, |3 —a2*|> <R} = (191)

6(1T+1LR%
Kri1(Krq1+3)
1

i a
291600LR% In® 22T 54000 Ry (Kpq + 1)K, In"a 25587

F@ET) — f(2%)

(187)

- max ,
Kpp1(Krgp1 +3) Kr 1 (Kpyq +3)
291600LR3 In* *52507 54000 Ry In“s Ka”
< max
B K?2 ’ a—1
T+1 KTil
(185) R2
S €T+1 = M T

4

and, due to the strong convexity,

T+1 _ x*HQ < Q(f(‘,'i.T—i_l) — f((E*)) < Rﬁ%’ _ R%’Jrl'

g2 . <=

Thus, we finished the inductive part of the proof. In particular, with probability at least 1 — 3 inequalities

X n . N R?
F@) = @) <a, 3 -t < B = 3
hold for [ = 1,..., 7 simultaneously, which gives for [ = 7 that with probability at least 1 — 5

AT * _ HRE_l _ :U’R2 (186)
FGET) - far) S e = BEEL S T e
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It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM. We have

T T LR? | \/LR? |7 oR;_, a1 7 (oRi_, a1
Z K, = O Z max In , In|=-|——
1 &t VEB B

Et Et

0 gmw{\/gln (ﬁé) | <uRi1)aulln (; (MRUH)JIQ) }>
o (75) £ (55 (5 530)7))
in () (5 () G2 (5

i (2 (3 ()

Jim (4 m <

which concludes the proof. O
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G. Missing Proofs for clipped-SEG

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and
the missing proofs. For brevity, we will use the following notation: ﬁgf (zF) = clip (Fgllc (zF), )\k) and ﬁ&é" (zF) =

clip (Fgg (z*), )\k).

Algorithm 4 Clipped Stochastic Extragradient (clipped-SEG) (Gorbunov et al., 2022a)

Input: starting point 2°, number of iterations K, stepsize v > 0, clipping levels {)\k}kK:Bl
1: fork=0,...,K do

2:  Compute ﬁ&f (zF) = clip (Fﬂc (z*), /\k) using a fresh sample £ ~ Dy,
3 gk =aF - 'yﬁgrf (x*)
4:  Compute Fgg (z*) = clip (FEIS (z*), )\k) using a fresh sample &5 ~ Dy,

50 bl =gk - Wﬁgg' (z*)
6: end for
K
Output: "' orzX = 1 kzo K

G.1. Monotone Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part of
the algorithm, the proof is the same as in the original work.

Lemma G.1 (Lemma C.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.7 and 1.8 hold for Q = Byg(x*), where
R > ||2° — 2*|| and 0 < v < 1/vaL. If o* and 7% lie in Byp(a*) forallk = 0,1, ..., K for some K > 0, then for all
u € Byg(x*) the iterates produced by clipped-SEG satisfy

0 _ .12 _ I K+1 H2 K
F u 7%[{ —u < ||x u” Hm U 9 2+2 w 2
< ( ) avg > = 27([(—"—1) K—|—1 kz::o H k” ” k“ )
1 K
k ~k
—_— —u—~F 0 192
T et U )00, (192)
def 1 K
~K aej ~k
e T g2 (193)
k=0
def ~k\ _ B =k
0, = F(& )—Fslzc(x ), (194)
Wi def F(xk)—ﬁflf(xk) (195)

Using this lemma we prove the main convergence result for clipped-SEG in the monotone case.
Theorem G.2 (Case 1 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.8 hold for Q = Bygr(z*), where R > ||2° — z*||, and

1 =R
160L In ST 108007 (K + 1) g ln 5 SUSE
R

AM=EAN = ——— 197
20y In (I;'H)

0<vy min , (196)

IN

for some K > 0and 8 € (0, 1] such that In % > 1. Then, after K iterations the iterates produced by clipped-SEG
with probability at least 1 — B satisfy

9R?

<oy ™ S S Bur) (T HD € Bur@), (198)

GapR( fvg)
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where ffvg is defined in (193). In particular, when ~y equals the minimum from (196), then the iterates produced by

clipped-SEG after K iterations with probability at least 1 — 3 satisfy

LRI & cRIn+ K

Gapg(7X,,) = O [ max e 2L, (199)
meaning that to achieve GapR(ié{Vg) < e with probability at least 1 — (3 clipped-SEG requires
LR> LR* (oR\* 1 OR
K=0 In , 7 In 7 iterations/oracle calls. (200)
€ ef € ef

Proof. The proof follows similar steps as the proof of Theorem C.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||z* — z*|| for all k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k = 0,1,..., K + 1
we consider probability event I, as follows: inequalities

t—1 t—1
Jmax {|x0 —ullP+27) (@' —u—yF@),0) +7* Y (10 + 2||wz|2)} < 9R?, (201)
UEBRLT 1=0 1=0

Ayt

t—1
70

1=0
hold for ¢t = 0,1, ..., k simultaneously. We want to prove P{E}} > 1 — ¥8/(kx+1) forall k = 0,1, ..., K 4+ 1 by induction.
The base of the induction is trivial: for k& = 0 we have [|2° — u||? < 2[|2° — 2*||? + 2||z* — u||? < 4R? < 9R? and
Iy Z;‘:Ol 6,]] = 0 for any u € Bgr(xz*). Next, assume that for k = T — 1 < K the statement holds: P{E;_;} >
1 — (T-1)B/(k+1). Given this, we need to prove P{Er} > 1 — T8/(kx+1). We start with showing that Er_; implies

Ry <3Rforallt =0,1,...,T (also by induction). For ¢ = 0 this is already shown. Now, assume that R; < 3R for all
t=0,1,...,¢ forsomet’ <T. Thenfort=0,1,...,t

<R (202)

12— 2| = fla" =" = yFg (2] < [la* — 2™ + ]| Fer ()]
(197) R
< ot =2t 49 < 3R+ —— o <4R. (203)
2OIHT

Therefore, the conditions of Lemma G.1 are satisfied and we have that Ep_; implies

max {29 + 1)(F(u), 7, —u) + " —uf?}
uEBR(x*)

t/
< max 2% —ul2+2y Y (2 —u—~yF(3),60)
uEBR(x*) 1=0

¢

+72 EO (1611 + 2] 1)

(201)
< 9R?,
meaning that

a7t =P < max {9 + D), 3, —u) + [ P} <9,

i.e., Ry11 < 3R. In other words, we derived that probability event Ep_; implies R; < 3R and

max {29(t + 1)(F(u), 2, u) + ||z —u||*} <9R? (204)

u€BR(x ave
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forallt = 0,1,...,7T. In addition, due to (203) E7_; also implies that ||#! — 2*|| < 4R forallt = 0,1,...,7. Thus,
Er_, implies

ot —a* —AF@) < a2+ FE)] 'S 3R+ LI - o

(203) (196)
< 3R+4RyL < bR, (205)
forallt =0,1,...,T. Next, we introduce random vectors

{xt — 2t —yF(3), if |at —a* —yF(3)| < 5R,
m =

0, otherwise,
forallt =0,1,...,T. These vectors are bounded almost surely:
[ne]l <5R (206)

forallt = 0,1,...,T. Moreover, due to (205), probability event E7_; implies ), = z' —z* —yF(2?) forallt = 0,1,...,T
and

T-1 T-1
Ar = max {Ix —ul® + 2y Z —u,0) } +2y) (2t —a" = F@),00 + 7Y (101 + 2l|wll?)

uwEBR(x*) 1—0 1=0 =0
T-1 T-1 T-1
< 4R? 42y max " —u, 0, +2’yz<nl,91>+’y2z (16117 + 2| [1?)
ueBr(=®) 1=0 1=0 1=0
T-1 T-1 T-1
= AR+ 29R () 0|+ 29 Y 0+ D (16117 + 2llwi]?)
1=0 1=0 1=0

where A7 is defined in (201).

To handle the sums appeared in the right-hand side of the previous inequality we consider unbiased and biased parts of
9;, wi.

o L Eg [ﬁ%(fl)] ~Fu@), 0¥ F@E)-Eg [Fgl( )] (207)
wf EEg [ﬁ%(xl)} ~Fa(d), FEFE)-Eg [ngl (z )}, (208)

forall! = 0,...,T — 1. By definition we have 0; = 0} + 9;’, wy = wj + wlb foralll =0,...,T — 1. Therefore, Ep1_1
implies

T-1
Ap < 4R*+29R||> 6,

=0

T-1 T-1
+29 ) (O +2v D (s 67)
=0 =0

@ @

T-1

+292 3 (g [1671°] + 2B [l ]

=0

®
T-1

+297 3 (1651 + 2l I — Bey [1671%] - 2E¢; [ll17])
=0

@
T—1
+29° > (116711 + 2ll? I17), (209)
=0

®
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where we also apply inequality ||a + b||? < 2||al|? + 2||b]|? holding for all a,b € R? to upper bound ||6;]|? and ||w;]?. It
remains to derive good enough high-probability upper-bounds for the terms 2y R HZl —o 0 H ,0,@,8,®,®, i.e., to finish

our inductive proof we need to show that 2y R HZ l:—01 0, H + @+ @+ ® 4 @ + ® < 5R? with high probability. In the

subsequent parts of the proof, we will need use many times the bounds for the norm and second moments of ¢, ; and 0% 1
First, by definition of clipping operator we have with probability 1 that

1671 < 22X, [lwi'l| < 2. (210)

Moreover, since Ep_; implies that

(11) (196)
1P S Lyt — o) <3LR 'S — B w2
40 In SELD 2
B
203) (196) R 197 A

(11)
~1 _ -
IF@E)) < LF xu<uRsZ@g@?7 -

fort =0,1,...,7 — 1. Then, in view of Lemma 5.1, we have that £7_ implies
ot < 227, jat) < 25, o
Ee [||9l||2} < 18X"0°, Eu {leu } < 18X27%°, (212)
w (|2 —a _« 2 —a_«
E. [Hel I } <18X%0", Eg [||wl } < 18A2 %02, (213)
foralll=0,1,...,7T — 1.
Upper bound for ©. By definition of ¢;', we have E¢ [0}'] = 0 and
Egt [27(m, 0;)] =0
Next, sum @ has bounded with probability 1 terms:
u uy (206),210) aon  R%Z g
129(ne, 0] < 2vllmell - 161 < 209vRA = 1 0D c. (214)
n S(E+1)
The summands also have bounded conditional variances o? & Eg [49% (m, 01)%]:
2 212 (1gu)2] 2 2 w2
of <Eg [49%(In])* - 167117] < 1007 R*Eg [|1671°] - (215)

In other words, we showed that {2+(n;, 0}*)}/_,' is a bounded martingale difference sequence with bounded conditional
variances {07 }szol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 2v(n;, 6}'), parameter c as in (214),

_ _ R* .
b - RQ, G - W
B
T—1
R* b2 15}
P{ |®| > R? and Pl 1 <2 - = .
{' | > R an ;"l = 61n6<f<ﬁ+1>} = eXp( 2G+2cb/3> 3(K + 1)
Equivalently, we have
B T—1 R4
_ : 2 2
P{E@} 2 1— m, for E@ = {elther ; o] > W or |®| § R } . (216)
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1
1800(K + 1)y2R?\*~¢®

In addition, E7_; implies that
T-1 T—1
(215) (213),T<K+
doop < 1009°R2Y R [ll07°] <
1=0 1=0
197 1800(K + 1)y“o® R =« (19 R*
< ( QEZ 6(K+1) < 6(K+1) " @17)
2027& In T 61n T
Upper bound for @. From Ep_; it follows that
T—1
(206,21, T<K+1 10 - 2%(K + 1)yRo®
@ < Y fmll-lgl < e
1=0
1029 - 201K 4 1)y In® ' SEXD 146
(197 ( Ra—)2 P <R (218)
Upper bound for ®. From Er_; it follows that
T—1
(212),T<K+1 367 (K +1)0® (%) 1
2 w2 2 2—a _a (197 g L2
292> B [161°) < 367K+ DX ot S s S 13 (219)
1=0 B
(212),T<K+1 B 729*(K +1)0® (%) 1
2 2—a _a (197) g Y
T29°(K + 1)\ %% "= 07— 2o G(KBH) < (220)
(221)

T-—1
4~? Z Eet [[|lwf'|1*] <
=0
(219),(220)
< %R?

Upper bound for ®@. By the construction we have
29°Egy g 16712 + 20wi | — Egy [16711%] - 2Egq [Iwi]?]] =0

Next, sum @ has bounded with probability 1 terms:
292 161117 + 2llwp'|* — Egt [116}]%] — 2Eg [Ilw?IIQ]‘ < 22161 + 297Eg 116717
2 wi'? + 47 Eg [Ilwr|17]

(210)
< 48922
aom R? def
< _— =
= G 8D ¢ (222)
B
The summands also have bounded conditional variances )
~9 def u u U u .
57 L 4y By ¢ ([ 16812 + 22 - Egy [16712] — 2By [l ]| }
7S o et [[I0F17 + 217 ~ By [1617] — 2By [t 7]
B
29R? " "
< e Bee 16317 + 2[lw*17] - (223)
B
1
In other words, we showed that {2W2 (||9;‘||2 +2[wi I = Eg [11671%] — 2Ea [||wl“H2]) }l is a bounded martingale
difference sequence with bounded conditional variances {U?}?;Bl. Next, we apply Bernstein’s inequality (Lemma B.2) with
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X, =27 (ll@zill2 +2[lwi[1? — Eg [1167]1%] — 2E¢ [wallz]), parameter c as in (222), b = R2, G =

6(K+1) -
B
T-1
1, — R b?
= <——  _'< - =
P{|@>6R and ;01 _216ln6(Kﬁ+1) < 2exp 3G 25 3
Equivalently, we have
ﬂ T-1 R4 1
R ) ~ 1
P{Eg} > 1 SR’ for Eg {elther ; 52> o 6(Kﬂ+1) or |@ < R } . (224)
In addition, E7_; implies that
T-1 T-1
~ (223) 272 R? u u
ZU? < WZEEL% (163 11% + 2flwi'|1?]
1=0 31n 3 1=0
(213),T<§K+1 36(K + 1)y2R2\2—g®
= I 8CK+D)
197 36(K + 1)y*R¥=%g% (19 R*
< —a1.3—a 6(K+1) < 6(K+1) (225)
202 a]n T 216 In T
Upper bound for ®. From Er_ it follows that
T-1
(211),T<K+1 § - 22a7202a(K +1)
® = 273 (Ief1P +2t?) < =
1=0
6. 22 . 202(1—2,Y2a0.2a(K + 1) 1n2o¢72 6(K+1) 196) 1
(197) B 2
= a2 < éR (226)
Upper bound for 2vR HZZT;OI 0, H To upper-bound this sum, we introduce new random vectors:
-1 -1
VLo it o <
Cl = r=0 r=0
0, otherwise
forl =1,2,...,T — 1. These vectors are bounded with probability 1:
Gl < R. (227)
Therefore, taking into account (202), we derive that E'r_1 implies
T-1 T—1 |2
2’)/R Z 91 = 2R 72 Z 91
1=0 1=0
T-1 T—1 -1
= 2R V) _ll6F+2v) <7 0., 9l>
1=0 1=0 r=0
T-1 T-1
= 2RV 62 +2v D (G0
1=0 =0
207) T-1 T-1
< 2R @+ @+O®+2y) (GO0 +2y > (G 0). (228)
1=0 1=0
® @

Similarly to the previous parts of the proof, we bound ® and @.
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Upper bound for ®. By definition of ¢;', we have E¢ [0}'] = 0 and

Eey [27(G,0/)] =0
Next, sum ® has bounded with probability 1 terms:

" w @2D,210) (197) R2 def
290G 0 < 2yl - l6F ] < AYRA £ —Fy = (229)
In S+ ,6+ )

The summands also have bounded conditional variances al = ]Egz [47 (i, 65" ]

27)
67 <Eg [42)1GI12 - 161117] <" 49*R*Eg [116717] - (230)
In other words, we showed that {2((;, 6}*) }sz—Ol is a bounded martingale difference sequence with bounded conditional
variances {67 } ~1. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 29(1, 6}"), parameter c as in (229),

_ R ~_ R4 .
R R <218

T—
R b’ B
2 - <92 — = .
{®| > —R” and E %IH 4(1{;1) } < eXp( 2G+20b/3) 3(K +1)

Equivalently, we have

T—1 i 1
) A2 )
E¢ = {elther Z of > 96 1 8T or |[® < 4R } (231)
1=0 B
In addition, Ep_; implies that
., o ) 2T 1 13), T<K+1 ) oss
Z&l < PR B [6717] TS T2(K + 1)92R2 00
=0 =0
aon  T2(K + 1)y R0 a9 RA (232)
g0z SEERL T g6y SUCED
Upper bound for @. From Ep_1 it follows that
-1
20,1, T<K+1 201K 4 1)yRo®
@ < Y lal-lel < o
1=0
@ a— a —1 6(K+1
(19 20+ 200 (K + 1)y*0® In® " % 159 1 033)

Ro—2 = 4

Now, we have the upper bounds for 2vR H ZZTQOI 0|, ®,®,®,®,®. In particular, probability event Ep_; implies

T—1
Ar < 4R2+27R Y o|+0+@+0+@+6),
1=0
T=1 1 (28)
29R||> 6| < 2RVO+®+ 6+ 6+,
1=0
(218) @21) (226) (233)
® < R?, ® < 132, ® < ERQ, @ < 1R2
6 6 4
T—1 T—1
(217) (225) R4 o 3D R4
Z op = 6(K+1) ’ Z = 6(Ki1)’ op = 6(Kf1) "
1=0 61n -0 216 In T 1=0 96 In T
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Moreover, we also have (see (216), (224), (231) and our induction assumption)

(T-1)p
P{Epr 1} >1— ———
{Brat = K+1"'
P{Ep} >1-— L, P{Ea}>1-— L, P{Ee} >1-— L,
= T3(K+1) = T3(K+1) = T3(K+1)
where
T—1 ) R4 §
E@ = either Z [oF] > W or ‘®| S R 5
1=0 B
T71~2 R4 1 )
EFoy = either lz o; > W or |@| < ER s
—0 B
T—1
R* 1
_ . ~92 2
E@ == {elther log] > W or |©‘ S ZR } .
1=0 B
Thus, probability event Epr_1 N Ep N Eg N Eg implies
T-1
1 1 1 1 1
< IPp2 4 I p2 4 IpR2 4 TR2 4 ZRp2
7;01 < \/6R R R R SR =R, (234)

b
}ﬂ
N

1 1 1 1 1
4R2 4+ 2 TPR2 4 2R2 4 P21 _R2 4 —R2
R+R\/6R+6R+6R+4R+4R

1 1 1
R24+ R+ -R>+ -R?>+ -R?
TR R R R

< 9R?, (235)
which is equivalent to (201) and (202) for ¢t = T, and

— - = = T
P{ET} > P{ET,1 NEsNEaN E@} =1- P{ET,1 UFEsU Eg U E@} >1- Ki—fl
This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{E},} > 1 — k¥8/(k+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

Gapp(Tl,y) =  max {(F(u),T5,—u)}
uEBR(z*)
1

< ———— max {2y(K+ 1)(F(u),z,, —u)+ 25T —u?
S SR {2 D E@), L~ ] 12)
(204) 9R?
< .

29(K +1)

Finally, if
, 1 20" R
7 = min a1

160L In ST 10800% (K + 1) g ln s SUSE

then with probability at least 1 — 3

9R? 720LR2In SEFD gy RpIp e SEAD
GapR@a{{vg) < ———— =max . — B —

LR?In k& oRIn“+ K

= O | max =
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To get Gapp (T avg) < e with probability at least 1 — £ it is sufficient to choose K such that both terms in the maximum
above are O(¢). This leads to
LR®> LR?
K=o M L () o
€ ep ep

that concludes the proof. O

G.2. Quasi-Strongly Monotone Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SEG in the quasi-strongly monotone case.

Lemma G.3 (Lemma C.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.7, 1.9 hold for Q = Bsg(z*) = {x € R? |
|z — 2*|| < 3R}, where R > ||2° — x*||, and 0 < v < 1/2(L+2p). If 2* and T* lie in Byr(z*) forall k = 0,1,..., K for
some K > 0, then the iterates produced by clipped-SEG satisfy

K
25 =2 < (1= ) e — 27 = 4y Y (1= ) TR (), wr)
k=0
K
29> (1 =) @k —a* — yF(E), 0k)
k=0
+72 Z — ) F (16517 + 4llwrll?) , (236)

where 0y, wy, are defined in (194), (195).

Using this lemma we prove the main convergence result for clipped-SEG in the quasi-strongly monotone case.

Theorem G.4 (Case 2 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.9, hold for Q = Bzg(z*) = {x € R? | |z —z*|| < 3R},
where R > ||2° — z*||, and

0<vy < min , (237)
{650L In SECED T (K + 1)}

2((1 1)

(K + 1) p? R?

Bx = max< 2, . =
2646002 02 In*" (%)hﬁ(fﬁa

(238)

2(a 1)
K*5 2R?
= O|max{2, (239)

)
2(ax—1) 2(a=1) 2 p2
o2 In (g)hg max { 2, K= R
o?ln" e ()

exp(—yu(l +K/2))R
M= 120y In 8D 7 (240
yin——3g

Sfor some K > 0 and § € (0,1] such that In % > 1. Then, after K iterations the iterates produced by clipped-SEG
with probability at least 1 — 3 satisfy

a5+ — 27|12 < 2exp(—yu(K + 1)) R2. (241)

In particular, when ~ equals the minimum from (237), then the iterates produced by clipped-SEG after K iterations with
probability at least 1 — (3 satisfy

(1) 2(a—1)
o2~ (K} In? [ max 2, K;aiﬁ
uk ’ o2 (5)
|2 —2*||> = O | max{ R¥exp | — , d

K 2(a—1) )
Lh’lg K= /JQ

(242)
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meaning that to achieve ||z — x*||?> < e with probability at least 1 — 3 clipped-SEG requires

L R2> ( L R2> < 02 >2(aal) 1 ( 02 )2(aa1) N
K=0[=In In{ —1In | = In{={— Ine=7 (B, 243
(M ( € w3 p2e B\ p2e (Bc) (243)

iterations/oracle calls, where

RQ
eln (;13 (%) 2(a1>)

Proof. Again, we will closely follow the proof of Theorem C.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

B:. = max < 2,

Let Ry, = ||z% — z*|| for all k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each £ = 0,1,..., K +1
we consider probability event E}, as follows: inequalities

R? < 2exp(—yut)R? (244)

hold for ¢ = 0,1, ..., k simultaneously. We want to prove P{Ey} > 1 — k8/(k+1) forall k = 0,1, ..., K 4+ 1 by induction.
The base of the induction is trivial: for & = 0 we have RZ < R? < 2R? by definition. Next, assume that fork =T —1 < K
the statement holds: P{Er_1} > 1 — (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 — T8/(k+1). Since
R? < 2exp(—yut)R? < 9R?, we have 2! € B3r(x*), where operator F is L-Lipschitz. Thus, E7_; implies

(237),240) )\,

. . (44)
IF@)| < Llla" —a*|| < V2Lexp(—wt/2)R < 5 (245)

and

el < 20|, @) + 21 P2 <

5) (240) 2
;)\2 < M (246)

4~2
forallt = 0,1,...,T — 1, where we use that ||a + b||?> < 2||a||? + 2||b|? holding for all a,b € R%.

Next, we need to prove that Er_; implies ||2* — 2*|| < 3R and show several useful inequalities related to ;. Lipschitzness
of F probability event Ep_; implies

2 —a*|? = |zt — 2% — Y Fe, (21)|? < 2l|2" — 27| + 292 || F, ()|
< 2R] 4+ 47| F(a")]|* + 47| 1?
(11)
< 2(1 + 292 L?)R? + 492 ||wi||?
(237),(246) ) )
< Texp(—yut)R* <9R (247)
and
_ (237),(240) )\
IF@E)| < L|#*—a*| <V7Lexp(—wt2)R < 5 (248)

2

forallt =0,1,...,T — 1. Therefore, Er_1 implies that %, 7' € Bsp(z*) forallt = 0,1,...,T — 1. Using Lemma G.3
and (1 — yu)T < exp(—~yuT), we obtain that E7_; implies

R < exp(—yuT)R® — 4y MZ )TN E (), w)
=0
T-1
+29 ) (1 =)t — 2t =y F(E), 0,)
=0

‘WQZ — )"0 + Al ]|?) -
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To handle the sums above, we introduce a new notation:

G = {F(xt)a if || F(2?)|| < V2L exp(—1t/2)R

) (249)
0, otherwise,

mZ{ﬁ_x““wﬁﬂ7ﬁ:ﬁ—ﬁ—wnfms»ﬁu+w»wm—wwﬂ% (250)

0, otherwise,

fort =0,1,...,T — 1. These vectors are bounded almost surely:

¢ < V2L exp(=wt/2)R,  |Ine]| < VT(1+ L) exp(—mt/2) R (251)
forallt = 0,1,...,T — 1. We also notice that E7_; implies || F'(x?)| < v/2L exp(—7#t/2) R (due to (245)) and

laf —a* —yF@)| < 2’ =2+ Al FE]
(247),(248)
< VT(1+9L) exp(—mt/2)R

fort =0,1,...,7 — 1. In other words, E7_1 implies ¢, = F'(z!) and n; = 2* — 2* — yF(2?) forallt =0,1,...,T — 1,
meaning that from Ep_q it follows that

T—1
Ry < exp(—ypuT)R* —49°u Y (1 — )" 171G, wi)
=0
T—1 T—1
429 > (=) o, 00 + 7 D@ =) (1601 + Allwn])?) -
=0 =0

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of
(91, Wi

oy L Eg [ﬁg(zl)} ~Fu@), 0¥ F@E)-Eq [Fél( )} (252)
wpf CEg [igi (g:l)} ~Fa(d'), FEFE)-Eg [ng (z )}, (253)

foralll =0,...,T — 1. By definition we have 0; = 0} + 9;’, w; = w + wlb foralll =0,...,T — 1. Therefore, E7_1
implies

T-1 T-1
Ry < exp(—T)R* =49 Y (1= )" NG wi) =49 > (1 =) NG W)
=0 =0
] @
T-1 T-1
+29 Y (=) o, 01+ 2y D> (=) (L 67)
=0 =0
©)] @

+m§j — )T (B [0 12) + 4Bg [leol?])
®

2 Z =)™ (18I + e 1 — By [16717] ~ 42y [t

®
T—1
+297 ) (@ =) 107112 + Allwp 1) - (254)
=0

@
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where we also apply inequality ||a + b||? < 2||a||? + 2|/b||* holding for all a,b € R? to upper bound ||6;]|? and ||w; ||?. Tt
remains to derive good enough high-probability upper-bounds for the terms @, @, @, ®, ®, ®, @, i.e., to finish our inductive
proof we need to show that @ + @ + ® + @ + ® + ® + @ < exp(—yuT)R? with high probability. In the subsequent
parts of the proof, we will need to use many times the bounds for the norm and second moments of ¢, ; and 0% 1. First, by
definition of clipping operator, we have with probability 1 that

1071 < 2A, (o[l < 2A. (255)

Moreover, since Er_; implies that |[F'(z!)|| < /2 and ||F(2!)|| < Mi/2foralll = 0,1,...,T — 1 (see (245) and (248)),
from Lemma 5.1 we also have that Ep_; implies

7] < Se=r el < Sem (256)
A A
Eg [10°] < 183720%, g [Jeall’] < 18307, (257)
Eq [WHQ] < 18N 0", Eg [||wf||2} < 18X2%0, (258)
foralll=0,1,...,7 — 1.
Upper bound for ©. By definition of wj', we have E¢ [w;'] = 0 and
Eer [—47* (1 — )" K¢, wf)] = 0.
Next, sum @ has bounded with probability 1 terms:
3 T—-1-1 u 3 u
| =4y (1 = yp) Cuwil <= A pexp(—yu(T =1 =D)IGI - [lwf']
(251),(255)
< 8V2PuLexp(—yu(T —1—Y2))Rx
(237),(240) exp(f'yuT) R? def
S TaiEm 29
B
The summands also have bounded conditional variances o2 & Egt [167°07(1 — yp)*" 272G, wi)?]:
of < Eg [167°4 exp(—yp(2T — 2 = 20))|G|1* - [lw}']?]
(251) .
< 3672 L2 exp(—yp(2T — 2 — 1)) R*Eg [||w'||”]
@D 4y? exp(—yp(2T — 1) R? "
< STRTD) Ee [llwf']?] - (260)
In other words, we showed that {—4y3u(1 — yu) T~ =4, wi*) }/," is a bounded martingale difference sequence with
bounded conditional variances {of}lT:_Ol. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = —4~3u(1 —
4
) TG, wit), parameter ¢ as in (259), b = 1 exp(—yuT)R?, G = %:
—F
P|®| > L exp(—yuT)R2 and TZ_l 2 o ep(2wDR| v p
—exp(— an of < ————— exp [ — = .
7 FPLTIE 7= Togqi S [ = P\T2G 205 ) T 3(K+1)
Equivalently, we have
P{Eo} > 1 a for Ba = deiter 3 o7 5 SPE2WDR! o <2 T)R* . (261
{Eo} = 3K+ or fup = q either gal>2941n€“<;1) or | \_yeXP(*’Yﬂ) - (261)
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In addition, E7_; implies that

§ ) Qs 42 exp(—2yuT) R? % Eg llwi[1%]
g >
! 2800 In S - exp(—ypl)
(258), <§ +1 7242 eXp(—27MT)R2UO‘ i P
- 28091n SEED = exp(—yul)
(240) 727 exp(—2yuT)R* =™ 1 2—a
< - (exp(—=yu(1 +Y/2)))
2809 - 1202~ In?~* SEED S exp(—yul)
K
727y exp(—2yuT)R* =™ yuad
< ; exp(ypula —2)) -exp | ——
2809 - 1202~ In?~* SEED ; Crule=2)) 2
727 exp(—2ypT) R0 (K + 1) exp (#)
<
- 2809 - 1202~ In®~ S
(237) —2vuTR*
= M’ (262)
294 In SEED
where we also show that £ implies
K « o — {7
gt N TR 4 Dexp(25)
. Z < o 6(RTD) (263)
exp(—ypul) 1202-@ [n?~ 8D

B

Upper bound for @. From E1_ it follows that

T—1
@ < ) exp(—yu(T—1-D))[G - |yl
=0
T—1
(251),(256) o%
< 2%+ /2 exp(—yu(T — 1))y uLR
< p(—yu(T = 1))7*p Z Y
Qi) 22712007V 2exp(—yu(T — 1))y 2+°“MLU“ ! SR Til 1
Re=2 5 exp (—yp(1+1/2))* " - exp(—wi/2)
T<re1r 29701200 VB exp(—yu(T — 1))y pLo® @t SUCHD iex Yol
= Ro—2 PLT2
=0
2312021 B exp(—ypu(T — 1))y e puLo® I~ SIS (K 1) exp (2155
S Ra—Q
(237) 1
< cep(-wR, (264)
where we also show that E7_; implies
" 12091y (K + 1) exp( 205 ) I~ S s
v Z )\Oé 16Xp 'yp,l/g) — R(x—2 ( )

Upper bound for ®. By definition of ¢;', we have E¢ [0}'] = 0 and

Bt [29(1 — )", 01)] = 0
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Next, sum @ has bounded with probability 1 terms:

127(1

2

(251)

(237)

— )" o, 01

< 2yexp(—yu(T — 1= 1)l - 167
e AVTy(1+ yL) exp(—yu(T — 1 = Y2))RX,
237),(24 — 2
( 7%( 0) ex;)l(n (@)R def (266)
The summands also have bounded conditional variances 57 def ]Egg [472(1 — yp)?T=22 9}‘}2] :
5 < Eg [497 exp(—yp(2T — 2 — 20)) |mll - [1671]
< 499 (1 + L) exp(—yp(2T — 2 — 1)) R*Eg []16]]°]
< 5077 exp(—yp(2T — 1)) R*Eg [[16]] - (267)

In other words, we showed that {2+(1

— )T o, 0

! is a bounded martingale difference sequence with bounded

conditional variances {57 }ZT 01 Next, we apply Bernstein’s 1nequal1ty (Lemma B.2) with X; = 2v(1 — yu)T =1y, 614),
4
parameter c as in (266), b = 1 exp(—yuT)R?, G = exp(=2yu TR

1 ~
IP’{|©| > ?exp( yuT)R? and Z 2 <

Equivalently, we have

B

P{Es} >1— m,

In addition, £7_; implies that

for FEg = {either

6(K+1)
294 In -

4 2
exp(—2yuT)R } < 2exp <_ b

294 In 6<K+1>

T-1

> 67>

=0

exp(—2yuT)R*

® <= exp( vuT)R } (268)
6(K+1) |
2941n *ED

T-1 T— u
267) &
> ot < 50? exp(—2yuT)R Z | ” ]
1=0 e
K 2—a
(258), T<K+1 A\
< 900~? exp(—2yuT)R*c* e —
; exp(—ypul)
9 9009 exp(~2yuT) R*0® (K + 1) exp(25%)
- 1202 [p%~@ LK;U
(237) _ 4
g =t (269)
294 In 3
Upper bound for ®. From Er_ it follows that
||mH 1671
@ < 2
< v exp(—y Z oxp ()
T-1
(251),(256)
< 21+a\f7 1+ L)ex Ro‘a
< v(1 + L) exp(—yu(T lz: T (T
ass) 28T -12007 Ty (1 4 L) exp(—yuT) (K + 1) exp (%) et SUCED
- Ra72
@n 1 ,
< - exp(—yuT)R=. (270)
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Upper bound for ®. From Ep_; it follows that

=2 B [161112] + 4B [flwp)l?]

® = 29%exp(—yu(T - 1))
; exp(—ypl)
T-1 2—«
(258) A
< 18072 exp(—yu(T —1))o® —r
ul ) ; exp(—ypul)

263) 1807 R*~* exp(—yu(T — 1))o® (K + 1) exp( £ )
D

@n 1 )
< = exp(—yuT)R>. (271)

Upper bound for ®. First, we have
2921 = 90" By gy (107112 + 4llwt' I — Egy [1671%] — 4By [Jor?]] = 0.
Next, sum ® has bounded with probability 1 terms:

55 8097 exp(—ypT) A}
= exp(com(1 +1)
@40 exp(—ypT)R?
S T7pukm

29%(1 =) IOF P + i P — Egy [1167]7] — 4Eg [Ilw?IIQ]‘

= (272)

The summands also have conditional variances
9 def o 2
57 LB g |[004(1 =y 22 |32 + Al |2 — Bgy [1671%] — 4Bgy [Ji'l?]|

that are bounded

5 2 29° exp(—2yuT) R?
" = 6(K+1) “€h.&
7exp(—pu(1+ 1)) In SEFL €

472 eXp(—Q’WJT)RQ
L o¢l
7eXP(*’YM(1+l))]nw 1383}

(16512 + 4l 2 = gy [16712] - 4E¢, [l 1]

(1165117 + 4llewj 1] - (273)

T—1
In other words, we showed that {2v2(1 —yp) Tt (HH}LHQ + 4wl — Eg [1161%] — 4Eq [||wf||2])}l is a
=0
bounded martingale difference sequence with bounded conditional variances {57 lT:Bl. Next, we apply Bernstein’s
inequality (Lemma B.2) with X; = 2¢2(1 — yu)T 1~ <||t9l“||2 + 4w ]|? — Eel [1634112] = 4E [Hw}‘||2]) parameter ¢

asin (272),b = % exp(—yuT)R?, G = M:

6(K+1
2941n SEED

T-1
1 _ exp(—2yuT)R* b2 Jé]
P<|® > = —~yuT)R? and E 2o 2 ) Lo _ -
{| | 7 exp( Y ) an g o > 204 1n 6([(6+1) = Z€xp 3(

Equivalently, we have

P{Eg} > 1 B for Eg = { eith N 52 SR2wDR o < TR . (274
{Ee} > 73([(7"'1)’ or I = { either gaz>294h16(;</;1) or | \_yexp(*’)’ﬂ) . (274)
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In addition, E7_; implies that

Tz:_la_\? (2;3) 4,}/2 eXp(—’}/éi(QT _ 1))R2 T-1 ]EELPEZZ I:Hoiu,||2 + 4leu||2]
7ln S5 = exp(—yul)
CSTSKHL 36092 exp(—yp(2T — 1)) R?0® i Y
a 7ln % = exp(—yul)
(223) 3607 exp(—yu(2T — 1))R4 oo (K +1) eXp(W‘O‘K)
- 7-1202- In*~ SEHD

@3 exp(—=2yuT)R*
294 In S

Upper bound for @. From Er_ it follows that

(275)

T-1
@ = 292 Y exp(—yu(T —1=1)) (|071* + 47 [I)
1=0
T-1
(256) 1
< 10 - 2292 exp(—yu(T — 1))0™* —
l; AT exp(—ypl)
— a—2 6(K+1
(240, T<K+1 20 - 22 . 1202242 exp(—yuT) o> In?* 2 (TH iex 2a-2 (1+ l ()
- R2a—2 p | Tulac exp(yu
1=0
.92, 20—242c _ 20 1,,20—2 6(K+1) K
- 40 - 2% - 120 v exp(—yuT)o** In 5 )
< T2a2 Zexp ypald)
40 - 22 . 12022242 exp(—yuT )02 In** 2 %(K + 1) exp(yuaK)
< R2a—2
237) 1
< = exp(—yuT) .

Now, we have the upper bounds for @, ®,®, ®, ®, ®, @. In particular, probability event Ep_; implies

(254)

R < exp(—ypDRP+0+@+@+ @+ 6 +©+ @,
@64) 1 ) @70) 1 )
® < cexp(-yD)R, @ < cexp(—yul) R,
@71 1 (276) 1

® < exp(-yDR, @ < Sexp(—yuT)R?,

T-1 —1

294 In S0 294 In S

6(K+1
1=0 294 In %

=0 =0

Moreover, we also have (see (261), (268), (274) and our induction assumption)

P{Er_1}>1- w

K+1"~
8 8 P
P{Eo} > 1~ 3K+ P{Es} >1— 3(K + 1) P{Ee} =1 - 3(K +1)
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where
Ey = {either jol of > (W or |@ < ;exp(—’yluT)RQ} ,
. T_1~2 exp(—2yuT)R* 1 )
Es {elther 2 oj > m or [® < = exp(—ypT)R } ,
. — _, _ exp(—2yuT)R* 1 )
Ee = {elther 2 o; > W or |® < ?exp(—'yuT)R }

Thus, probability event Er_1 N Egp N Eg N Eg implies
, (254 )
R < exp(-ywIlR*+0+2@+0+@0+6®+0®+@
< 2exp(—uT)R?,

which is equivalent to (244) for t = T', and
— - = = T
P{Er}>P{Er_1NEsNEsNEeg}t=1-P{Er_1 UEgUFEgUEg}>1— Ki—fl

This finishes the inductive part of our proof, i.e., forall k = 0,1, ..., K + 1 we have P{E}} > 1 — k¥8/(k+1). In particular,
for K = K + 1 we have that with probability at least 1 — 3

a5+ — 27> < 2exp(—yu(K + 1)) R?.
Finally, if
= min , ,
! 6501 In SEEL " p(K + 1)
2(a 1)
K 1 2 2
BK = mnax 2, N ( + 21 R
2646002 02 In" (%) In?(B)
2(0 1)
K== 2 2
O | max { 2, R

.- 2(a—1)
o2 In > = (%) In? [ max < 2, K;aiﬁ
o2~ ()
2exp(—yp(K + 1)) R?
p(K+1) 1
2R?’max{exp | —-———L— , —
{ Y < 650L In S ] B

(1) 2(a—1)
o2In-a (%) In? | max 2,%
) ,[LK o2ln” « (%)
= O | max ¢ R“exp _Ll = | 2(a—1)
ng K o ‘LLQ

then with probability at least 1 — 3

Jo ! — a2 <

To get ||2K+1 — 2*||2 < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum
above are O(¢). This leads to

; Rz) ( . RQ) ( " >2<aa_1) 1 ( " ) o i
K=0|—In In{ —1In Y Inl = =21 (B.) |,
<ﬂ ( € us p2e 5\ u2e (B:)
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where

R2

2D
cln (; () )

B. = max < 2,

This concludes the proof.
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H. Missing Proofs for clipped-SGDA

In this section, we provide the complete formulation of the main results for clipped-SGDA and the missing proofs. For
brevity, we will use the following notation: Fgr (2%) = clip (Fer (2%), Ar) .

Algorithm 5 Clipped Stochastic Gradient Descent Ascent (clipped-SGDA) (Gorbunov et al., 2022a)

Input: starting point z°, number of iterations K, stepsize v > 0, clipping levels {)\k}kK:*Ol.
1: fork=0,...,K do
2. Compute Fgr (%) = clip (Fer(2*), Ai) using a fresh sample £* ~ Dy,

3 aMt = ab — yFe(ab)
4: end for

K L Xk
Output: %+ or g = i1 Z_:Ol‘

H.1. Monotone Star-Cocoercive Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part of
the algorithm, the proof is the same as in the original work.

Lemma H.1 (Lemma D.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.8 and 1.10 hold for ) = Bsr(z*), where
R > ||2° — 2*| and 0 < «y < 2/e. If a¥ lies in Bar(z*) forallk = 0,1,..., K for some K > 0, then for all u € Byg(z*)
the iterates produced by clipped-SGDA satisfy

K
2% —ul* — [|=%F! — u||2 2
(F(u),al,g —u) < Z (IEE)IP + flonl?)
2v(K +1) k:O
1 &,
+K—H2<x —u—F ("), wp), 277)
K
LSRC A S 278
xavg - K—f—lzx ) ( )
k=0
def k A k
we = F(2%) = Fee(2¥). (279)

K
Also we need to use the following lemma to estimate the term > || F'(2*)||? from the right hand side of (277) in the proof
k=0
of the main theorem.

Lemma H.2 (Lemma D.2 from (Gorbunov et al., 2022b)). Let Assumption 1.10 hold for QQ = Bsgr(z*), where R > Ry = &
|2 — 2*|| and 0 < v < 2/u. If 2¥ lies in Bap(x*) forallk = 0,1,..., K for some K > 0, then the iterates produced by
clipped-SGDA sarisfy

0 k2 _ [..K+1 _ *Hz 2y K
FaM? < [ —2*|* — ||= z E o (e
= (3- )}jn HIE < - R e )
e
3 2 280

where wy, is defined in (279).

Using those lemmas, we prove the main convergence result for clipped-SGDA in the monotone star-cocoercive case.
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Theorem H.3 (Case 1 in Theorem 4.2). Let Assumptions 1.1, 1.8, 1.10 hold for Q = Bsr(x*), where R > ||2° — x*||, and

1 R
0<vy < min , : ; (281)

6(K+1)’ a—
170010 25 970005 (K 4+ 1) 2o In =" SUEHL
R
A=A = —— (282)
607111%

for some K > 0 and 8 € (0, 1] such that In % > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — (3 satisfy

5R?

TETD and {2F}0! C Bag(a®), (283)

Gaf)R($§ig) =
where vag is defined in (278). In particular, when v equals the minimum from (281), then the iterates produced by
clipped-SGDA after K iterations with probability at least 1 — (3 satisfy

x (R*In % oRIn"+ %
Gapp(Z.,,) = O | max = , (284)

meaning that to achieve Gappg (T < ¢ with probability at least 1 — (3 clipped-SGDA requires

avg)

2 2 2T a1
K=0 ER éi’ @ In l ﬂ iterations/oracle calls. (285)
€ ef £ B\ €

Proof. The proof follows similar steps as the proof of Theorem D.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||z% — 2*|| for all k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach ¥ =0,1,..., K +1
we consider probability event E, as follows: inequalities

t—1

D

=0

|zt —2*||* <2R?* and ~ <R (286)

hold for ¢ = 0,1,..., k simultaneously. We want to prove that P{Ey} > 1 — k¥8/(x+1) forall k = 0,1,..., K + 1 by
induction. The base of the induction is trivial: for & = 0 we have R% < 2R? by definition and Zl_zlo w; = 0. Next,
assume that the statement holds for k = T' < K, i.e., we have P{Er} > 1 — T8/(k+1). Given this, we need to prove
that P{Er1} > 1 — (T+18/(k+1). Since probability event Er implies R? < 2R?, we have 2' € Bag(x*) for all
t=0,1,...,T. According to this, the assumptions of Lemma H.2 hold and E7 implies (y < 1/¢)

Z”F ||2 < ||$O—.’E*H2— HmT+1 —SC*”Q
T +1) - T+1
2y T 9 T
T (@t —at =7 F(a") =3 fw? (287)
t=0 t=0
and by ¢-star-cocoersivity we have
(281) 282) )\
IFE)] < e~ 'S VaeR ) (288)
forallt =0,1,...,T. Using (287), we obtain
T
RT+1<R0+2W’Z$ — " —yF(z"),w) + v Z”""t”2
t=0
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Due to (288), we have

t * t t * t (14),(286) t *
[z —a" —yF(2")| < 2" —2"|+2|F@@)] < 2R+~lz" — 27

(286) (281)
< 2R+2Ry¢ < 3R, (289)
forallt =0,1,...,T. To handle the sum above, we introduce a new vector

' —z* —yF(2'), if |2t —z* —yF(2')| < 3R,
Nt = .
0, otherwise,

forallt =0,1,...,T. This vector 7; is bounded with probability 1:
|| < 3R (290)

forallt = 0,1,...,T. We also notice that probability event Er implies n; = ¢ — 2* — yF(a!) forallt = 0,1,...,T
Thus, thanks to (289), E+ implies

T T

R’%+1 < R2 + 27 Z<T]t7wt> —+ 72 Z ||(")1‘/||2
t=0 t=0

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of wy:

b B [Fo(@)] - Fe(at), b & Fat) - Ber [F (2] (291

forallt =0,...,T. Also, by definition we have w; = w{* + w? forall t = 0, ..., T. Therefore, E implies

T T T

Riyy < RP42y> (nnwi)+2y > mew)) +27° Y (B [lwpllP])
t=0 t=0 t=0

@ @ ®
T T
+297 3 (w1 = Bee [lloplP]) +29° Y (lf11%) - (292)
t=0 t=0

@ ®

We notice that the above inequality does not rely on monotonicity of F'.

According to the induction assumption, from probability event E1 we have x! € Bog(z*) forallt = 0,1,...,7T. Thus, the
assumptions of Lemma H.1 hold and probability event Er implies

T
2y(T + 1)Gapp(zL, < max ¥ —u®+2 ' —u—yF(z"),w
AT +1)Gapp(aly) < UEBR(I*){II P+ 23 ACORYY

T
77 ) (IF@OIP + llwel®)
t=0

T
=  max {||J;O—u|2+2'yz<x* —u,wﬁ}

uwEBR(x*) o
T
+2 Z(mt —z* — yF(z"),w)
t=0

T
77 ) (IF@IP + llewe®) -
t=0
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As we mentioned before, E implies 1, = ! — 2* — yF(a?) forallt = 0,1,...,T as well as (287) and v < 1/¢. Due to
that, probability event Ep implies

T
2v(T 4 1)G T < O w2} +2 *
AT +DGapp(as,) < max {lle® —ul’} +2y max ;@3 U, w)
T ~y T T
+2wz<m7wt>+ZZIIF(xt)II2+v2ZHth2
t=0 t=0 t=0
T
< 4R?+2v max ¥ —u, w
- ’quBR(z*){< ; t>}
T T
FR? 4y Y (e wi) + 2907 Jlwf?
t=0 t=0
T
< BRPH29R(D wi|[+2- (@+@+ @+ @ +6), (293)
t=0

where we also aplly inequality [|a + b||> < 2||a||? + 2||6]|? holding for all a, b € R to upper bound ||w;||?.

It remains to derive good enough high-probability upper-bounds for the terms ©,®,®,®, ® and 2vR HZtho wel|, 1.e.,

to finish our inductive proof we need to show that ® + @ + ® + @ + ® < R? and 2vR ‘ Ztho Wy H < 2R? with high

probability.In the subsequent parts of the proof, we will need to use many times the bounds for the norm and second
moments of w, w?. First, by Lemma C.1, we have with probability 1 that

']l < 2X (294)
forallt =0,1,...,T. Moreover, due to Lemma C.1, we also have that 7 implies
2%0%
b
ot || < S (295)
Ee [[lwf]|*] < 18X2720°, (296)
Ee: [HWW] < 18A2 9 (297)

forallt=0,1,...,T.

Upper bound for @. By definition of w}‘, we have E¢t [wy'] = 0 and
Ee [27(ne, wi)] = 0.
Next, the sum @ has bounded with probability 1 term:

2y (o] < 29l - ] S 1oy ) B e, (298)
VAN, We )| = &Y t hS 2 S S eEm ¢

. . def
Moreover, these summands also have bounded conditional variances o7 = Eg: [472 (Mt wf)Q] :

(290)
o <Eee [49° |l - lwi|?] < 36v° R*Eee [[|wp'l|] - (299)
In other words, we showed that {2+(n,, wi") }+>0 is a bounded martingale difference sequence with bounded conditional

variances {07 };>0. Next, we apply Bernstein’s inequality (Lemma B.2) with X; = 27(n;, w;'), parameter c as in (298),
b=2 G= .
=,

1501n%:

R? L R* b2 3
P{|®| > — and 2 L9 — — ,
{' 1> 5 an ;"t—wmﬂs(?n = eXp( 2G+2cb/3) 3(K +1)

72



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Equivalently, we have

d R R?
]P){E@} Z 1— d(K+1)’ for E@ = < either Zat W or |®‘ S ? . (300)
t=0 B
In addition, £ implies that
T T
(299)
Yoot < 36v°R*Y Ee [|wf]’]
t=0 t=0
Q97),T<K+1 b s )
< 64872 R20* (K + 1)A>
(282) 6(K+1
< 6487 R**0*(K + 1) In*? SE+1) ; )
(281) R4
< "
- 1501n 8D Gob
B
Upper bound for ®. From FEr it follows that
T
(290),(295), T<K +1 N o
@ < 2y |l Il < G- 2% R(K + 1)y
t=0
6(K + 1) @8) R?
1212027126 R2(K + 1) In®! (;) < 5 (302)
Upper bound for ®. From FEr it follows that
) T Q97),T<K+1 -
® = 223 Be[lfl?] < 362N 0 (K + 1)
t=0
(282) 6(K +1) @8 R2?
< 367*R?%0%(K 4+ 1) In*? % < = (303)
Upper bound for @. First, we have
29°Ee: [lwi'll* — Ee: [lwi'lI?]] =
Next, the sum @ has bounded with probability 1 terms:
2 w2 (|2 2 u||2 |2 @5 242
27 [Jw? ~ B [I17)] < 207 (bl + Ber [lfI?]) < 16972
(282) R? R2 def
= 295 n S+ = 51n U+ - (304)
B B
The summands also have conditional variances 72 &f 4y Egr [(Hw;J 12 — Eee [|lwi)|?] )2} that are bounded
_, 600 242R? 442 R?
2 < Zr-- . w2 _ . Il S
Ut — 225 hl G(KBJrl) EE HHwt || Ef [Hwt || ]H 2251 6(K+1 “|wt || ] (305)
In other words, we showed that {||w;'||> — E¢t[||w;*||?]}+>0 is a bounded martingale difference sequence with bounded
conditional variances {67 };>0.Next, we apply Bernstein’s inequality (Lemma B.2) with X; = [[w}||? — E¢:[||lwi||?],
R4

parameter c as in (304), b = %2, G =

R <
P< @] > ?and Z&f <
t=0

6(K+1 :
1501n SEED

Rr* b2
_ 3 <2 - = .
150 1n % = coxp < 2G + 2cb/3) 3(K+1)
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Equivalently, we have

5 =, R* 32
IP{E@} >1—- 3KF1) for Fg = [ either E o; > W or |@‘ < — (306)
t=0 —3

In addition, F7 implies that

. (303) 4~2 R? (297) T<K+1 842R2(K + 1
2 < 2 Z]Eff ||w§;,|| Y ( + ))\27040_01

9% = 6 K+1 < 6(K+1
— 225 In SUCHD. 25In SUEHD
282 8 _ _36(K+1)
< - ocR4 107¢ 1o In® 3
T (K+1)o“In 5
(281) R4
< .
T 1501n S GoD
B
Upper bound for ®. From FEr it follows that
2 g b2z FDITEEFL e 2a=2,2 o>
® = 29°) |yl < 2G0TI (K 4 1)y
@) g2a+1  go2a—2 V(K + 1) o _In 202 6(K +1)
R2e— B
(281) 2
g B (308)
5
Upper bound for HZZ:O Wy H To estimate this term from above, we consider a new vector:
-1 -1
vy wr, if"war <R,
Cl = r=0 r=0
0, otherwise
for! =1,2,...,T — 1.This vector is bounded almost surely:
Gl < R. (309)
Thus, by (286), probability event Er implies
T T 2
Yow| =7 e
1=0 1=0
T T -1
= vzzwzll2+2vz<vzwr,wz>
1=0 1=0 r=0
T T
= Y2 il 427> (Gwn)
1=0 1=0
(292) Ll T b
<O+ @+0+29) (G +27 D (Ghw)- (310)
=0 =0
® @

Following similar steps as before, we bound ® and @.
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t
w

Upper bound for ®. By definition of w;,, we have E¢: [w}'] = 0 and

Eet [27(Ce,wy')] = 0.
Next, sum ® has bounded with probability 1 terms:

29wty < 2l - il L aymn T, 11
YACt, W )| S 27|Ge t > Y —516(K+1)_'

The summands also have bounded conditional variances 77 & Eet [472@,5, w,@‘)Q] :

N wiay G09 Y
57 < Eet [471GIP - i ?] < 472 RPEe [l 2] (312)

In other words, we showed that {2v(¢;, w}*) }+>0 is a bounded martingale difference sequence with bounded conditional

variances {Ef}tzo. Applying Bernstein’s inequality (Lemma B.2) with X; = 2v((;, w}'), parameter c as in (311), b = %2,
- ___ R .
1501n SEED
R < R* b? B
PO >—and > 02< ———— V<2 — = ,
{| | 5 an ;Ut - 150111% - exp( 2G—|—2cb/3) (K +1)
Equivalently, we have
5 S R* R?
]P){E@} Z 1 — m fOr E@ = elther ZO't > W or |©| S ? . (313)
t=0 150 ln T
In addition, F7 implies that
T T
R (312) N
S5 2R e [
t=0 t=0
97), T<K+1
< 729 R?0(K + 1)\~
(282) 6(K +1
< 729*RY*%0%(K 4+ 1) In®"? %
(281) R4
< -
- 150 In SEHD 7 Gy
B
Upper bound for @. From FEr it follows that
T
(309),(295), T< K +1 N o
@ < QWZHQH'HWfH < 8- 2"VR(K + 1)+ —
t=0 A
6(K +1) @8) R?
E 161201420 R2(K + 1) In* ! % < = (315)
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Now, we have the upper bounds for ©,®,®, ®, ®, ®, @. In particular, probability event E'r_; implies

(292
Ry, < R2+®+®+®+@+©

(293)
29(T +1)Gapg(al,,) < 5R*+2yR Zwt 12 (D+@+®+@+0),

t=0
) (310)
YD w| < VO+®+8+6+0,
1=0
(302) R2 (303) R2 (308) R2 (315) R2
<R—, o< L <R—, o< L
5 - 5 - 5 - 5
Z (301) Z — (307) i , G149 R
o , < ———m < ————.
" 7 150 6<K+1) 150In G(K“ P 150 In 25D
Moreover, we also have (see (300), (306), (315) and our induction assumption)
TS
P{Er}>1— ——
{Bryz1-2"
]P’{E®}>17L, ]P’{E@}>1—L, ]P’{E@}>17L,
- 3(K+1) - 3(K+1) - 3(K+1)
where
T
R* R2
Ey = either 02> —————— or |®<—
T
R* R?
Eg = [ either 6f > ———~ or |®<—
feer > oz o 1© }
T
R* R?
Ee¢ = either 62> —————— or |® < —
femer 30 woazn o 1 '

Thus, probability event Epr N Eq N Eg N Eg implies
R:, < RP4+0+@+0+®@+6 <2R?

T
YD w| £ VO+@+®+®+@ <R,
=0
T
2v(T +1)Gapg(zl,y) < 6R*+2yR|) wi||+2-(D+@+ O+ @ +6)
t=0
< 10R?

which gives (286) for t = T', and

— — — — T
IP{ET_H}Z]P{ETQE(DQE@QE@}:17P{ETUE®UE@UE@}Z17K7_€1.

This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{F}} > 1 — k¥8/(kx+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

5R?
G Ey< —— .
apR(xavg) —= ’}/(K—F 1)
Finally, if
1 R

v = min SEN 1 —
L 972004 (K + 1) o I D)

170¢1n 8+
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then with probability at least 1 — 3

5R2 800LR2In (K“) 5. 072008 o R In 5t S+
Gapp(@y,) < ———— =max B
R\*avg — (K+1) K +1 ) (K+1) ;1

KRQIH% aRlnLY;1 %
K 7 K%

= O | max
To get Gapp (T avg) < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum

above are O(¢). This leads to
2 2 a1 o1
kK=o n (BN T (L (28
€ eB’\ ¢ B\ €

that concludes the proof. O

H.2. Star-Cocoercive Problems

Theorem H.4 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.10 hold for Q = Bag(z*), where R > ||2° — x

1 R

0<y < min T — , (316)
170¢1n 972004 (K + 1)%oln T AEED
R

A=A = Wy T (317)

for some K > 0 and 8 € (0,1] such that In % > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — B satisfy

) 2R
s Z IPEOF < Sy G18)

In particular, when ~ equals the minimum from (316), then the iterates produced by clipped-SGDA after K iterations with
probability at least 1 — (3 satisfy

CR*In K loRIn“% s

F(ah)|12 319
K+1Z|| H max K+1 ? Ka;l ? ( )
K
meaning that to achieve ﬁ S ||F(x%)||? < e with probability at least 1 — 3 clipped-SGDA requires
k=0
P2R2 2R [/ =51 1 /¢ a1
K=0 ( R In l , ( UR) In ( <0R> )) iterations/oracle calls. (320)
€ ep € B €

Proof. Again, we will closely follow the proof of Theorem D.2 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Ry, = ||z% — 2*|| for all k > 0. As the previous result, the proof is based on on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k =0,..., K + 1 we
define probability event £, as follows: inequalities

|zt — z*||* < 2R?, (321)
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hold for ¢ = 0,1, ...,k simultaneously. We want to prove that P{E;} > 1 — k¥8/(k+1) forall k = 0,1,..., K + 1 by
induction. One of the important things is that inequalities (287) and (292) are obtained without assuming monotonicity of F'.

Thus, if we do exactly the same steps as in the proof of Theorem H.3 (up to the replacement of In G(KH) by In 4(K+1 ), we
gain that
o 2
R3, < RP+D+@+0®+®@+06,
(302) R2 (303) R2 (308) R2
< —, @< —, ® < —
— 5 ) — 5 ) — 5 )
T
(301) R4 (207) R4
2
of £ ———— < —————.
; © 7 15010 A Z 150 In 2U0SED
Moreover, we also have (see (300), (306) and our induction assumption)
B
P{Er}>1— ——
{Bry=1-2
P{E@}>1—L P{E@}>1—L
- 2(K +1)’ - 2(K +1)’
where
T
R* R?
Ey = {either ZO’? . ik O |®| < }7
+1
— 150 In 2E+L 5
T
R* R?
— : ~2 i
Es = {elther Z:at > ol 4(KB+1) or |® < 3 } .
Thus probability event Epr_1 N Eg N Eg implies
R <R+0+@+0®+®+6 < 2R?
and T
P{ET+1} > IP){ET NEsN E@} =1- P{ET UE@ UE@} >1- Ki—fl (322)

This finishes the inductive part of our proof, i.e. forall k = 0,1,..., K + 1 we have P{E}} > 1 — ¥8/(kx+1). In particular,
for k = K + 1 we have that with probability at least 1 — 3

Z” ne % UR?-R%.,) ((®+@+O®+®+06)
K+1 - Y(K +1) v(K +1)
20R?
- (K41
Finally, if
. 1 R
T Troem A

1 a—
972000 (K + 1)aoln"s 2USED

then with probability at least 1 — 3

1 a—
20 R? 34002 R? In 2D 9. 972004 (o Rin st AK+1)

K
2 B
———— = max , —
; I < V(K +1) K+1 (K +1)°%

o PR In % (oRIn"“+ K
= max K y KQT_l
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K
To get %_H kZ |F(z*)||?> < e with probability at least 1 — 3 it is sufficient to choose K such that both terms in the
=0

maximum above are O(e). This leads to

2 p2 2 P2 25 =T
K—0 ERlnéR’ loR In 1 607]%
€ ep € 15} €

that concludes the proof.

H.3. Quasi-Strongly Monotone Star-Cocoercive Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SGDA in the quasi-strongly monotone case.
Lemma H.5 (Lemma D.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.9, 1.10 hold for Q = Bap(z*) = {x € R? |
|z — 2*|| < 2R}, where R > ||2° — z*||, and 0 < v < V/e. If 2% lie in Bag(z*) forall k = 0,1, ..., K for some K > 0,
then the iterates produced by clipped-SGDA satisfy

K
25 =2 < (=) S — 2P 429 Y (1 — )@t — 2t — yF(a*), wi)
k=0
K
92 ) (1= ) w2, (323)
k=0

where wy, are defined in (279).

Using this lemma we prove the main convergence result for clipped-SGDA in the quasi-strongly monotone case.

Theorem H.6 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.9, 1.10, hold for Q = Bap(z*) = {x € R | ||z — 2*| <
2R}, where R > ||2° — x*||, and

. 1 ln(BK)
0< < min , , (324)
) {4004111 D" p(K +1)
2(a—1)
K 1 - 2 p2
Bx = max({ 2, . ( 2?;71)) wR (325)
54002 02 In" (%) In%(B)
2(a—1)
K = ’R?
— O|max{2, a — , (326)
2(a—1) <= 2 p2
o2ln” « E)p? | max {2, K > u"R°
(5) ( { (T21112(7cx 1)(%)
N = ep(n(+E2)R (327)
T oy AEmL
v )
for some K > 0and 8 € (0, 1] such that In w > 1. Then, after K iterations the iterates produced by clipped-SGDA
with probability at least 1 — (3 satisfy
a5 — 27 < 2exp(—ypu(K + 1)) R?. (328)

In particular, when ~ equals the minimum from (324), then the iterates produced by clipped-SGDA after K iterations with
probability at least 1 — 3 satisfy

(a1 2(a—1)
o2ln" e (%) In® (max {2, %
/LK o2ln” «
2% — 2*||? = O | max { R?exp (— ) ,

K 2(a—1) )
glng K= /12

X

(329)
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meaning that to achieve ||z — x*||? < e with probability at least 1 — 3 clipped-SGDA requires

0 (R ¢ RN (N 12\ .
E=0(-In(—)m(—m—), (5 (= (5 In=>T (B,
° (u n( € ) B (uﬁ e >’<u2€) ! (ﬁ (/ﬂs) ) ne )> 50

iterations/oracle calls, where

R2
eln (;‘3 (%) 2@1))

Proof. Again, we will closely follow the proof of Theorem D.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

B:. = max < 2,

Let Ry, = || — 2| for all k > 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, foreach k = 0,1,..., K + 1
we consider probability event E}, as follows: inequalities

R} < 2exp(—yut) R’ (331)

hold for ¢t = 0, 1,. .., k simultaneously. We want to prove P{E}} > 1 — ¥8/(x+1) forall k = 0,1,..., K 4+ 1 by induction.
The base of the induction is trivial: for £ = 0 we have R(Q) < R? < 2R? by definition. Next, assume thatfork =T -1 < K
the statement holds: P{Er_1} > 1 — (T-1)8/(k+1). Given this, we need to prove P{Er} > 1 — T8/(k+1). Since
R? < 2exp(—yut)R? < 2R?, we have 2! € Bogr(x*), where operator F is (-star-cocoersive. Thus, E7_; implies

331) (324),327) )\
IF@EY < 2’ —a*| < V2bexp(—mt2)R < T

332
5 (332)
and
~ (332) 5 . 327) exp(—~ut)R2
fl? < 2B+ 2P| < 3 L 22 (33)
forallt =0,1,...,T — 1, where we use that ||a + b||?> < 2||a||? + 2||b|? holding for all a,b € R®.
Using Lemma H.5 and (1 — )T < exp(—yuT'), we obtain that E7_ implies
T-1
Ry < exp(—yuT)R* 42y Y (1—yw)" ol —2* —yF(a'),w)
t=0
T-1
92D (1= )" w2
t=0
To handle the sums above, we introduce a new notation:
_Jat —ar =y F(at), if[la’ - 2% —yF (2] < V2(1 4 4f) exp(—0t/2)R, (334)
= 0, otherwise,
fort =0,1,...,T — 1. This vector is bounded almost surely:
lne]] < \/5(1 + L) exp(—71t/2)R (335)

forallt = 0,1,...,T — 1. We also notice that E7_; implies || F'(x!)|| < v/2¢ exp(—7#t/2) R (due to (332)) and
lo* — 2" =P < lla" =27 + | F)]
(332)

< V2(1+ ) exp(—t/2) R
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fort =0,1,...,T — 1. In other words, E7_; implies n; = a* — 2* — vF(2!) forall t = 0,1,...,T — 1, meaning that
from Ep_1 it follows that

T-1 T—1
Ry < exp(—ypuT)R? +2y ) (1= )" g w) + 97> (1 =) w2
t=0 t=0
To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of w;:
o def

Wi € Bt [Fer(2h)] — Fee(a?), wb € F(a') — Eg [Fer(2h)] (336)

forallt =0,...,T — 1. By definition we have w; = w} + w? forallt = 0,...,T — 1. Therefore, F7_; implies

T-1
Ry < exp(—yuT)R?+2y > (1= )"~ (ne, wit)
t=0

)
T—1 T—1
+29 > (A=) ) 292 > (1= )T T B [lwp)1?]
t=0 t=0
@ 6]
+29° ) (1= )" (lwpl? = Ee [lwplP]) 429> (1 =)™ lwp] (337)
@ ®

where we also apply inequality ||a + b||2 < 2||a||? + 2||b||? holding for all a, b € R? to upper bound ||w;||. It remains to
derive good enough high-probability upper-bounds for the terms @, @, @, @, ®, i.e., to finish our inductive proof we need
to show that ® + @ + @ + @ + ® < exp(—~yuT)R? with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of w}* and w?. First, by Lemma 5.1, we have with
probability 1 that

flop [l < 2. (338)

Moreover, since Er_ implies that ||F(x?)|| < /2 and ||F(z?)| < M/2 forall t = 0,1,...,T — 1 (see (332)), from
Lemma 5.1 we also have that Fp_1 implies

el < S (339)
Eee [||f])’] < 1832720, (340)
Eee [llol?] < 18X7%0°, (341)
forallt=0,1,...,7 — 1.
Upper bound for ©. By definition of w}‘, we have E¢t [w;'] = 0 and
Egr [29(1 = yp)" ' (e, wi')] = 0.
Next, sum @ has bounded with probability 1 terms:
29(1 =) T e wi)] < 2yexp(—yu(T = 1= 1)|Ine] - il
LY B (14 ) exp(p(T - 1) B,
(324%(327) exp(—yuT)R? et )

5111%

81



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

The summands also have bounded conditional variances o2 & Eee [472(1 — yp)?T =272 (g, wi)?]:

o7 < Ee [49% exp(—yp(2T — 2 — 20))[|ne]|* - [|wi*|?]

(335)
< 8921+ 90)% exp(—yp(2T — 2 = ) R*Egr [[|wi'[|?]
(324)
< 10y% exp(—yp(2T — 1)) R*Ege [[lwp[?] - (343)
In other words, we showed that {2v(1 —yu)" =1~ (n,,w*) }/ " is a bounded martingale difference sequence with bounded

conditional variances {o?}7- 01 Next, we apply Bernstein’s 1nequal1ty (Lemma B.2) with X; = 2y(1 — yu)T =17 (n;, wi),

4
parameter c as in (342), b = 1 exp(—yuT)R?, F = %.

T—

exp (—2yuT)R* b2 8
Z = w < Zexp | - 2b/s | :
—o 3001n 2F + 2¢b/3 2(K+1)

1
P {|®| > s exp(—ypl)R

Equivalently, we have

T-1
B ) S o? exp(—2yuT)R* 1
]P){E@} 2 1-— m, for E@ = < either £ (o > W |®‘ S g eXp( ’}/MT) (344)

In addition, E7_; implies that

5
L

(343) Eet
ot < 1072 exp(—2yuT) R? Z Ee [kt 1]
=0 — exp(—yput)
K 2—«
341), T<K+1 A
< 180+? exp(—2yuT)R*c™ —t
; exp(—yut)
G2 1807 exp(—2yuT)R*~0 (K + 1) exp( 22X
1202« [~ LK;U
(324) —o~uT R4
= % (345)
300 In 2USEY
Upper bound for @. From Ep_; it follows that
llmell - llewgll
® < 2
< v exp(—y Z oxp (]
T-1
(335),(339)
< 21\ /27 (1 + b)) ex ))Ro®
B 7+ f) exp(—yulT ; “Lexp( —1t/2)
G 21200713y (1 4 90) exp(—pT)o (K + 1) exp (2457 ) et AU
< =
(324) 1 )
< 5 exp(—yuT)R=. (346)
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Upper bound for ®. From Ep_; it follows that

® = 2y%exp(—yu(T — 1))TZ Ee [l ']
— exp(—yut)

S (T — 1)) Til Pra
< v exp(—yu(T —1))o* »  ———
— exp(—yut)

(21 144y R?=® exp(—yu(T — 1))o®(K + 1) exp(2£85)
12020 >~ D

G241 )
< R exp(—yuT)R*. (347)

Upper bound for @. First, we have

292 (1 = )" B [l [? — B [lwi|?]] =

Next, sum @ has bounded with probability 1 terms:

N 338) 1672 exp(—ypuT)\?
Y llwit P = Ber [llopl?]] < l
exp(—yu(1l +1))
G20 exp(—yuT) R
N 51n (Kﬁﬂ)

292 (1 = yp)

c. (348)

The summands also have conditional variances

~9 def —9_ 2
72 E Ee [4y* (1= y)? =272 || |2 - Bee [Jeot1?]]7]

that are bounded

64 272 —2yuT)R?
g QD eRBWOE g [l - e (I
B

5exp(—yu(l+1t))In

4v? exp(=2yuT) R? u
e B [lwil?] - (349)
Sexp(—yu(l+1¢))In ===

In other words, we showed that {2v*(1 — vu)T =17 (|lwi[|2 — Eer [[Jwi]|?]) }tT:_Ol is a bounded martingale difference
sequence with bounded conditional variances {Ef}tTZO . Next, we apply Bernstein’s inequality (Lemma B.2) with X, =

ex’ — 4
29%(1 — )T ([lwp]|? — Eee [[|lwi]|?]). parameter c as in (348), b = £ exp(—yuT)R?, G = %3
8

1 _ exp(—2yuT)R* b2 B
P« |® - —yuT)R* and 2o TR L <2 — = .
{| | > 5 exp(—yuT)R* an Z = 501ln 4(K+1) = 2O\ TG T 2eh/ 2K +1)

Equivalently, we have

T-1
B N S5 exp(—2yuT)R* 1
]P{E@} Z 1-— m, for E@ = [ either 2 Ty > W or |@‘ S g exp( ")/HJT) (350)
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In addition, E7_; implies that

=1 — (349) 492 exp(—yp(2T — 1)) R? = Eet [[|lwj|?]
Z o} < Z

- 51n 2D £~ exp(—yput)
(341)7T<§K+1 72792 exp(—yu(2T — 1)) R?0® K )\ff‘l
- 51n % “— exp(—yput)
(327) 727 exp(—yu(2T — 1))R*%0%(K + 1) exp(#)
B 5-1202-p3~@ 74“;“)
(324) exp(=2yuT)R*
< 4(K+1) (351)
300 In 25
Upper bound for ®. From E;_; it follows that
T-1
® = 292> exp(—yu(T — 1 — 1)) (||} |?)
1=0
T-1
(339) 1
< 2 2%y exp(—yuT — 1))o>" —
; AT 2 exp(—yput)
G T<K+1 2 - 227120297242 exp(—yu(T — 1))02* In** 2 AK+) K "
< T3 Y exp (w(w -2) (1 + 2>) exp(yput)
t=0
4.920, 1202&*2,72& CXP(_’Y[L(T _ 3)) 2a 1n2a 2 4(Kﬂ+1) K
< R2a 3 Z exp(ypat)
422 1202292 exp(—ypu(T — 3))o** In** %(K + 1) exp(ypaK)
S R2a72
(324) 1 )

< £ exp(—ypT)R=. (352)

Now, we have the upper bounds for @, @, ®, @, ®. In particular, probability event Ep_; implies

(337)
R3 < exp(—ypDRP+ D+ @+ @+ @+ 0,

(346) 1 9 347 1 9
@ < cexp(-wIR, @ < pexp(—yul)R7,

(352) 1 )
® < cexp(-wT)R

! 5 (345) exp(—2yuT)R* Til — (351) exp(—2yuT)R*
ag T Ak a1

t = 4(K+1 4(K+1
— 300 In 2D 300 In (ﬁ“

Moreover, we also have (see (344), (350) and our induction assumption)

B B
P{E@}Zl—m, P{E@}Zl—m.
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where
T-1
—2yuT)R* 1
Eg = {ecither Z ol > % or |® < - exp(—yuT)R?},
Pt 3001n =75 5
T-1
. o _ exp(—2yuT)R* 1 )
Es = (either 02> — "/ or |®@| < —exp(—yuT)R? ;.
{ = ' 3001 2USHD 5

Thus, probability event Er_1 N Eg N Eg implies

(337)
R: < exp(-yDR*+0+@+0@+®+6®

< 2exp(—yuT)R?,
which is equivalent to (331) for ¢ = 7', and

= == T
]P{ET} > ]P){ETfl N Eo ﬂE@} =1 _P{ETfl UE@UE@} >1— Ki—fl

This finishes the inductive part of our proof, i.e., forall k = 0,1,..., K + 1 we have P{F}} > 1 — k¥8/(x+1). In particular,
for kK = K + 1 we have that with probability at least 1 — 3

a5 — 2*||* < 2exp(—yu(K +1))R?.

Finally, if

. 1 ln(BK)
= min
! 40001 DT (K +1) |

2(a—1)

(K+1)"« p’R?
5400202 In" (%) In?(Bg)

Bg = max{ 2,

2(a—1)

K== u’R?
2=l [ 2 KQ(Q(;U 2 R2
o2ln” @ (F)ln max 4 2, ——a———
T (x)
&5 —2*? < 2exp(—yu(K +1))R?
K+1 1
2R% max { exp —M y =
4000 2D )7 B

(a1) 2(a—1)
o2In" o ( ) In? | max < 2, K;aiﬁ
) NJK UQIDT( )
= O |max{ Rexp| — ; D)

K
gh’l F K= '[LQ

= O | max{ 2,

then with probability at least 1 — 3

==
wx

To get ||z5+1 — 2*||2 < € with probability at least 1 — 3 it is sufficient to choose K such that both terms in the maximum

above are O(e). This leads to

/ R? { R? 02\ T@-D 1 [/ 2\ @D a
K=0[-In{—)m(—=m=), (3> n | = (= =1 (B,) |,
(un(€>n(u5n€>’(u2€> n(ﬁ’(/ﬂe) )n ( )>
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where

R2

2D
cln (; () )

B. = max < 2,

This concludes the proof.
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