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Abstract

During recent years the interest of optimiza-
tion and machine learning communities in high-
probability convergence of stochastic optimiza-
tion methods has been growing. One of the main
reasons for this is that high-probability complex-
ity bounds are more accurate and less studied
than in-expectation ones. However, SOTA high-
probability non-asymptotic convergence results
are derived under strong assumptions such as
the boundedness of the gradient noise variance
or of the objective’s gradient itself. In this pa-
per, we propose several algorithms with high-
probability convergence results under less restric-
tive assumptions. In particular, we derive new
high-probability convergence results under the
assumption that the gradient/operator noise has
bounded central α-th moment for α ∈ (1, 2] in
the following setups: (i) smooth non-convex /
Polyak-Łojasiewicz / convex / strongly convex /
quasi-strongly convex minimization problems, (ii)
Lipschitz / star-cocoercive and monotone / quasi-
strongly monotone variational inequalities. These
results justify the usage of the considered meth-
ods for solving problems that do not fit standard
functional classes studied in stochastic optimiza-
tion.
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1. Introduction
Training of machine learning models is usually per-
formed via stochastic first-order optimization methods, e.g.,
Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951)

xk+1 = xk − γ∇fξk(x
k), (1)

where ∇fξk(x
k) represents the stochastic gradient of the

objective/loss function f at point xk. Despite numerous
empirical studies and observations validating the good per-
formance of such methods, it is also important for the field
to understand their theoretical convergence properties, e.g.,
under what assumptions a method converges and what the
rate is. However, since the methods of interest are stochastic,
one needs to specify what type of convergence is considered
before moving on to further questions.

Typically, the convergence of the stochastic methods is stud-
ied only in expectation, i.e., for some performance metric1

P(x), upper bounds are derived for the number of iterations
K needed to achieve E[P(xK)] ≤ ε, where xK is the out-
put of the method after K steps, ε is an optimization error,
and E[·] is the full expectation. These bounds can be “blind”
to some important properties like light-/heavy-tailedness of
the noise distribution and, as a result, such guarantees do
not accurately describe the methods’ convergence in prac-
tice (Gorbunov et al., 2020). In contrast, high-probability
convergence guarantees are more sensitive to the noise dis-
tribution and thus are more accurate. Such results provide
upper bounds for the number of iterations K needed to
achieve P{P(xK) ≤ ε} ≥ 1− β for some confidence level
β ∈ (0, 1], where P{·} denotes some probability measure
determined by a setup.

With the ultimate goal of bridging the theory and practice
of stochastic methods, recent works on high-probability
convergence guarantees (Nazin et al., 2019; Davis et al.,
2021; Gorbunov et al., 2020; 2021; 2022a; Cutkosky &
Mehta, 2021) focus on an important direction of the relaxing
the assumptions under which these guarantees are derived.

1Examples of performance metrics for minimization of func-
tion f : P(x) = f(x) − f(x∗), P(x) = ∥∇f(x)∥2, P(x) =
∥x− x∗∥2, where x∗ ∈ argminx∈Rd f(x).
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Our paper further extensively complements this line of works
in two main aspects: for a plethora of settings, we derive
new high-probability results allowing the variance of the
noise and the gradient of the objective to be unbounded.

1.1. Technical Preliminaries

Before we move on to the main part of the paper, we intro-
duce the problems considered in the work and all necessary
preliminaries. In particular, we consider stochastic uncon-
strained optimization problems

min
x∈Rd

{f(x) = Eξ∼D [fξ(x)]} , (2)

where ξ is a random variable with distribution D. Such prob-
lems often arise in machine learning, where fξ(x) represents
the loss function on the data sample ξ (Shalev-Shwartz &
Ben-David, 2014).

Another class of problems that we consider this work is
unconstrained variational inequality problems (VIP), i.e.,
non-linear equations (Harker & Pang, 1990; Ryu & Yin,
2021):

find x∗ ∈ Rd such that F (x∗) = 0, (3)

where F (x) = Eξ∼D[Fξ(x)]. These problems arise in
adversarial/game formulations of machine learning tasks
(Goodfellow et al., 2014; Gidel et al., 2019).

Notation. We use standard notation: ∥x∥ =
√
⟨x, x⟩ de-

notes the standard Euclidean norm in Rd, Eξ[·] denotes an
expectation w.r.t. the randomness coming from random vari-
able ξ, BR(x) = {y ∈ Rd | ∥y − x∥ ≤ R} is a ball with
center at x and radius R. We define restricted gap-function
as GapR(x) = maxy∈BR(x∗)⟨F (y), x − y⟩ – a standard
convergence criterion for monotone VIP (Nesterov, 2007).
Finally, O(·) hides numerical factors and Õ(·) hides poly-
logarithmic and numerical factors.

Assumptions on a subset. Although we consider uncon-
strained problems, our analysis does not require any assump-
tions to hold on the whole space. For our purposes, it is
sufficient to introduce all assumptions only on some subset
of Rd, since we prove that the considered methods do not
leave some ball around the solution or some level-set of the
objective function with high probability. This allows us to
consider quite large classes of problems.

Stochastic oracle. We assume that at given point x we have
an access to the unbiased stochastic oracle returning ∇fξ(x)
or Fξ(x) that satisfy the following conditions.

Assumption 1.1. We assume that there exist some set Q ⊆
Rd and values σ ≥ 0, α ∈ (1, 2] such that for all x ∈ Q

(i) for problem (2) Eξ∼D[∇fξ(x)] = ∇f(x) and

Eξ∼D[∥∇fξ(x)−∇f(x)∥α] ≤ σα, (4)

(ii) for problem (3) Eξ∼D[Fξ(x)] = F (x) and

Eξ∼D[∥Fξ(x)− F (x)∥α] ≤ σα. (5)

When α = 2, the above assumption recovers the standard
uniformly bounded variance assumption (Nemirovski et al.,
2009; Ghadimi & Lan, 2012; 2013). However, Assump-
tion 1.1 allows the variance of the estimator to be unbounded
when α ∈ (1, 2), i.e., the noise can follow some heavy-tailed
distribution. For example, the distribution of the gradient
noise in the training of large attention models resembles
Lévy α-stable distribution with α < 2 (Zhang et al., 2020b).
There exist also other versions of Assumption 1.1, see (Patel
et al., 2022).

Assumptions on f . We start with a very mild assumption
since without it, problem (2) does not make sense.
Assumption 1.2. We assume that there exist some set Q ⊆
Rd such that f is uniformly lower-bounded on Q: f∗ =
infx∈Q f(x) > −∞.

Moreover, when working with minimization problems (2),
we always assume smoothness of f .
Assumption 1.3. We assume that there exist some set Q ⊆
Rd and constant L > 0 such that for all x, y ∈ Q

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (6)
∥∇f(x)∥2 ≤ 2L (f(x)− f∗) , (7)

where f∗ = infx∈Q f(x) > −∞.

We notice here that (7) follows from (6) for Q = Rd, but in
the general case, the implication is slightly more involved
(see the details in Appendix B). When Q is a compact set,
the function f is allowed to be non-L-smooth on the whole
Rd, which is related to local-Lipschitzness of the gradients
(Patel et al., 2022; Patel & Berahas, 2022).

In each particular special case, we also make one of the
following assumptions about the structured non-convexity of
the objective function. The previous two assumptions hold
for a very broad class of functions. The next assumption –
Polyak-Łojasiewicz condition (Polyak, 1963; Lojasiewicz,
1963) – narrows the class of non-convex functions.
Assumption 1.4. We assume that there exist some set
Q ⊆ Rd and constant µ > 0 such that f satisfies Polyak-
Łojasiewicz (PŁ) condition/inequality on Q, i.e., for all
x ∈ Q and x∗ = argminx∈Rd f(x)

∥∇f(x)∥2 ≥ 2µ (f(x)− f(x∗)) . (8)

When function f is µ-strongly convex, it satisfies PŁ condi-
tion. However, PŁ inequality can hold even for non-convex
functions. Some analogs of this assumption have been ob-
served for over-parameterized models (Liu et al., 2022).

We also consider another relaxation of convexity.
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Assumption 1.5. We assume that there exist some set Q ⊆
Rd and constant µ ≥ 0 such that f is µ-quasi-strongly
convex, i.e., for all x ∈ Q and x∗ = argminx∈Rd f(x)

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x− x∗∥2. (9)

As PŁ condition, this assumption holds for any µ-strongly
convex function but does not imply convexity. Nevertheless,
for the above two assumptions, some standard deterministic
methods such as Gradient Descent (GD) converge linearly;
see more details and examples in (Necoara et al., 2019).

In the analysis of the accelerated method, we also need
standard (strong) convexity.

Assumption 1.6. We assume that there exist some set Q ⊆
Rd and constant µ ≥ 0 such that f is µ-strongly convex,
i.e., for all x, y ∈ Q

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2. (10)

When µ = 0 function f is called convex.

Assumptions on F . In the context of solving (3), we assume
Lipschitzness of F – a standard assumption for VIP.

Assumption 1.7. We assume that there exist some set Q ⊆
Rd and constant L > 0 such that for all x, y ∈ Q

∥F (x)− F (y)∥ ≤ L∥x− y∥, (11)

Similarly to the case of minimization problems, we make
one or two of the following assumptions about the structured
non-monotonicity of the operator F . The first assumption
we consider is the standard monotonicity.

Assumption 1.8. We assume that there exist some set Q ⊆
Rd such that F is monotone on Q, i.e., for all x, y ∈ Q

⟨F (x)− F (y), x− y⟩ ≥ 0. (12)

Monotonicity can be seen as an analog of convexity for VIP.
When (12) holds with µ∥x− y∥2 in the r.h.s. instead of just
0, operator F is called µ-strongly monotone.

Next, we consider quasi-strong monotonicity (Mertikopou-
los & Zhou, 2019; Song et al., 2020; Loizou et al., 2021) –
a relaxation of strong monotonicity. There exist examples
of non-monotone problems such that the assumption below
holds (Loizou et al., 2021, Appendix A.6).

Assumption 1.9. We assume that there exist some set
Q ⊆ Rd and constant µ > 0 such that F is µ-quasi
strongly monotone on Q, i.e., for all x ∈ Q and x∗ such
that F (x∗) = 0 we have

⟨F (x), x− x∗⟩ ≥ µ∥x− x∗∥2. (13)

Another structured non-monotonicity assumption that we
consider in this paper is star-cocoercivity.
Assumption 1.10. We assume that there exist some set
Q ⊆ Rd and constant ℓ > 0 such that F is star-cocoercive
on Q, i.e., for all x ∈ Q and x∗ such that F (x∗) = 0

∥F (x)∥2 ≤ ℓ⟨F (x), x− x∗⟩. (14)

This assumption can be seen as a relaxation of the standard
cocoercivity: ∥F (x) − F (y)∥2 ≤ ℓ⟨F (x) − F (y), x − y⟩.
However, unlike cocoercivity, star-cocoercivity implies nei-
ther monotonicity nor Lipschitzness of operator F (Loizou
et al., 2021, Appendix A.6).

1.2. Closely Related Works and Our Contributions

In this subsection, we overview closely related works and
describe the contributions of our work. Additional related
works are discussed in Appendix A.

Convex optimization and monotone VIPs. Classical high-
probability results for (strongly) convex minimization (Ne-
mirovski et al., 2009; Ghadimi & Lan, 2012) and mono-
tone VIP (Juditsky et al., 2011) are derived under the so-
called light-tails assumption, meaning that the noise in
the stochastic gradients/operators is assumed to be sub-
Gaussian: Eξ∼D[exp(∥∇fξ(x)−∇f(x)∥2

/σ2)] ≤ exp(1) or
Eξ∼D[exp(∥Fξ(x)−F (x)∥2

/σ2)] ≤ exp(1). In these settings,
optimal (up to logarithmic factors) rates of convergence are
derived in the mentioned papers.

The first high-probability results with logarithmic depen-
dence2 on 1/β under just bounded variance assumption are
given by Nazin et al. (2019), where the authors show non-
accelerated rates of convergence for a version of Mirror
Descent with a special truncation operator for smooth con-
vex and strongly convex problems defined on the bounded
sets. Then, Davis et al. (2021) derive accelerated rates in the
strongly convex case using robust distance estimation tech-
niques. Gorbunov et al. (2020; 2021) propose an accelerated
method with clipping for unconstrained (strongly) convex
problems with Lipschitz / Hölder continuous gradients and
derive the first high-probability results for clipped-SGD. In
the context of VIP, Gorbunov et al. (2022a) derive the first
high-probability results for the stochastic methods for solv-
ing VIP under bounded variance assumption and different
assumptions on structured non-monotonicity.

2Note that from in-expectation convergence guarantee, one
can always get a high-probability one using Markov’s inequality.
For example, under bounded variance, smoothness, and strong
convexity assumptions SGD achieves E∥xk − x∗∥2 ≤ ε after
k = Õ(max{L/µ, σ2

/µε}) iterations. Therefore, taking k such
that E∥xk − x∗∥2 ≤ εβ we get from Markov’s inequality that
P{∥xk − x∗∥2 ≤ ε} ≤ β. However, in this case, we get bound
k = Õ(max{L/µ, σ2

/µεβ}), having undesirable inverse-power
dependence on β.
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Table 1: Summary of known and new high-probability complexity results for solving smooth problem (2). Column “Setup” indicates the assumptions made in addition to
Assumptions 1.1 and 1.3. All assumptions are made only on some ball around the solution with radius ∼ R ≥ ∥x0 − x∗∥ (unless the opposite is indicated). By the complexity
we mean the number of stochastic oracle calls needed for a method to guarantee that P{Metric ≤ ε} ≥ 1 − β for some ε > 0, β ∈ (0, 1] and “Metric” is taken from
the corresponding column. For simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “α” shows the allowed values of α, “UD?” shows
whether the analysis works on unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation: L = Lipschitz
constant; D = diameter of the domain (for the result from (Nazin et al., 2019)); σ = parameter from Assumption 1.1; R = any upper bound on ∥x0 − x∗∥; µ = (quasi-)strong
convexity/Polyak-Łojasiewicz parameter; ∆ = any upper bound on f(x0) − f∗; G = parameter such that Eξ∼D∥∇fξ(x)∥α ≤ Gα (for the result from (Cutkosky & Mehta,
2021)). The results of this paper are highlighted in blue.

Setup Method Citation Metric Complexity α UD? UG?

As. 1.6
(µ = 0)

RSMD (Nazin et al., 2019)(1) f(xK) − f(x∗) max
{

LD2

ε , σ2D2

ε2

}
2 ✗ ✓

clipped-SGD (Gorbunov et al., 2020)
(Gorbunov et al., 2021) f(xK) − f(x∗) max

{
LR2

ε , σ2R2

ε2

}
2 ✓ ✓

clipped-SSTM (Gorbunov et al., 2020)
(Gorbunov et al., 2021) f(yK) − f(x∗) max

{√
LR2

ε , σ2R2

ε2

}
2 ✓ ✓

clipped-SGD Theorems 3.1 & E.6 f(xK) − f(x∗) max
{

LR2

ε ,
(
σR
ε

) α
α−1

}
(1, 2] ✓ ✓

clipped-SSTM Theorems 3.2 & F.2 f(yK) − f(x∗) max

{√
LR2

ε ,
(
σR
ε

) α
α−1

}
(1, 2] ✓ ✓

As. 1.6
(µ > 0)

restarted-RSMD (Nazin et al., 2019)(1) f(xK) − f(x∗) max
{

L
µ , σ2

µε

}
2 ✗ ✓

proxBoost (Davis et al., 2021)(1) f(xK) − f(x∗) max
{√

L
µ , σ2

µε

}
(2) 2 ✓ ✓

R-clipped-SGD (Gorbunov et al., 2020)
(Gorbunov et al., 2021) f(xK) − f(x∗) max

{
L
µ , σ2

µε

}
2 ✓ ✓

R-clipped-SSTM (Gorbunov et al., 2020)
(Gorbunov et al., 2021) f(yK) − f(x∗) max

{√
L
µ , σ2

µε

}
2 ✓ ✓

R-clipped-SSTM Theorems 3.2 & F.3 f(yK) − f(x∗) max

{√
L
µ ,

(
σ2

µε

) α
2(α−1)

}
(1, 2] ✓ ✓

As. 1.5
(µ > 0) clipped-SGD Theorems 3.1 & E.8 ∥xK − x∗∥2 max

{
L
µ ,

(
σ2

µ2ε

) α
2(α−1)

}
(1, 2] ✓ ✓

As. 1.2

MSGD (Li & Orabona, 2020)(1) 1
K+1

K∑
k=0

∥∇f(xk)∥2 max
{

L2∆2

ε , σ4

ε2

}
✗(3) ✓ ✓

clipped-NMSGD (Cutkosky & Mehta, 2021)(1)
(

1
K+1

K∑
k=0

∥∇f(xk)∥
)2

(4)
(

G2

ε

) 3α−2
2α−2 (1, 2] ✓ ✗

clipped-SGD Theorems 3.1 & E.2 (5) 1
K+1

K∑
k=0

∥∇f(xk)∥2 max

{
L∆
ε ,

(√
L∆σ
ε

) α
α−1

}
(1, 2] ✓ ✓

As. 1.4 clipped-SGD Theorems 3.1 & E.4 (5) f(xK) − f(x∗) max

{
L
µ ,

(
Lσ2

µ2ε

) α
2(α−1)

}
(1, 2] ✓ ✓

(1) All assumptions are made on the whole domain.
(2) Complexity has extra logarithmic factor of ln(L/µ).
(3) Li & Orabona (2020) assume that the noise is sub-Gaussian: E

[
exp

(
∥∇fξ(x)−∇f(x)∥2/σ2

)]
≤ exp(1) for all x from the domain.

(4) We notice that
(

1
K+1

∑K
k=0 ∥∇f(xk)∥

)2
≤ 1

K+1

∑K
k=0 ∥∇f(xk)∥2 and in the worst case the left-hand side is K + 1 times smaller than the right-hand side.

(5) All assumptions are made on the level set Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x − y∥ ≤
√

∆/20
√

L}.

However, there are no high-probability results (with log-
arithmic dependence on the confidence level) for smooth
(strongly) convex minimization problems and Lipschitz VIP
without imposing bounded variance assumption. Only re-
cently, Zhang & Cutkosky (2022) derived optimal regret-
bounds under Assumption 1.1 in the convex case with
bounded gradients on Rd. However, the bounded gradients
assumption is quite restrictive when assumed on the whole
space. Thus, a noticeable gap in the stochastic optimization
literature remains.

Contribution. We obtain new high-probability convergence
results under Assumption 1.1 for smooth convex minimiza-
tion problems and Lipschitz VIP; see the summary in Ta-
bles 1 and 2. In particular, for Clipped Stochastic Similar
Triangles Method (clipped-SSTM) (Gorbunov et al., 2020)
and its restarted version, we derive high-probability con-
vergence results for smooth convex and strongly convex
problems. The high-probability complexity in the strongly
convex case matches (up to logarithmic factors) the known
in-expectation lower bound (Zhang et al., 2020b) and deter-

ministic lower bound (Nemirovskij & Yudin, 1983). In other
words, we derive the first optimal high-probability complex-
ity results for smooth strongly convex optimization. No-
ticeably, the derived results have clear separation between
accelerated part and stochastic part that emphasizes a poten-
tial of clipped-SSTM for efficient parallelization. Next, we
derive high-probability results for clipped-SGD for smooth
star-convex and quasi-strongly convex objectives under As-
sumption 1.1. Finally, under the same assumption, we prove
the high-probability convergence of Clipped Stochastic Ex-
tragradient (clipped-SEG) (Korpelevich, 1976; Juditsky
et al., 2011; Gorbunov et al., 2022a) for Lipschitz mono-
tone and quasi-strongly monotone VIP and also obtain high-
probability results for Clipped Stochastic Gradient Descent-
Ascent (clipped-SGDA) for star-cocoercive and monotone
/ quasi-strongly monotone VIP. In the special case of α = 2,
our analysis recovers SOTA high-probability results under
bounded variance assumption.

Non-convex optimization. Under the light-tails and
smoothness assumption Li & Orabona (2020) derive high-
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Table 2: Summary of known and new high-probability complexity results for solving (3). Column “Setup” indicates the assumptions made in addition to Assumption 1.1. All
assumptions are made only on some ball around the solution with radius ∼ R ≥ ∥x0 − x∗∥ (unless the opposite is indicated). By the complexity we mean the number of
stochastic oracle calls needed for a method to guarantee that P{Metric ≤ ε} ≥ 1 − β for some ε > 0, β ∈ (0, 1] and “Metric” is taken from the corresponding column. For
simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column “α” shows the allowed values of α, “UD?” shows whether the analysis works on
unbounded domains, and “UG?” indicates whether the analysis works without assuming boundedness of the gradient. Notation: x̃K

avg = 1
K+1

∑K
k=0 x̃k (for clipped-SEG),

xK
avg = 1

K+1

∑K
k=0 xk (for clipped-SGDA); L = Lipschitz constant; D = diameter of the domain (used in (Juditsky et al., 2011)); GapD(x) = maxy∈X ⟨F (y), x− y⟩,

where X is a bounded domain with diameter D where the problem is defined (used in (Juditsky et al., 2011)); D = diameter of the domain (for the result from (Juditsky et al.,
2011)); σ = parameter from Assumption 1.1; R = any upper bound on ∥x0 − x∗∥; µ = quasi-strong monotonicity parameter; ℓ = star-cocoercivity parameter. The results of
this paper are highlighted in blue.

Setup Method Citation Metric Complexity α UD? UG?

As. 1.7 & 1.8

Mirror-Prox (Juditsky et al., 2011)(1) GapD(x̃K
avg) max

{
LD2

ε , σ2D2

ε2

}
✗(2) ✗ ✓

clipped-SEG (Gorbunov et al., 2022a) GapR(x̃K
avg) max

{
LR2

ε , σ2R2

ε2

}
2 ✓ ✓

clipped-SEG Theorems 4.1 & G.2 GapR(x̃K
avg) max

{
LR2

ε ,
(
σR
ε

) α
α−1

}
(1, 2] ✓ ✓

As. 1.7 & 1.9
clipped-SEG (Gorbunov et al., 2022a) ∥xk − x∗∥2 max

{
L
µ , σ2

µ2ε

}
2 ✓ ✓

clipped-SEG Theorems 4.1 & G.4 ∥xk − x∗∥2 max

{
L
µ ,

(
σ2

µ2ε

) α
2(α−1

)
}

(1, 2] ✓ ✓

As. 1.8 & 1.10
clipped-SGDA (Gorbunov et al., 2022a) GapR(xK

avg) max
{

ℓR2

ε , σ2R2

ε2

}
2 ✓ ✓

clipped-SGDA Theorems 4.2 & H.3 GapR(xK
avg) max

{
ℓR2

ε ,
(
σR
ε

) α
α−1

}
(1, 2] ✓ ✓

As. 1.10
clipped-SGDA (Gorbunov et al., 2022a) 1

K+1

K∑
k=0

∥F (xk)∥2 max
{

ℓ2R2

ε , ℓ2σ2R2

ε2

}
2 ✓ ✓

clipped-SGDA Theorems 4.2 & H.4 1
K+1

K∑
k=0

∥F (xk)∥2 max
{

ℓ2R2

ε ,
(
ℓσR
ε

) α
α−1

}
(1, 2] ✓ ✓

As. 1.9 & 1.10
clipped-SGDA (Gorbunov et al., 2022a) ∥xK − x∗∥2 max

{
ℓ
µ , σ2

µ2ε

}
2 ✓ ✓

clipped-SGDA Theorems 4.2 & H.6 ∥xK − x∗∥2 max

{
ℓ
µ ,

(
σ2

µ2ε

) α
2(α−1

)
}

(1, 2] ✓ ✓

(1) All assumptions are made on the whole domain.
(2) Juditsky et al. (2011) assume that the noise is sub-Gaussian: E

[
exp

(
∥Fξ(x)−F (x)∥2/σ2

)]
≤ exp(1) for all x from the domain.

probability convergence rates to the first-order stationary
point for SGD. These rates match the known in-expectation
guarantees for SGD and are optimal up to logarithmic fac-
tors (Arjevani et al., 2022). Recently, Cutkosky & Mehta
(2021) derived the first high-probability results for non-
convex optimization under Assumption 1.1 for a version
of SGD with gradient clipping and normalization of the
momentum. The results are obtained for the non-standard
metric – 1

K+1

∑K
k=0 ∥∇f(xk)∥ – and match in-expectation

lower bound for the expected (non-squared) norm of the
gradient from (Zhang et al., 2020b). However, Cutkosky &
Mehta (2021) make an additional assumption that the norm
of the gradient is bounded3 on Rd, which is quite restrictive.

Contribution. We derive the first high-probability result
with logarithmic dependence on the confidence level for
finding first-order stationary points of smooth (possibly, non-
convex) functions without bounded gradients assumption.
The result is derived for simple clipped-SGD. Moreover,
we extend the analysis to the functions satisfying Polyak-
Łojasiewicz condition; see Table 1 for the summary.

Gradient clipping received a lot of attention in the machine
learning community due to its successful empirical applica-
tions in the training of deep neural networks (Pascanu et al.,
2013; Goodfellow et al., 2016). The clipping operator is de-

3More precisely, instead of Assumption 1.1, Cutkosky & Mehta
(2021) assume Eξ∼∥∇fξ(x)∥α ≤ Gα for some G > 0. This
assumption implies Assumption 1.1 and boundedness of ∥∇f(x)∥.

fined as clip(x, λ) = min {1, λ/∥x∥}x (clip(x, λ) = 0,
when x = 0). From the theoretical perspective, gradient clip-
ping is used for multiple different purposes: to handle struc-
tured non-smoothness in the objective function (Zhang et al.,
2020a), to robustify aggregation (Karimireddy et al., 2021)
and to provide privacy guarantees (Abadi et al., 2016) in
the distributed training. Moreover, as we already mentioned
before, gradient clipping is used to handle heavy-tailed
noise (satisfying Assumption 1.1) in the stochastic gradients
(Zhang et al., 2020b) and, in particular, to derive better high-
probability guarantees under bounded variance assumption
(Nazin et al., 2019; Gorbunov et al., 2020). However, there
are no results showing the necessity of modifying standard
methods like SGD and its accelerated variants to achieve
high-probability convergence with logarithmic dependence
on the confidence level under bounded variance assumption.

Contribution. We construct an example of a strongly con-
vex smooth problem and stochastic oracle with bounded
variance such that to achieve P{∥xk − x∗∥2 > ε} ≤ β
SGD requires Ω

(
σ2
/µ

√
εβ
)

iterations, i.e., the algorithm
has inverse-power dependence on the confidence level. This
justifies the importance of using some non-linearity such as
gradient clipping to achieve logarithmic dependence on the
confidence level even in the bounded variance case.
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2. Failure of Standard SGD

It is known that SGD xk+1 = xk−γ∇fξk(x
k) can diverge

in expectation, when Assumption 1.1 is satisfied with α < 2
(Zhang et al., 2020b, Remark 1). However, it does con-
verge in expectation when α = 2, i.e., when the variance
is bounded. In contrast, there are no high-probability con-
vergence results for SGD having logarithmic dependence
on 1/β. The next theorem establishes the impossibility of
deriving such high-probability results.

Theorem 2.1. For any ε > 0 and sufficiently small β ∈
(0, 1) there exist problem (2) such that Assumptions 1.1, 1.3,
and 1.6 hold with Q = Rd, α = 2, 0 < µ ≤ L and for the
iterates produced by SGD with any stepsize γ > 0

P
{
∥xk − x∗∥2 ≥ ε

}
≤ β =⇒ k = Ω

(
σ

µ
√
εβ

)
.

The proof is deferred to Appendix D. We believe that similar
examples can be constructed for any stochastic first-order
methods having linear dependence on the stochastic gra-
dients in their update rules. Thus, Theorem 2.1 motivates
the use of non-linear operators such as gradient clipping in
stochastic methods to achieve logarithmic dependence on
the confidence level in the high-probability bounds.

3. Main Results for Minimization Problems
3.1. SGD with Clipping

We start with clipped-SGD:

xk+1 = xk − γ · clip
(
∇fξk(x

k), λk

)
, (15)

where ξk is sampled from Dk independently from previous
steps. We emphasize here and below that distribution of
the noise is allowed to be dependent on k: we require just
independence of ξk from the the previous steps. Our main
convergence results for clipped-SGD are summarized in
the following theorem.

Theorem 3.1 (Convergence of clipped-SGD). Let k ≥ 0

and β ∈ (0, 1] are such that A = ln 4(K+1)
β ≥ 1.

Case 1. Let Assumptions 1.1, 1.2, 1.3 hold
for Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤
f∗ + 2∆ and ∥x − y∥ ≤

√
∆/20

√
L}, ∆ ≥ f(x0) − f∗

and 0 < γ ≤ O
(
min{1/LA,

√
∆/σ

√
LK

1/αA
(α−1)/α}

)
,

λk = λ = Θ(
√
∆/

√
LγA).

Case 2. Let Assumptions 1.1, 1.3, 1.4 hold
for Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤
f∗ + 2∆ and ∥x − y∥ ≤

√
∆/20

√
L}, ∆ ≥ f(x0) − f∗

and 0 < γ = O (min{1/LA, ln(BK)/µ(K+1)}), BK =

Θ
(
max{2, (K+1)

2(α−1)/αµ2∆/Lσ2A
2(α−1)/α ln2(BK)}

)
,

λk = Θ(exp(−γµ(1+k/2))
√
∆/

√
LγA).

Case 3. Let Assumptions 1.1, 1.3, 1.6 with

µ = 0 hold for Q = B3R(x
∗), R ≥ ∥x0 − x∗∥

and 0 < γ ≤ O(min{1/LA,R/σK1/αA
(α−1)/α}),

λk = λ = Θ(R/γA).
Case 4. Let Assumptions 1.1, 1.3, 1.5 with µ > 0
hold for Q = B3R(x

∗), R ≥ ∥x0 − x∗∥ and
0 < γ = O (min{1/LA, ln(BK)/µ(K+1)}), BK =

Θ
(
max{2, (K+1)

2(α−1)/αµ2R2
/σ2A

2(α−1)/α ln2(BK)}
)

,

λk = Θ(exp(−γµ(1+k/2))R/γA).
Then to guarantee 1

K+1

∑k
k=0 ∥∇f(xk)∥2 ≤ ε in Case 1,

f(xK) − f(x∗) ≤ ε in Case 2, f(x̄K) − f(x∗) ≤ ε in
Case 3 with x̄K = 1

K+1

∑K
k=0 x

k, ∥xK − x∗∥2 ≤ ε in
Case 4 with probability ≥ 1− β clipped-SGD requires

Case 1: Õ

max

L∆

ε
,

(√
L∆σ

ε

) α
α−1


 (16)

Case 2: Õ

(
max

{
L

µ
,

(
Lσ2

µ2ε

) α
2(α−1)

})
(17)

Case 3: Õ

(
max

{
LR2

ε
,

(
σR

ε

) α
α−1

})
(18)

Case 4: Õ

(
max

{
L

µ
,

(
σ2

µ2ε

) α
2(α−1)

})
(19)

oracle calls.

The complete formulation of the result and full proofs are
deferred to Appendix E. As one can see from Table 1, for
α = 2 the derived complexity bounds match the best-known
ones for clipped-SGD in the setups where it was analyzed.
Next, we emphasize that the second term under the maxi-
mum in (19) (quasi-strongly convex functions) is optimal up
to logarithmic factors (Zhang et al., 2020b). In the convex
case, there are no lower bounds, but we conjecture that the
second term in (18) is optimal (up to logarithms) in this case
as well.

Next, in the case of PŁ-functions, we are not aware of any
high-probability convergence results in the literature. In the
special case of α = 2, the derived complexity bound (17)
matches the best-known in-expectation complexity bound
for SGD (Karimi et al., 2016; Khaled & Richtárik, 2020)
and the first term coincides (up to logarithms) with the
lower bound for deterministic first-order methods in this
setup (Yue et al., 2022).

Finally, in the non-convex case, bound (16) is the first
high-probability result under Assumption 1.1 without the
additional assumption of the boundedness of the gradi-
ents. For α = 2 it matches (up to logarithms) in-
expectation lower bound (Arjevani et al., 2022). How-
ever, when α < 2, bound (16) is inferior to the exist-
ing one Õ

((
G2
/ε
)(3α−2)/2(α−1)

)
by Cutkosky & Mehta
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(2021), which relies on the stronger assumption that
Eξ∼D∥∇fξ(x)∥α ≤ Gα for some G > 0 and all x ∈ Rd,
and also do not match the lower bound by Zhang et al.
(2020b) derived for E∥∇f(xk)∥, where xk is the output of
the stochastic first-order method. It is also worth mentioning
that Cutkosky & Mehta (2021) use a different performance

metric: P̂K =
(

1
K+1

∑K
k=0 ∥∇f(xk)∥

)2
. This metric is

always smaller than PK = 1
K+1

∑K
k=0 ∥∇f(xk)∥2, which

we use in our result. In the worst case, PK can be K + 1
times larger than P̂K . Moreover, the lower bound from
(Zhang et al., 2020b) is derived for E∥∇f(xk)∥ that is
also always smaller than the standard quantity of interest
E∥∇f(xk)∥2. Therefore, the question of optimality of the
bound (16) remains open for α < 2. Moreover, it will also
be interesting to modify our analysis in this case to derive a
better bound for metric P̂K than (16).

3.2. Acceleration

Next, we focus on the accelerated version of clipped-SGD
called Clipped Stochastic Similar Triangles Method clipped-
SSTM (Gorbunov et al., 2020). The method constructs three
sequences of points {xk}k≥0, {yk}k≥0, {zk}k≥0 satisfying
the following update rules: x0 = y0 = z0 and

xk+1 =
Aky

k + αk+1z
k

Ak+1
, (20)

zk+1 = zk − αk+1 · clip
(
∇fξk(x

k+1), λk

)
, (21)

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
, (22)

where A0 = α0 = 0, αk+1 = k+2
2aL , Ak+1 = Ak + αk+1,

and ξk is sampled from Dk independently from previous
steps. Our main convergence result for clipped-SSTM is
given in the following theorem.

Theorem 3.2 (Convergence of clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with µ = 0 hold for
Q = B3R(x

∗), R ≥ ∥x0 − x∗∥2 and a =

Θ(max{A2, σK
(α+1)/αA

(α−1)/α
/LR}), λk = Θ(R/(αk+1A)),

where A = ln 4K
β , β ∈ (0, 1] are such that A ≥ 1. Then

to guarantee f(yK)− f(x∗) ≤ ε with probability ≥ 1− β
clipped-SSTM requires

Õ

(
max

{√
LR2

ε
,

(
σR

ε

) α
α−1

})
oracle calls. (23)

Moreover, with probability ≥ 1 − β the iter-
ates of clipped-SSTM stay in the ball B2R(x

∗):
{xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ B2R(x
∗).

The derived high-probability bound matches (see the proof
in Appendix F.1) the best-known one in the case of α = 2.
For α < 2 there are no lower bounds in the convex case.

However, the first term in (23) is optimal and matches the
deterministic lower bound in the convex case (Nemirovskij
& Yudin, 1983). The second term is the same as in the bound
for clipped-SGD (18) and we conjecture that it cannot be
improved.

In the strongly convex case, we consider clipped-SSTM
with restarts (R-clipped-SSTM). This method consists of τ
stages. On the t-th stage R-clipped-SSTM runs clipped-
SSTM for K0 iterations from the starting point x̂t, which is
the output from the previous stage (x̂t = x0), and defines
the obtained point as x̂t+1; see Algorithm 3 in Appendix F.2.
For this procedure we have the following result.

Theorem 3.3 (Convergence of R-clipped-SSTM). Let
Assumptions 1.1, 1.3, 1.6 with µ > 0 hold for Q =
B3R(x

∗), R ≥ ∥x0 − x∗∥2 and R-clipped-SSTM
runs clipped-SSTM τ = ⌈log2(µR

2
/2ε)⌉ times. Let

Kt = Θ̃(max{
√

LR2
t−1/εt, (σRt−1/εt)

α/(α−1)}), at =

Θ̃(max{1, σK
α+1/α
t /LRt}), λt

k = Θ̃(R/αt
k+1) be the param-

eters for the stage t of R-clipped-SSTM, where Rt−1 =
2−(t−1)/2R, εt = µR2

t−1/4, ln 4τKt

β ≥ 1 for all t = 1, . . . , τ

and some β ∈ (0, 1]. Then to guarantee f(x̂τ )−f(x∗) ≤ ε
with probability ≥ 1− β R-clipped-SSTM requires

Õ

(
max

{√
L

µ
,

(
σ2

µε

) α
2(α−1)

})
oracle calls. (24)

Moreover, with probability ≥ 1−β the iterates of R-clipped-
SSTM at stage t stay in the ball B2Rt−1

(x∗).

The obtained complexity bound (see the proof in Ap-
pendix F.2) is the first optimal (up to logarithms) high-
probability complexity bound under Assumption 1.1 for
the smooth strongly convex problems. Indeed, the first
term cannot be improved in view of the deterministic lower
bound by Nemirovskij & Yudin (1983), and the second term
is optimal due to Zhang et al. (2020b).

4. Main Results for Variational Inequalities
4.1. Clipped Stochastic Extragradient

For (quasi strongly) monotone VIPs we consider Clipped
Stochastic Extragradient method (clipped-SEG):

x̃k = xk − γ · clip(Fξk1
(xk), λk), (25)

xk+1 = xk − γ · clip(Fξk2
(x̃k), λk), (26)

where ξk1 , ξk2 are sampled from Dk independently from
previous steps. Our main convergence results for clipped-
SEG are summarized below.

Theorem 4.1 (Convergence of clipped-SEG). curiosity
Case 1. Let Assumptions 1.1, 1.3, 1.8 hold for Q = B4R(x

∗)
and 0 < γ = O

(
min{1/LA,R/K1/ασA

(α−1)/α}
)
,
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λk = λ = Θ(R/γA), where A = ln 6(K+1)
β ≥ 1,

β ∈ (0, 1].
Case 2. Let Assumptions 1.1, 1.3, 1.9 with
µ > 0 hold for Q = B3R(x

∗) and 0 <
γ = O (min{1/LA, ln(BK)/µ(K+1)}), BK =

Θ
(
max{2, (K+1)

2(α−1)/αµ2R2
/σ2A

2(α−1)/α ln2(BK)}
)

,

λk = Θ(exp(−γµ(1+k/2))R/γA), where A = ln 6(K+1)
β ,

β ∈ (0, 1] are such that A ≥ 1.
Then to guarantee GapR(x̃

K
avg) ≤ ε in Case 1 with

x̃K
avg = 1

K+1

∑K
k=0 x̃

k, ∥xK − x∗∥2 ≤ ε in Case 2 with
probability ≥ 1− β clipped-SEG requires

Case 1: Õ

(
max

{
LR2

ε
,

(
σR

ε

) α
α−1

})
(27)

Case 2: Õ

(
max

{
L

µ
,

(
σ2

µ2ε

) α
2(α−1)

})
(28)

oracle calls.

The proofs are deferred to Appendix G. When α = 2, the
above bounds recover SOTA high-probability bounds for
monotone and quasi-strongly monotone Lipschitz VIP (Gor-
bunov et al., 2022a). For the case of α < 2 (27) and (28) are
the first high-probability results for the mentioned classes.
Next, the first terms in these complexity bounds are optimal
(up to logarithms) due to the lower bounds for the deter-
ministic methods (Ouyang & Xu, 2021; Zhang et al., 2022).
The second term in (28) is also optimal (up to logarithms)
due to the lower bounds for stochastic strongly convex mini-
mization (Zhang et al., 2020b). Similarly to the convex case
in minimization, we conjecture that the second term in (27)
cannot be improved in the monotone case as well.

4.2. Clipped Stochastic Gradient Descent-Ascent

In the star-cocoercive case, we focus on Clipped Stochastic
Gradient Descent-Ascent (clipped-SGDA):

xk+1 = xk − γ · clip(Fξk(x
k), λk), (29)

where ξk is sampled from Dk independently from previous
steps. For this method we derive the following convergence
guarantees.

Theorem 4.2 (Convergence of clipped-SGDA). curios
Case 1. Let Assumptions 1.1, 1.10, 1.8 hold for Q =
B2R(x

∗) and 0 < γ = O
(
min{1/ℓA,R/K1/ασA

(α−1)/α}
)
,

λk = λ = Θ(R/γA), β ∈ (0, 1] are such that A ≥ 1.
Case 2. Let Assumptions 1.1, 1.10 hold for Q = B2R(x

∗)
and 0 < γ = O

(
min{1/ℓA,R/K1/ασA

(α−1)/α}
)
,

λk = λ = Θ(R/γA), where A = ln 4(K+1)
β , β ∈ (0, 1] are

such that A ≥ 1.
Case 3. Let Assumptions 1.1, 1.10, 1.9
with µ > 0 hold for Q = B2R(x

∗) and

0 < γ = O (min{1/ℓA, ln(BK)/µ(K+1)}), BK =

Θ
(
max{2, (K+1)

2(α−1)/αµ2R2
/σ2A

2(α−1)/α ln2(BK)}
)

,

λk = Θ(exp(−γµ(1+k/2))R/γA), where A = ln 4(K+1)
β ,

β ∈ (0, 1] are such that A ≥ 1.
Then to guarantee GapR(x̃

K
avg) ≤ ε in Case 1 with

x̃K
avg = 1

K+1

∑K
k=0 x̃

k, 1
K+1

∑k
k=0 ∥F (xk)∥2 ≤ ℓε in

Case 2, ∥xK −x∗∥2 ≤ ε in Case 3 with probability ≥ 1−β
clipped-SGDA requires

Case 1 and 2: Õ

(
max

{
ℓR2

ε
,

(
σR

ε

) α
α−1

})
(30)

Case 2: Õ

(
max

{
ℓ

µ
,

(
σ2

µ2ε

) α
2(α−1)

})
(31)

oracle calls.

One can find the proofs in Appendix H. The derived high-
probability results generalize the existing SOTA results from
the case of α = 2 (Gorbunov et al., 2022a) to the case of
α < 2.

5. Key Lemma and Intuition Behind the Proofs
The proofs of all results in this paper follow a very sim-
ilar pattern. To illustrate the main idea, we consider the
analysis of clipped-SGD in the non-convex case. Mimick-
ing the proof of deterministic GD we derive the following
inequality:

γ

K∑
k=0

∥∇f(xk)∥2 ⪅ ∆0 −∆K+1 (32)

− γ

K∑
k=0

⟨∇f(xk), θk⟩+ Lγ2
K−1∑
k=0

∥θk∥2,

where ∆k = f(xk) − f∗ and θk = ∇̃fξk(x
k) − ∇f(xk).

In other words, we separate the deterministic part of the
method from its stochastic part. To obtain the result of
Theorem 3.1 (Case 1) it remains to upper bound with high-
probability the sums from the second line of the formula
above. We do it with the help of Bernstein’s inequality
(Lemma B.2). However, it requires several preliminary steps.
In particular, Bernstein’s inequality needs the random vari-
ables to be bounded. The magnitudes of summands depend
on ∇f(xk) that can be arbitrarily large due to the stochastic-
ity in xk. However, (32) allows to bound ∆K+1 inductively
and, using smoothness, to bound ∥∇f(xK+1)∥. Secondly,
Bernstein’s inequality requires knowing the bounds on the
bias and variance of the clipped stochastic estimator. For
such purposes, we derive the following result, which is a
generalization of Lemma F.5 from (Gorbunov et al., 2020);
see also Lemma 10 from (Zhang et al., 2020b).
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Lemma 5.1. Let X be a random vector in Rd and X̃ =
clip(X,λ). Then, ∥X̃ − E[X̃]∥ ≤ 2λ. Moreover, if for
some σ ≥ 0 and α ∈ (1, 2] we have E[X] = x ∈ Rd,
E[∥X − x∥α] ≤ σα, and ∥x∥ ≤ λ/2, then∥∥∥E[X̃]− x

∥∥∥ ≤ 2ασα

λα−1
, (33)

E
[∥∥∥X̃ − x

∥∥∥2] ≤ 18λ2−ασα, (34)

E
[∥∥∥X̃ − E[X̃]

∥∥∥2] ≤ 18λ2−ασα. (35)

This lemma can be useful on its own for analyses involving
clipping operators. Moreover, our high-probability analysis
does not rely on the choice of clipping explicitly: in the
proofs, we use only ∥X̃∥ ≤ λ and inequalities (33)-(35).
Therefore, our results hold for the methods considered in
this work with any other non-linearity ϕλ(x) (not necessary
clipping), if it satisfies the conditions from the above lemma
for X̃ = ϕλ(X).

6. Discussion
In this work, we contributed to the stochastic optimization
literature via deriving new high-probability results under
Assumption 1.1. Our results can be extended to the min-
imization of functions with Hölder continuous gradients
using similar ideas to (Gorbunov et al., 2021). Another
prominent direction is in obtaining new high-probability
results for other types of non-linearities, e.g., like in (Polyak
& Tsypkin, 1980; Jakovetic et al., 2022).
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A. Additional Related Work
In this section, we provide an overview of the existing in-expectation convergence results under Assumption 1.1.

Convex minimization. The first in-expectation result under Assumption 1.1 is given by Nemirovskij & Yudin (1983),
who derive4 O(ε−α/(α−1)) complexity for Mirror Descent applied to the minimization of convex functions with bounded
gradients. This result was recently extended by Vural et al. (2022) to the uniformly convex functions, and matching lower
bounds were derived. In the strongly convex case, Zhang et al. (2020b) prove O(ε−α/2(α−1)) complexity for clipped-SGD.
However, all these results rely on the boundedness of the gradient. To the best of our knowledge, there are no results for
smooth convex problems under Assumption 1.1 without assuming that the gradient is bounded even in terms of expectation.

Non-convex minimization. In the non-convex smooth case, Zhang et al. (2020b) prove O(ε−(3α−2)/(α−1)) complexity
for clipped-SGD to produce a point x such that E∥∇f(x)∥ ≤ ε. In the same work, the authors derive the matching lower
bound. However, both upper and lower bounds are derived for E∥∇f(x)∥ which is smaller than

√
E∥∇f(x)∥2. The later

one is stronger and is more standard performance metric for stochastic non-convex optimization. Therefore, the question of
deriving lower and matching upper bounds for the standard metric remains open.

4In this section, we hide in O(·) all dependencies except the dependency on ε.
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B. Useful Facts
Smoothness. If f is L-smooth on convex set Q ⊆ Rd, then for all x, y ∈ Q (Nesterov et al., 2018)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2. (36)

In particular, if x and y = x− 1
L∇f(x) lie in Q, then the above inequality gives

f(y) ≤ f(x)− 1

L
∥∇f(x)∥2 + 1

2L
∥∇f(x)∥2 = f(x)− 1

2L
∥∇f(x)∥2

and

∥∇f(x)∥2 ≤ 2L (f(x)− f(y)) ≤ 2L (f(x)− f∗)

under the assumption that f∗ = infx∈Q f(x) > −∞. In other words, (7) holds for any x ∈ Q such that (x− 1
L∇f(x)) ∈ Q.

For example, if x∗ is an optimum of f , then L-smoothness on B2R(x
∗) implies that (7) holds on BR(x

∗): indeed, for any
x ∈ BR(x

∗) we have ∥∥∥∥x− 1

L
∇f(x)− x∗

∥∥∥∥ ≤ ∥x− x∗∥+ 1

L
∥∇f(x)∥

(6)
≤ 2∥x− x∗∥ ≤ 2R.

This derivation means that, in the worst case, to have (7) on a set Q we need to assume smoothness on a slightly larger set.

Parameters in clipped-SSTM. To analyze clipped-SSTM we use the following lemma about its parameters αk and Ak.

Lemma B.1 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {αk}k≥0 and {Ak}k≥0 satisfy

α0 = A0 = 0, Ak+1 = Ak + αk+1, αk+1 =
k + 2

2aL
∀k ≥ 0, (37)

where a > 0, L > 0. Then for all k ≥ 0

Ak+1 =
(k + 1)(k + 4)

4aL
, (38)

Ak+1 ≥ aLα2
k+1. (39)

Bernstein inequality. One of the final steps in our proofs is in the proper application of the following lemma known as
Bernstein inequality for martingale differences (Bennett, 1962; Dzhaparidze & Van Zanten, 2001; Freedman et al., 1975).

Lemma B.2. Let the sequence of random variables {Xi}i≥1 form a martingale difference sequence, i.e.

E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume that conditional variances σ2
i

def
= E

[
X2

i | Xi−1, . . . , X1

]
exist and

are bounded and assume also that there exists deterministic constant c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1.
Then for all b > 0, G > 0 and n ≥ 1

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑

i=1

σ2
i ≤ G

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
. (40)
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C. Proof of Lemma 5.1
Lemma C.1 (Lemma 5.1). Let X be a random vector in Rd and X̃ = clip(X,λ). Then,∥∥∥X̃ − E[X̃]

∥∥∥ ≤ 2λ. (41)

Moreover, if for some σ ≥ 0 and α ∈ [1, 2)

E[X] = x ∈ Rd, E[∥X − x∥α] ≤ σα (42)

and ∥x∥ ≤ λ/2, then ∥∥∥E[X̃]− x
∥∥∥ ≤ 2ασα

λα−1
, (43)

E
[∥∥∥X̃ − x

∥∥∥2] ≤ 18λ2−ασα, (44)

E
[∥∥∥X̃ − E[X̃]

∥∥∥2] ≤ 18λ2−ασα. (45)

Proof. Proof of (41): by definition of a clipping operator, we have∥∥∥X̃ − E
[
X̃
]∥∥∥ ≤

∥∥∥X̃∥∥∥+ ∥∥∥E [X̃]∥∥∥
= ∥clip(X,λ)∥+ ∥E [clip(X,λ)]∥

≤
∥∥∥∥min

{
1,

λ

∥X∥

}
X

∥∥∥∥+ E
[∥∥∥∥min

{
1,

λ

∥X∥

}
X

∥∥∥∥]
= min {∥X∥ , λ}+ E [min {∥X∥ , λ}]
≤ λ+ λ = 2λ.

Proof of (43): To start the proof, we introduce two indicator random variables. Let

χ = I{X:∥X∥>λ} =

{
1, if ∥X∥ > λ,

0, otherwise
, η = I{X:∥X−x∥>λ

2 } =

{
1, if ∥X − x∥ > λ

2 ,

0, otherwise
. (46)

Moreover, since ∥X∥ ≤ ∥x∥+ ∥X − x∥
∥x∥≤λ/2

≤ λ
2 + ∥X − x∥, we have χ ≤ η. We are now in a position to show (43).

Using that

X̃ = min

{
1,

λ

∥X∥

}
X = χ

λ

∥X∥
X + (1− χ)X,

we obtain ∥∥∥E [X̃]− x
∥∥∥ =

∥∥∥∥E [X + χ

(
λ

∥X∥
− 1

)
X

]
− x

∥∥∥∥
=

∥∥∥∥E [χ( λ

∥X∥
− 1

)
X

]∥∥∥∥
≤ E

[∣∣∣χ( λ

∥X∥
− 1

) ∣∣∣ ∥X∥
]

= E
[
χ

(
1− λ

∥X∥

)
∥X∥

]
.
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Since 1− λ/∥X∥ ∈ (0, 1) when χ ̸= 0, we derive∥∥∥E [X̃]− x
∥∥∥ ≤ E [χ∥X∥]

χ≤η

≤ E [η∥X∥]
≤ E [η∥X − x∥+ η∥x∥]
(∗)
≤ (E [∥X − x∥α])

1/α (E [η α
α−1
])α−1

α + ∥x∥E [η]

(42)
≤ σ

(
E
[
η

α
1−α
]) 1−α

α +
λ

2
E [η] ,

where in (∗) we applied Hölder’s inequality. By Markov’s inequality,

E
[
η

α
1−α
]

= E [η] = P
{
∥X − x∥ >

λ

2

}
= P

{
∥X − x∥α >

λα

2α

}
≤ 2α

λα
E [∥X − x∥α]

≤
(
2σ

λ

)α

. (47)

Thus, in combination with the previous chain of inequalities, we finally have∥∥∥E [X̃]− x
∥∥∥ ≤ σ

(
2σ

λ

)α−1

+
λ

2

(
2σ

λ

)α

=
2ασα

λα−1
.

Proof of (44): Using ∥X̃ − x∥ ≤ ∥X̃∥+ ∥x∥ ≤ λ+ λ
2 = 3λ

2 , we have

E
[
∥X̃ − x∥2

]
= E

[
∥X̃ − x∥α∥X̃ − x∥2−α

]
≤

(
3λ

2

)2−α

E
[
∥X̃ − x∥αχ+ ∥X̃ − x∥α(1− χ)

]
=

(
3λ

2

)2−α

E
[
χ

∥∥∥∥ λ

∥X∥
X − x

∥∥∥∥α + ∥X − x∥α(1− χ)

]
≤

(
3λ

2

)2−α

E
[
χ

(∥∥∥∥ λ

∥X∥
X

∥∥∥∥+ ∥x∥
)α

+ ∥X − x∥α(1− χ)

]
∥x∥≤λ

2

≤
(
3λ

2

)2−α(
E
[
χ

(
3λ

2

)α

+ σα

])
,

where in the last inequality we applied (42) and 1− χ ≤ 1. By (47) and χ ≤ η, we obtain

E
[
∥X̃ − x∥2

]
≤ 9λ2

4

(
2σ

λ

)α

+

(
3λ

2

)2−α

σα

≤ 9λ2

4

(
2α +

2α

3α

)
σα

λα

≤ 18λ2−ασα.

Proof of (45): Using variance decomposition and (44), we have

E
[∥∥∥X̃ − E[X̃]

∥∥∥2] ≤ E
[
∥X̃ − x∥2

]
≤ 18λ2−ασα.

16



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

D. Proof of Theorem 2.1
In this section, we give an example of the problem for which SGD without clipping leads to a weak high-probability
convergence guarantee even under the strong assumption of bounded variance. Theorem below formally states our result,
showing that, in the worst-case, the bound for SGD scales worse than that of clipped-SGD in terms of the probability β.

Theorem D.1. For any ε > 0, β ∈ (0, 1), and SGD parameterized by the number of steps K and stepsize γ, there exists
problem (2) such that Assumptions 1.1, 1.3, and 1.6 hold with α = 2, 0 < µ ≤ L and for the iterates produced by SGD
with any stepsize 0 < γ ≤ 1/µ

P
{
∥xK − x∗∥2 ≥ ε

}
≤ β =⇒ K = Ω

(
σ

µ
√
βε

)
. (48)

Proof. To prove the above theorem, we consider the simple one-dimensional problem f(x) = µx2
/2. It is easy to see that the

considered problem is µ-strongly convex, µ-smooth, and has optimum at x∗ = 0. We construct the noise in an adversarial
way with respect to the parameters of the SGD. Concretely, the noise depends on the number of iterates N , stepsize γ, target
precision ε, the starting point x0, and bound on the variance σ2 such that

∇fξk(x
k) = µxk − σzk,

where

zk =


0, if k < K − 1 or (1− γµ)K |x0| >

√
ε,

−A, with probability 1
2A2 ,

0 with probability 1− 1
A2 ,

A, with probability 1
2A2 ,

otherwise
∀k ∈ {0, 1, . . . ,K − 1}, (49)

where A = max
{

2
√
ε

γσ , 1
}

. We note that E
[
zk
]
= 0. Therefore, E

[
∇fξk(x

k)
]
= µxk = ∇f(xk). Furthermore,

Var
[
zk
]
= E

[
(zk)2

]
≤ 1

2A2
A2 +

1

2A2
A2 = 1,

which implies that Assumption 1.1 holds for α = 2. We note that our construction depends on the parameters of the
algorithm and the target value ε. However, our analysis of the methods with clipping works in such generality.

Let us now analyze the properties of the introduced problem. We are interested in the situation when

P
{
∥xK − x∗∥2 ≥ ε

}
≤ β

for β ∈ (0, 1). We first prove that this implies that (1 − γµ)K |x0| ≤
√
ε. To do that we proceed by contradiction and

assume that

(1− γµ)K |x0| >
√
ε. (50)

By construction, this implies that zk = 0, ∀k ∈ {0, 1, . . . ,K}. This, in turn, implies that xK = (1− γµ)Kx0, and, further,
by (50) and since x∗ = 0, that

P
{
∥xK − x∗∥2 ≥ ε

}
= P

{
∥xK∥2 ≥ ε

}
= 1.

Thus, the contradiction shows that (1− γµ)K |x0| ≤
√
ε, which yields K ≥

ln
√

ε

|x0|
ln(1−γµ) ≥

ln
√

ε

|x0|
−γµ ≥ 1

γµ = ln |x0|√
ε

. Using (49)

with K ≥ 1
γµ log |x0|√

ε
, we obtain

∥xK − x∗∥2 = ((1− γµ)Kx0 + γσzK)2.

17



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Furthermore,

P
{
∥xK − x∗∥2 ≥ ε

}
= P

{∣∣(1− γµ)Kx0 + γσzK
∣∣ ≥ √

ε
}

= P
{
γσzK ≥

√
ε− (1− γµ)Kx0

}
+ P

{
γσzK ≤ −

√
ε− (1− γµ)Kx0

}
≥ P

{
γσzK ≥

√
ε+ (1− γµ)Kx0

}
+ P

{
γσzK ≤ −

√
ε− (1− γµ)Kx0

}
= P

{
|γσzK | ≥

√
ε+ (1− γµ)Kx0

}
≥ P

{
|γσzK | ≥ 2

√
ε
}
= P

{
|zK | ≥ 2

√
ε

γσ

}
.

Now if 2
√
ε

γσ < 1 then A = 1. Therefore,

1 = P
{
|zK | ≥ 2

√
ε

γσ

}
≤ P

{
∥xK − x∗∥2 > ε

}
< β,

yielding contradiction, which implies that if P
{
∥xK − x∗∥2 > ε

}
< β for our constructed problem, then 2

√
ε

γσ ≥ 1, i.e.,

γ ≤ 2
√
ε

σ . For γ ≤ 2
√
ε

σ , we have

β ≥ P
{
∥xK − x∗∥2 ≥ ε

}
≥ P

{
|zK | ≥ 2

√
ε

γσ

}
=

1

A2
=

γ2σ2

4ε
.

This implies that γ ≤ 2
√
βε
σ . Combining this inequality with K ≥ 1

γµ log |x0|√
ε

yields

K ≥ σ

2µ
√
βε

log
|x0|√
ε

and concludes the proof.
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E. Missing Proofs for clipped-SGD

In this section, we provide all the missing details and proofs of the results for clipped-SGD. For brevity, we will use the
following notation: ∇̃fξk(x

k) = clip(∇fξk(x
k), λk).

Algorithm 1 Clipped Stochastic Gradient Descent (clipped-SGD) (Pascanu et al., 2013)

Input: starting point x0, number of iterations K, stepsize γ > 0, clipping levels {λk}K−1
k=0 .

1: for k = 0, . . . ,K − 1 do
2: Compute ∇̃fξk(x

k) = clip
(
∇fξk(x

k), λk

)
using a fresh sample ξk ∼ Dk

3: xk+1 = xk − γ∇̃fξk(x
k)

4: end for
Output: xK

E.1. Non-Convex Functions

We start the analysis of clipped-SGD in the non-convex case with the following lemma that follows the proof of deterministic
GD and separates the stochasticity from the determinisitc part of the method.

Lemma E.1. Let Assumptions 1.2 and 1.3 hold on Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x− y∥ ≤
√
∆/20

√
L},

where ∆ ≥ ∆0 = f(x0)− f∗, and let stepsize γ satisfy γ < 2
L . If xk ∈ Q for all k = 0, 1, . . . ,K, K ≥ 0, then after K

iterations of clipped-SGD we have

γ

(
1− Lγ

2

)K−1∑
k=0

∥∇f(xk)∥2 ≤ (f(x0)− f∗)− (f(xK)− f∗)− γ(1− Lγ)

K−1∑
k=0

⟨∇f(xk), θk⟩

+
Lγ2

2

K−1∑
k=0

∥θk∥2, (51)

θk
def
= ∇̃fξk(x

k)−∇f(xk). (52)

Proof. Using xk+1 = xk − γ∇̃fξk(x
k) and smoothness of f (1.3) we get that for all k = 0, 1, . . . ,K − 1

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

= f(xk)− γ⟨∇f(xk), ∇̃fξk(x
k)⟩+ Lγ2

2
∥∇̃fξk(x

k)∥2

(52)
= f(xk)− γ∥∇f(xk)∥2 − γ⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2

+
Lγ2

2
∥∇f(xk)∥2 + Lγ2⟨∇f(xk), θk⟩

= f(xk)− γ

(
1− Lγ

2

)
∥∇f(xk)∥2 − γ(1− Lγ)⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2.

We rearrange the terms and get

γ

(
1− Lγ

2

)
∥∇f(xk)∥2 ≤ f(xk)− f(xk+1)− γ(1− Lγ)⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2.
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Finally, summing up these inequalities for k = 0, . . . ,K − 1, we get

γ

(
1− Lγ

2

)K−1∑
k=0

∥∇f(xk)∥2 ≤
K−1∑
k=0

(
f(xk)− f(xk+1)

)
− γ(1− Lγ)

K−1∑
k=0

⟨∇f(xk), θk⟩

+
Lγ2

2

K−1∑
k=0

∥θk∥2

= (f(x0)− f∗)− (f(xK)− f∗)− γ(1− Lγ)

K−1∑
k=0

⟨∇f(xk), θk⟩

+
Lγ2

2

K−1∑
k=0

∥θk∥2,

which concludes the proof.

Using this lemma, we prove the main convergence result for clipped-SGD in the non-convex case.
Theorem E.2. Let Assumptions 1.1, 1.2, 1.3 hold on Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗+2∆ and ∥x−y∥ ≤

√
∆/20

√
L},

where ∆ ≥ ∆0 = f(x0)− f∗, stepsize

γ ≤ min


1

80L ln 4(K+1)
β

,

√
∆

27
1
α 20σ

√
LK

1
α

(
ln 4(K+1)

β

)α−1
α

 , (53)

and clipping level

λk = λ =

√
∆

20
√
Lγ ln 4(K+1)

β

, (54)

for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations of clipped-SGD the iterates with

probability at least 1− β satisfy

1

K + 1

K∑
k=0

∥∇f(xk)∥2 ≤ 2∆

γ
(
1− Lγ

2

)
(K + 1)

. (55)

In particular, when γ equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1− β satisfy

1

K + 1

K∑
k=0

∥∇f(xk)∥2 = O

max

L∆ ln K
β

K
,

√
L∆σ ln

α−1
α K

β

K
α−1
α


 , (56)

meaning that to achieve 1
K+1

K∑
k=0

∥∇f(xk)∥2 ≤ ε with probability at least 1− β clipped-SGD requires

K = O

max

L∆

ε
ln

L∆

βε
,

(√
L∆σ

ε

) α
α−1

ln

 1

β

(√
L∆σ

ε

) α
α−1


 iterations/oracle calls. (57)

Proof. Let ∆k = f(xk) − f∗ for all k ≥ 0. Next, our goal is to show by induction that ∆l ≤ 2∆ with high probability,
which allows to apply the result of Lemma E.1 and then use Bernstein’s inequality to estimate the stochastic part of the
upper-bound. More precisely, for each k = 0, . . . ,K + 1 we consider probability event Ek defined as follows: inequalities

Lγ2

2

t−1∑
l=0

∥θl∥2 − γ(1− Lγ)

t−1∑
l=1

⟨∇f(xl), θl⟩ ≤ ∆, (58)

∆t ≤ 2∆ (59)
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hold for all t = 0, 1, . . . , k simultaneously. We want to prove via induction that P{Ek} ≥ 1 − kβ/(K+1) for all k =
0, 1, . . . ,K + 1. For k = 0 the statement is trivial. Assume that the statement is true for some k = T − 1 ≤ K:
P{ET−1} ≥ 1− (T−1)β/(K+1). One needs to prove that P{ET } ≥ 1− Tβ/(K+1). First, we notice that probability event
ET−1 implies that ∆t ≤ 2∆ for all t = 0, 1, . . . , T − 1, i.e., xt ∈ {y ∈ Rd | f(y) ≤ f∗ + 2∆} for t = 0, 1, . . . , T − 1.
Moreover, due to the choice of clipping level λ we have

∥xT − xT−1∥ = γ∥∇̃fξT−1(xT−1)∥ ≤ γλ
(54)
=

√
∆

20
√
L ln 4K

β

≤
√
∆

20
√
L
.

Therefore, ET−1 implies {xk}Tk=0 ⊆ Q, meaning that the assumptions of Lemma E.1 are satisfied and we have

A

t−1∑
l=0

∥∇f(xl)∥2 ≤ ∆0 −∆t − γ(1− Lγ)

t−1∑
k=0

⟨∇f(xl), θl⟩+
Lγ2

2

t−1∑
l=0

∥θl∥2, (60)

A
def
= γ

(
1− Lγ

2

)
(53)
≥ 0 (61)

for all t = 0, 1, . . . , T simultaneously and for all t = 1, . . . , T − 1 this probability event also implies that

t−1∑
l=0

∥∇f(xl)∥2
(60)
≤ 1

A

(
∆− γ(1− Lγ)

t−1∑
k=0

⟨∇f(xl), θl⟩+
Lγ2

2

t−1∑
l=0

∥θl∥2
)

(58),
≤ 2∆

A
. (62)

Taking into account that A
T−1∑
t=0

∥∇f(xt)∥2 ≥ 0, we also derive that ET−1 implies

∆T ≤ ∆+
Lγ2

2

T−1∑
t=0

∥θt∥2 − γ(1− Lγ)

T−1∑
t=0

⟨∇f(xt), θt⟩. (63)

Next, we define random vectors

ηt =

{
∇f(xt), if ∥∇f(xt)∥ ≤ 2

√
L∆,

0, otherwise,

for all t = 0, 1, . . . , T − 1. By definition these random vectors are bounded with probability 1

∥ηt∥ ≤ 2
√
L∆. (64)

Moreover, for t = 1, . . . , T − 1 event ET−1 implies

∥∇f(xl)∥
(7)
≤
√
2L(f(xl)− f∗) =

√
2L∆l ≤ 2

√
L∆

(53),(54)
≤ λ

2
, (65)

meaning that ET−1 implies that ηt = ∇f(xt) for all t = 0, 1, . . . , T − 1. Next, we define the unbiased part and the bias of
θt as θut and θbt , respectively:

θut = ∇̃fξt(x
t)− Eξt

[
∇̃fξt(x

t)
]
, θbt = Eξt

[
∇̃fξt(x

t)
]
−∇f(xt). (66)

We notice that θt = θut + θbt . Using new notation, we get that ET−1 implies

∆T ≤ ∆−γ(1− Lγ)

T−1∑
t=0

⟨θut , ηt⟩︸ ︷︷ ︸
①

−γ(1− Lγ)

T−1∑
t=0

⟨θbt , ηt⟩︸ ︷︷ ︸
②

+Lγ2
T−1∑
t=0

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])

︸ ︷︷ ︸
③

+Lγ2
T−1∑
t=0

Eξt

[
∥θut ∥

2
]

︸ ︷︷ ︸
④

+Lγ2
T−1∑
t=0

∥∥θbt∥∥2︸ ︷︷ ︸
⑤

. (67)
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It remains to derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤, i.e., to finish our inductive
proof we need to show that ① + ② + ③ + ④ + ⑤ ≤ ∆ with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of θut and θbt . First, by definition of clipping operator,
we have with probability 1 that

∥θut ∥ ≤ 2λ. (68)

Moreover, since ET−1 implies that ∥∇f(xt)∥ ≤ λ/2 for t = 0, 1, . . . , T − 1 (see (65)), then, in view of Lemma 5.1, we
have that ET−1 implies

∥θbt∥ ≤ 2ασα

λα−1
, (69)

Eξt
[
∥θut ∥2

]
≤ 18λ2−ασα. (70)

Upper bound for ①. By definition of θut , we have Eξt [θ
u
t ] = 0 and

Eξt [−γ(1− Lγ)⟨θut , ηt⟩] = 0.

Next, sum ① has bounded with probability 1 terms:

|γ(1− Lγ) ⟨θut , ηt⟩ |
(53)
≤ γ∥θut ∥ · ∥ηt∥

(64),(68)
≤ 4γλ

√
L∆

(54)
=

∆

5 ln 4(K+1)
β

def
= c. (71)

The summands also have bounded conditional variances σ2
t

def
= Eξt [γ

2(1− Lγ)2⟨θut , ηt⟩2]:

σ2
t ≤ Eξt

[
γ2(1− Lγ)2∥θut ∥2 · ∥ηt∥2

] (64)
≤ 4γ2(1− Lγ)2L∆Eξt

[
∥θut ∥2

] (53)
≤ 4γ2L∆Eξt

[
∥θut ∥2

]
. (72)

In other words, we showed that {−γ(1 − Lγ) ⟨θut , ηt⟩}T−1
t=0 is a bounded martingale difference sequence with bounded

conditional variances {σ2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = −γ(1 − Lγ) ⟨θut , ηt⟩,
parameter c as in (71), b = ∆

5 , G = ∆2

150 ln
4(K+1)

β

:

P

{
|①| > ∆

5
and

T−1∑
t=0

σ2
t ≤ ∆2

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P {E①} ≥ 1− β

2(K + 1)
, for E① =

{
either

T−1∑
t=0

σ2
t >

∆2

150 ln 4(K+1)
β

or |①| ≤ ∆

5

}
. (73)

In addition, ET−1 implies that

T−1∑
t=0

σ2
t

(72)
≤ 4γ2L∆

T−1∑
t=0

Eξt
[
∥θut ∥2

] (70)
≤ 72γ2L∆σαTλ2−α

(54)
=

9 · 20α
√
∆

4−α
σαT

√
L
α
γα

50 ln2−α 4(K+1)
β

(53)
≤ ∆2

150 ln 4(K+1)
β

. (74)

Upper bound for ②. From ET−1 it follows that

② = −γ(1− Lγ)

T−1∑
t=0

⟨θbt , ηt⟩
(53)
≤ γ

T−1∑
t=0

∥θbt∥ · ∥ηt∥
(64),(69)
≤ 2 · 2αγσαT

√
L∆

λα−1

(54)
=

40α

10
· σ

αT
√
∆

2−α√
L
α
γα

ln1−α 4(K+1)
β

(53)
≤ ∆

5
. (75)
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Upper bound for ③. First, we have

Eξt

[
Lγ2

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])]

= 0.

Next, sum ③ has bounded with probability 1 terms:∣∣∣Lγ2
(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])∣∣∣ ≤ Lγ2

(
∥θut ∥2 + Eξt

[
∥θut ∥

2
])

(68)
≤ 8Lγ2λ2 (54)

=
∆

50 ln2 4(K+1)
β

≤ ∆

5 ln 4(K+1)
β

def
= c. (76)

The summands also have bounded conditional variances σ̃2
t

def
= Eξt

[
L2γ4

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])2]

:

σ̃2
t

(76)
≤ ∆

5 ln 4(K+1)
β

Eξt

[
Lγ2

∣∣∣∥θut ∥2 − Eξt

[
∥θut ∥

2
]∣∣∣] ≤ 2Lγ2∆

5 ln 4(K+1)
β

Eξt
[
∥θut ∥2

]
, (77)

since ln 4K
β ≥ 1. In other words, we showed that

{
Lγ2

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])}T−1

t=0
is a bounded martingale difference

sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt =

Lγ2
(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])

, parameter c as in (76), b = ∆
5 , G = ∆2

150 ln
4(K+1)

β

:

P

{
|③| > ∆

5
and

T−1∑
t=0

σ̃2
t ≤ ∆2

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P {E③} ≥ 1− β

2(K + 1)
, for E③ =

{
either

T−1∑
t=0

σ̃2
t >

∆2

150 ln 4(K+1)
β

or |③| ≤ ∆

5

}
. (78)

In addition, ET−1 implies that
T−1∑
t=0

σ̃2
t

(77)
≤ 2Lγ2∆

5 ln 4(K+1)
β

T−1∑
t=0

Eξt
[
∥θut ∥2

] (70)
≤ 36Lγ2∆λ2−ασαT

5 ln 4(K+1)
β

(54)
=

9 · 20α

500
· σ

αT
√
∆

4−α√
L
α
γα

ln3−α 4(K+1)
β

(53)
≤ ∆2

150 ln 4(K+1)
β

. (79)

Upper bound for ④. From ET−1 it follows that

④ = Lγ2
T−1∑
t=0

Eξt

[
∥θut ∥

2
] (70)
≤ 18Lγ2λ2−ασαT

(54)
=

9 · 20α

200
·
√
L
α
γασαT

√
∆

2−α

ln2−α 4(K+1)
β

(53)
≤ ∆

5
. (80)

Upper bound for ⑤. From ET−1 it follows that

⑤ = Lγ2
T−1∑
t=0

∥∥θbt∥∥2 (69)
≤ 4ασ2αTLγ2

λ2(α−1)

(54)
=

1600α

400
· σ

2αTLαγ2α∆1−α

ln2(1−α) 4(K+1)
β

(53)
≤ ∆

5
. (81)

Now, we have the upper bounds for ①,②,③,④,⑤. In particular, probability event ET−1 implies

∆T

(67)
≤ ∆+ ① + ② + ③ + ④ + ⑤,

②
(75)
≤ ∆

5
, ④

(80)
≤ ∆

5
, ⑤

(81)
≤ ∆

5
,

T−1∑
t=0

σ2
t

(74)
≤ ∆2

150 ln 4(K+1)
β

,

T−1∑
t=0

σ̃2
t

(79)
≤ ∆2

150 ln 4(K+1)
β

.
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Moreover, we also have (see (73), (78) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
, P{E①} ≥ 1− β

2(K + 1)
, P{E③} ≥ 1− β

2(K + 1)
,

where

E① =

{
either

T−1∑
t=0

σ2
t >

∆2

150 ln 4(K+1)
β

or |①| ≤ ∆

5

}
,

E③ =

{
either

T−1∑
t=0

σ̃2
t >

∆2

150 ln 4(K+1)
β

or |③| ≤ ∆

5

}
.

Thus, probability event ET−1 ∩ E① ∩ E③ implies

∆T ≤ ∆+
∆

5
+

∆

5
+

∆

5
+

∆

5
+

∆

5
= 2∆,

which is equivalent to (58) and (59) for t = T , and

P{ET } ≥ P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
≥ 1− P{ET−1} − P{E①} − P{E③} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

1

K + 1

K∑
k=0

∥∇f(xk)∥2
(62)
≤ 2∆

A(K + 1)

(53)
=

2∆

γ
(
1− Lγ

2

)
(K + 1)

and {xk}Kk=0 ⊆ Q, which follows from (59).

Finally, if

γ ≤ min


1

80L ln 4(K+1)
β

,

√
∆

27
1
α 20σ

√
LK

1
α

(
ln 4(K+1)

β

)α−1
α

 ,

then with probability at least 1− β

1

K + 1

K∑
k=0

∥∇f(xk)∥2 ≤ 2∆

γ
(
1− Lγ

2

)
(K + 1)

≤ 4∆

γ(K + 1)

= max


320∆L ln 4(K+1)

β

K + 1
,
80

√
∆27

1
ασ

√
LK

1
α

(
ln 4(K+1)

β

)α−1
α

K + 1


= O

max

L∆ ln K
β

K
,

√
L∆σ ln

α−1
α K

β

K
α−1
α


 .

To get 1
K+1

K∑
k=0

∥∇f(xk)∥2 ≤ ε with probability at least 1 − β it is sufficient to choose K such that both terms in the

maximum above are O(ε). This leads to

K = O

max

L∆

ε
ln

L∆

εβ
,

(√
L∆σ

ε

) α
α−1

ln

 1

β

(√
L∆σ

ε

) α
α−1


 ,

which concludes the proof.
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E.2. Polyak-Łojasiewicz Functions

In this subsection, we provide a high-probability analysis of clipped-SGD in the case of Polyak-Łojasiewicz functions. As
in the non-convex case, we start with the lemma that handles optimization part of the algorithm and separates it from the
stochastic one.

Lemma E.3. Let Assumptions 1.3 and 1.4 hold on Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x− y∥ ≤
√
∆/20

√
L},

where ∆ = f(x0) − f∗, and let stepsize γ satisfy γ ≤ 1
L . If xk ∈ Q for all k = 0, 1, . . . ,K + 1, K ≥ 0, then after K

iterations of clipped-SGD for all x ∈ Q we have

f(xK+1)− f∗ ≤ (1− γµ)K+1(f(x0)− f∗)− γ(1− Lγ)

K∑
k=0

(1− γµ)K−k⟨∇f(xk), θk⟩

+
Lγ2

2

K∑
k=0

(1− γµ)K−k∥θk∥2, (82)

where θk is defined in (52).

Proof. Using xk+1 = xk − γ∇̃fξk(x
k) and smoothness of f (1.3) we get that for all k = 0, 1, . . . ,K

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

≤ f(xk)− γ⟨∇f(xk), ∇̃fξk(x
k)⟩+ Lγ2

2
∥∇̃fξk(x

k)∥2

(52)
= f(xk)− γ

(
1− Lγ

2

)
∥∇f(xk)∥2 − γ(1− Lγ)⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2

γ≤ 1
L

≤ f(xk)− γ

2
∥∇f(xk)∥2 − γ(1− Lγ)⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2

(8)
≤ f(xk)− γµ(f(xk)− f∗)− γ(1− Lγ)⟨∇f(xk), θk⟩+

Lγ2

2
∥θk∥2.

By rearranging the terms and subtracting f∗, we obtain

f(xk+1)− f∗ ≤ (1− γµ)(f(xk)− f∗)− γ(1− Lγ)⟨∇f(xk), θk⟩+
Lγ2

2
∥θk∥2.

Unrolling the recurrence, we obtain (82).

Theorem E.4. Let Assumptions 1.1, 1.3, 1.4 hold on Q = {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗+2∆ and ∥x−y∥ ≤
√
∆/20

√
L},

where ∆ ≥ ∆0 = f(x0)− f∗, stepsize

0 < γ ≤ min

{
1

250L ln 4(K+1)
β

,
ln(BK)

µ(K + 1)

}
, (83)

BK = max

2,
(K + 1)

2(α−1)
α µ2∆

264600
2
αLσ2 ln

2(α−1)
α

(
4(K+1)

β

)
ln2(BK)

 (84)

= Θ

max

1,
K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α (K
β )

})


 , (85)

and clipping level

λk =
exp(−γµ(1 + k/2))

√
∆

120
√
Lγ ln 4(K+1)

β

, (86)
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for some K > 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations of clipped-SGD the iterates with

probability at least 1− β satisfy
f
(
xK+1

)
− f∗ ≤ 2 exp(−γµ(K + 1))∆. (87)

In particular, when γ equals the minimum from (83), then the iterates produced by clipped-SGD after K iterations with
probability at least 1− β satisfy

f
(
xK
)
− f∗ = O

max

∆exp

(
− µK

L ln K
β

)
,

Lσ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 , (88)

meaning that to achieve f
(
xK
)
− f∗ ≤ ε with probability at least 1− β clipped-SGD requires

K = O

(
L

µ
ln

(
∆

ε

)
ln

(
L

µβ
ln

∆

ε

)
,

(
Lσ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
Lσ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
, (89)

iterations/oracle calls, where

Bε = max

2,
∆

ε ln

(
1
β

(
Lσ2

µ2ε

) α
2(α−1)

)
 .

Proof. As in the previous results, the proof is based on the induction argument and shows that the iterates do not leave
some set with high probability. More precisely, for each k = 0, 1, . . . ,K + 1 we consider probability event Ek as follows:
inequalities

∆t ≤ 2 exp(−γµt)∆ (90)

hold for t = 0, 1, . . . , k simultaneously, where ∆t = f(xt) − f∗. We want to prove P{Ek} ≥ 1 − kβ/(K+1) for all
k = 0, 1, . . . ,K + 1 by induction. The base of the induction is trivial: for k = 0 we have ∆0 ≤ ∆ < 2∆ by definition.
Next, assume that for k = T − 1 ≤ K the statement holds: P{ET−1} ≥ 1 − (T−1)β/(K+1). Given this, we need to
prove P{ET } ≥ 1 − Tβ/(K+1). Since ∆t ≤ 2 exp(−γµt)∆ ≤ 2∆, we have xt ∈ {y ∈ Rd | f(y) ≤ f∗ + 2∆} for
t = 0, 1, . . . , T − 1, where function f is L-smooth. Thus, ET−1 implies

∥∇f(xt)∥
(7)
≤

√
2L(f(xt)− f∗)

(90)
≤ 2

√
L exp(−γµt)∆

(83),(86)
≤ λt

2
(91)

for all t = 0, 1, . . . , T − 1. Moreover

∥xT − xT−1∥ = γ∥∇̃fξT−1(xT−1)∥ ≤ γλT−1

(86)
≤

√
∆

20
√
L
,

meaning that ET−1 implies xT ∈ {x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x− y∥ ≤
√
∆/20

√
L}. Using Lemma E.3

and (1− γµ)T ≤ exp(−γµT ), we obtain that ET−1 implies

∆T ≤ exp(−γµT )∆− γ(1− Lγ)

T−1∑
l=0

(1− γµ)T−1−l⟨∇f(xl), θl⟩

+
Lγ2

2

T−1∑
l=0

(1− γµ)T−1−l∥θl∥2.

To handle the sums above, we introduce a new notation:

ηt =

{
∇f(xt), if ∥∇f(xt)∥ ≤ 2

√
L exp(−γµt/2)

√
∆,

0, otherwise,
(92)
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for t = 0, 1, . . . , T − 1. These vectors are bounded almost surely:

∥ηt∥ ≤ 2
√
L exp(−γµt/2)

√
∆ (93)

for all t = 0, 1, . . . , T − 1. In other words, ET−1 implies ηt = ∇f(xt) for all t = 0, 1, . . . , T − 1, meaning that from ET−1

it follows that

∆T ≤ exp(−γµT )∆− γ(1− Lγ)

T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θl⟩

+
Lγ2

2

T−1∑
l=0

(1− γµ)T−1−l∥θl∥2.

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of θl:

θut = ∇̃fξt(x
t)− Eξt

[
∇̃fξt(x

t)
]
, θbt = Eξt

[
∇̃fξt(x

t)
]
−∇f(xt). (94)

for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl for all l = 0, . . . , T − 1. Therefore, ET−1 implies

∆T ≤ exp(−γµT )∆−γ(1− Lγ)
T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θul ⟩︸ ︷︷ ︸
①

−γ(1− Lγ)
T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θbl ⟩︸ ︷︷ ︸
②

+Lγ2
T−1∑
l=0

(1− γµ)T−1−lEξl
[
∥θul ∥2

]
︸ ︷︷ ︸

③

+Lγ2
T−1∑
l=0

(1− γµ)T−1−l
(
∥θul ∥2 − Eξl

[
∥θul ∥2

])
︸ ︷︷ ︸

④

+Lγ2
T−1∑
l=0

(1− γµ)T−1−l∥θbl ∥2︸ ︷︷ ︸
⑤

. (95)

where we also apply inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥θl∥2. It remains to
derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤, i.e., to finish our inductive proof we need to
show that ① + ② + ③ + ④ + ⑤ ≤ exp(−γµT )∆ with high probability. In the subsequent parts of the proof, we will need
to use many times the bounds for the norm and second moments of θut and θbt . First, by definition of clipping operator, we
have with probability 1 that

∥θul ∥ ≤ 2λl. (96)

Moreover, since ET−1 implies that ∥∇f(xl)∥2 ≤ λl/2 for all l = 0, 1, . . . , T − 1 (see (91)), from Lemma 5.1 we also have
that ET−1 implies ∥∥θbl ∥∥ ≤ 2ασα

λα−1
l

, (97)

Eξl

[
∥θul ∥

2
]
≤ 18λ2−α

l σα, (98)

for all l = 0, 1, . . . , T − 1.

Upper bound for ①. By definition of θul , we have Eξl [θ
u
l ] = 0 and

Eξl
[
−γ(1− Lγ)(1− γµ)T−1−l⟨ηl, θul ⟩

]
= 0.

Next, sum ① has bounded with probability 1 terms:

| − γ(1− Lγ)(1− γµ)T−1−l⟨ηl, θul ⟩|
(83)
≤ γ exp(−γµ(T − 1− l))∥ηl∥ · ∥θul ∥

(93),(96)
≤ 4

√
L∆γ exp(−γµ(T − 1− l/2))λl

(83),(86)
≤ exp(−γµT )∆

5 ln 4(K+1)
β

def
= c. (99)
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The summands also have bounded conditional variances σ2
l

def
= Eξl

[
γ2(1− Lγ)2(1− γµ)2T−2−2l⟨ηl, θul ⟩2

]
:

σ2
l ≤ Eξl

[
γ2(1− Lγ)2 exp(−γµ(2T − 2− 2l))∥ηl∥2 · ∥θul ∥2

]
(93),(83)
≤ 4γ2L∆exp(−γµ(2T − 2− l))Eξl

[
∥θul ∥2

]
(83)
≤ 10γ2L∆exp(−γµ(2T − l))R2Eξl

[
∥θul ∥2

]
. (100)

In other words, we showed that {−γ(1 − Lγ)(1 − γµ)T−1−l⟨ηl, θul ⟩}
T−1
l=0 is a bounded martingale difference sequence

with bounded conditional variances {σ2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl = −γ(1 −

Lγ)(1− γµ)T−1−l⟨ηl, θul ⟩, parameter c as in (99), b = 1
5 exp(−γµT )∆, G = exp(−2γµT )∆2

150 ln
4(K+1)

β

:

P

{
|①| > 1

5
exp(−γµT )∆ and

T−1∑
l=0

σ2
l ≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P{E①} ≥ 1− β

2(K + 1)
, for E① =

{
either

T−1∑
l=0

σ2
l >

exp(−2γµT )∆2

150 ln 4(K+1)
β

or |①| ≤ 1

5
exp(−γµT )∆

}
. (101)

In addition, ET−1 implies that

T−1∑
l=0

σ2
l

(100)
≤ 10γ2L∆exp(−2γµT )

T−1∑
l=0

Eξl
[
∥θul ∥2

]
exp(−γµl)

(98),T≤K+1

≤ 180γ2L∆exp(−2γµT )σα
K∑
l=0

λ2−α
l

exp(−γµl)

(86)
=

180γα
√
L
α√

∆
4−α

exp(−2γµT )σα

1202−α ln2−α 4(K+1)
β

K∑
l=0

1

exp(−γµl)
· (exp(−γµ(1 + l/2)))

2−α

=
180γα

√
L
α√

∆
4−α

exp(−2γµT )σα

1202−α ln2−α 4(K+1)
β

K∑
l=0

exp(γµ(α− 2)) · exp
(
γµαl

2

)

≤
180γα

√
L
α√

∆
4−α

exp(−2γµT )σα(K + 1) exp(γµαK2 )

1202−α ln2−α 4(K+1)
β

(83)
≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

, (102)

where we also show that ET−1 implies

γ2L∆

K∑
l=0

λ2−α
l

exp(−γµl)
≤

γα
√
L
α√

∆
4−α

(K + 1) exp(γµαK2 )

1202−α ln2−α 4(K+1)
β

. (103)
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Upper bound for ②. From ET−1 it follows that

②
(83)
≤ γ exp(−γµ(T − 1))

T−1∑
l=0

∥ηl∥ · ∥θbl ∥
exp(−γµl)

(93),(97)
≤ 21+αγ exp(−γµ(T − 1))

√
∆σα

T−1∑
l=0

1

λα−1
l exp(−γµl/2)

(86)
= 21+α · 120α−1

√
L
1−α√

∆
2−α

exp(−γµ(T − 1))γασα lnα−1 4(K+1)
β

T−1∑
l=0

exp(γµl/2)

exp (−γµ(1 + l/2))
α−1

T≤K+1

≤ 21+α · 120α−1
√
L
1−α√

∆
2−α

exp(−γµ(T − 1))γασα lnα−1 4(K+1)
β

K∑
l=0

exp

(
γµαl

2

)
≤ 21+α · 120α−1

√
L
1−α√

∆
2−α

exp(−γµ(T − 1))γασα lnα−1 4(K+1)
β (K + 1) exp

(
γµαK

2

)
(83)
≤ 1

5
exp(−γµT )∆. (104)

Upper bound for ③. From ET−1 it follows that

③ = Lγ2 exp(−γµ(T − 1))

T−1∑
l=0

Eξl
[
∥θul ∥2

]
exp(−γµl)

(98)
≤ 18Lγ2 exp(−γµ(T − 1))σα

T−1∑
l=0

λ2−α
l

exp(−γµl)

(103)
≤

18γα
√
L
α√

∆
2−α

exp(−γµ(T − 1))σα(K + 1) exp(γµαK2 )

1202−α ln2−α 4(K+1)
β

(83)
≤ 1

5
exp(−γµT )∆. (105)

Upper bound for ④. First, we have

Lγ2(1− γµ)T−1−lEξl

[
∥θul ∥2 − Eξl2

[
∥θul ∥2

]]
= 0.

Next, sum ④ has bounded with probability 1 terms:

Lγ2(1− γµ)T−1−l
∣∣∥θul ∥2 − Eξl

[
∥θul ∥2

]∣∣ (96)
≤ 8Lγ2 exp(−γµT )λ2

l

exp(−γµ(1 + l))

(86)
=

exp(−γµ(T + 1))∆

1800 ln2 4(K+1)
β

≤ exp(−γµT )∆

5 ln 4(K+1)
β

def
= c. (106)

The summands also have conditional variances

σ̂2
l

def
= Eξl

[
L2γ4(1− γµ)2T−2−2l

∣∣∥θul ∥2 − Eξl
[
∥θul ∥2

]∣∣2]
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that are bounded

σ̂2
l

(106)
≤ Lγ2 exp(−2γµT )∆

5 exp(−γµ(1 + l)) ln 4(K+1)
β

Eξl
[∣∣∥θul ∥2 − Eξl

[
∥θul ∥2

]∣∣]
≤ 2Lγ2 exp(−2γµT )∆

5 exp(−γµ(1 + l)) ln 4(K+1)
β

Eξl
[
∥θul ∥2

]
. (107)

In other words, we showed that
{
Lγ2(1− γµ)T−1−l

(
∥θul ∥2 − Eξl

[
∥θul ∥2

])}T−1

l=0
is a bounded martingale difference

sequence with bounded conditional variances {σ̂2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl =

Lγ2(1− γµ)T−1−l
(
∥θul ∥2 − Eξl

[
∥θul ∥2

])
, parameter c as in (106), b = 1

5 exp(−γµT )∆, G = exp(−2γµT )∆2

150 ln
4(K+1)

β

:

P

{
|④| > 1

5
exp(−γµT )∆ and

T−1∑
l=0

σ̂2
l ≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P{E④} ≥ 1− β

2(K + 1)
, for E④ =

{
either

T−1∑
l=0

σ̂2
l >

exp(−2γµT )∆2

150 ln 4(K+1)
β

or |④| ≤ 1

5
exp(−γµT )∆

}
. (108)

In addition, ET−1 implies that

T−1∑
l=0

σ̂2
l

(107)
≤ 2Lγ2 exp(−γµ(2T − 1))∆

5 ln 4(K+1)
β

T−1∑
l=0

Eξl
[
∥θul ∥2

]
exp(−γµl)

(98),T≤K+1

≤ 36Lγ2 exp(−γµ(2T − 1))∆σα

5 ln 4(K+1)
β

K∑
l=0

λ2−α
l

exp(−γµl)

(103)
≤

36
√
L
α
γα exp(−γµ(2T − 1))

√
∆

4−α
σα(K + 1) exp(γµαK2 )

5 · 1202−α ln3−α 4(K+1)
β

(53)
≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

. (109)

Upper bound for ⑤. From ET−1 it follows that

⑤ = Lγ2
T−1∑
l=0

exp(−γµ(T − 1− l))∥θbl ∥2

(97)
≤ 22αLγ2 exp(−γµ(T − 1))σ2α

T−1∑
l=0

1

λ2α−2
l exp(−γµl)

(86),T≤K+1

≤
2 · 22α · 1202α−2γ2α

√
L
2α

exp(−γµT )σ2α ln2α−2 4(K+1)
β

√
∆

2α−2

K∑
l=0

exp

(
γµ(2α− 2)

(
1 +

l

2

))
exp(γµl)

≤
4 · 22α · 1202α−2γ2α

√
L
2α

exp(−γµT )σ2α ln2α−2 4(K+1)
β

√
∆

2α−2

K∑
l=0

exp(γµαl)

≤
4 · 22α · 1202α−2γ2α

√
L
2α

exp(−γµT )σ2α ln2α−2 4(K+1)
β (K + 1) exp(γµαK)

√
∆

2α−2

(53)
≤ 1

5
exp(−γµT )∆. (110)
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Now, we have the upper bounds for ①,②,③,④,⑤. In particular, probability event ET−1 implies

∆T

(95)
≤ exp(−γµT )∆ + ① + ② + ③ + ④ + ⑤,

②
(104)
≤ 1

5
exp(−γµT )∆, ③

(105)
≤ 1

5
exp(−γµT )∆, ⑤

(110)
≤ 1

5
exp(−γµT )∆,

T−1∑
l=0

σ2
l

(102)
≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

,

T−1∑
l=0

σ̂2
l

(109)
≤ exp(−2γµT )∆2

150 ln 4(K+1)
β

.

Moreover, we also have (see (101), (108) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E①} ≥ 1− β

2(K + 1)
, P{E④} ≥ 1− β

2(K + 1)
,

where

E① =

{
either

T−1∑
l=0

σ2
l >

exp(−2γµT )∆2

150 ln 4(K+1)
β

or |①| ≤ 1

5
exp(−γµT )∆

}
,

E④ =

{
either

T−1∑
l=0

σ̂2
l >

exp(−2γµT )∆2

150 ln 4(K+1)
β

or |④| ≤ 1

5
exp(−γµT )∆

}
.

Thus, probability event ET−1 ∩ E① ∩ E④ implies

∆T

(95)
≤ exp(−γµT )∆ + ① + ② + ③ + ④ + ⑤

≤ 2 exp(−γµT )∆,

which is equivalent to (90) for t = T , and

P{ET } ≥ P{ET−1 ∩ E① ∩ E④} = 1− P{ET−1 ∪ E① ∪ E④} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

f(xK+1)− f∗ ≤ 2 exp(−γµ(K + 1))∆.

Finally, if

γ = min

{
1

250L ln 4(K+1)
β

,
ln(BK)

µ(K + 1)

}
,

BK = max

2,
(K + 1)

2(α−1)
α µ2∆

264600
2
αLσ2 ln

2(α−1)
α

(
6(K+1)

β

)
ln2(BK)



= O

max

2,
K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α (K
β )

})



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then with probability at least 1− β

f(xK+1)− f∗ ≤ 2 exp(−γµ(K + 1))∆

= 2∆max

{
exp

(
− µ(K + 1)

250L ln 4(K+1)
β

)
,

1

BK

}

= O

max

∆exp

(
− µK

L ln K
β

)
,

Lσ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2∆

Lσ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 .

To get ∥xK+1 − x∗∥2 ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum
above are O(ε). This leads to

K = O

(
L

µ
ln

(
∆

ε

)
ln

(
L

µβ
ln

∆

ε

)
,

(
Lσ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
Lσ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
,

where

Bε = max

2,
∆

ε ln

(
1
β

(
Lσ2

µ2ε

) α
2(α−1)

)
 .

This concludes the proof.

E.3. Convex Functions

Now, we focus on the case of convex functions. We start with the following lemma.

Lemma E.5. Let Assumptions 1.3 and 1.6 with µ = 0 hold on Q = B2R(x
∗), where R ≥ ∥x0 − x∗∥, and let stepsize γ

satisfy γ ≤ 1
L . If xk ∈ Q for all k = 0, 1, . . . ,K + 1, K ≥ 0, then after K iterations of clipped-SGD we have

γ
(
f(xK)− f(x∗)

)
≤ ∥x0 − x∗∥2 − ∥xK+1 − x∗∥2

K + 1

− 2γ

K + 1

K∑
k=0

⟨xk − x∗ − γ∇f(xk), θk⟩+
γ2

K + 1

K∑
k=0

∥θk∥2, (111)

xK =
1

K + 1

K∑
k=0

xk, (112)

where θk is defined in (52).

Proof. Using xk+1 = xk − γ∇̃fξk(x
k), we derive for all k = 0, 1, . . . ,K that

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ⟨xk − x∗, ∇̃fξk(x
k)⟩+ γ2∥∇̃fξk(x

k)∥2

= ∥xk − x∗∥2 − 2γ⟨xk − x∗,∇f(xk)⟩ − 2γ⟨xk − x∗, θk⟩+ γ2∥∇f(xk) + θk∥2
(10),µ=0

≤ ∥xk − x∗∥2 − 2γ
(
f(xk)− f(x∗)

)
− 2γ⟨xk − x∗ − γ∇f(xk), θk⟩

+γ2∥∇f(xk)∥2 + γ2∥θk∥2
(7)
≤ ∥xk − x∗∥2 − 2γ (1− γL)

(
f(xk)− f(x∗)

)
− 2γ⟨xk − x∗ − γ∇f(xk), θk⟩

+γ2∥θk∥2
γ≤1/L

≤ ∥xk − x∗∥2 − γ
(
f(xk)− f(x∗)

)
− 2γ⟨xk − x∗ − γ∇f(xk), θk⟩+ γ2∥θk∥2.
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Summing up the above inequalities for k = 0, 1, . . . ,K and rearranging the terms, we get

γ

K + 1

K∑
k=0

(
f(xk)− f(x∗)

)
≤ 1

K + 1

K∑
k=0

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
− 2γ

K + 1

K∑
k=0

⟨xk − x∗ − γ∇f(xk), θk⟩

+
γ2

K + 1

K∑
k=0

∥θk∥2

=
∥x0 − x∗∥2 − ∥xK+1 − x∗∥2

K + 1
− 2γ

K + 1

K∑
k=0

⟨xk − x∗ − γ∇f(xk), θk⟩

+
γ2

K + 1

K∑
k=0

∥θk∥2.

Finally, we use the definition of xK and Jensen’s inequality and get the result.

Using this lemma we prove the main convergence result for clipped-SGD.

Theorem E.6 (Case 3 from Theorem 3.1). Let Assumptions 1.1, 1.3 and 1.6 with µ = 0 hold on Q = B2R(x
∗), where

R ≥ ∥x0 − x∗∥, and

γ ≤ min


1

80L ln 4(K+1)
β

,
R

108
1
α · 20σK 1

α

(
ln 4(K+1)

β

)α−1
α

 , (113)

λk ≡ λ =
R

40γ ln 4(K+1)
β

, (114)

for some K > 0 and β ∈ (0, 1] such that ln 4K
β ≥ 1. Then, after K iterations of clipped-SGD the iterates with probability

at least 1− β satisfy

f(xK)− f(x∗) ≤ 2R2

γ(K + 1)
and {xk}Kk=0 ⊆ B√

2R(x
∗). (115)

In particular, when γ equals the minimum from (53), then the iterates produced by clipped-SGD after K iterations with
probability at least 1− β satisfy

f(xK)− f(x∗) = O

max

LR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 , (116)

meaning that to achieve f(xK)− f(x∗) ≤ ε with probability at least 1− β clipped-SGD requires

K = O

(
max

{
LR2

ε
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

)})
iterations/oracle calls. (117)

Proof. Let Rk = ∥xk − x∗∥ for all k ≥ 0. Next, our goal is to show by induction that Rl ≤ 2R with high probability,
which allows to apply the result of Lemma E.5 and then use Bernstein’s inequality to estimate the stochastic part of the
upper-bound. More precisely, for each k = 0, . . . ,K + 1 we consider probability event Ek defined as follows: inequalities

−2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2 ≤ R2, (118)

Rt ≤
√
2R (119)

hold for all t = 0, 1, . . . , k simultaneously. We want to prove via induction that P{Ek} ≥ 1 − kβ/(K+1) for all k =
0, 1, . . . ,K + 1. For k = 0 the statement is trivial. Assume that the statement is true for some k = T − 1 ≤ K:
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P{ET−1} ≥ 1− (T−1)β/(K+1). One needs to prove that P{ET } ≥ 1− Tβ/(K+1). First, we notice that probability event
ET−1 implies that xt ∈ B√

2R(x
∗) for all t = 0, 1, . . . , T − 1. Moreover, ET−1 implies

∥xT − x∗∥ = ∥xT−1 − x∗ − γ∇̃fξT−1(xT−1)∥ ≤ ∥xT−1 − x∗∥+ γ∥∇̃fξT−1(xT−1)∥ ≤
√
2R+ γλ

(114)
≤ 2R,

i.e., x0, x1, . . . , xT ∈ B2R(x
∗). Therefore, ET−1 implies {xk}Tk=0 ⊆ Q, meaning that the assumptions of Lemma E.5 are

satisfied and we have

γ
(
f(xt−1)− f(x∗)

)
≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2

t

−2γ

t

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+
γ2

t

t−1∑
l=0

∥θl∥2 (120)

for all t = 1, . . . , T simultaneously and for all t = 1, . . . , T − 1 this probability event also implies that

f(xt−1)− f(x∗) ≤ 1

γt

(
R2 − 2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2
)

(118)
≤ 2R2

γt
. (121)

Taking into account that f(xT−1)− f(x∗) ≥ 0, we also derive from (120) that ET−1 implies

R2
T ≤ R2 − 2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2. (122)

Next, we define random vectors

ηt =

{
xt − x∗ − γ∇f(xt), if ∥xt − x∗ − γ∇f(xt)∥2 ≤ 2R,

0, otherwise,

for all t = 0, 1, . . . , T − 1. By definition, these random vectors are bounded with probability 1

∥ηt∥ ≤ 2R. (123)

Moreover, for t = 0, . . . , T − 1 event ET−1 implies

∥∇f(xt)∥
(6)
≤ L∥xt − x∗∥

(119)
≤

√
2LR

(113),(114)
≤ λ

2
, (124)

∥xt − x∗ − γ∇f(xt)∥ ≤ ∥xt − x∗∥+ γ∥∇f(xt)∥
(124)
≤

√
2R(1 + Lγ)

(113)
≤ 2R.

Next, we define the unbiased part and the bias of θt as θut and θbt , respectively:

θut = ∇̃fξt(x
t)− Eξt

[
∇̃fξt(x

t)
]
, θbt = Eξt

[
∇̃fξt(x

t)
]
−∇f(xt). (125)

We notice that θt = θut + θbt . Using new notation, we get that ET−1 implies

R2
T ≤ R2 −2γ

T−1∑
t=0

⟨θut , ηt⟩︸ ︷︷ ︸
①

−2γ

T−1∑
t=0

⟨θbt , ηt⟩︸ ︷︷ ︸
②

+2γ2
T−1∑
t=0

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])

︸ ︷︷ ︸
③

+2γ2
T−1∑
t=0

Eξt

[
∥θut ∥

2
]

︸ ︷︷ ︸
④

+2γ2
T−1∑
t=0

∥∥θbt∥∥2︸ ︷︷ ︸
⑤

. (126)

It remains to derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤, i.e., to finish our inductive
proof we need to show that ① + ② + ③ + ④ + ⑤ ≤ R2 with high probability. In the subsequent parts of the proof, we will
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need to use many times the bounds for the norm and second moments of θut and θbt . First, by definition of clipping operator,
we have with probability 1 that

∥θut ∥ ≤ 2λ. (127)

Moreover, since ET−1 implies that ∥∇f(xt)∥ ≤ λ/2 for t = 0, 1, . . . , T − 1 (see (124)), then, in view of Lemma 5.1, we
have that ET−1 implies

∥θbt∥ ≤ 2ασα

λα−1
, (128)

Eξt
[
∥θut ∥2

]
≤ 18λ2−ασα. (129)

Upper bound for ①. By definition of θut , we have Eξt [θ
u
t ] = 0 and

Eξt [−2γ⟨θut , ηt⟩] = 0.

Next, sum ① has bounded with probability 1 terms:

|2γ ⟨θut , ηt⟩ | ≤ 2γ∥θut ∥ · ∥ηt∥
(123),(127)

≤ 8γλR
(114)
=

R2

5 ln 4(K+1)
β

def
= c. (130)

The summands also have bounded conditional variances σ2
t

def
= Eξt [4γ

2⟨θut , ηt⟩2]:

σ2
t ≤ Eξt

[
4γ2∥θut ∥2 · ∥ηt∥2

] (123)
≤ 16γ2R2Eξt

[
∥θut ∥2

]
. (131)

In other words, we showed that {−2γ ⟨θut , ηt⟩}T−1
t=0 is a bounded martingale difference sequence with bounded conditional

variances {σ2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = −2γ ⟨θut , ηt⟩, parameter c as in (130),
b = R2

5 , G = R4

150 ln
4(K+1)

β

:

P

{
|①| > R2

5
and

T−1∑
t=0

σ2
t ≤ R4

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P {E①} ≥ 1− β

2(K + 1)
, for E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4(K+1)
β

or |①| ≤ R2

5

}
. (132)

In addition, ET−1 implies that

T−1∑
t=0

σ2
t

(131)
≤ 16γ2R2

T−1∑
t=0

Eξt
[
∥θut ∥2

] (129)
≤ 288γ2R2σαTλ2−α

(114)
=

9 · 40αR4−ασαTγα

50 ln2−α 4(K+1)
β

(113)
≤ R4

150 ln 4(K+1)
β

. (133)

Upper bound for ②. From ET−1 it follows that

② = −2γ

T−1∑
t=0

⟨θbt , ηt⟩ ≤ 2γ

T−1∑
t=0

∥θbt∥ · ∥ηt∥
(123),(128)

≤ 4 · 2αγσαTR

λα−1

(114)
=

80α

10
· σ

αTR2−αγα

ln1−α 4(K+1)
β

(113)
≤ R2

5
. (134)

Upper bound for ③. First, we have

Eξt

[
2γ2

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])]

= 0.

35



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Next, sum ③ has bounded with probability 1 terms:∣∣∣2γ2
(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])∣∣∣ ≤ 2γ2

(
∥θut ∥2 + Eξt

[
∥θut ∥

2
])

(127)
≤ 16γ2λ2 (114)

=
R2

100 ln2 4(K+1)
β

≤ R2

5 ln 4(K+1)
β

def
= c. (135)

The summands also have bounded conditional variances σ̃2
t

def
= Eξt

[
4γ4

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])2]

:

σ̃2
t

(135)
≤ R2

5 ln 4(K+1)
β

Eξt

[
2γ2

∣∣∣∥θut ∥2 − Eξt

[
∥θut ∥

2
]∣∣∣] ≤ 4γ2R2

5 ln 4(K+1)
β

Eξt
[
∥θut ∥2

]
, (136)

since ln 4(K+1)
β ≥ 1. In other words, we showed that

{
2γ2

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])}T−1

t=0
is a bounded martingale

difference sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with

Xt = 2γ2
(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])

, parameter c as in (135), b = R2

5 , G = R4

150 ln
4(K+1)

β

:

P

{
|③| > R2

5
and

T−1∑
t=0

σ̃2
t ≤ R4

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P {E③} ≥ 1− β

2(K + 1)
, for E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
β

or |③| ≤ R2

5

}
. (137)

In addition, ET−1 implies that

T−1∑
t=0

σ̃2
t

(136)
≤ 4γ2R2

5 ln 4(K+1)
β

T−1∑
t=0

Eξt
[
∥θut ∥2

] (129)
≤ 72γ2R2λ2−ασαT

5 ln 4(K+1)
β

(114)
=

9 · 40α

1000
· σ

αTR4−αγα

ln3−α 4(K+1)
β

(113)
≤ R4

150 ln 4(K+1)
β

. (138)

Upper bound for ④. From ET−1 it follows that

④ = 2γ2
T−1∑
t=0

Eξt

[
∥θut ∥

2
] (129)

≤ 36γ2λ2−ασαT
(114)
=

9 · 40α

400
· γ

ασαTR2−α

ln2−α 4(K+1)
β

(113)
≤ R2

5
. (139)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2
T−1∑
t=0

∥∥θbt∥∥2 (128)
≤ 2 · 4ασ2αTγ2

λ2(α−1)

(114)
=

6400α

800
· σ

2αTγ2αR2−2α

ln2(1−α) 4(K+1)
β

(113)
≤ R2

5
. (140)

Now, we have the upper bounds for ①,②,③,④,⑤. In particular, probability event ET−1 implies

R2
T

(126)
≤ R2 + ① + ② + ③ + ④ + ⑤,

②
(134)
≤ R2

5
, ④

(139)
≤ R2

5
, ⑤

(140)
≤ R2

5
,

T−1∑
t=0

σ2
t

(133)
≤ R4

150 ln 4(K+1)
β

,

T−1∑
t=0

σ̃2
t

(138)
≤ R4

150 ln 4(K+1)
β

.
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Moreover, we also have (see (132), (137) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
, P{E①} ≥ 1− β

2(K + 1)
, P{E③} ≥ 1− β

2(K + 1)
,

where

E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4(K+1)
β

or |①| ≤ R2

5

}
,

E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
β

or |③| ≤ R2

5

}
.

Thus, probability event ET−1 ∩ E① ∩ E③ implies

R2
T ≤ R2 +

R2

5
+

R2

5
+

R2

5
+

R2

5
+

R2

5
= 2R2,

which is equivalent to (118) and (119) for t = T , and

P{ET } ≥ P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
≥ 1− P{ET−1} − P{E①} − P{E③} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

f(xK)− f(x∗)
(121)
≤ 2R2

γ(K + 1)

and {xk}Kk=0 ⊆ Q, which follows from (119).

Finally, if

γ ≤ min


1

80L ln 4(K+1)
β

,
R

108
1
α · 20σK 1

α

(
ln 4(K+1)

β

)α−1
α

 ,

then with probability at least 1− β

f(xK)− f(x∗) ≤ 2R2

γ(K + 1)

= max


160LR2 ln 4(K+1)

β

K + 1
,
40 · 108 1

ασRK
1
α

(
ln 4(K+1)

β

)α−1
α

K + 1


= O

max

LR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 .

To get f(xK)− f(x∗) ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum
above are O(ε). This leads to

K = O

(
max

{
LR2

ε
ln

LR2

εβ
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

)})
,

which concludes the proof.
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E.4. Quasi-Strongly Convex Functions

Finally, we consider clipped-SGD under smoothness and quasi-strong convexity assumptions. As the next lemma shows,
the gradient of such function is quasi-strongly monotone and star-cocoercive operator.

Lemma E.7. Consider differentiable function f : Rd → R. If f satisfies Assumption 1.5 on some set Q with parameter µ,
then operator F (x) = ∇f(x) satisfies Assumption 1.9 on Q with parameter µ/2. If f satisfies Assumptions 1.3 and 1.5 with
µ = 0 on some set Q, then operator F (x) = ∇f(x) satisfies Assumption 1.10 on Q with ℓ = 2L.

Proof. We start with the first part. Assumption 1.5 on set Q means that for any x ∈ Q

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x− x∗∥2.

For F (x) = ∇f(x) it implies that for all x ∈ Q

⟨F (x), x− x∗⟩ ≥ f(x)− f(x∗) +
µ

2
∥x− x∗∥2 ≥ µ

2
∥x− x∗∥2,

i.e., Assumption 1.9 holds on Q with parameter µ/2 for operator F (x).

Next, we prove the second part. Assume that f satisfies Assumptions 1.3 and 1.5 with µ = 0 on some set Q. Our goal is to
show that F (x) = ∇f(x) satisfies Assumption 1.10 on Q. In view of (Gorbunov et al., 2022b, Lemma C.6), this is equivalent
to showing that operator Id− 1

LF is non-expansive around x∗, i.e., we need to show that ∥(Id− 1
LF )(x)−(Id− 1

LF )(x∗)∥ ≤
∥x− x∗∥ for any x ∈ Q. We have∥∥∥∥(Id− 1

L
F

)
(x)−

(
Id− 1

L
F

)
(x∗)

∥∥∥∥2 =

∥∥∥∥x− x∗ − 1

L
F (x)

∥∥∥∥2
= ∥x− x∗∥2 − 2

L
⟨x− x∗, F (x)⟩+ 1

L2
∥F (x)∥2

= ∥x− x∗∥2 − 2

L
⟨x− x∗,∇f(x)⟩+ 1

L2
∥∇f(x)∥2

(9),(7)
≤ ∥x− x∗∥2 − 2

L
(f(x)− f(x∗)) +

2

L
(f(x)− f(x∗))

= ∥x− x∗∥2.

This finishes the proof.

Therefore, using the result of Theorem H.6 with ℓ := 2L and µ := µ/2, we get the convergence result for clipped-SGD
under smoothness and quasi-strong convexity assumptions.

Theorem E.8 (Case 4 in Theorem 3.1). Let Assumptions 1.1, 1.3, 1.5, hold for Q = B2R(x
∗) = {x ∈ Rd | ∥x−x∗∥ ≤ 2R},

where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

{
1

800L ln 4(K+1)
β

,
2 ln(BK)

µ(K + 1)

}
, (141)

BK = max

2,
(K + 1)

2(α−1)
α µ2R2

4 · 5400 2
ασ2 ln

2(α−1)
α

(
4(K+1)

β

)
ln2(BK)

 (142)

= O

max

2,
K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})


 , (143)

λk =
exp(−γ(µ/2)(1 + k/2))R

120γ ln 4(K+1)
β

, (144)
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for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SGD

with probability at least 1− β satisfy

∥xK+1 − x∗∥2 ≤ 2 exp(−γ(µ/2)(K + 1))R2. (145)

In particular, when γ equals the minimum from (141), then the iterates produced by clipped-SGD after K iterations with
probability at least 1− β satisfy

∥xK − x∗∥2 = O

max

R2 exp

(
− µK

ℓ ln K
β

)
,

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 , (146)

meaning that to achieve ∥xK − x∗∥2 ≤ ε with probability at least 1− β clipped-SGD requires

K = O

(
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

R2

ε

)
,

(
σ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
σ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
(147)

iterations/oracle calls, where

Bε = max

2,
R2

ε ln

(
1
β

(
4σ2

µ2ε

) α
2(α−1)

)
 .
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F. Missing Proofs for clipped-SSTM and R-clipped-SSTM

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and the
missing proofs. For brevity, we will use the following notation: ∇̃fξk(x

k+1) = clip
(
∇fξk(x

k+1), λk

)
.

Algorithm 2 Clipped Stochastic Similar Triangles Method (clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point x0, number of iterations K, stepsize parameter a > 0, clipping levels {λk}K−1
k=0 , smoothness constant

L.
1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . ,K − 1 do
3: Set αk+1 = k+2

2aL , Ak+1 = Ak + αk+1

4: xk+1 = Aky
k+αk+1z

k

Ak+1

5: Compute ∇̃fξk(x
k+1) = clip

(
∇fξk(x

k+1), λk

)
using a fresh sample ξk ∼ Dk

6: zk+1 = zk − αk+1∇̃fξk(x
k+1)

7: yk+1 = Aky
k+αk+1z

k+1

Ak+1

8: end for
Output: yK

F.1. Convex Functions

We start with the following lemma, which is a special case of Lemma 6 from (Gorbunov et al., 2021). This result can be seen
the “optimization” part of the analysis of clipped-SSTM: the proof follows the same steps as the analysis of deterministic
Similar Triangles Method (Gasnikov & Nesterov, 2016; Dvurechenskii et al., 2018) and separates stochasticity from the
deterministic part of the method.

Lemma F.1 (Special case of Lemma 4.1 from (Gorbunov et al., 2021)). Let Assumptions 1.3 and 1.6 with µ = 0 hold
on Q = B3R(x

∗), where R ≥ ∥x0 − x∗∥, and let stepsize parameter a satisfy a ≥ 1. If xk, yk, zk ∈ B3R(x
∗) for all

k = 0, 1, . . . , N , N ≥ 0, then after N iterations of clipped-SSTM for all z ∈ B3R(x
∗) we have

AN

(
f(yN )− f(z)

)
≤ 1

2
∥z0 − z∥2 − 1

2
∥zN − z∥2 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk + αk+1∇f(xk+1)

〉
+

N−1∑
k=0

α2
k+1 ∥θk+1∥2 , (148)

θk+1
def
= ∇̃fξk(x

k+1)−∇f(xk+1). (149)

Proof. For completeness, we provide the full proof. Using zk+1 = zk − αk+1∇̃fξk(x
k+1) we get that for all z ∈ B3R(x

∗)
and k = 0, 1, . . . , N − 1

αk+1

〈
∇̃fξk(x

k+1), zk − z
〉

= αk+1

〈
∇̃fξk(x

k+1), zk − zk+1
〉
+ αk+1

〈
∇̃fξk(x

k+1), zk+1 − z
〉

= αk+1

〈
∇̃fξk(x

k+1), zk − zk+1
〉
+
〈
zk+1 − zk, z − zk+1

〉
= αk+1

〈
∇̃fξk(x

k+1), zk − zk+1
〉
− 1

2
∥zk − zk+1∥2

+
1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2, (150)

where in the last step we apply 2⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2 with a = zk+1 − zk and b = z − zk+1. The update rules
(22) and (20) give the following formula:

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
=

Aky
k + αk+1z

k

Ak+1
+

αk+1

Ak+1

(
zk+1 − zk

)
= xk+1 +

αk+1

Ak+1

(
zk+1 − zk

)
. (151)
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It implies

αk+1

〈
∇̃fξk(x

k+1), zk − z
〉 (149),(150)

≤ αk+1

〈
∇f(xk+1), zk − zk+1

〉
− 1

2
∥zk − zk+1∥2

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

(151)
= Ak+1

〈
∇f(xk+1), xk+1 − yk+1

〉
− 1

2
∥zk − zk+1∥2

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

(36)
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+

Ak+1L

2
∥xk+1 − yk+1∥2 − 1

2
∥zk − zk+1∥2

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

(151)
= Ak+1

(
f(xk+1)− f(yk+1)

)
+

1

2

(
α2
k+1L

Ak+1
− 1

)
∥zk − zk+1∥2

+αk+1

〈
θk+1, z

k − zk+1
〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2,

where in the third inequality we use xk+1, yk+1 ∈ B3R(x
∗). Since Ak+1 ≥ aLk+1α

2
k+1 (Lemma B.1) and a ≥ 1 we can

continue our derivation as follows:

αk+1

〈
∇̃fξk(x

k+1), zk − z
〉

≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2. (152)

Convexity of f gives〈
∇̃fξk(x

k+1), yk − xk+1
〉

(149)
=

〈
∇f(xk+1), yk − xk+1

〉
+
〈
θk+1, y

k − xk+1
〉

≤ f(yk)− f(xk+1) +
〈
θk+1, y

k − xk+1
〉
. (153)

The definition of xk+1 (20) implies

αk+1

(
xk+1 − zk

)
= Ak

(
yk − xk+1

)
(154)

since Ak+1 = Ak + αk+1. Putting all inequalities together, we derive that

αk+1

〈
∇̃fξk(x

k+1), xk+1 − z
〉

= αk+1

〈
∇̃fξk(x

k+1), xk+1 − zk
〉
+ αk+1

〈
∇̃fξk(x

k+1), zk − z
〉

(154)
= Ak

〈
∇̃fξk(x

k+1), yk − xk+1
〉
+ αk+1

〈
∇̃fξk(x

k+1), zk − z
〉

(153),(152)
≤ Ak

(
f(yk)− f(xk+1)

)
+Ak

〈
θk+1, y

k − xk+1
〉

+Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

(154)
= Akf(y

k)−Ak+1f(y
k+1) + αk+1

〈
θk+1, x

k+1 − zk
〉

+αk+1f(x
k+1) + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

= Akf(y
k)−Ak+1f(y

k+1) + αk+1f(x
k+1)

+αk+1

〈
θk+1, x

k+1 − zk+1
〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2.
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Rearranging the terms, we get

Ak+1f(y
k+1)−Akf(y

k) ≤ αk+1

(
f(xk+1) +

〈
∇̃fξk(x

k+1), z − xk+1
〉)

+
1

2
∥zk − z∥2

−1

2
∥zk+1 − z∥2 + αk+1

〈
θk+1, x

k+1 − zk+1
〉

(149)
= αk+1

(
f(xk+1) +

〈
∇f(xk+1), z − xk+1

〉)
+αk+1

〈
θk+1, z − xk+1

〉
+

1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

≤ αk+1f(z) +
1

2
∥zk − z∥2 − 1

2
∥zk+1 − z∥2 + αk+1

〈
θk+1, z − zk+1

〉
,

where in the last inequality we use the convexity of f . Taking into account A0 = α0 = 0 and AN =
∑N−1

k=0 αk+1 we sum
up these inequalities for k = 0, . . . , N − 1 and get

ANf(yN ) ≤ ANf(z) +
1

2
∥z0 − z∥2 − 1

2
∥zN − z∥2 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk+1

〉
= ANf(z) +

1

2
∥z0 − z∥2 − 1

2
∥zN − z∥2 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk + αk+1∇̃fξk(x

k+1)
〉

(149)
= ANf(z) +

1

2
∥z0 − z∥2 − 1

2
∥zN − z∥2 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk + αk+1∇fξk(x

k+1)
〉

+

N−1∑
k=0

α2
k+1 ∥θk+1∥2 ,

which concludes the proof.

Using this lemma we prove the main convergence result for clipped-SSTM.
Theorem F.2 (Full version of Theorem 3.2). Let Assumptions 1.1, 1.3 and 1.6 with µ = 0 hold on Q = B3R(x

∗), where
R ≥ ∥x0 − x∗∥, and

a ≥ max

48600 ln2
4K

β
,
900σ(K + 1)K

1
α ln

α−1
α 4K

β

LR

 , (155)

λk =
R

30αk+1 ln
4K
β

, (156)

for some K > 0 and β ∈ (0, 1] such that ln 4K
β ≥ 1. Then, after K iterations of clipped-SSTM the iterates with probability

at least 1− β satisfy

f(yK)− f(x∗) ≤ 6aLR2

K(K + 3)
and {xk}K+1

k=0 , {zk}Kk=0, {yk}Kk=0 ⊆ B2R(x
∗). (157)

In particular, when parameter a equals the maximum from (155), then the iterates produced by clipped-SSTM after K
iterations with probability at least 1− β satisfy

f(yK)− f(x∗) = O

max

LR2 ln2 K
β

K2
,
σR ln

α−1
α K

β

K
α−1
α


 , (158)

meaning that to achieve f(yK)− f(x∗) ≤ ε with probability at least 1− β clipped-SSTM requires

K = O

(√
LR2

ε
ln

LR2

εβ
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

))
iterations/oracle calls. (159)
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Proof. The proof starts similarly to the proof of Theorem 4.1 from (Gorbunov et al., 2021). Let Rk = ∥zk − x∗∥, R̃0 = R0,
R̃k+1 = max{R̃k, Rk+1} for all k ≥ 0. We first show by induction that for all k ≥ 0 the iterates xk+1, zk, yk lie
in BR̃k

(x∗). The induction base is trivial since y0 = z0, R̃0 = R0, and x1 = A0y
0+α1z

0

A1
= z0. Next, assume that

xl, zl−1, yl−1 ∈ BR̃l−1
(x∗) for some l ≥ 1. By definitions of Rl and R̃l we have that zl ∈ BRl

(x∗) ⊆ BR̃l
(x∗). Since yl

is a convex combination of yl−1 ∈ BR̃l−1
(x∗) ⊆ BR̃l

(x∗), zl ∈ BR̃l
(x∗) and BR̃l

(x∗) is a convex set we conclude that
yl ∈ BR̃l

(x∗). Finally, since xl+1 is a convex combination of yl and zl we have that xl+1 lies in BR̃l
(x∗) as well.

Next, our goal is to show by induction that R̃l ≤ 3R with high probability, which allows us to apply the result of Lemma F.1
and then use Bernstein’s inequality to estimate the stochastic part of the upper-bound. More precisely, for each k = 0, . . . ,K
we consider probability event Ek defined as follows: inequalities

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl + αl+1∇fξl(x
l+1)

〉
+

t−1∑
l=0

α2
l+1 ∥θl+1∥2 ≤ R2, (160)

Rt ≤ 2R (161)

hold for all t = 0, 1, . . . , k simultaneously. We want to prove via induction that P{Ek} ≥ 1− kβ/K for all k = 0, 1, . . . ,K.
For k = 0 the statement is trivial: the left-hand side of (160) equals zero and R ≥ R0 by definition. Assume that the
statement is true for some k = T − 1 ≤ K − 1: P{ET−1} ≥ 1− (T−1)β/K. One needs to prove that P{ET } ≥ 1− Tβ/K.
First, we notice that probability event ET−1 implies that R̃t ≤ 2R for all t = 0, 1, . . . , T − 1. Moreover, it implies that

∥zT − x∗∥
(21)
≤ ∥zT − x∗∥+ αT ∥∇̃fξT−1(xT )∥ ≤ 2R+ αTλT−1

(156)
≤ 3R.

Therefore, ET−1 implies {xk}Tk=0, {zk}Tk=0, {yk}Tk=0 ⊆ B3R(x
∗), meaning that the assumptions of Lemma F.1 are satisfied

and we have

At

(
f(yt)− f(x∗)

)
≤ 1

2
R2

0 −
1

2
R2

t +

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl + αl+1∇f(xl+1)
〉
+

t−1∑
l=0

α2
l+1 ∥θl+1∥2 (162)

for all t = 0, 1, . . . , T simultaneously and for all t = 1, . . . , T − 1 this probability event also implies that

f(yt)− f(x∗)
(160),(162)

≤
1
2R

2
0 − 1

2R
2
t +R2

At
≤ 3R2

2At
=

6aLR2

t(t+ 3)
. (163)

Taking into account that f(yT )− f(x∗) ≥ 0, we also derive that ET−1 implies

R2
T ≤ R2

0 + 2

T−1∑
t=0

αt+1

〈
θt+1, x

∗ − zt + αt+1∇f(xt+1)
〉
+ 2

T−1∑
t=0

α2
t+1 ∥θt+1∥2︸ ︷︷ ︸

2BT

≤ R2 + 2BT . (164)

Before we estimate BT , we need to derive a few useful inequalities. We start with showing that ET−1 implies ∥∇f(xt+1)∥ ≤
λt/2 for all t = 0, 1, . . . , T − 1. For t = 0 we have x1 = x0 and

∥∇f(x1)∥ = ∥∇f(x0)∥
(6)
≤ L∥x0 − x∗∥ ≤ R

aα1
=

λ0

2
·
60 ln 4K

β

a

(155)
≤ λ0

2
. (165)
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Next, for t = 1, . . . , T − 1 event ET−1 implies

∥∇f(xt+1)∥ ≤ ∥∇f(xt+1)−∇f(yt)∥+ ∥∇f(yt)∥
(6),(7)
≤ L∥xt+1 − yt∥+

√
2L (f(yt)− f(x∗))

(154),(163)
≤ Lαt+1

At
∥xt+1 − zt∥+

√
12aL2R2

t(t+ 3)

≤ 4LRαt+1

At
+

√
12aL2R2

t(t+ 3)

=
R

60αt+1 ln
4K
β

240Lα2
t+1 ln

4K
β

At
+ 60

√
12aL2α2

t+1 ln
2 4K

β

t(t+ 3)


(38),(156)

≤ λt

2

240L
(
t+2
2aL

)2
ln 4K

β

t(t+3)
4aL

+ 60

√√√√12aL2
(
t+2
2aL

)2
ln2 4K

β

t(t+ 3)


=

λt

2

240(t+ 2)2 ln 4K
β

t(t+ 3)a
+ 60

√
3(t+ 2)2 ln 4K

β

t(t+ 3)a


≤ λt

2

(
540 ln 4K

β

a
+

90
√
3 ln 4K

β√
a

)
(155)
≤ λt

2
, (166)

where in the last row we use (t+2)2

t(t+3) ≤ 9
4 for all t ≥ 1. Therefore, probability event ET−1 implies that

∥x∗ − zt + αt+1∇f(xt+1)∥ ≤ ∥x∗ − zt∥+ αt+1∥∇f(xt+1)∥
(161),(165),(166)

≤ 2R+
R

60 ln 4K
β

≤ 3R (167)

for all t = 0, 1, . . . , T − 1. Next, we define random vectors

ηt =

{
x∗ − zt + αt+1∇f(xt+1), if ∥x∗ − zt + αt+1∇f(xt+1)∥ ≤ 3R,

0, otherwise,

for all t = 0, 1, . . . , T − 1. By definition these random vectors are bounded with probability 1

∥ηt∥ ≤ 3R (168)

and probability event ET−1 implies that ηt = x∗ − zt + αt+1∇f(xt+1) for all t = 0, 1, . . . , T − 1. Then, form ET−1 it
follows that

BT =

T−1∑
t=0

αt+1 ⟨θt+1, ηt⟩+
T−1∑
t=0

α2
t+1 ∥θt+1∥2 .

Next, we define the unbiased part and the bias of θt+1 as θut+1 and θbt+1 respectively:

θut+1 = ∇̃fξt(x
t+1)− Eξt

[
∇̃fξt(x

t+1)
]
, θbt+1 = Eξt

[
∇̃fξt(x

t+1)
]
−∇f(xt+1). (169)
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We notice that θt+1 = θut+1 + θbt+1. Using new notation, we get that ET−1 implies

BT =

T−1∑
t=0

αt+1

〈
θut+1 + θbt+1, ηt

〉
+

T−1∑
t=0

α2
t+1

∥∥θut+1 + θbt+1

∥∥2
≤

T−1∑
t=0

αt+1

〈
θut+1, ηt

〉
︸ ︷︷ ︸

①

+

T−1∑
t=0

αt+1

〈
θbt+1, ηt

〉
︸ ︷︷ ︸

②

+2

T−1∑
t=0

α2
t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2])
︸ ︷︷ ︸

③

+2

T−1∑
t=0

α2
t+1Eξt

[∥∥θut+1

∥∥2]
︸ ︷︷ ︸

④

+2

T−1∑
t=0

α2
t+1

∥∥θbt+1

∥∥2
︸ ︷︷ ︸

⑤

. (170)

It remains to derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤, i.e., to finish our inductive
proof we need to show that ① + ② + ③ + ④ + ⑤ ≤ R2 with high probability. In the subsequent parts of the proof, we
will need to use many times the bounds for the norm and second moments of θut+1 and θbt+1. First, by definition of clipping
operator, we have with probability 1 that

∥θut+1∥ ≤ 2λt. (171)

Moreover, since ET−1 implies that ∥∇f(xt+1)∥ ≤ λt/2 for t = 0, 1, . . . , T − 1 (see (165) and (166)), then, in view of
Lemma 5.1, we have that ET−1 implies

∥θbt+1∥ ≤ 2ασα

λα−1
t

, (172)

Eξt
[
∥θut+1∥2

]
≤ 18λ2−α

t σα. (173)

Upper bound for ①. By definition of θut+1, we have Eξt [θ
u
t+1] = 0 and

Eξt
[
αt+1

〈
θut+1, ηt

〉]
= 0.

Next, sum ① has bounded with probability 1 terms:

|αt+1

〈
θut+1, ηt

〉
| ≤ αt+1∥θut+1∥ · ∥ηt∥

(168),(171)
≤ 6αt+1λtR

(156)
=

R2

5 ln 4K
β

def
= c. (174)

The summands also have bounded conditional variances σ2
t

def
= Eξt [α

2
t+1

〈
θut+1, ηt

〉2
]:

σ2
t ≤ Eξt

[
α2
t+1∥θut+1∥2 · ∥ηt∥2

] (168)
≤ 9α2

t+1R
2Eξt

[
∥θut+1∥2

]
. (175)

In other words, we showed that {αt+1

〈
θut+1, ηt

〉
}T−1
t=0 is a bounded martingale difference sequence with bounded conditional

variances {σ2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = αt+1

〈
θut+1, ηt

〉
, parameter c as in

(174), b = R2

5 , G = R4

150 ln 4K
β

:

P

{
|①| > R2

5
and

T−1∑
t=0

σ2
t ≤ R4

150 ln 4K
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2K
.

Equivalently, we have

P {E①} ≥ 1− β

2K
, for E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4K
β

or |①| ≤ R2

5

}
. (176)
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In addition, ET−1 implies that

T−1∑
t=0

σ2
t

(175)
≤ 9R2

T−1∑
t=0

α2
t+1Eξt

[
∥θut+1∥2

] (173)
≤ 162σαR2

T−1∑
t=0

α2
t+1λ

2−α
t

(156)
≤ 162σαR4−α

302−α ln2−α 4K
β

T−1∑
t=0

αα
t+1 =

162σαR4−α

302−α · 2αaαLα ln2−α 4K
β

T−1∑
t=0

(t+ 2)α

≤ 1

aα
· 162σ

αR4−αT (T + 1)α

60Lα ln2−α 4K
β

(155)
≤ R4

150 ln 4K
β

. (177)

Upper bound for ②. From ET−1 it follows that

② ≤
T−1∑
t=0

αt+1∥θbt+1∥ · ∥ηt∥
(168),(172)

≤ 3R · 2ασα
T−1∑
t=0

αt+1

λα−1
t

(156)
≤ 12Rσα ·

30α−1 lnα−1 4K
β

Rα−1

T−1∑
t=0

αα
t+1

≤
360σαR2−α lnα−1 4K

β

2αaαLα

T−1∑
t=0

(t+ 2)α ≤ 1

aα
·
180σαR2−αT (T + 1)α lnα−1 4K

β

Lα

(155)
≤ R2

5
. (178)

Upper bound for ③. First, we have

Eξt

[
2α2

t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2])] = 0.

Next, sum ③ has bounded with probability 1 terms:∣∣∣2α2
t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2])∣∣∣ ≤ 2α2
t+1

(
∥θut+1∥2 + Eξt

[∥∥θut+1

∥∥2])
(171)
≤ 16α2

t+1λ
2
t

(156)
≤ R2

5 ln 4K
β

def
= c. (179)

The summands also have bounded conditional variances σ̃2
t

def
= Eξt

[
4α4

t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2])2]:

σ̃2
t

(179)
≤ R2

5 ln 4K
β

Eξt

[
2α2

t+1

∣∣∣∥∥θut+1

∥∥2 − Eξk

[∥∥θut+1

∥∥2]∣∣∣] ≤ α2
t+1R

2Eξt
[
∥θut+1∥2

]
, (180)

since ln 4K
β ≥ 1. In other words, we showed that

{
2α2

t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2])}T−1

t=0
is a bounded martingale

difference sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with

Xt = 2α2
t+1

(∥∥θut+1

∥∥2 − Eξt

[∥∥θut+1

∥∥2]), parameter c as in (179), b = R2

5 , G = R4

150 ln 4K
β

:

P

{
|③| > R2

5
and

T−1∑
t=0

σ̃2
t ≤ R4

150 ln 4K
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2K
.

Equivalently, we have

P {E③} ≥ 1− β

2K
, for E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4K
β

or |③| ≤ R2

5

}
. (181)

In addition, ET−1 implies that

T−1∑
t=0

σ̃2
t

(180)
≤ R2

T−1∑
t=0

α2
t+1Eξt

[
∥θut+1∥2

]
≤ 9R2

T−1∑
t=0

α2
t+1Eξt

[
∥θut+1∥2

] (177)
≤ R4

150 ln 4K
β

. (182)
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Upper bound for ④. From ET−1 it follows that

④ = 2

T−1∑
t=0

α2
t+1Eξt

[∥∥θut+1

∥∥2] ≤ 1

R2
· 9R2

T−1∑
t=0

α2
t+1Eξt

[∥∥θut+1

∥∥2] (177)
≤ R2

150 ln 4K
β

≤ R2

5
. (183)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2

T−1∑
t=0

α2
t+1

∥∥θbt+1

∥∥2 ≤ 22α+1σ2α
T−1∑
t=0

α2
t+1

λ2α−2
t

(156)
=

22α+1 · 302α−2σ2α ln2α−2 4K
β

R2α−2

T−1∑
t=0

α2α
t+1

=
22α+1 · 302α−2σ2α ln2α−2 4K

β

22αa2αL2αR2α−2

T−1∑
t=0

(t+ 2)2α ≤ 1

a2α
·
1800σ2αT (T + 1)2α ln2α−2 4K

β

L2αR2α−2

(155)
≤ R2

5
. (184)

Now, we have the upper bounds for ①,②,③,④,⑤. In particular, probability event ET−1 implies

BT

(170)
≤ R2 + ① + ② + ③ + ④ + ⑤,

②
(178)
≤ R2

5
, ④

(183)
≤ R2

5
, ⑤

(184)
≤ R2

5
,

T−1∑
t=0

σ2
t

(177)
≤ R4

150 ln 4K
β

,

T−1∑
t=0

σ̃2
t

(182)
≤ R4

150 ln 4K
β

.

Moreover, we also have (see (176), (181) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K
, P{E①} ≥ 1− β

2K
, P{E③} ≥ 1− β

2K
,

where

E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4K
β

or |①| ≤ R2

5

}
,

E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4K
β

or |③| ≤ R2

5

}
.

Thus, probability event ET−1 ∩ E① ∩ E③ implies

BT ≤ R2 +
R2

5
+

R2

5
+

R2

5
+

R2

5
+

R2

5
= 2R2,

R2
T

(164)
≤ R2 + 2R2 ≤ (2R)2,

which is equivalent to (160) and (161) for t = T , and

P{ET } ≥ P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
≥ 1− P{ET−1} − P{E①} − P{E③} ≥ 1− Tβ

K
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K we have P{Ek} ≥ 1 − kβ/K. In particular, for
k = K we have that with probability at least 1− β

f(yK)− f(x∗)
(163)
≤ 6aLR2

K(K + 3)

and {xk}K+1
k=0 , {zk}Kk=0, {yk}Kk=0 ⊆ B2R(x

∗), which follows from (161).
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Finally, if

a = max

48600 ln2
4K

β
,
900σ(K + 1)K

1
α ln

α−1
α 4K

β

LR

 ,

then with probability at least 1− β

f(yK)− f(x∗) ≤ 6aLR2

K(K + 3)
= max

291600LR2 ln2 4K
β

K(K + 3)
,
5400σR(K + 1)K

1
α ln

α−1
α 4K

β

K(K + 3)


= O

max

LR2 ln2 K
β

K2
,
σR ln

α−1
α K

β

K
α−1
α


 .

To get f(yK)− f(x∗) ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum
above are O(ε). This leads to

K = O

(√
LR2

ε
ln

LR2

εβ
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

))
that concludes the proof.

F.2. Strongly Convex Functions

In the strongly convex case, we consider the restarted version of clipped-SSTM (R-clipped-SSTM). The main result is
summarized below.

Algorithm 3 Restarted clipped-SSTM (R-clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point x0, number of restarts τ , number of steps of clipped-SSTM between restarts {Kt}τt=1, stepsize
parameters {at}τt=1, clipping levels {λ1

k}
K1−1
k=0 , {λ2

k}
K2−1
k=0 , . . . , {λτ

k}
Kτ−1
k=0 , smoothness constant L.

1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SSTM (Algorithm 2) for Kt iterations with stepsize parameter at, clipping levels {λt

k}
Kt−1
k=0 , and

starting point x̂t−1. Define the output of clipped-SSTM by x̂t.
4: end for

Output: x̂τ

Theorem F.3 (Full version of Theorem 3.3). Let Assumptions 1.1, 1.3, 1.6 with µ > 0 hold for Q = B3R(x
∗), where

R ≥ ∥x0 − x∗∥2 and R-clipped-SSTM runs clipped-SSTM τ times. Let

Kt =

max

1080

√
LR2

t−1

εt
ln

2160
√
LR2

t−1τ
√
εtβ

, 2

(
5400σRt−1

εt

) α
α−1

ln

(
4τ

β

(
5400σRt−1

εt

) α
α−1

)
 , (185)

εt =
µR2

t−1

4
, Rt−1 =

R

2(t−1)/2
, τ =

⌈
log2

µR2

2ε

⌉
, ln

4Ktτ

β
≥ 1, (186)

at = max

48600 ln2
4Ktτ

β
,
900σ(Kt + 1)K

1
α
t ln

α−1
α 4Ktτ

β

LRt

 , (187)

λt
k =

Rt

30αt
k+1 ln

4Ktτ
β

(188)

for t = 1, . . . , τ . Then to guarantee f(x̂τ )− f(x∗) ≤ ε with probability ≥ 1− β R-clipped-SSTM requires

O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µβ

ln

(
µR2

ε

))
,

(
σ2

µε

) α
2(α−1)

ln

(
1

β

(
σ2

µε

) α
2(α−1)

ln

(
µR2

ε

))})
(189)
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iterations/oracle calls. Moreover, with probability ≥ 1 − β the iterates of R-clipped-SSTM at stage t stay in the ball
B2Rt−1(x

∗).

Proof. We show by induction that for any t = 1, . . . , τ with probability at least 1− tβ/τ inequalities

f(x̂l)− f(x∗) ≤ εl, ∥x̂l − x∗∥2 ≤ R2
l =

R2

2l
(190)

hold for l = 1, . . . , t simultaneously. First, we prove the base of the induction. Theorem F.2 implies that with probability at
least 1− β/τ

f(x̂1)− f(x∗) ≤ 6a1LR
2

K1(K1 + 3)

(187)
= max

291600LR2 ln2 4K1τ
β

K1(K1 + 3)
,
5400σR(K1 + 1)K

1
α
1 ln

α−1
α 4K1τ

β

K1(K1 + 3)


≤ max

291600LR2 ln2 4K1τ
β

K2
1

,
5400σR ln

α−1
α 4K1τ

β

K
α−1
α

1


(185)
≤ ε1 =

µR2

4

and, due to the strong convexity,

∥x̂1 − x∗∥2 ≤ 2(f(x̂1)− f(x∗))

µ
≤ R2

2
= R2

1.

The base of the induction is proven. Now, assume that the statement holds for some t = T < τ , i.e., with probability at least
1− Tβ/τ inequalities

f(x̂l)− f(x∗) ≤ εl, ∥x̂l − x∗∥2 ≤ R2
l =

R2

2l
(191)

hold for l = 1, . . . , T simultaneously. In particular, with probability at least 1− Tβ/τ we have ∥x̂T − x∗∥2 ≤ R2
T . Applying

Theorem F.2 and using union bound for probability events, we get that with probability at least 1− (T+1)β/τ

f(x̂T+1)− f(x∗) ≤ 6aT+1LR
2
T

KT+1(KT+1 + 3)

(187)
= max

291600LR2
T ln2 4KT+1τ

β

KT+1(KT+1 + 3)
,
5400σRT (KT+1 + 1)K

1
α

T+1 ln
α−1
α

4KT+1τ
β

KT+1(KT+1 + 3)


≤ max

291600LR2
T ln2 4KT+1τ

β

K2
T+1

,
5400σRT ln

α−1
α

4KT+1τ
β

K
α−1
α

T+1


(185)
≤ εT+1 =

µR2
T

4

and, due to the strong convexity,

∥x̂T+1 − x∗∥2 ≤ 2(f(x̂T+1)− f(x∗))

µ
≤ R2

T

2
= R2

T+1.

Thus, we finished the inductive part of the proof. In particular, with probability at least 1− β inequalities

f(x̂l)− f(x∗) ≤ εl, ∥x̂l − x∗∥2 ≤ R2
l =

R2

2l

hold for l = 1, . . . , τ simultaneously, which gives for l = τ that with probability at least 1− β

f(x̂τ )− f(x∗) ≤ ετ =
µR2

τ−1

4
=

µR2

2τ+1

(186)
≤ ε.
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It remains to calculate the overall number of oracle calls during all runs of clipped-SSTM. We have

τ∑
t=1

Kt = O

 τ∑
t=1

max


√

LR2
t−1

εt
ln


√
LR2

t−1τ
√
εtβ

 ,

(
σRt−1

εt

) α
α−1

ln

(
τ

β

(
σRt−1

εt

) α
α−1

)


= O

(
τ∑

t=1

max

{√
L

µ
ln

(√
Lτ

√
µβ

)
,

(
σ

µRt−1

) α
α−1

ln

(
τ

β

(
σ

µRt−1

) α
α−1

)})

= O

(
max

{
τ

√
L

µ
ln

(√
Lτ

√
µβ

)
,

τ∑
t=1

(
σ · 2t/2

µR

) α
α−1

ln

(
τ

β

(
σ · 2t/2

µR

) α
α−1

)})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µβ

ln

(
µR2

ε

))
,

(
σ

µR

) α
α−1

ln

(
τ

β

(
σ · 2τ/2

µR

) α
α−1

)
τ∑

t=1

2
αt

2(α−1)

})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µβ

ln

(
µR2

ε

))
,

(
σ

µR

) α
α−1

ln

(
τ

β

(
σ

µR

) α
α−1

· 2
α

2(α−1)

)
2

ατ
2(α−1)

})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µβ

ln

(
µR2

ε

))
,

(
σ2

µε

) α
2(α−1)

ln

(
1

β

(
σ2

µε

) α
2(α−1)

ln

(
µR2

ε

))})
,

which concludes the proof.
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G. Missing Proofs for clipped-SEG

In this section, we provide the complete formulation of the main results for clipped-SSTM and R-clipped-SSTM and
the missing proofs. For brevity, we will use the following notation: F̃ξk1

(xk) = clip
(
Fξk1

(xk), λk

)
and F̃ξk2

(x̃k) =

clip
(
Fξk2

(x̃k), λk

)
.

Algorithm 4 Clipped Stochastic Extragradient (clipped-SEG) (Gorbunov et al., 2022a)

Input: starting point x0, number of iterations K, stepsize γ > 0, clipping levels {λk}K−1
k=0 .

1: for k = 0, . . . ,K do
2: Compute F̃ξk1

(xk) = clip
(
Fξk1

(xk), λk

)
using a fresh sample ξk1 ∼ Dk

3: x̃k = xk − γF̃ξk1
(xk)

4: Compute F̃ξk2
(x̃k) = clip

(
Fξk2

(x̃k), λk

)
using a fresh sample ξk2 ∼ Dk

5: xk+1 = xk − γF̃ξk2
(x̃k)

6: end for

Output: xK+1 or x̃K
avg = 1

K+1

K∑
k=0

x̃K

G.1. Monotone Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part of
the algorithm, the proof is the same as in the original work.
Lemma G.1 (Lemma C.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.7 and 1.8 hold for Q = B4R(x

∗), where
R ≥ ∥x0 − x∗∥ and 0 < γ ≤ 1/

√
2L. If xk and x̃k lie in B4R(x

∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then for all
u ∈ B4R(x

∗) the iterates produced by clipped-SEG satisfy

⟨F (u), x̃K
avg − u⟩ ≤ ∥x0 − u∥2 − ∥xK+1 − u∥2

2γ(K + 1)
+

γ

2(K + 1)

K∑
k=0

(
∥θk∥2 + 2∥ωk∥2

)
+

1

K + 1

K∑
k=0

⟨xk − u− γF (x̃k), θk⟩, (192)

x̃K
avg

def
=

1

K + 1

K∑
k=0

x̃k, (193)

θk
def
= F (x̃k)− F̃ξk2

(x̃k), (194)

ωk
def
= F (xk)− F̃ξk1

(xk). (195)

Using this lemma we prove the main convergence result for clipped-SEG in the monotone case.
Theorem G.2 (Case 1 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.8 hold for Q = B4R(x

∗), where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

 1

160L ln 6(K+1)
β

,
20

2−α
α R

10800
1
α (K + 1)

1
ασ ln

α−1
α

6(K+1)
β

 , (196)

λk ≡ λ =
R

20γ ln 6(K+1)
β

, (197)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SEG

with probability at least 1− β satisfy

GapR(x̃
K
avg) ≤

9R2

2γ(K + 1)
and {xk}K+1

k=0 ⊆ B3R(x
∗), {x̃k}K+1

k=0 ⊆ B4R(x
∗), (198)
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where x̃K
avg is defined in (193). In particular, when γ equals the minimum from (196), then the iterates produced by

clipped-SEG after K iterations with probability at least 1− β satisfy

GapR(x̃
K
avg) = O

max

LR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 , (199)

meaning that to achieve GapR(x̃
K
avg) ≤ ε with probability at least 1− β clipped-SEG requires

K = O

(
LR2

ε
ln

LR2

εβ
,

(
σR

ε

) α
α−1

ln
σR

εβ

)
iterations/oracle calls. (200)

Proof. The proof follows similar steps as the proof of Theorem C.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Rk = ∥xk −x∗∥ for all k ≥ 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each k = 0, 1, . . . ,K + 1
we consider probability event Ek as follows: inequalities

max
u∈BR(x∗)

{
∥x0 − u∥2 + 2γ

t−1∑
l=0

⟨xl − u− γF (x̃l), θl⟩+ γ2
t−1∑
l=0

(
∥θl∥2 + 2∥ωl∥2

)}
︸ ︷︷ ︸

At

≤ 9R2, (201)

∥∥∥∥∥γ
t−1∑
l=0

θl

∥∥∥∥∥ ≤ R (202)

hold for t = 0, 1, . . . , k simultaneously. We want to prove P{Ek} ≥ 1− kβ/(K+1) for all k = 0, 1, . . . ,K + 1 by induction.
The base of the induction is trivial: for k = 0 we have ∥x0 − u∥2 ≤ 2∥x0 − x∗∥2 + 2∥x∗ − u∥2 ≤ 4R2 ≤ 9R2 and
∥γ
∑k−1

l=0 θl∥ = 0 for any u ∈ BR(x
∗). Next, assume that for k = T − 1 ≤ K the statement holds: P{ET−1} ≥

1 − (T−1)β/(K+1). Given this, we need to prove P{ET } ≥ 1 − Tβ/(K+1). We start with showing that ET−1 implies
Rt ≤ 3R for all t = 0, 1, . . . , T (also by induction). For t = 0 this is already shown. Now, assume that Rt ≤ 3R for all
t = 0, 1, . . . , t′ for some t′ < T . Then for t = 0, 1, . . . , t′

∥x̃t − x∗∥ = ∥xt − x∗ − γF̃ξt1
(xt)∥ ≤ ∥xt − x∗∥+ γ∥F̃ξt1

(xt)∥

≤ ∥xt − x∗∥+ γλ
(197)
≤ 3R+

R

20 ln 6(K+1)
β

≤ 4R. (203)

Therefore, the conditions of Lemma G.1 are satisfied and we have that ET−1 implies

max
u∈BR(x∗)

{
2γ(t′ + 1)⟨F (u), x̃t′

avg − u⟩+ ∥xt′+1 − u∥2
}

≤ max
u∈BR(x∗)

{
∥x0 − u∥2 + 2γ

t′∑
l=0

⟨xl − u− γF (x̃l), θl⟩

}

+γ2
t′∑
l=0

(
∥θl∥2 + 2∥ωl∥2

)
(201)
≤ 9R2,

meaning that

∥xt′+1 − x∗∥2 ≤ max
u∈BR(x∗)

{
2γ(t′ + 1)⟨F (u), x̃t′

avg − u⟩+ ∥xt′+1 − u∥2
}
≤ 9R2,

i.e., Rt′+1 ≤ 3R. In other words, we derived that probability event ET−1 implies Rt ≤ 3R and

max
u∈BR(x∗)

{
2γ(t+ 1)⟨F (u), x̃t

avg − u⟩+ ∥xt+1 − u∥2
}
≤ 9R2 (204)
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for all t = 0, 1, . . . , T . In addition, due to (203) ET−1 also implies that ∥x̃t − x∗∥ ≤ 4R for all t = 0, 1, . . . , T . Thus,
ET−1 implies

∥xt − x∗ − γF (x̃t)∥ ≤ ∥xt − x∗∥+ γ∥F (x̃t)∥
(11)
≤ 3R+ γL∥x̃t − x∗∥

(203)
≤ 3R+ 4RγL

(196)
≤ 5R, (205)

for all t = 0, 1, . . . , T . Next, we introduce random vectors

ηt =

{
xt − x∗ − γF (x̃t), if ∥xt − x∗ − γF (x̃t)∥ ≤ 5R,

0, otherwise,

for all t = 0, 1, . . . , T . These vectors are bounded almost surely:

∥ηt∥ ≤ 5R (206)

for all t = 0, 1, . . . , T . Moreover, due to (205), probability event ET−1 implies ηt = xt−x∗−γF (x̃t) for all t = 0, 1, . . . , T
and

AT = max
u∈BR(x∗)

{
∥x0 − u∥2 + 2γ

T−1∑
l=0

⟨x∗ − u, θl⟩

}
+ 2γ

T−1∑
l=0

⟨xl − x∗ − γF (x̃l), θl⟩+ γ2
T−1∑
l=0

(
∥θl∥2 + 2∥ωl∥2

)
≤ 4R2 + 2γ max

u∈BR(x∗)

{〈
x∗ − u,

T−1∑
l=0

θl

〉}
+ 2γ

T−1∑
l=0

⟨ηl, θl⟩+ γ2
T−1∑
l=0

(
∥θl∥2 + 2∥ωl∥2

)
= 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ 2γ

T−1∑
l=0

⟨ηl, θl⟩+ γ2
T−1∑
l=0

(
∥θl∥2 + 2∥ωl∥2

)
,

where AT is defined in (201).

To handle the sums appeared in the right-hand side of the previous inequality we consider unbiased and biased parts of
θl, ωl:

θul
def
= Eξl2

[
F̃ξl2

(x̃l)
]
− F̃ξl2

(x̃l), θbl
def
= F (x̃l)− Eξl2

[
F̃ξl2

(x̃l)
]
, (207)

ωu
l

def
= Eξl1

[
F̃ξl1

(xl)
]
− F̃ξl1

(xl), ωb
l

def
= F (xl)− Eξl1

[
F̃ξl1

(xl)
]
, (208)

for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl , ωl = ωu
l + ωb

l for all l = 0, . . . , T − 1. Therefore, ET−1

implies

AT ≤ 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ 2γ

T−1∑
l=0

⟨ηl, θul ⟩︸ ︷︷ ︸
①

+2γ

T−1∑
l=0

⟨ηl, θbl ⟩︸ ︷︷ ︸
②

+2γ2
T−1∑
l=0

(
Eξl2

[
∥θul ∥2

]
+ 2Eξl1

[
∥ωu

l ∥2
])

︸ ︷︷ ︸
③

+2γ2
T−1∑
l=0

(
∥θul ∥2 + 2∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
])

︸ ︷︷ ︸
④

+2γ2
T−1∑
l=0

(
∥θbl ∥2 + 2∥ωb

l ∥2
)

︸ ︷︷ ︸
⑤

, (209)
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where we also apply inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥θl∥2 and ∥ωl∥2. It
remains to derive good enough high-probability upper-bounds for the terms 2γR

∥∥∥∑T−1
l=0 θl

∥∥∥ ,①,②,③,④,⑤, i.e., to finish

our inductive proof we need to show that 2γR
∥∥∥∑T−1

l=0 θl

∥∥∥+ ① + ② + ③ + ④ + ⑤ ≤ 5R2 with high probability. In the

subsequent parts of the proof, we will need use many times the bounds for the norm and second moments of θut+1 and θbt+1.
First, by definition of clipping operator we have with probability 1 that

∥θul ∥ ≤ 2λ, ∥ωu
l ∥ ≤ 2λ. (210)

Moreover, since ET−1 implies that

∥F (xl)∥
(11)
≤ L∥xl − x∗∥ ≤ 3LR

(196)
≤ R

40γ ln 6(K+1)
β

(197)
=

λ

2
,

∥F (x̃l)∥
(11)
≤ L∥x̃l − x∗∥

(203)
≤ 4LR

(196)
≤ R

40γ ln 6(K+1)
β

(197)
=

λ

2

for t = 0, 1, . . . , T − 1. Then, in view of Lemma 5.1, we have that ET−1 implies

∥∥θbl ∥∥ ≤ 2ασα

λα−1
,
∥∥ωb

l

∥∥ ≤ 2ασα

λα−1
, (211)

Eξl2

[
∥θl∥2

]
≤ 18λ2−ασα, Eξl1

[
∥ωl∥2

]
≤ 18λ2−ασα, (212)

Eξl2

[
∥θul ∥

2
]
≤ 18λ2−ασα, Eξl1

[
∥ωu

l ∥
2
]
≤ 18λ2−ασα, (213)

for all l = 0, 1, . . . , T − 1.

Upper bound for ①. By definition of θul , we have Eξl2
[θul ] = 0 and

Eξl2
[2γ⟨ηl, θul ⟩] = 0.

Next, sum ① has bounded with probability 1 terms:

|2γ⟨ηl, θul ⟩| ≤ 2γ∥ηl∥ · ∥θul ∥
(206),(210)

≤ 20γRλ
(197)
=

R2

ln 6(K+1)
β

def
= c. (214)

The summands also have bounded conditional variances σ2
l

def
= Eξl2

[
4γ2⟨ηl, θul ⟩2

]
:

σ2
l ≤ Eξl2

[
4γ2∥ηl∥2 · ∥θul ∥2

] (206)
≤ 100γ2R2Eξl2

[
∥θul ∥2

]
. (215)

In other words, we showed that {2γ⟨ηl, θul ⟩}
T−1
l=0 is a bounded martingale difference sequence with bounded conditional

variances {σ2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl = 2γ⟨ηl, θul ⟩, parameter c as in (214),

b = R2, G = R4

6 ln
6(K+1)

β

:

P

{
|①| > R2 and

T−1∑
l=0

σ2
l ≤ R4

6 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

P{E①} ≥ 1− β

3(K + 1)
, for E① =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |①| ≤ R2

}
. (216)
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In addition, ET−1 implies that

T−1∑
l=0

σ2
l

(215)
≤ 100γ2R2

T−1∑
l=0

Eξl2

[
∥θul ∥2

] (213),T≤K+1

≤ 1800(K + 1)γ2R2λ2−ασα

(197)
≤ 1800(K + 1)γασαR4−α

202−α ln2−α 6(K+1)
β

(196)
≤ R4

6 ln 6(K+1)
β

. (217)

Upper bound for ②. From ET−1 it follows that

② ≤ 2γ

T−1∑
l=0

∥ηl∥ · ∥θbl ∥
(206),(211),T≤K+1

≤ 10 · 2α(K + 1)γRσα

λα−1

(197)
=

10 · 2α · 20α−1(K + 1)γασα lnα−1 6(K+1)
β

Rα−2

(196)
≤ R2. (218)

Upper bound for ③. From ET−1 it follows that

2γ2
T−1∑
l=0

Eξl2
[∥θul ∥2]

(212),T≤K+1

≤ 36γ2(K + 1)λ2−ασα (197)
=

36γα(K + 1)σα

202−α ln2−α 6(K+1)
β

(196)
≤ 1

12
R2, (219)

4γ2
T−1∑
l=0

Eξl1
[∥ωu

l ∥2]
(212),T≤K+1

≤ 72γ2(K + 1)λ2−ασα (197)
=

72γα(K + 1)σα

202−α ln2−α 6(K+1)
β

(196)
≤ 1

12
R2, (220)

③
(219),(220)

≤ 1

6
R2. (221)

Upper bound for ④. By the construction we have

2γ2Eξl1,ξ
l
2

[
∥θul ∥2 + 2∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
]]

= 0.

Next, sum ① has bounded with probability 1 terms:

2γ2
∣∣∣∥θul ∥2 + 2∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
]∣∣∣ ≤ 2γ2∥θul ∥2 + 2γ2Eξl2

[
∥θul ∥2

]
+4γ2∥ωu

l ∥2 + 4γ2Eξl1

[
∥ωu

l ∥2
]

(210)
≤ 48γ2λ2

(197)
≤ R2

6 ln 6(K+1)
β

def
= c. (222)

The summands also have bounded conditional variances

σ̃2
l

def
= 4γ4Eξl1,ξ

l
2

[∣∣∣∥θul ∥2 + 2∥ωu
l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
]∣∣∣2]:

σ̃2
l

(222)
≤ γ2R2

3 ln 6(K+1)
β

Eξl1,ξ
l
2

[∣∣∣∥θul ∥2 + 2∥ωu
l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
]∣∣∣]

≤ 2γ2R2

3 ln 6(K+1)
β

Eξl1,ξ
l
2

[
∥θul ∥2 + 2∥ωu

l ∥2
]
. (223)

In other words, we showed that
{
2γ2

(
∥θul ∥2 + 2∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
])}T−1

l=0
is a bounded martingale

difference sequence with bounded conditional variances {σ2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with
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Xl = 2γ2
(
∥θul ∥2 + 2∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 2Eξl1

[
∥ωu

l ∥2
])

, parameter c as in (222), b = 1
6R

2, G = R4

216 ln
6(K+1)

β

:

P

{
|④| > 1

6
R2 and

T−1∑
l=0

σ̃2
l ≤ R4

216 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

P{E④} ≥ 1− β

3(K + 1)
, for E④ =

{
either

T−1∑
l=0

σ̃2
l >

R4

216 ln 6(K+1)
β

or |④| ≤ 1

6
R2

}
. (224)

In addition, ET−1 implies that

T−1∑
l=0

σ̃2
l

(223)
≤ 2γ2R2

3 ln 6(K+1)
β

T−1∑
l=0

Eξl1,ξ
l
2

[
∥θul ∥2 + 2∥ωu

l ∥2
]

(213),T≤K+1

≤ 36(K + 1)γ2R2λ2−ασα

ln 6(K+1)
β

(197)
≤ 36(K + 1)γαR4−ασα

202−α ln3−α 6(K+1)
β

(196)
≤ R4

216 ln 6(K+1)
β

. (225)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2
T−1∑
l=0

(
∥θbl ∥2 + 2∥ωb

l ∥2
) (211),T≤K+1

≤ 6 · 22αγ2σ2α(K + 1)

λ2α−2

(197)
=

6 · 22α · 202α−2γ2ασ2α(K + 1) ln2α−2 6(K+1)
β

R2α−2

(196)
≤ 1

6
R2. (226)

Upper bound for 2γR
∥∥∥∑T−1

l=0 θl

∥∥∥. To upper-bound this sum, we introduce new random vectors:

ζl =

γ
l−1∑
r=0

θr, if
∥∥∥∥γ l−1∑

r=0
θr

∥∥∥∥ ≤ R,

0, otherwise

for l = 1, 2, . . . , T − 1. These vectors are bounded with probability 1:

∥ζl∥ ≤ R. (227)

Therefore, taking into account (202), we derive that ET−1 implies

2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥ = 2R

√√√√γ2

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥
2

= 2R

√√√√γ2

T−1∑
l=0

∥θl∥2 + 2γ

T−1∑
l=0

〈
γ

l−1∑
r=0

θr, θl

〉

= 2R

√√√√γ2

T−1∑
l=0

∥θl∥2 + 2γ

T−1∑
l=0

⟨ζl, θl⟩

(207)
≤ 2R

√√√√√√③ + ④ + ⑤ + 2γ
T−1∑
l=0

⟨ζl, θul ⟩︸ ︷︷ ︸
⑥

+2γ

T−1∑
l=0

⟨ζl, θbl︸ ︷︷ ︸
⑦

⟩. (228)

Similarly to the previous parts of the proof, we bound ⑥ and ⑦.
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Upper bound for ⑥. By definition of θul , we have Eξl2
[θul ] = 0 and

Eξl2
[2γ⟨ζl, θul ⟩] = 0.

Next, sum ⑥ has bounded with probability 1 terms:

|2γ⟨ζl, θul ⟩| ≤ 2γ∥ηl∥ · ∥θul ∥
(227),(210)

≤ 4γRλ
(197)
≤ R2

4 ln 6(K+1)
β

def
= c. (229)

The summands also have bounded conditional variances σ̂2
l

def
= Eξl2

[
4γ2⟨ζl, θul ⟩2

]
:

σ̂2
l ≤ Eξl2

[
4γ2∥ζl∥2 · ∥θul ∥2

] (227)
≤ 4γ2R2Eξl2

[
∥θul ∥2

]
. (230)

In other words, we showed that {2γ⟨ζl, θul ⟩}
T−1
l=0 is a bounded martingale difference sequence with bounded conditional

variances {σ̂2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl = 2γ⟨ζl, θul ⟩, parameter c as in (229),

b = R2

4 , G = R4

96 ln
6(K+1)

β

:

P

{
|⑤| > 1

4
R2 and

T−1∑
l=0

σ̂2
l ≤ R4

96 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

E⑥ =

{
either

T−1∑
l=0

σ̂2
l >

R4

96 ln 6(K+1)
β

or |⑤| ≤ 1

4
R2

}
. (231)

In addition, ET−1 implies that

T−1∑
l=0

σ̂2
l

(230)
≤ 4γ2R2

T−1∑
l=0

Eξl2

[
∥θul ∥2

] (213),T≤K+1

≤ 72(K + 1)γ2R2λ2−ασα

(197)
=

72(K + 1)γαR4−ασα

202−α ln2−α 6(K+1)
β

(196)
≤ R4

96 ln 6(K+1)
β

. (232)

Upper bound for ⑦. From ET−1 it follows that

⑦ ≤ 2γ

T−1∑
l=0

∥ζl∥ · ∥θbl ∥
(227),(211),T≤K+1

≤ 2α+1(K + 1)γRσα

λα−1

(197)
=

2α+1 · 20α−1(K + 1)γασα lnα−1 6(K+1)
β

Rα−2

(196)
≤ 1

4
R2. (233)

Now, we have the upper bounds for 2γR
∥∥∥∑T−1

l=0 θl

∥∥∥ ,①,②,③,④,⑤. In particular, probability event ET−1 implies

AT

(209)
≤ 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ ① + ② + ③ + ④ + ⑤,

2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥ (228)
≤ 2R

√
③ + ④ + ⑤ + ⑥ + ⑦,

②
(218)
≤ R2, ③

(221)
≤ 1

6
R2, ⑤

(226)
≤ 1

6
R2, ⑦

(233)
≤ 1

4
R2,

T−1∑
l=0

σ2
l

(217)
≤ R4

6 ln 6(K+1)
β

,

T−1∑
l=0

σ̃2
l

(225)
≤ R4

216 ln 6(K+1)
β

,

T−1∑
l=0

σ̂2
l

(232)
≤ R4

96 ln 6(K+1)
β

.
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Moreover, we also have (see (216), (224), (231) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E①} ≥ 1− β

3(K + 1)
, P{E④} ≥ 1− β

3(K + 1)
, P{E⑥} ≥ 1− β

3(K + 1)
,

where

E① =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |①| ≤ R2

}
,

E④ =

{
either

T−1∑
l=0

σ̃2
l >

R4

216 ln 6(K+1)
β

or |④| ≤ 1

6
R2

}
,

E⑥ =

{
either

T−1∑
l=0

σ̂2
l >

R4

96 ln 6(K+1)
β

or |⑥| ≤ 1

4
R2

}
.

Thus, probability event ET−1 ∩ E① ∩ E④ ∩ E⑥ implies∥∥∥∥∥γ
T−1∑
l=0

θl

∥∥∥∥∥ ≤
√

1

6
R2 +

1

6
R2 +

1

6
R2 +

1

4
R2 +

1

4
R2 = R, (234)

AT ≤ 4R2 + 2R

√
1

6
R2 +

1

6
R2 +

1

6
R2 +

1

4
R2 +

1

4
R2

+R2 +R2 +
1

6
R2 +

1

6
R2 +

1

6
R2

≤ 9R2, (235)

which is equivalent to (201) and (202) for t = T , and

P{ET } ≥ P{ET−1 ∩ E① ∩ E④ ∩ E⑥} = 1− P{ET−1 ∪ E① ∪ E④ ∪ E⑥} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

GapR(x̃
K
avg) = max

u∈BR(x∗)

{
⟨F (u), x̃K

avg − u⟩
}

≤ 1

2γ(K + 1)
max

u∈BR(x∗)

{
2γ(K + 1)⟨F (u), x̃t

avg − u⟩+ ∥xK+1 − u∥2
}

(204)
≤ 9R2

2γ(K + 1)
.

Finally, if

γ = min

 1

160L ln 6(K+1)
β

,
20

2−α
α R

10800
1
α (K + 1)

1
ασ ln

α−1
α

6(K+1)
β


then with probability at least 1− β

GapR(x̃
K
avg) ≤ 9R2

2γ(K + 1)
= max

720LR2 ln 6(K+1)
β

K + 1
,

9σR ln
α−1
α

6(K+1)
β

2 · 20 2−α
α (K + 1)

α−1
α


= O

max

LR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 .
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To get GapR(x̃
K
avg) ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum

above are O(ε). This leads to

K = O

(
LR2

ε
ln

LR2

εβ
,

(
σR

ε

) α
α−1

ln
σR

εβ

)
that concludes the proof.

G.2. Quasi-Strongly Monotone Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SEG in the quasi-strongly monotone case.
Lemma G.3 (Lemma C.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.7, 1.9 hold for Q = B3R(x

∗) = {x ∈ Rd |
∥x− x∗∥ ≤ 3R}, where R ≥ ∥x0 − x∗∥, and 0 < γ ≤ 1/2(L+2µ). If xk and x̃k lie in B3R(x

∗) for all k = 0, 1, . . . ,K for
some K ≥ 0, then the iterates produced by clipped-SEG satisfy

∥xK+1 − x∗∥2 ≤ (1− γµ)K+1∥x0 − x∗∥2 − 4γ3µ

K∑
k=0

(1− γµ)K−k⟨F (xk), ωk⟩

+2γ

K∑
k=0

(1− γµ)K−k⟨xk − x∗ − γF (x̃k), θk⟩

+γ2
K∑

k=0

(1− γµ)K−k
(
∥θk∥2 + 4∥ωk∥2

)
, (236)

where θk, ωk are defined in (194), (195).

Using this lemma we prove the main convergence result for clipped-SEG in the quasi-strongly monotone case.
Theorem G.4 (Case 2 in Theorem 4.1). Let Assumptions 1.1, 1.7, 1.9, hold for Q = B3R(x

∗) = {x ∈ Rd | ∥x−x∗∥ ≤ 3R},
where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

{
1

650L ln 6(K+1)
β

,
ln(BK)

µ(K + 1)

}
, (237)

BK = max

2,
(K + 1)

2(α−1)
α µ2R2

264600
2
ασ2 ln

2(α−1)
α

(
6(K+1)

β

)
ln2(BK)

 (238)

= O

max

2,
K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})


 , (239)

λk =
exp(−γµ(1 + k/2))R

120γ ln 6(K+1)
β

, (240)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SEG

with probability at least 1− β satisfy

∥xK+1 − x∗∥2 ≤ 2 exp(−γµ(K + 1))R2. (241)

In particular, when γ equals the minimum from (237), then the iterates produced by clipped-SEG after K iterations with
probability at least 1− β satisfy

∥xK − x∗∥2 = O

max

R2 exp

(
− µK

L ln K
β

)
,

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 , (242)
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meaning that to achieve ∥xK − x∗∥2 ≤ ε with probability at least 1− β clipped-SEG requires

K = O

(
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

R2

ε

)
,

(
σ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
σ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
(243)

iterations/oracle calls, where

Bε = max

2,
R2

ε ln

(
1
β

(
σ2

µ2ε

) α
2(α−1)

)
 .

Proof. Again, we will closely follow the proof of Theorem C.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Rk = ∥xk −x∗∥ for all k ≥ 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each k = 0, 1, . . . ,K + 1
we consider probability event Ek as follows: inequalities

R2
t ≤ 2 exp(−γµt)R2 (244)

hold for t = 0, 1, . . . , k simultaneously. We want to prove P{Ek} ≥ 1− kβ/(K+1) for all k = 0, 1, . . . ,K + 1 by induction.
The base of the induction is trivial: for k = 0 we have R2

0 ≤ R2 < 2R2 by definition. Next, assume that for k = T −1 ≤ K
the statement holds: P{ET−1} ≥ 1 − (T−1)β/(K+1). Given this, we need to prove P{ET } ≥ 1 − Tβ/(K+1). Since
R2

t ≤ 2 exp(−γµt)R2 ≤ 9R2, we have xt ∈ B3R(x
∗), where operator F is L-Lipschitz. Thus, ET−1 implies

∥F (xt)∥ ≤ L∥xt − x∗∥
(244)
≤

√
2L exp(−γµt/2)R

(237),(240)
≤ λt

2
(245)

and

∥ωt∥2 ≤ 2∥F̃ξ1(x
t)∥2 + 2∥F (xt)∥2

(245)
≤ 5

2
λ2
t

(240)
≤ exp(−γµt)R2

4γ2
(246)

for all t = 0, 1, . . . , T − 1, where we use that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd.

Next, we need to prove that ET−1 implies ∥x̃t − x∗∥ ≤ 3R and show several useful inequalities related to θt. Lipschitzness
of F probability event ET−1 implies

∥x̃t − x∗∥2 = ∥xt − x∗ − γF̃ξ1(x
t)∥2 ≤ 2∥xt − x∗∥2 + 2γ2∥F̃ξ1(x

t)∥2

≤ 2R2
t + 4γ2∥F (xt)∥2 + 4γ2∥ωt∥2

(11)
≤ 2(1 + 2γ2L2)R2

t + 4γ2∥ωt∥2
(237),(246)

≤ 7 exp(−γµt)R2 ≤ 9R2 (247)

and

∥F (x̃t)∥ ≤ L∥x̃t − x∗∥ ≤
√
7L exp(−γµt/2)R

(237),(240)
≤ λt

2
(248)

for all t = 0, 1, . . . , T − 1. Therefore, ET−1 implies that xt, x̃t ∈ B3R(x
∗) for all t = 0, 1, . . . , T − 1. Using Lemma G.3

and (1− γµ)T ≤ exp(−γµT ), we obtain that ET−1 implies

R2
T ≤ exp(−γµT )R2 − 4γ3µ

T−1∑
l=0

(1− γµ)T−1−l⟨F (xl), ωl⟩

+2γ

T−1∑
l=0

(1− γµ)T−1−l⟨xl − x∗ − γF (x̃l), θl⟩

+γ2
T−1∑
l=0

(1− γµ)T−1−l
(
∥θl∥2 + 4∥ωl∥2

)
.
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To handle the sums above, we introduce a new notation:

ζt =

{
F (xt), if ∥F (xt)∥ ≤

√
2L exp(−γµt/2)R,

0, otherwise,
(249)

ηt =

{
xt − x∗ − γF (x̃t), if ∥xt − x∗ − γF (x̃t)∥ ≤

√
7(1 + γL) exp(−γµt/2)R,

0, otherwise,
(250)

for t = 0, 1, . . . , T − 1. These vectors are bounded almost surely:

∥ζt∥ ≤
√
2L exp(−γµt/2)R, ∥ηt∥ ≤

√
7(1 + γL) exp(−γµt/2)R (251)

for all t = 0, 1, . . . , T − 1. We also notice that ET−1 implies ∥F (xt)∥ ≤
√
2L exp(−γµt/2)R (due to (245)) and

∥xt − x∗ − γF (x̃t)∥ ≤ ∥xt − x∗∥+ γ∥F (x̃t)∥
(247),(248)

≤
√
7(1 + γL) exp(−γµt/2)R

for t = 0, 1, . . . , T − 1. In other words, ET−1 implies ζt = F (xt) and ηt = xt − x∗ − γF (x̃t) for all t = 0, 1, . . . , T − 1,
meaning that from ET−1 it follows that

R2
T ≤ exp(−γµT )R2 − 4γ3µ

T−1∑
l=0

(1− γµ)T−1−l⟨ζl, ωl⟩

+2γ

T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θl⟩+ γ2
T−1∑
l=0

(1− γµ)T−1−l
(
∥θl∥2 + 4∥ωl∥2

)
.

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of
θl, ωl:

θul
def
= Eξl2

[
F̃ξl2

(x̃l)
]
− F̃ξl2

(x̃l), θbl
def
= F (x̃l)− Eξl2

[
F̃ξl2

(x̃l)
]
, (252)

ωu
l

def
= Eξl1

[
F̃ξl1

(xl)
]
− F̃ξl1

(xl), ωb
l

def
= F (xl)− Eξl1

[
F̃ξl1

(xl)
]
, (253)

for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl , ωl = ωu
l + ωb

l for all l = 0, . . . , T − 1. Therefore, ET−1

implies

R2
T ≤ exp(−γµT )R2 −4γ3µ

T−1∑
l=0

(1− γµ)T−1−l⟨ζl, ωu
l ⟩︸ ︷︷ ︸

①

−4γ3µ

T−1∑
l=0

(1− γµ)T−1−l⟨ζl, ωb
l ⟩︸ ︷︷ ︸

②

+2γ

T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θul ⟩︸ ︷︷ ︸
③

+2γ

T−1∑
l=0

(1− γµ)T−1−l⟨ηl, θbl ⟩︸ ︷︷ ︸
④

+2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
Eξl2

[
∥θul ∥2

]
+ 4Eξl1

[
∥ωu

l ∥2
])

︸ ︷︷ ︸
⑤

+2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
∥θul ∥2 + 4∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 4Eξl1

[
∥ωu

l ∥2
])

︸ ︷︷ ︸
⑥

+2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
∥θbl ∥2 + 4∥ωb

l ∥2
)

︸ ︷︷ ︸
⑦

. (254)
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where we also apply inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥θl∥2 and ∥ωl∥2. It
remains to derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤,⑥,⑦, i.e., to finish our inductive
proof we need to show that ① + ② + ③ + ④ + ⑤ + ⑥ + ⑦ ≤ exp(−γµT )R2 with high probability. In the subsequent
parts of the proof, we will need to use many times the bounds for the norm and second moments of θut+1 and θbt+1. First, by
definition of clipping operator, we have with probability 1 that

∥θul ∥ ≤ 2λl, ∥ωu
l ∥ ≤ 2λl. (255)

Moreover, since ET−1 implies that ∥F (xl)∥ ≤ λl/2 and ∥F (x̃l)∥ ≤ λl/2 for all l = 0, 1, . . . , T − 1 (see (245) and (248)),
from Lemma 5.1 we also have that ET−1 implies

∥∥θbl ∥∥ ≤ 2ασα

λα−1
l

,
∥∥ωb

l

∥∥ ≤ 2ασα

λα−1
l

, (256)

Eξl2

[
∥θl∥2

]
≤ 18λ2−α

l σα, Eξl1

[
∥ωl∥2

]
≤ 18λ2−α

l σα, (257)

Eξl2

[
∥θul ∥

2
]
≤ 18λ2−α

l σα, Eξl1

[
∥ωu

l ∥
2
]
≤ 18λ2−α

l σα, (258)

for all l = 0, 1, . . . , T − 1.

Upper bound for ①. By definition of ωu
l , we have Eξl1

[ωu
l ] = 0 and

Eξl1

[
−4γ3µ(1− γµ)T−1−l⟨ζl, ωu

l ⟩
]
= 0.

Next, sum ① has bounded with probability 1 terms:

| − 4γ3µ(1− γµ)T−1−l⟨ζl, ωu
l ⟩| ≤ 4γ3µ exp(−γµ(T − 1− l))∥ζl∥ · ∥ωu

l ∥
(251),(255)

≤ 8
√
2γ3µL exp(−γµ(T − 1− l/2))Rλl

(237),(240)
≤ exp(−γµT )R2

7 ln 6(K+1)
β

def
= c. (259)

The summands also have bounded conditional variances σ2
l

def
= Eξl1

[
16γ6µ2(1− γµ)2T−2−2l⟨ζl, ωu

l ⟩2
]
:

σ2
l ≤ Eξl1

[
16γ6µ2 exp(−γµ(2T − 2− 2l))∥ζl∥2 · ∥ωu

l ∥2
]

(251)
≤ 36γ6µ2L2 exp(−γµ(2T − 2− l))R2Eξl1

[
∥ωu

l ∥2
]

(237)
≤ 4γ2 exp(−γµ(2T − l))R2

2809 ln 6(K+1)
β

Eξl1

[
∥ωu

l ∥2
]
. (260)

In other words, we showed that {−4γ3µ(1 − γµ)T−1−l⟨ζl, ωu
l ⟩}

T−1
l=0 is a bounded martingale difference sequence with

bounded conditional variances {σ2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl = −4γ3µ(1 −

γµ)T−1−l⟨ζl, ωu
l ⟩, parameter c as in (259), b = 1

7 exp(−γµT )R2, G = exp(−2γµT )R4

294 ln
6(K+1)

β

:

P

{
|①| > 1

7
exp(−γµT )R2 and

T−1∑
l=0

σ2
l ≤ exp(−2γµT )R4

294 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

P{E①} ≥ 1− β

3(K + 1)
, for E① =

{
either

T−1∑
l=0

σ2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |①| ≤ 1

7
exp(−γµT )R2

}
. (261)
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In addition, ET−1 implies that

T−1∑
l=0

σ2
l

(260)
≤ 4γ2 exp(−2γµT )R2

2809 ln 6(K+1)
β

T−1∑
l=0

Eξl1

[
∥ωu

l ∥2
]

exp(−γµl)

(258),T≤K+1

≤ 72γ2 exp(−2γµT )R2σα

2809 ln 6(K+1)
β

K∑
l=0

λ2−α
l

exp(−γµl)

(240)
≤ 72γα exp(−2γµT )R4−ασα

2809 · 1202−α ln3−α 6(K+1)
β

K∑
l=0

1

exp(−γµl)
· (exp(−γµ(1 + l/2)))

2−α

≤ 72γα exp(−2γµT )R4−ασα

2809 · 1202−α ln3−α 6(K+1)
β

K∑
l=0

exp(γµ(α− 2)) · exp
(
γµαl

2

)

≤
72γα exp(−2γµT )R4−ασα(K + 1) exp

(
γµαK

2

)
2809 · 1202−α ln3−α 6(K+1)

β

(237)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

, (262)

where we also show that ET−1 implies

γ2R2
K∑
l=0

λ2−α
l

exp(−γµl)
≤

γαR4−α(K + 1) exp(γµαK2 )

1202−α ln2−α 6(K+1)
β

. (263)

Upper bound for ②. From ET−1 it follows that

② ≤ 4γ3µ

T−1∑
l=0

exp(−γµ(T − 1− l))∥ζl∥ · ∥ωb
l ∥

(251),(256)
≤ 22+α ·

√
2 exp(−γµ(T − 1))γ3µLR

T−1∑
l=0

σα

λα−1
l exp(−γµl/2)

(240)
=

22+α · 120α−1
√
2 exp(−γµ(T − 1))γ2+αµLσα lnα−1 6(K+1)

β

Rα−2

T−1∑
l=0

1

exp (−γµ(1 + l/2))
α−1 · exp(−γµl/2)

T≤K+1

≤
23+α · 120α−1

√
2 exp(−γµ(T − 1))γ2+αµLσα lnα−1 6(K+1)

β

Rα−2

K∑
l=0

exp

(
γµαl

2

)

≤
23+α · 120α−1

√
2 exp(−γµ(T − 1))γ2+αµLσα lnα−1 6(K+1)

β (K + 1) exp
(

γµαK
2

)
Rα−2

(237)
≤ 1

7
exp(−γµT )R2, (264)

where we also show that ET−1 implies

γR

T−1∑
l=0

1

λα−1
l exp(−γµl/2)

≤
120α−1γα(K + 1) exp(γµαK2 ) lnα−1 6(K+1)

β

Rα−2
. (265)

Upper bound for ③. By definition of θul , we have Eξl2
[θul ] = 0 and

Eξl2

[
2γ(1− γµ)T−1−l⟨ηl, θul ⟩

]
= 0.
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Next, sum ③ has bounded with probability 1 terms:

|2γ(1− γµ)T−1−l⟨ηl, θul ⟩| ≤ 2γ exp(−γµ(T − 1− l))∥ηl∥ · ∥θul ∥
(251),(255)

≤ 4
√
7γ(1 + γL) exp(−γµ(T − 1− l/2))Rλl

(237),(240)
≤ exp(−γµT )R2

7 ln 6(K+1)
β

def
= c. (266)

The summands also have bounded conditional variances σ̃2
l

def
= Eξl2

[
4γ2(1− γµ)2T−2−2l⟨ηl, θul ⟩2

]
:

σ̃2
l ≤ Eξl2

[
4γ2 exp(−γµ(2T − 2− 2l))∥ηl∥2 · ∥θul ∥2

]
(251)
≤ 49γ2(1 + γL)2 exp(−γµ(2T − 2− l))R2Eξl2

[
∥θul ∥2

]
(237)
≤ 50γ2 exp(−γµ(2T − l))R2Eξl2

[
∥θul ∥2

]
. (267)

In other words, we showed that {2γ(1− γµ)T−1−l⟨ηl, θul ⟩}
T−1
l=0 is a bounded martingale difference sequence with bounded

conditional variances {σ̃2
l }

T−1
l=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xl = 2γ(1− γµ)T−1−l⟨ηl, θul ⟩,

parameter c as in (266), b = 1
7 exp(−γµT )R2, G = exp(−2γµT )R4

294 ln
6(K+1)

β

:
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{
|③| > 1

7
exp(−γµT )R2 and

T−1∑
l=0

σ̃2
l ≤ exp(−2γµT )R4

294 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

P{E③} ≥ 1− β

3(K + 1)
, for E③ =

{
either

T−1∑
l=0

σ̃2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |③| ≤ 1

7
exp(−γµT )R2

}
. (268)

In addition, ET−1 implies that

T−1∑
l=0

σ̃2
l

(267)
≤ 50γ2 exp(−2γµT )R2

T−1∑
l=0

Eξl2

[
∥θul ∥2

]
exp(−γµl)

(258),T≤K+1
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K∑
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(263)
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1202−α ln2−α 6(K+1)
β

(237)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

. (269)

Upper bound for ④. From ET−1 it follows that

④ ≤ 2γ exp(−γµ(T − 1))

T−1∑
l=0

∥ηl∥ · ∥θbl ∥
exp(−γµl)

(251),(256)
≤ 21+α

√
7γ(1 + γL) exp(−γµ(T − 1))Rσα

T−1∑
l=0

1

λα−1
l exp(−γµl/2)

(265)
≤
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√
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2
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lnα−1 6(K+1)

β

Rα−2

(237)
≤ 1

7
exp(−γµT )R2. (270)
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Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2 exp(−γµ(T − 1))

T−1∑
l=0

Eξl2

[
∥θul ∥2

]
+ 4Eξl1

[
∥ωu

l ∥2
]

exp(−γµl)
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≤ 180γ2 exp(−γµ(T − 1))σα
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l=0

λ2−α
l

exp(−γµl)
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≤

180γαR2−α exp(−γµ(T − 1))σα(K + 1) exp(γµαK2 )

1202−α ln2−α 6(K+1)
β

(237)
≤ 1

7
exp(−γµT )R2. (271)

Upper bound for ⑥. First, we have

2γ2(1− γµ)T−1−lEξl1,ξ
l
2

[
∥θul ∥2 + 4∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 4Eξl1

[
∥ωu

l ∥2
]]

= 0.

Next, sum ⑥ has bounded with probability 1 terms:
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]∣∣∣ (255)
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l

exp(−γµ(1 + l))

(240)
≤ exp(−γµT )R2

7 ln 6(K+1)
β
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The summands also have conditional variances

σ̂2
l

def
= Eξl1,ξ

l
2
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∣∣∣∥θul ∥2 + 4∥ωu
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[
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that are bounded
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l

(272)
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β
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∥θul ∥2 + 4∥ωu

l ∥2
]
. (273)

In other words, we showed that
{
2γ2(1− γµ)T−1−l

(
∥θul ∥2 + 4∥ωu

l ∥2 − Eξl2

[
∥θul ∥2

]
− 4Eξl1

[
∥ωu

l ∥2
])}T−1

l=0
is a

bounded martingale difference sequence with bounded conditional variances {σ̂2
l }

T−1
l=0 . Next, we apply Bernstein’s

inequality (Lemma B.2) with Xl = 2γ2(1− γµ)T−1−l
(
∥θul ∥2 + 4∥ωu

l ∥2 − Eξl2
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∥θul ∥2

]
− 4Eξl1
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, parameter c

as in (272), b = 1
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=
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Equivalently, we have
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In addition, ET−1 implies that

T−1∑
l=0
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l

(273)
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294 ln 6(K+1)
β

. (275)

Upper bound for ⑦. From ET−1 it follows that

⑦ = 2γ2
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≤ 10 · 22αγ2 exp(−γµ(T − 1))σ2α

T−1∑
l=0

1

λ2α−2
l exp(−γµl)

(240),T≤K+1

≤
20 · 22α · 1202α−2γ2α exp(−γµT )σ2α ln2α−2 6(K+1)

β

R2α−2

K∑
l=0

exp

(
γµ(2α− 2)

(
1 +

l

2

))
exp(γµl)

≤
40 · 22α · 1202α−2γ2α exp(−γµT )σ2α ln2α−2 6(K+1)
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7
exp(−γµT )R2. (276)

Now, we have the upper bounds for ①,②,③,④,⑤,⑥,⑦. In particular, probability event ET−1 implies

R2
T

(254)
≤ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤ + ⑥ + ⑦,

②
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7
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7
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7
exp(−γµT )R2, ⑦
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7
exp(−γµT )R2,

T−1∑
l=0

σ2
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β

,
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≤ exp(−2γµT )R4

294 ln 6(K+1)
β

.

Moreover, we also have (see (261), (268), (274) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E①} ≥ 1− β

3(K + 1)
, P{E③} ≥ 1− β

3(K + 1)
, P{E⑥} ≥ 1− β

3(K + 1)
,
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where

E① =
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294 ln 6(K+1)
β
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7
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}
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Thus, probability event ET−1 ∩ E① ∩ E③ ∩ E⑥ implies

R2
T

(254)
≤ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤ + ⑥ + ⑦

≤ 2 exp(−γµT )R2,

which is equivalent to (244) for t = T , and

P{ET } ≥ P{ET−1 ∩ E① ∩ E③ ∩ E⑥} = 1− P{ET−1 ∪ E① ∪ E③ ∪ E⑥} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

∥xK+1 − x∗∥2 ≤ 2 exp(−γµ(K + 1))R2.

Finally, if
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then with probability at least 1− β
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 .

To get ∥xK+1 − x∗∥2 ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum
above are O(ε). This leads to
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where

Bε = max

2,
R2

ε ln

(
1
β

(
σ2

µ2ε

) α
2(α−1)

)
 .

This concludes the proof.
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H. Missing Proofs for clipped-SGDA

In this section, we provide the complete formulation of the main results for clipped-SGDA and the missing proofs. For
brevity, we will use the following notation: F̃ξk(x

k) = clip
(
Fξk(x

k), λk

)
.

Algorithm 5 Clipped Stochastic Gradient Descent Ascent (clipped-SGDA) (Gorbunov et al., 2022a)

Input: starting point x0, number of iterations K, stepsize γ > 0, clipping levels {λk}K−1
k=0 .

1: for k = 0, . . . ,K do
2: Compute F̃ξk(x

k) = clip
(
Fξk(x

k), λk

)
using a fresh sample ξk ∼ Dk

3: xk+1 = xk − γF̃ξk(x
k)

4: end for

Output: xK+1 or xK
avg = 1

K+1

K∑
k=0

xK

H.1. Monotone Star-Cocoercive Problems

We start with the following lemma derived by Gorbunov et al. (2022b). Since this lemma handles only deterministic part of
the algorithm, the proof is the same as in the original work.

Lemma H.1 (Lemma D.1 from (Gorbunov et al., 2022b)). Let Assumptions 1.8 and 1.10 hold for Q = B3R(x
∗), where

R ≥ ∥x0 − x∗∥ and 0 < γ ≤ 2/ℓ. If xk lies in B3R(x
∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then for all u ∈ B3R(x

∗)
the iterates produced by clipped-SGDA satisfy

⟨F (u), xK
avg − u⟩ ≤ ∥x0 − u∥2 − ∥xK+1 − u∥2

2γ(K + 1)
+

γ

2(K + 1)

K∑
k=0

(
∥F (xk)∥2 + ∥ωk∥2

)
+

1

K + 1

K∑
k=0

⟨xk − u− γF (xk), ωk⟩, (277)

xK
avg

def
=

1

K + 1

K∑
k=0

xk, (278)

ωk
def
= F (xk)− F̃ξk(x

k). (279)

Also we need to use the following lemma to estimate the term
K∑

k=0

∥F (xk)∥2 from the right hand side of (277) in the proof

of the main theorem.

Lemma H.2 (Lemma D.2 from (Gorbunov et al., 2022b)). Let Assumption 1.10 hold for Q = B3R(x
∗), where R ≥ R0

def
=

∥x0 − x∗∥ and 0 < γ ≤ 2/ℓ. If xk lies in B3R(x
∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then the iterates produced by

clipped-SGDA satisfy

γ

K + 1

(
2

ℓ
− γ

) K∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2 − ∥xK+1 − x∗∥2

K + 1
+

2γ

K + 1

K∑
k=0

⟨xk − x∗ − γF (xk), ωk⟩

+
γ2

K + 1

K∑
k=0

∥ωk∥2, (280)

where ωk is defined in (279).

Using those lemmas, we prove the main convergence result for clipped-SGDA in the monotone star-cocoercive case.
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Theorem H.3 (Case 1 in Theorem 4.2). Let Assumptions 1.1, 1.8, 1.10 hold for Q = B3R(x
∗), where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

 1

170ℓ ln 6(K+1)
β

,
R

97200
1
α (K + 1)

1
ασ ln

α−1
α

6(K+1)
β

 , (281)

λk ≡ λ =
R

60γ ln 6(K+1)
β

, (282)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SGDA

with probability at least 1− β satisfy

GapR(x
K
avg) ≤

5R2

γ(K + 1)
and {xk}K+1

k=0 ⊆ B3R(x
∗), (283)

where xK
avg is defined in (278). In particular, when γ equals the minimum from (281), then the iterates produced by

clipped-SGDA after K iterations with probability at least 1− β satisfy

GapR(x̃
K
avg) = O

max

ℓR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 , (284)

meaning that to achieve GapR(x̃
K
avg) ≤ ε with probability at least 1− β clipped-SGDA requires

K = O

(
ℓR2

ε
ln

ℓR2

εβ
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

))
iterations/oracle calls. (285)

Proof. The proof follows similar steps as the proof of Theorem D.1 from (Gorbunov et al., 2022a). The key difference is
related to the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Rk = ∥xk −x∗∥ for all k ≥ 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each k = 0, 1, . . . ,K + 1
we consider probability event Ek as follows: inequalities

∥xt − x∗∥2 ≤ 2R2 and γ

∥∥∥∥∥
t−1∑
l=0

ωl

∥∥∥∥∥ ≤ R (286)

hold for t = 0, 1, . . . , k simultaneously. We want to prove that P{Ek} ≥ 1 − kβ/(K+1) for all k = 0, 1, . . . ,K + 1 by
induction. The base of the induction is trivial: for k = 0 we have R2

0 ≤ 2R2 by definition and
∑−1

l=0 ωl = 0. Next,
assume that the statement holds for k = T ≤ K, i.e., we have P{ET } ≥ 1 − Tβ/(K+1). Given this, we need to prove
that P{ET+1} ≥ 1 − (T+1)β/(K+1). Since probability event ET implies R2

t ≤ 2R2, we have xt ∈ B2R(x
∗) for all

t = 0, 1, . . . , T . According to this, the assumptions of Lemma H.2 hold and ET implies (γ < 1/ℓ)

γ

ℓ(T + 1)

T∑
t=0

∥F (xt)∥2 ≤ ∥x0 − x∗∥2 − ∥xT+1 − x∗∥2

T + 1

+
2γ

T + 1

T∑
t=0

⟨xt − x∗ − γF (xt), ωt⟩+
γ2

T + 1

T∑
t=0

∥ωt∥2 (287)

and by ℓ-star-cocoersivity we have

∥F (xt)∥ ≤ ℓ∥xt − x∗∥
(286)
≤

√
2ℓR

(281),(282)
≤ λ

2
(288)

for all t = 0, 1, . . . , T . Using (287), we obtain

R2
T+1 ≤ R2

0 + 2γ

T∑
t=0

⟨xt − x∗ − γF (xt), ωt⟩+ γ2
T∑

t=0

∥ωt∥2.
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Due to (288), we have

∥xt − x∗ − γF (xt)∥ ≤ ∥xt − x∗∥+ γ∥F (xt)∥
(14),(286)

≤ 2R+ γℓ∥xt − x∗∥
(286)
≤ 2R+ 2Rγℓ

(281)
≤ 3R, (289)

for all t = 0, 1, . . . , T . To handle the sum above, we introduce a new vector

ηt =

{
xt − x∗ − γF (xt), if ∥xt − x∗ − γF (xt)∥ ≤ 3R,

0, otherwise,

for all t = 0, 1, . . . , T . This vector ηt is bounded with probability 1:

∥ηt∥ ≤ 3R (290)

for all t = 0, 1, . . . , T . We also notice that probability event ET implies ηt = xt − x∗ − γF (xt) for all t = 0, 1, . . . , T
Thus, thanks to (289), ET implies

R2
T+1 ≤ R2 + 2γ

T∑
t=0

⟨ηt, ωt⟩+ γ2
T∑

t=0

∥ωt∥2.

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of ωt:

ωu
t

def
= Eξt

[
F̃ξt(x

t)
]
− F̃ξt(x

t), ωb
t

def
= F (xt)− Eξt

[
F̃ξt(x

t)
]

(291)

for all t = 0, . . . , T . Also, by definition we have ωt = ωu
t + ωb

t for all t = 0, . . . , T . Therefore, ET implies

R2
T+1 ≤ R2 + 2γ

T∑
t=0

⟨ηt, ωu
t ⟩︸ ︷︷ ︸

①

+2γ

T∑
t=0

⟨ηt, ωb
t ⟩︸ ︷︷ ︸

②

+2γ2
T∑

t=0

(
Eξt

[
∥ωu

t ∥2
])

︸ ︷︷ ︸
③

+2γ2
T∑

t=0

(
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
])

︸ ︷︷ ︸
④

+2γ2
T∑

t=0

(
∥ωb

t∥2
)

︸ ︷︷ ︸
⑤

. (292)

We notice that the above inequality does not rely on monotonicity of F .

According to the induction assumption, from probability event ET we have xt ∈ B2R(x
∗) for all t = 0, 1, . . . , T . Thus, the

assumptions of Lemma H.1 hold and probability event ET implies

2γ(T + 1)GapR(x
T
avg) ≤ max

u∈BR(x∗)

{
∥x0 − u∥2 + 2γ

T∑
t=0

⟨xt − u− γF (xt), ωt⟩

}

+γ2
T∑

t=0

(
∥F (xt)∥2 + ∥ωt∥2

)
,

= max
u∈BR(x∗)

{
∥x0 − u∥2 + 2γ

T∑
t=0

⟨x∗ − u, ωt⟩

}

+2γ

T∑
t=0

⟨xt − x∗ − γF (xt), ωt⟩

+γ2
T∑

t=0

(
∥F (xt)∥2 + ∥ωt∥2

)
.
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As we mentioned before, ET implies ηt = xt − x∗ − γF (xt) for all t = 0, 1, . . . , T as well as (287) and γ < 1/ℓ. Due to
that, probability event ET implies

2γ(T + 1)GapR(x
T
avg) ≤ max

u∈BR(x∗)

{
∥x0 − u∥2

}
+ 2γ max

u∈BR(x∗)

{
T∑

t=0

⟨x∗ − u, ωt⟩

}

+2γ

T∑
t=0

⟨ηt, ωt⟩+
γ

ℓ

T∑
t=0

∥F (xt)∥2 + γ2
T∑

t=0

∥ωt∥2

≤ 4R2 + 2γ max
u∈BR(x∗)

{〈
x∗ − u,

T∑
t=0

ωt

〉}

+R2 + 4γ

T∑
t=0

⟨ηt, ωt⟩+ 2γ2
T∑

t=0

∥ωt∥2

≤ 5R2 + 2γR

∥∥∥∥∥
T∑

t=0

ωt

∥∥∥∥∥+ 2 · (① + ② + ③ + ④ + ⑤) , (293)

where we also aplly inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥ωt∥2.

It remains to derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤ and 2γR
∥∥∥∑T

t=0 ωt

∥∥∥, i.e.,

to finish our inductive proof we need to show that ① + ② + ③ + ④ + ⑤ ≤ R2 and 2γR
∥∥∥∑T

t=0 ωt

∥∥∥ ≤ 2R2 with high
probability.In the subsequent parts of the proof, we will need to use many times the bounds for the norm and second
moments of ωu

t , ω
b
t . First, by Lemma C.1, we have with probability 1 that

∥ωu
t ∥ ≤ 2λ (294)

for all t = 0, 1, . . . , T . Moreover, due to Lemma C.1, we also have that ET implies∥∥ωb
t

∥∥ ≤ 2ασα

λα−1
, (295)

Eξt

[∥∥ωb
t

∥∥2] ≤ 18λ2−ασα, (296)

Eξt

[
∥ωu

t ∥
2
]
≤ 18λ2−ασα (297)

for all t = 0, 1, . . . , T .

Upper bound for ①. By definition of ωu
t , we have Eξt [ω

u
t ] = 0 and

Eξt [2γ⟨ηt, ωu
t ⟩] = 0.

Next, the sum ① has bounded with probability 1 term:

|2γ⟨ηt, ωu
t ⟩| ≤ 2γ∥ηt∥ · ∥ωu

t ∥
(290),(294)

≤ 12γRλ
(282)
≤ R2

5 ln 6(K+1)
β

def
= c. (298)

Moreover, these summands also have bounded conditional variances σ2
t

def
= Eξt

[
4γ2⟨ηt, ωu

t ⟩2
]
:

σ2
t ≤ Eξt

[
4γ2∥ηt∥2 · ∥ωu

t ∥2
] (290)

≤ 36γ2R2Eξt
[
∥ωu

t ∥2
]
. (299)

In other words, we showed that {2γ⟨ηt, ωu
t ⟩}t≥0 is a bounded martingale difference sequence with bounded conditional

variances {σ2
t }t≥0. Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = 2γ⟨ηt, ωu

t ⟩, parameter c as in (298),
b = R2

5 , G = R4

150 ln
6(K+1)

β

:

P

{
|①| > R2

5
and

T∑
t=0

σ2
t ≤ R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.
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Equivalently, we have

P{E①} ≥ 1− β
3(K+1) , for E① =

{
either

T∑
t=0

σ2
t >

R4

150 ln 6(K+1)
β

or |①| ≤ R2

5

}
. (300)

In addition, ET implies that

T∑
t=0

σ2
t

(299)
≤ 36γ2R2

T∑
t=0

Eξt
[
∥ωu

t ∥2
]

(297),T≤K+1

≤ 648γ2R2σα(K + 1)λ2−α

(282)
≤ 648γαR4−ασα(K + 1) lnα−2 6(K + 1)

β
(281)
≤ R4

150 ln 6(K+1)
β

. (301)

Upper bound for ②. From ET it follows that

② ≤ 2γ

T∑
t=0

∥ηl∥ · ∥ωb
t∥

(290),(295),T≤K+1

≤ 6 · 2αγR(K + 1)
σα

λα−1

(282)
= 12 · 120α−1γασαR2−α(K + 1) lnα−1 6(K + 1)

β

(281)
≤ R2

5
. (302)

Upper bound for ③. From ET it follows that

③ = 2γ2
T∑

t=0

Eξt
[
∥ωu

t ∥2
] (297),T≤K+1

≤ 36γ2λ2−ασα(K + 1)

(282)
≤ 36γαR2−ασα(K + 1) lnα−2 6(K + 1)

β

(281)
≤ R2

5
. (303)

Upper bound for ④. First, we have

2γ2Eξt
[
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]]

= 0.

Next, the sum ④ has bounded with probability 1 terms:

2γ2
∣∣∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]∣∣ ≤ 2γ2

(
∥ωu

t ∥2 + Eξt
[
∥ωu

t ∥2
]) (294)

≤ 16γ2λ2

(282)
≤ R2

225 ln 6(K+1)
β

≤ R2

5 ln 6(K+1)
β

def
= c. (304)

The summands also have conditional variances σ̃2
t

def
= 4γ4Eξt

[(
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
])2]

that are bounded

σ̃2
t

(304)
≤ 2γ2R2

225 ln 6(K+1)
β

Eξt
[∣∣∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]∣∣] ≤ 4γ2R2

225 ln 6(K+1)
β

Eξt
[
∥ωu

t ∥2
]
. (305)

In other words, we showed that {∥ωu
t ∥2 − Eξt [∥ωu

t ∥2]}t≥0 is a bounded martingale difference sequence with bounded
conditional variances {σ̃2

t }t≥0.Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = ∥ωu
t ∥2 − Eξt [∥ωu

t ∥2],
parameter c as in (304), b = R2

5 , G = R4

150 ln
6(K+1)

β

:

P

{
|④| > R2

5
and

T∑
t=0

σ̃2
t ≤ R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.
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Equivalently, we have

P{E④} ≥ 1− β
3(K+1) , for E④ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 6(K+1)
β

or |④| ≤ R2

5

}
. (306)

In addition, ET implies that

T∑
t=0

σ̃2
t

(305)
≤ 4γ2R2

225 ln 6(K+1)
β

T∑
t=0

Eξt
[
∥ωu

t ∥2
] (297),T≤K+1

≤ 8γ2R2(K + 1)

25 ln 6(K+1)
β

λ2−ασα

(282)
≤ 8

25
γαR4−α(K + 1)σα lnα−3 6(K + 1)

β
(281)
≤ R4

150 ln 6(K+1)
β

. (307)

Upper bound for ⑤. From ET it follows that

⑤ = 2γ2
T∑

t=0

∥ωb
t∥2

(295),T≤K+1

≤ 22α+1 · 602α−2γ2(K + 1)
σ2α

λ2α−2

(282)
= 22α+1 · 602α−2γ2α(K + 1)

σ2α

R2α−2
ln2α−2 6(K + 1)

β
(281)
≤ R2

5
. (308)

Upper bound for γ
∥∥∥∑T

t=0 ωt

∥∥∥. To estimate this term from above, we consider a new vector:

ζl =

γ
l−1∑
r=0

ωr, if
∥∥∥∥γ l−1∑

r=0
ωr

∥∥∥∥ ≤ R,

0, otherwise

for l = 1, 2, . . . , T − 1.This vector is bounded almost surely:

∥ζl∥ ≤ R. (309)

Thus, by (286), probability event ET implies

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ =

√√√√γ2

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥
2

=

√√√√γ2

T∑
l=0

∥ωl∥2 + 2γ

T∑
l=0

〈
γ

l−1∑
r=0

ωr, ωl

〉

=

√√√√γ2

T∑
l=0

∥ωl∥2 + 2γ

T∑
l=0

⟨ζl, ωl⟩

(292)
≤

√√√√√√③ + ④ + ⑤ + 2γ

T∑
l=0

⟨ζl, ωu
l ⟩︸ ︷︷ ︸

⑥

+2γ

T∑
l=0

⟨ζl, ωb
l︸ ︷︷ ︸

⑦

⟩. (310)

Following similar steps as before, we bound ⑥ and ⑦.
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Upper bound for ⑥. By definition of ωt
u, we have Eξt [ω

u
t ] = 0 and

Eξt [2γ⟨ζt, ωu
t ⟩] = 0.

Next, sum ⑥ has bounded with probability 1 terms:

|2γ⟨ζt, ωu
t ⟩| ≤ 2γ∥ζt∥ · ∥ωu

t ∥
(309),(294)

≤ 4γRλ
(282)
≤ R2

5 ln 6(K+1)
β

def
= c. (311)

The summands also have bounded conditional variances σ̂2
t

def
= Eξt

[
4γ2⟨ζt, ωu

t ⟩2
]
:

σ̂2
t ≤ Eξt

[
4γ2∥ζt∥2 · ∥ωu

t ∥2
] (309)

≤ 4γ2R2Eξt
[
∥ωu

t ∥2
]
. (312)

In other words, we showed that {2γ⟨ζt, ωu
t ⟩}t≥0 is a bounded martingale difference sequence with bounded conditional

variances {σ̂2
t }t≥0. Applying Bernstein’s inequality (Lemma B.2) with Xt = 2γ⟨ζt, ωu

t ⟩, parameter c as in (311), b = R2

5 ,
G = R4

150 ln
6(K+1)

β

:

P

{
|⑥| > R2

5
and

T∑
t=0

σ̂2
t ≤ R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

Equivalently, we have

P{E⑥} ≥ 1− β
3(K+1) for E⑥ =

{
either

T∑
t=0

σ̂2
t >

R4

150 ln 6(K+1)
β

or |⑥| ≤ R2

5

}
. (313)

In addition, ET implies that

T∑
t=0

σ̂2
t

(312)
≤ 4γ2R2

T∑
t=0

Eξt
[
∥ωu

t ∥2
]

(297),T≤K+1

≤ 72γ2R2σα(K + 1)λ2−α

(282)
≤ 72γαR4−ασα(K + 1) lnα−2 6(K + 1)

β
(281)
≤ R4

150 ln 6(K+1)
β

. (314)

Upper bound for ⑦. From ET it follows that

⑦ ≤ 2γ

T∑
t=0

∥ζt∥ · ∥ωb
t∥

(309),(295),T≤K+1

≤ 8 · 2αγR(K + 1)
σα

λα−1

(282)
= 16 · 120α−1γασαR2−α(K + 1) lnα−1 6(K + 1)

β

(281)
≤ R2

5
. (315)
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Now, we have the upper bounds for ①,②,③,④,⑤,⑥,⑦. In particular, probability event ET−1 implies

R2
T+1

(292)
≤ R2 + ① + ② + ③ + ④ + ⑤,

2γ(T + 1)GapR(x
T
avg)

(293)
≤ 5R2 + 2γR

∥∥∥∥∥
T∑

t=0

ωt

∥∥∥∥∥+ 2 · (① + ② + ③ + ④ + ⑤) ,

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ (310)
≤

√
③ + ④ + ⑤ + ⑥ + ⑦,

②
(302)
≤ R2

5
, ③

(303)
≤ R2

5
, ⑤

(308)
≤ R2

5
, ⑦

(315)
≤ R2

5
,

T∑
t=0

σ2
t

(301)
≤ R4

150 ln 6(K+1)
β

,

T∑
t=0

σ̃2
t

(307)
≤ R4

150 ln 6(K+1)
β

,

T∑
t=0

σ̂2
t

(314)
≤ R4

150 ln 6(K+1)
β

.

Moreover, we also have (see (300), (306), (315) and our induction assumption)

P{ET } ≥ 1− Tβ

K + 1
,

P{E①} ≥ 1− β

3(K + 1)
, P{E④} ≥ 1− β

3(K + 1)
, P{E⑥} ≥ 1− β

3(K + 1)
,

where

E① =

{
either

T∑
t=0

σ2
t >

R4

150 ln 6(K+1)
β

or |①| ≤ R2

5

}
,

E④ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 6(K+1)
β

or |④| ≤ R2

5

}
,

E⑥ =

{
either

T∑
t=0

σ̂2
t >

R4

150 ln 6(K+1)
β

or |⑥| ≤ R2

5

}
.

Thus, probability event ET ∩ E① ∩ E④ ∩ E⑥ implies

R2
T+1 ≤ R2 + ① + ② + ③ + ④ + ⑤ ≤ 2R2,

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ ≤
√

③ + ④ + ⑤ + ⑥ + ⑦ ≤ R,

2γ(T + 1)GapR(x
T
avg) ≤ 6R2 + 2γR

∥∥∥∥∥
T∑

t=0

ωt

∥∥∥∥∥+ 2 · (① + ② + ③ + ④ + ⑤)

≤ 10R2,

which gives (286) for t = T , and

P{ET+1} ≥ P{ET ∩ E① ∩ E④ ∩ E⑥} = 1− P{ET ∪ E① ∪ E④ ∪ E⑥} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

GapR(x
K
avg) ≤

5R2

γ(K + 1)
.

Finally, if

γ = min

 1

170ℓ ln 6(K+1)
β

,
R

97200
1
α (K + 1)

1
ασ ln

α−1
α

6(K+1)
β


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then with probability at least 1− β

GapR(x̃
K
avg) ≤ 5R2

γ(K + 1)
= max

800LR2 ln 6(K+1)
β

K + 1
,
5 · 97200

1
ασR ln

α−1
α

6(K+1)
β

(K + 1)
α−1
α


= O

max

ℓR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 .

To get GapR(x̃
K
avg) ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum

above are O(ε). This leads to

K = O

(
ℓR2

ε
ln

ℓR2

εβ
,

(
σR

ε

) α
α−1

ln

(
1

β

(
σR

ε

) α
α−1

))

that concludes the proof.

H.2. Star-Cocoercive Problems

Theorem H.4 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.10 hold for Q = B2R(x
∗), where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

 1

170ℓ ln 4(K+1)
β

,
R

97200
1
α (K + 1)

1
ασ ln

α−1
α

4(K+1)
β

 , (316)

λk ≡ λ =
R

60γ ln 4(K+1)
β

, (317)

for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SGDA

with probability at least 1− β satisfy

1

K + 1

K∑
k=0

∥F (xk)∥2 ≤ 2ℓR2

γ(K + 1)
. (318)

In particular, when γ equals the minimum from (316), then the iterates produced by clipped-SGDA after K iterations with
probability at least 1− β satisfy

1

K + 1

K∑
k=0

∥F (xk)∥2 = O

max

ℓ2R2 ln K
β

K + 1
,
ℓσR ln

α−1
α K

β

K
α−1
α


 , (319)

meaning that to achieve 1
K+1

K∑
k=0

∥F (xk)∥2 ≤ ε with probability at least 1− β clipped-SGDA requires

K = O

(
ℓ2R2

ε
ln

ℓ2R2

εβ
,

(
ℓσR

ε

) α
α−1

ln

(
1

β

(
ℓσR

ε

) α
α−1

))
iterations/oracle calls. (320)

Proof. Again, we will closely follow the proof of Theorem D.2 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Rk = ∥xk − x∗∥ for all k ≥ 0. As the previous result, the proof is based on on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each k = 0, . . . ,K + 1 we
define probability event Ek as follows: inequalities

∥xt − x∗∥2 ≤ 2R2, (321)
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hold for t = 0, 1, . . . , k simultaneously. We want to prove that P{Ek} ≥ 1 − kβ/(K+1) for all k = 0, 1, . . . ,K + 1 by
induction. One of the important things is that inequalities (287) and (292) are obtained without assuming monotonicity of F .
Thus, if we do exactly the same steps as in the proof of Theorem H.3 (up to the replacement of ln 6(K+1)

β by ln 4(K+1)
β ), we

gain that

R2
T+1

(292)
≤ R2 + ① + ② + ③ + ④ + ⑤,

②
(302)
≤ R2

5
, ③

(303)
≤ R2

5
, ⑤

(308)
≤ R2

5
,

T∑
t=0

σ2
t

(301)
≤ R4

150 ln 4(K+1)
β

,

T∑
t=0

σ̃2
t

(307)
≤ R4

150 ln 4(K+1)
β

.

Moreover, we also have (see (300), (306) and our induction assumption)

P{ET } ≥ 1− Tβ

K + 1
,

P{E①} ≥ 1− β

2(K + 1)
, P{E④} ≥ 1− β

2(K + 1)
,

where

E① =

{
either

T∑
t=0

σ2
t >

R4

150 ln 4(K+1)
β

or |①| ≤ R2

5

}
,

E④ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
β

or |④| ≤ R2

5

}
.

Thus probability event ET−1 ∩ E① ∩ E④ implies

R2
T+1 ≤ R2 + ① + ② + ③ + ④ + ⑤ ≤ 2R2,

and
P{ET+1} ≥ P{ET ∩ E① ∩ E④} = 1− P{ET ∪ E① ∪ E④} ≥ 1− Tβ

K + 1
. (322)

This finishes the inductive part of our proof, i.e. for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

1

K + 1

K∑
k=0

∥F (xk)∥2
(287)
≤

ℓ(R2 −R2
K+1)

γ(K + 1)
+

ℓ(① + ② + ③ + ④ + ⑤)

γ(K + 1)

≤ 2ℓR2

γ(K + 1)
.

Finally, if

γ = min

 1

170ℓ ln 4(K+1)
β

,
R

97200
1
α (K + 1)

1
ασ ln

α−1
α

4(K+1)
β


then with probability at least 1− β

1

K + 1

K∑
k=0

∥F (xk)∥2 ≤ 2ℓR2

γ(K + 1)
= max

340ℓ2R2 ln 4(K+1)
β

K + 1
,
2 · 97200

1
α ℓσR ln

α−1
α

4(K+1)
β

(K + 1)
α−1
α


= O

max

ℓ2R2 ln K
β

K
,
ℓσR ln

α−1
α K

β

K
α−1
α


 .

78



High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

To get 1
K+1

K∑
k=0

∥F (xk)∥2 ≤ ε with probability at least 1 − β it is sufficient to choose K such that both terms in the

maximum above are O(ε). This leads to

K = O

(
ℓ2R2

ε
ln

ℓ2R2

εβ
,

(
ℓσR

ε

) α
α−1

ln

(
1

β

(
ℓσR

ε

) α
α−1

))
that concludes the proof.

H.3. Quasi-Strongly Monotone Star-Cocoercive Problems

As in the monotone case, we use another lemma from (Gorbunov et al., 2022a) that handles the deterministic part of
clipped-SGDA in the quasi-strongly monotone case.
Lemma H.5 (Lemma D.3 from (Gorbunov et al., 2022a)). Let Assumptions 1.9, 1.10 hold for Q = B2R(x

∗) = {x ∈ Rd |
∥x− x∗∥ ≤ 2R}, where R ≥ ∥x0 − x∗∥, and 0 < γ ≤ 1/ℓ. If xk lie in B2R(x

∗) for all k = 0, 1, . . . ,K for some K ≥ 0,
then the iterates produced by clipped-SGDA satisfy

∥xK+1 − x∗∥2 ≤ (1− γµ)K+1∥x0 − x∗∥2 + 2γ
K∑

k=0

(1− γµ)K−k⟨xk − x∗ − γF (xk), ωk⟩

+γ2
K∑

k=0

(1− γµ)K−k∥ωk∥2, (323)

where ωk are defined in (279).

Using this lemma we prove the main convergence result for clipped-SGDA in the quasi-strongly monotone case.
Theorem H.6 (Case 2 in Theorem 4.2). Let Assumptions 1.1, 1.9, 1.10, hold for Q = B2R(x

∗) = {x ∈ Rd | ∥x− x∗∥ ≤
2R}, where R ≥ ∥x0 − x∗∥, and

0 < γ ≤ min

{
1

400ℓ ln 4(K+1)
β

,
ln(BK)

µ(K + 1)

}
, (324)

BK = max

2,
(K + 1)

2(α−1)
α µ2R2

5400
2
ασ2 ln

2(α−1)
α

(
4(K+1)

β

)
ln2(BK)

 (325)

= O

max

2,
K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})


 , (326)

λk =
exp(−γµ(1 + k/2))R

120γ ln 4(K+1)
β

, (327)

for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations the iterates produced by clipped-SGDA

with probability at least 1− β satisfy

∥xK+1 − x∗∥2 ≤ 2 exp(−γµ(K + 1))R2. (328)

In particular, when γ equals the minimum from (324), then the iterates produced by clipped-SGDA after K iterations with
probability at least 1− β satisfy

∥xK − x∗∥2 = O

max

R2 exp

(
− µK

ℓ ln K
β

)
,

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 , (329)
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meaning that to achieve ∥xK − x∗∥2 ≤ ε with probability at least 1− β clipped-SGDA requires

K = O

(
ℓ

µ
ln

(
R2

ε

)
ln

(
ℓ

µβ
ln

R2

ε

)
,

(
σ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
σ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
(330)

iterations/oracle calls, where

Bε = max

2,
R2

ε ln

(
1
β

(
σ2

µ2ε

) α
2(α−1)

)
 .

Proof. Again, we will closely follow the proof of Theorem D.3 from (Gorbunov et al., 2022a) and the main difference will
be reflected in the application of Bernstein inequality and estimating biases and variances of stochastic terms.

Let Rk = ∥xk −x∗∥ for all k ≥ 0. As in the previous results, the proof is based on the induction argument and showing that
the iterates do not leave some ball around the solution with high probability. More precisely, for each k = 0, 1, . . . ,K + 1
we consider probability event Ek as follows: inequalities

R2
t ≤ 2 exp(−γµt)R2 (331)

hold for t = 0, 1, . . . , k simultaneously. We want to prove P{Ek} ≥ 1− kβ/(K+1) for all k = 0, 1, . . . ,K + 1 by induction.
The base of the induction is trivial: for k = 0 we have R2

0 ≤ R2 < 2R2 by definition. Next, assume that for k = T −1 ≤ K
the statement holds: P{ET−1} ≥ 1 − (T−1)β/(K+1). Given this, we need to prove P{ET } ≥ 1 − Tβ/(K+1). Since
R2

t ≤ 2 exp(−γµt)R2 ≤ 2R2, we have xt ∈ B2R(x
∗), where operator F is ℓ-star-cocoersive. Thus, ET−1 implies

∥F (xt)∥ ≤ ℓ∥xt − x∗∥
(331)
≤

√
2ℓ exp(−γµt/2)R

(324),(327)
≤ λt

2
(332)

and

∥ωt∥2 ≤ 2∥F̃ξ(x
t)∥2 + 2∥F (xt)∥2

(332)
≤ 5

2
λ2
t

(327)
≤ exp(−γµt)R2

4γ2
(333)

for all t = 0, 1, . . . , T − 1, where we use that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd.

Using Lemma H.5 and (1− γµ)T ≤ exp(−γµT ), we obtain that ET−1 implies

R2
T ≤ exp(−γµT )R2 + 2γ

T−1∑
t=0

(1− γµ)T−1−t⟨xt − x∗ − γF (xt), ωt⟩

+γ2
T−1∑
t=0

(1− γµ)T−1−t∥ωt∥2.

To handle the sums above, we introduce a new notation:

ηt =

{
xt − x∗ − γF (xt), if ∥xt − x∗ − γF (xt)∥ ≤

√
2(1 + γℓ) exp(−γµt/2)R,

0, otherwise,
(334)

for t = 0, 1, . . . , T − 1. This vector is bounded almost surely:

∥ηt∥ ≤
√
2(1 + γℓ) exp(−γµt/2)R (335)

for all t = 0, 1, . . . , T − 1. We also notice that ET−1 implies ∥F (xt)∥ ≤
√
2ℓ exp(−γµt/2)R (due to (332)) and

∥xt − x∗ − γF (xt)∥ ≤ ∥xt − x∗∥+ γ∥F (xt)∥
(332)
≤

√
2(1 + γℓ) exp(−γµt/2)R
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for t = 0, 1, . . . , T − 1. In other words, ET−1 implies ηt = xt − x∗ − γF (xt) for all t = 0, 1, . . . , T − 1, meaning that
from ET−1 it follows that

R2
T ≤ exp(−γµT )R2 + 2γ

T−1∑
t=0

(1− γµ)T−1−t⟨ηt, ωt⟩+ γ2
T−1∑
t=0

(1− γµ)T−1−t∥ωt∥2.

To handle the sums appeared on the right-hand side of the previous inequality we consider unbiased and biased parts of ωt:

ωu
t

def
= Eξt

[
Fξt(x

t)
]
− F̃ξt(x

t), ωb
t

def
= F (xt)− Eξt1

[
Fξt(x

t)
]
, (336)

for all t = 0, . . . , T − 1. By definition we have ωt = ωu
t + ωb

t for all t = 0, . . . , T − 1. Therefore, ET−1 implies

R2
T ≤ exp(−γµT )R2 + 2γ

T−1∑
t=0

(1− γµ)T−1−t⟨ηt, ωu
t ⟩︸ ︷︷ ︸

①

+2γ

T−1∑
t=0

(1− γµ)T−1−t⟨ηt, ωb
t ⟩︸ ︷︷ ︸

②

+2γ2
T−1∑
t=0

(1− γµ)T−1−tEξ

[
∥ωu

t ∥2
]

︸ ︷︷ ︸
③

+2γ2
T−1∑
t=0

(1− γµ)T−1−t
(
∥ωu

t ∥2 − Eξ

[
∥ωu

t ∥2
])

︸ ︷︷ ︸
④

+2γ2
T−1∑
t=0

(1− γµ)T−1−t∥ωb
t∥2︸ ︷︷ ︸

⑤

. (337)

where we also apply inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥ωt∥2. It remains to
derive good enough high-probability upper-bounds for the terms ①,②,③,④,⑤, i.e., to finish our inductive proof we need
to show that ① + ② + ③ + ④ + ⑤ ≤ exp(−γµT )R2 with high probability. In the subsequent parts of the proof, we will
need to use many times the bounds for the norm and second moments of ωu

t and ωb
t . First, by Lemma 5.1, we have with

probability 1 that
∥ωu

t ∥ ≤ 2λt. (338)

Moreover, since ET−1 implies that ∥F (xt)∥ ≤ λt/2 and ∥F (xt)∥ ≤ λt/2 for all t = 0, 1, . . . , T − 1 (see (332)), from
Lemma 5.1 we also have that ET−1 implies ∥∥ωb

t

∥∥ ≤ 2ασα

λα−1
t

, (339)

Eξt

[∥∥ωb
t

∥∥2] ≤ 18λ2−α
t σα, (340)

Eξt

[
∥ωu

t ∥
2
]
≤ 18λ2−α

t σα, (341)

for all t = 0, 1, . . . , T − 1.

Upper bound for ①. By definition of ωu
t , we have Eξt [ω

u
t ] = 0 and

Eξt
[
2γ(1− γµ)T−1−t⟨ηt, ωu

t ⟩
]
= 0.

Next, sum ① has bounded with probability 1 terms:

|2γ(1− γµ)T−1−t⟨ηt, ωu
t ⟩| ≤ 2γ exp(−γµ(T − 1− t))∥ηt∥ · ∥ωu

t ∥
(335),(338)

≤ 4
√
2γ(1 + γℓ) exp(−γµ(T − 1− t/2))Rλt

(324),(327)
≤ exp(−γµT )R2

5 ln 4(K+1)
β

def
= c. (342)
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The summands also have bounded conditional variances σ2
t

def
= Eξt

[
4γ2(1− γµ)2T−2−2t⟨ηt, ωu

t ⟩2
]
:

σ2
t ≤ Eξt

[
4γ2 exp(−γµ(2T − 2− 2t))∥ηt∥2 · ∥ωu

t ∥2
]

(335)
≤ 8γ2(1 + γℓ)2 exp(−γµ(2T − 2− t))R2Eξt

[
∥ωu

t ∥2
]

(324)
≤ 10γ2 exp(−γµ(2T − t))R2Eξt

[
∥ωu

t ∥2
]
. (343)

In other words, we showed that {2γ(1− γµ)T−1−t⟨ηt, ωu
t ⟩}T−1

t=0 is a bounded martingale difference sequence with bounded
conditional variances {σ2

t }T−1
t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt = 2γ(1− γµ)T−1−t⟨ηt, ωu

t ⟩,
parameter c as in (342), b = 1

5 exp(−γµT )R2, F = exp(−2γµT )R4

300 ln
4(K+1)

β

:

P

{
|①| > 1

5
exp(−γµT )R2 and

T−1∑
t=0

σ2
t ≤ exp(−2γµT )R4

300 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P{E①} ≥ 1− β

2(K + 1)
, for E① =

{
either

T−1∑
t=0

σ2
t >

exp(−2γµT )R4

300 ln 4(K+1)
β

or |①| ≤ 1

5
exp(−γµT )R2

}
. (344)

In addition, ET−1 implies that

T−1∑
t=0

σ2
t

(343)
≤ 10γ2 exp(−2γµT )R2

T−1∑
t=0

Eξt
[
∥ωu

t ∥2
]

exp(−γµt)

(341),T≤K+1

≤ 180γ2 exp(−2γµT )R2σα
K∑
t=0

λ2−α
t

exp(−γµt)

(327)
≤

180γα exp(−2γµT )R4−ασα(K + 1) exp(γµαK2 )

1202−α ln2−α 4(K+1)
β

(324)
≤ exp(−2γµT )R4

300 ln 4(K+1)
β

. (345)

Upper bound for ②. From ET−1 it follows that

② ≤ 2γ exp(−γµ(T − 1))

T−1∑
t=0

∥ηt∥ · ∥ωb
t∥

exp(−γµt)

(335),(339)
≤ 21+α

√
2γ(1 + γℓ) exp(−γµ(T − 1))Rσα

T−1∑
t=0

1

λα−1
t exp(−γµt/2)

(327)
≤

23+α · 120α−1
√
2γα(1 + γℓ) exp(−γµT )σα(K + 1) exp

(
γµαT

2

)
lnα−1 4(K+1)

β

Rα−2

(324)
≤ 1

5
exp(−γµT )R2. (346)
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Upper bound for ③. From ET−1 it follows that

③ = 2γ2 exp(−γµ(T − 1))

T−1∑
t=0

Eξt
[
∥ωu

t ∥2
]

exp(−γµt)

(341)
≤ 144γ2 exp(−γµ(T − 1))σα

T−1∑
t=0

λ2−α
t

exp(−γµt)

(327)
≤

144γαR2−α exp(−γµ(T − 1))σα(K + 1) exp(γµαK2 )

1202−α ln2−α 4(K+1)
β

(324)
≤ 1

5
exp(−γµT )R2. (347)

Upper bound for ④. First, we have

2γ2(1− γµ)T−1−tEξt
[
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]]

= 0.

Next, sum ④ has bounded with probability 1 terms:

2γ2(1− γµ)T−1−t
∣∣∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]∣∣ (338)

≤ 16γ2 exp(−γµT )λ2
l

exp(−γµ(1 + t))

(327)
≤ exp(−γµT )R2

5 ln 4(K+1)
β

def
= c. (348)

The summands also have conditional variances

σ̃2
t

def
= Eξt

[
4γ4(1− γµ)2T−2−2t

∣∣∥ωu
t ∥2 − Eξt

[
∥ωu

t ∥2
]∣∣2]

that are bounded

σ̃2
t

(348)
≤ 2γ2 exp(−2γµT )R2

5 exp(−γµ(1 + t)) ln 4(K+1)
β

Eξt
[∣∣∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
]∣∣]

≤ 4γ2 exp(−2γµT )R2

5 exp(−γµ(1 + t)) ln 4(K+1)
β

Eξt
[
∥ωu

t ∥2
]
. (349)

In other words, we showed that
{
2γ2(1− γµ)T−1−t

(
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
])}T−1

t=0
is a bounded martingale difference

sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Next, we apply Bernstein’s inequality (Lemma B.2) with Xt =

2γ2(1− γµ)T−1−t
(
∥ωu

t ∥2 − Eξt
[
∥ωu

t ∥2
])

, parameter c as in (348), b = 1
5 exp(−γµT )R2, G = exp(−2γµT )R4

300 ln
4(K+1)

β

:

P

{
|④| > 1

5
exp(−γµT )R2 and

T−1∑
l=0

σ̃2
t ≤ exp(−2γµT )R4

294 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

Equivalently, we have

P{E④} ≥ 1− β

2(K + 1)
, for E④ =

{
either

T−1∑
t=0

σ̃2
t >

exp(−2γµT )R4

300 ln 4(K+1)
β

or |④| ≤ 1

5
exp(−γµT )R2

}
. (350)
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In addition, ET−1 implies that

T−1∑
l=0

σ̃2
t

(349)
≤ 4γ2 exp(−γµ(2T − 1))R2

5 ln 4(K+1)
β

T−1∑
t=0

Eξt
[
∥ωu

l ∥2
]

exp(−γµt)

(341),T≤K+1

≤ 72γ2 exp(−γµ(2T − 1))R2σα

5 ln 4(K+1)
β

K∑
t=0

λ2−α
t

exp(−γµt)

(327)
≤

72γα exp(−γµ(2T − 1))R4−ασα(K + 1) exp(γµαK2 )

5 · 1202−α ln3−α 4(K+1)
β

(324)
≤ exp(−2γµT )R4

300 ln 4(K+1)
β

. (351)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2
T−1∑
l=0

exp(−γµ(T − 1− t))
(
∥ωb

t∥2
)

(339)
≤ 2 · 22αγ2 exp(−γµ(T − 1))σ2α

T−1∑
t=0

1

λ2α−2
t exp(−γµt)

(327),T≤K+1

≤
2 · 22α · 1202α−2γ2α exp(−γµ(T − 1))σ2α ln2α−2 4(K+1)

β

R2α−2

K∑
t=0

exp

(
γµ(2α− 2)

(
1 +

t

2

))
exp(γµt)

≤
4 · 22α · 1202α−2γ2α exp(−γµ(T − 3))σ2α ln2α−2 4(K+1)

β

R2α−2

K∑
t=0

exp(γµαt)

≤
4 · 22α · 1202α−2γ2α exp(−γµ(T − 3))σ2α ln2α−2 4(K+1)

β (K + 1) exp(γµαK)

R2α−2

(324)
≤ 1

5
exp(−γµT )R2. (352)

Now, we have the upper bounds for ①,②,③,④,⑤. In particular, probability event ET−1 implies

R2
T

(337)
≤ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤,

②
(346)
≤ 1

5
exp(−γµT )R2, ③

(347)
≤ 1

5
exp(−γµT )R2,

⑤
(352)
≤ 1

5
exp(−γµT )R2

T−1∑
t=0

σ2
t

(345)
≤ exp(−2γµT )R4

300 ln 4(K+1)
β

,

T−1∑
t=0

σ̃2
t

(351)
≤ exp(−2γµT )R4

300 ln 4(K+1)
β

.

Moreover, we also have (see (344), (350) and our induction assumption)

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E①} ≥ 1− β

2(K + 1)
, P{E④} ≥ 1− β

2(K + 1)
.
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where

E① =

{
either

T−1∑
t=0

σ2
t >

exp(−2γµT )R4

300 ln 4(K+1)
β

or |①| ≤ 1

5
exp(−γµT )R2

}
,

E④ =

{
either

T−1∑
t=0

σ̃2
t >

exp(−2γµT )R4

300 ln 4(K+1)
β

or |④| ≤ 1

5
exp(−γµT )R2

}
.

Thus, probability event ET−1 ∩ E① ∩ E④ implies

R2
T

(337)
≤ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤

≤ 2 exp(−γµT )R2,

which is equivalent to (331) for t = T , and

P{ET } ≥ P{ET−1 ∩ E① ∩ E④} = 1− P{ET−1 ∪ E① ∪ E④} ≥ 1− Tβ

K + 1
.

This finishes the inductive part of our proof, i.e., for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1). In particular,
for k = K + 1 we have that with probability at least 1− β

∥xK+1 − x∗∥2 ≤ 2 exp(−γµ(K + 1))R2.

Finally, if

γ = min

{
1

400ℓ ln 4(K+1)
β

,
ln(BK)

µ(K + 1)

}
,

BK = max

2,
(K + 1)

2(α−1)
α µ2R2

5400
2
ασ2 ln

2(α−1)
α

(
4(K+1)

β

)
ln2(BK)



= O

max

2,
K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})



then with probability at least 1− β

∥xK+1 − x∗∥2 ≤ 2 exp(−γµ(K + 1))R2

= 2R2 max

{
exp

(
− µ(K + 1)

400ℓ ln 4(K+1)
β

)
,

1

BK

}

= O

max

R2 exp

(
− µK

ℓ ln K
β

)
,

σ2 ln
2(α−1)

α

(
K
β

)
ln2

(
max

{
2, K

2(α−1)
α µ2R2

σ2 ln
2(α−1)

α (K
β )

})
K

2(α−1)
α µ2



 .

To get ∥xK+1 − x∗∥2 ≤ ε with probability at least 1− β it is sufficient to choose K such that both terms in the maximum
above are O(ε). This leads to

K = O

(
ℓ

µ
ln

(
R2

ε

)
ln

(
ℓ

µβ
ln

R2

ε

)
,

(
σ2

µ2ε

) α
2(α−1)

ln

(
1

β

(
σ2

µ2ε

) α
2(α−1)

)
ln

α
α−1 (Bε)

)
,
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where

Bε = max

2,
R2

ε ln

(
1
β

(
σ2

µ2ε

) α
2(α−1)

)
 .

This concludes the proof.
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