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ABSTRACT

Simultaneous Machine Translation (SiMT) requires high-quality translations
under strict real-time constraints, which traditional encoder-decoder policies
with only READ/WRITE actions cannot fully address. We extend the action
space of SiMT with four adaptive actions: SENTENCE_CUT, DROP, PAR-
TIAL_SUMMARIZATION and PRONOMINALIZATION, which enable real-
time restructuring, omission, and simplification while preserving semantic fidelity.
We implement these actions in a decoder-only large language model (LLM) frame-
work and construct training references through action-aware prompting. To evalu-
ate both quality and latency, we further develop a latency-aware TTS pipeline that
maps textual outputs to speech with realistic timing. Experiments on the ACL60/60
English–Chinese and English-German benchmarks show that our framework con-
sistently improves semantic metrics (e.g., COMET-KIWI) and achieves lower de-
lay (measured by Average Lagging) compared to reference translations and salami-
based baselines. Notably, combining DROP and SENTENCE_CUT yields the
best overall balance between fluency and latency. These results demonstrate that
enriching the action space of LLM-based SiMT provides a promising direction for
bridging the gap between human and machine interpretation.

1 INTRODUCTION

Simultaneous speech translation requires real-time translation with high quality, which poses unique
challenges compared to offline machine translation (MT) due to the incompleteness of information.
While traditional MT systems generate fluent and accurate translations by relying on complete source
sentences, such a paradigm is unsuitable for simultaneous machine translation (SiMT), where incre-
mental processing and low latency are mandatory. The central bottleneck of SiMT therefore lies in
maintaining an optimal balance between translation quality and latency. To address this challenge,
the system must be capable of deciding both when and how to translate under partial input.

A prospective approach is to learn from professional human interpreters, who strategically decide
when to pause for more context while still conveying the essential meaning through rephrasing, sum-
marization, or omission. For instance, the widely adopted salami technique breaks the sentences
into minimal segments that contains enough information for translation. This segmentation effec-
tively reduces long-distance word reordering caused by syntactic divergence across languages, while
preserving semantic fidelity. By applying this technique to SiMT, the system benefits from the mono-
tonicity and improved word-order alignment (Makinae et al., 2024).

Most existing SiMT systems are built upon encoder-decoder architectures, where the quality-latency
trade-off is controlled by policies defined over a limited set of actions (READ/WRITE). Tremendous
effort has been made to optimize the timing and choice of these actions, yet this limited action space
are not capable to fully capture strategies that human interpreters apply, such as salami technique,
partial summarization, appropriate omission and partial reordering. In contrast, decoder-only large
language models (LLMs) are naturally capable of producing such proper modifications. However,
their tendency to rely on full sentence often leads to offline-style translations, which violate the real-
time constraint. This limitation can be alleviated by explicitly constraining the model with prompts
tailored to simultaneous settings.
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Another obstacle lies in training data. Most SiMT systems adopt offline translations as references.
Although such translations are fluent and semantically faithful, they are unsuitable as references for
SiMT because of different generation patterns. Training on them biases models toward waiting for
complete input, thus increasing latency and contradicting the real-time requirement. As a result, it is
crucial to generate high-quality reference interpretations that align with simultaneous interpretation
patterns while preserving semantic fidelity.

In this study, we propose a decoder-only SiMT framework that introduces four novel adaptive actions
in addition to READ and WRITE, namely SENTENCE_CUT, PARTIAL_SUMMARIZATION,
DROP and PRONOMINALIZATION. These actions mimic human interpreter strategies and dy-
namically balance quality and latency. By introducing this expanded action space, we redefine ma-
chine simultaneous interpretation by shifting the focus from mere incremental translation to human-
like strategies, while remaining firmly within the conventional SiMT setting. Our framework is based
on decoder-only LLMs such as GPT-4o and Qwen3-8B, and we compare against strong baselines
including salami-based segmentation, the recent LLM-based system TransLLaMA, and prompting
strategies such as few-shot and dynamic in-context prompting. In addition, we develop latency-aware
text-to-speech (TTS) pipeline based on word alignment and source timestamps, which enables realis-
tic simulation of interpreter behavior and provides accurate measurements of latency (e.g., Average
Lagging).

Our main contributions are as follows.1

• We propose a decoder-only SiMT framework introducing four novel actions—SENTENCE_CUT,
PARTIAL_SUMMARIZATION, DROP and PRONOMINALIZATION—integrated into a se-
quential decision-making process to balance translation quality and latency.

• We adapt offline translations into SiMT–like references using these actions, and produce training data
that better reflects real-time interpretation constraints while preserving semantic fidelity.

• We conduct a comparative analysis of various training and inference methods including TransLLaMA
system, few-shot prompting and dynamic in-context learning on Qwen3-8B to identify effective ap-
proaches for SiMT.

• We developed a latency-aware TTS pipeline based on word alignment and source timestamps, en-
abling realistic simulation of interpreter behavior and synchronous evaluation of quality and latency.

2 RELATED WORK

Current SiMT systems are typically evaluated on both translation quality and latency. For quality,
n-gram-based metrics such as BLEU (Papineni et al., 2001), chrF (Popović, 2015) and TER (Snover
et al., 2006) remain widely used due to their simplicity and historical prevalence. They mainly cap-
ture surface-level overlap and may undervalue translations that differ in form but are still semantically
valid. Neural-based evaluation metrics such as COMET (Rei et al., 2020; 2022) leverage pretrained
multilingual encoders to compare meaning rather than form, and do not require reference translations
at inference time. They have been shown to align better with human quality assessments (Glushkova
et al., 2023), thus providing a more reliable measure for SiMT performance. For latency, commonly
used measures include Average Lagging (AL) (Ma et al., 2019), Average Proportion (AP) (Cho &
Esipova, 2016), and Differentiable Average Lagging (DAL) (Cherry et al., 2018). More recently,
Average Token Delay (ATD) (Kano et al., 2023) has been proposed, which explicitly accounts for
the end timings of partial translations and thus better reflects delays caused by long output segments.
Although BLEU is widely used for translation quality evaluation, its reliance on offline references
makes it unsuitable for SiMT, as it may increase latency when such patterns are followed. Thus, modi-
fications of offline reference are proposed (Chen et al., 2020; Makinae et al., 2024; Zhao et al., 2021)
to deal with the long-distance word reordering introduced by the word order differences between
various languages.

In terms of architectural choices, most SiMT systems have been built on encoder–decoder frame-
works, where the trade-off between quality and latency is controlled by a policy determining when

1Due to double-blind review, we do not release artifacts during the review phase. Upon acceptance, we will
release the code and detailed prompts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to READ (consume source tokens) and WRITE (generate target tokens). Policies can be broadly cat-
egorized into fixed, adaptive, and hybrid. Fixed policies include constant delay policies like wait-k
(Ma et al., 2019) and read-m-write-n (Issam et al., 2024), and segmentation-based fixed policies like
punctuation-based segmentation (Oda et al., 2014). Adaptive policies (Arivazhagan et al., 2019; Gu
et al., 2016; Raffel et al., 2017; Oda et al., 2015; Zhao et al., 2021) dynamically adjust decisions
based on the source content, model confidence, or predicted future context. The work of Oda et al.
(2015) is particularly pioneering, as it selects actions by predicting unseen syntactic constituents
using parser information, thus demonstrating one of the earliest syntax-informed approaches to si-
multaneous translation. Hybrid approaches combine the strengths of both: for instance, Adapters
Wait-k & Adaptive Adapters (Issam et al., 2024) enable a single model to handle multiple wait-k
settings while incorporating adaptive decision-making. Recently, efforts have also explored decoder-
only models, such as the Decoder-only Streaming Transformer (Guo et al., 2024), Hibiki (Labiausse
et al., 2025), and TransLLaMA (Koshkin et al., 2024), which reduce inference cost by discarding
the encoder and integrate more naturally with large pretrained LLMs. In particular, TransLLaMA
introduces the use of special <WAIT> tokens to synchronize source and target streams, ensuring that
target words are only generated after sufficient source context becomes available.

Beyond architectures, model adaptation strategies play a key role. Early approaches adopted full fine-
tuning (Luong & Manning, 12 3-4 2015; Freitag & Al-Onaizan, 2016; Sennrich et al., 2016), updating
all parameters of pretrained models. However, this requires substantial amounts of task-specific data,
which is scarce for SiMT (Zhang & Feng, 2023). To alleviate this, parameter-efficient fine-tuning
(PEFT) methods have been introduced, enabling adaptation with limited data and resources. Among
them, LoRA (Hu et al., 2021) is the most widely used and has been successfully applied in recent
SiMT systems (Koshkin et al., 2024). At the same time, the rise of LLMs has brought interest in
prompt-based adaptation. Few-shot prompting (Patel et al., 2023; Puduppully et al., 2023; Tang
et al., 2025) demonstrates the ability of LLMs to mimic interpretation styles with only a handful
of examples. Going further, dynamic in-context learning (DICL) (Rubin et al., 2022; Zhou et al.,
2023) retrieves task-relevant examples at inference time and has shown strong results in general NLP,
though it has not yet been applied to SiMT.

Distinct from previous work, we propose a SiMT framework based on decoder-only models em-
powered by four novel adaptive actions —SENTENCE_CUT, PARTIAL_SUMMARIZATION,
DROP and PRONOMINALIZATION—to balance quality and latency by emulating the adaptive
strategies of professional interpreters, which we describe below.

3 METHOD

Our proposed framework for decoder-only SiMT consists of four key components: (1) an extended
action space that emulates human interpreter strategies, (2) model adaptation through LLM-based
systems and prompting-based methods, (3) a latency-aware TTS pipeline, and (4) an inference pro-
cedure that performs step-by-step generation. The system overview is shown in Figure 1.

3.1 EXTENDED ACTION SPACE

Conventional SiMT policies are limited to two actions: READ and WRITE . Although the optimiza-
tion of policies can improve quality-latency balance by making better decisions of when to commit
WRITE actions, they cannot fully capture the techniques developed by human interpreters, which
make translations more fluent and accurate. The salami technique (Makinae et al., 2024) adapts
offline translations from MuST-C (Di Gangi et al., 2019) by splitting sentences into semantically
sufficient segments, which improves word-order monotonicity and reduces latency.

Building on this idea, we generalize such human interpreter techniques into four new actions that can
be dynamically invoked by LLMs during generation, enabling real-time application beyond static
reference adaptation.

• SENTENCE_CUT Split long or syntactically complex clauses (e.g., relative clauses, appositives,
inserted explanations) into shorter, grammatical sentence segments. For example, the sentence in
ACL60/60 dataset “At the position of at the pool party with Barack Obama, we got a graph with the
right nodes on the person and the event subject, but guess the wrong timing information” can be split
after “with” since it connects two semantically complete parts. By inserting appropriate punctuation

3
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Dev set (ACL60/60 en-zh/de)

Dev_Salami
(Apply salami technique)

Dev_Actions (multiple sets)
(Apply new actions:

sentence cut / drop / partial summarization / 
pronominalization)

TransLLaMA Few-shot prompting

Dynamic in-context 
learning (DICL)

Evaluate on Eval set

Latency-aware 
TTS

Dev set stats 
(quality + latency)

Inference prompt for LLM
(per-action BLEU/AL)

Step-wise generation

Evaluation

Branch A: method comparison

Branch B: latency-aware inference

Data preparation

Figure 1: Method overview. We first construct development sets with either salami-based segmen-
tation or our proposed action-based translations. Branch A compares different adaptation methods
(LoRA fine-tuning, few-shot prompting, and dynamic in-context learning). Branch B integrates a
latency-aware TTS pipeline to obtain quality and latency statistics, which are then used to guide in-
ference through per-action prompts and step-wise generation.

SENTENCE_CUT
Source: At the position of at the pool party with Barack Obama, we got a graph with the right nodes on the person and the event subject, but 
guess the wrong timing information.
Reference: 在与Barack Obama的泳池派对上，我们得到了一张关于人物和事件主题正确节点的图表，但猜错了时间信息。
Sentence cut: 在与Barack Obama的泳池派对上，我们得到了一个图，标示了人物和事件主题正确的节点，但猜错了时序信息。

DROP
Source: These are the morphology level, these are the morphology level embeddings.
Reference: 这些是形态学层面的，这些是形态学层面的嵌入。
Drop: 这些是形态层面的嵌入。

PARTIAL_SUMMARIZATION
Source: And here you have the number of spans that were labeled as English and the spans that were labeled as other borrowings and how 
many of them were unique.
Reference: 这包含了被标记为英语的跨度数量和标记为其他借词的跨度数量，以及它们中有多少是独一无二的。
Partial summarization: 这包含了被标记为英语和其他借用词的跨度，以及其中有多少是唯一的。

PRONOMINALIZATION
Source: Lexical borrowing is a type of linguistic borrowing um which is basically reproducing in one language patterns of other languages. 
There are however some differences between lexical borrowing and code-switching.
Reference: 词汇借用是一种语言借用，它基本上是在一种语言中再现其他语言的模式。不过，词汇借用和语码转换之间还是有一
些区别。
Pronominalization: 词汇借用是一种语言借用，本质上是在一种语言中再现其他语言的模式。然而，它和语码转换之间存在一些
差异。

Figure 2: New actions and examples in en-zh SiMT. Each action is illustrated with an English source
sentence, a literal reference translation, and an adapted version with the corresponding action applied.
Highlighted spans indicate the parts of the sentence that are treated differently in the adapted transla-
tion compared to the reference (e.g., splitting, omission, summarization). This visualization shows
how the original English segment is restructured, modified, or condensed in Chinese translation.

and connective words (which LLMs are able to supply), the sentence is divided into two fluent units,
reducing reordering and improving latency.

• DROP Remove only truly non-informative content (e.g., “uh”, “you know”), repeated words, or
self-corrections. For instance, in “These are the morphology level, these are the morphology level
embeddings,” the phrase “these are the morphology level” is repeated without adding new meaning.
Applying DROP removes the redundancy and yields a cleaner, semantically accurate translation.

• PARTIAL_SUMMARIZATION Combine or simplify semantically equivalent or repetitive expres-
sions while preserving the original meaning and tone (e.g., speculation, politeness). This is useful
when multiple clauses convey essentially the same information. For example, in“And here you have
the number of spans that were labeled as English and the spans that were labeled as other borrow-
ings and how many of them were unique,” both clauses share the subject“the number of spans.”
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Summarization condenses the sentence into a more concise form, improving readability and reducing
latency without loss of meaning.

• PRONOMINALIZATION Replace repeated or already mentioned noun phrases with pronouns only
if referents are unambiguous. In two consecutive sentences “Lexical borrowing is a type of linguistic
borrowing um which is basically reproducing in one language patterns of other languages. There
are however some differences between lexical borrowing and code-switching”, the phrase “lexical
borrowing” is repeated. Since no ambiguity would be caused if we replace the second phrase into
a pronoun like “it”, and the two phrases are close enough to each other, we can apply PRONOMI-
NALIZATION to convert this long phrase into a pronoun for more fluent expression.

Examples are shown in Figure 2 for illustration. These actions are applied at each decision point, and
enables the model to adjust its behavior according to available context and the latency constraints.
Training references are prepared by prompting GPT-4o to generate translations under different action
combinations. Detailed experiement settings can be found in appendices A.2.

3.2 MODEL ADAPTATION

To evaluate how different approaches adapt decoder-only LLMs to the SiMT scenario, we conduct a
comparative study of four methods:

• TransLLaMA (Koshkin et al., 2024) is a policy-free framework in which a pre-trained decoder-only
LLM is supervised on causally aligned source–target pairs with inserted <WAIT> tokens. This design
enables the model to directly learn when to emit translations and when to wait for more context,
without relying on an external policy.

• Few-shot prompting LLMs show fantastic capability to learn specific patterns or styles of generation
from a few examples in the prompts (Brown et al., 2020; Reynolds & McDonell, 2021). By selecting
representative examples from each set of reference translations of the development-sets, we can guide
the LLM to learn from their approaches of interpretation.

• Dynamic in-context learning Based on few-shot prompting, we want to test if DICL can choose
appropriate examples in all the reference translations that best match the current translation task and
guide the LLM’s translation pattern, which is inspired by this method’s excellent performance in
classification tasks (Rubin et al., 2022; Zhou et al., 2023). We applied retrieval-based DICL of two
methods: (1) keyword extraction + sentence classification and (2) embedding clustering to search for
the most suitable examples according to current input sentences. Implementation details are provided
in Appendices A.4.

We use Qwen3-8B as the base model when doing inferences because of its efficiency for deployment
and strong cross-lingual capabilities (Yang et al., 2025). The inputs are word sequences which are
transcriptions of ACL60/60 development set, and the output translations are also text in target lan-
guages. This follows the setting in TransLLaMA experiments. All four methods are applied under
three different development set configurations: (a) reference translations, (b) salami-based segmen-
tation, and (c) action-based references. This design allows us to compare their relative effectiveness
across multiple adaptation scenarios, analyzing both translation quality and latency.

3.3 LATENCY-AWARE TTS PIPELINE

To get the latency information for evaluation and inference, we developed a latency-aware TTS
pipeline. Specifically, we follow the pipeline shown in Figure 3. It first applies Whisper large-v2
(Radford et al., 2022) to extract source word timestamps, then aligns source–target words with SimA-
lign (Sabet et al., 2020). Based on this alignment, <WAIT> tokens are inserted to enforce causal order
and derive segment timetables, which specify when each target chunk should be spoken. Finally, tar-
get speech is synthesized with Cozyvoice 2 (Du et al., 2024) for Chinese or Tacotron 2 (Shen et al.,
2017) for German. Full step-by-step details are provided in Appendix A.3.

3.4 INFERENCE PROCEDURE

We use a text-only SiMT setting at inference: the input is the source word sequence, and the output
is target-side text. From development-set translations and TTS runs under different action combina-
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Source & 
target sentence

Whisper large-v2

Timestamps of source sentence

{“Sentence”: “Good morning!”,
“words”: [{“word”: “Good”, “start”: 0.2, “end”: 
0.4},{“word”: “morning!”, “start”: 0.4, “end”: 
0.84}]}

insert

<WAIT>

Good 早上

Morning 好

Good <WAIT>

Morning 早上

好

Inversion

SimAlign

Source: w1---w2---w3---w4---w5

target: t1---t2---<WAIT>---t3---t4

segment 1 segment 2

Case1. Time(w3) > Time(t2): 
speak t3 until w3 is spoken 

Case2. Time(w3) < Time(t2): 
merge seg 2 with seg 1

Cosyvoice 2

Segment timetable 

Latency-aware 
speech

Tacotron 2

Figure 3: Latency-aware TTS. The system first obtains source word timestamps with Whisper and
aligns source–target words using SimAlign. Special <WAIT> tokens are inserted to enforce causal
alignment, which divides the target into segments. Each segment is then scheduled according to
the corresponding source word timing and synthesized with CosyVoice2 (Chinese) or Tacotron 2
(German). This process produces speech outputs that reflect realistic latency for evaluation.

tions, we compute BLEU and AL and include these statistics in the inference prompt. Guided by
these statistics, Qwen3-8B selects actions at each step to balance quality and delay. The prompt also
specifies the simultaneous interpretation constraints and output format. The detailed prompt design
can be found in appendices A.1.

4 EXPERIMENT AND ANALYSIS

4.1 DATA

For model adaptation, development-set (dev) action-combination sweeps, and inference, we use the
ACL60/60 English-to-Chinese (en–zh) dataset (Salesky et al., 2023); we run the same protocol on
the English-to-German (en–de) language pair. Throughout, the SiMT system operates in a text-only
setting: the input is the English word-by-word transcript (i.e., a word sequence of the source sentence),
and the output is the target-side text. The dev sets are augmented with GPT-4o reference translations
covering different action combinations as well as the salami technique. These references are used
both as LoRA training targets and as demonstration examples for prompting, and are further passed
through our latency-aware TTS pipeline (aligned to source word timings) to obtain quality and latency
statistics used at inference. Unless otherwise specified, final results are reported on the ACL60/60
evaluation (eval) sets.

4.2 EXPERIMENTAL SETUP

We used Qwen3-8B as the base model. For TransLLaMA-style supervised fine-tuning (SFT)
(Koshkin et al., 2024), the training data were causally aligned by inserting <WAIT> tokens into the
target side. We applied QLoRA with rank 16, 𝛼 = 32, and dropout 0.1, training for 2 epochs with
AdamW (learning rate 5×10−5, effective batch size 16). Training was performed on a single NVIDIA
A100 80GB GPU.

4.3 EVALUATION METRICS

Translation quality was measured by BLEU, chrF, TER, and neural-based metrics COMET-da and
COMET-KIWI. Latency was evaluated using Average Lagging (AL) only because it just serves as a
reference of latency information in the inference stage.

4.4 MAIN RESULTS

Model adaptation We compare three adaptation strategies—TransLLaMA, few-shot prompting, and
dynamic in-context learning (DICL)—under the salami, action-based, and reference translation set-
tings. The evaluation results for ACL60/60 dev set are detailed in Table 1. Overall, DICL, espe-
cially the keyword-retrieval method, yields the best quality. It achieves the top or near-top scores

6
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Table 1: Model adaptation under three supervision settings. We compare TransLLaMA, Few-
shot (static), and Dynamic In-Context Learning across: (a) Salami-based references , (b) Action-
adapted references generated with the full action set, and (c) ACL60/60 dev-set reference transla-
tions. We report surface-overlap metrics (BLEU/chrF/TER), semantic metrics (COMET-da/COMET-
KIWI), and latency (AL, seconds↓).

(a) Salami-based references

Method BLEU chrF TER↓† COMET-da COMET-KIWI AL (s)↓
TransLLaMA 57.66 41.36 96.72 0.8798 0.7950 0.813
Few-shot (static) 55.49 50.11 106.11 0.8779 0.7984 0.901
DICL (keywords) 60.31 54.50 103.71 0.8854 0.8046 0.891
DICL (embedding) 59.87 54.24 98.03 0.8847 0.8030 0.915

(b) Action-adapted reference generated with full action set

Method BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
TransLLaMA 58.50 41.61 97.16 0.8816 0.8053 0.702
Few-shot (static) 55.80 50.31 105.90 0.8843 0.8080 0.857
DICL (keywords) 58.31 52.97 102.40 0.8869 0.8060 0.861
DICL (embedding) 57.44 52.26 98.03 0.8854 0.8037 0.867

(c) ACL60/60 dev-set reference

Method BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
TransLLaMA 57.66 41.27 96.72 0.8852 0.8000 0.911
Few-shot (static) 55.79 39.11 110.77 0.8856 0.8079 0.916
DICL (keywords) 55.32 37.60 104.15 0.8822 0.8046 0.928
DICL (embedding) 57.17 40.97 101.53 0.8863 0.8058 0.919

† TER↓ is reported as a percentage, 100 × edits
|ref| , so values can exceed 100 when edits > reference

length.

on BLEU/chrF and semantic metrics (COMET-da/COMET-KIWI) in salami and action setups, ben-
efiting from retrieving input-relevant demonstrations. The embedding-based DICL is consistently
close but slightly weaker. Few-shot (static) occasionally leads on COMET-KIWI but is less stable
and more sensitive to example selection. TransLLaMA remains a strong latency-oriented method
that delivers the lowest AL (notably 0.702s in Action) and often the best TER, making it preferable
when minimal delay is desired. We also observe a metric split by supervision style: Salami-based
data favors surface-overlap metrics (BLEU/chrF/TER), whereas action-adapted references improve
semantic metrics (COMET). This aligns with our motivation that an enriched action space better
preserves meaning under simultaneity. In summary, DICL with keyword retrieval offers the best
overall quality and robustness under limited data, while TransLLaMA is the choice for strict latency
constraints.

Different choices of actions To analyze the effect of individual and combined actions, we generated
seven sets of translations on the ACL60/60 development set by prompting GPT-4o to perform step-
by-step translation with different action combinations. The results in Table 2 show that individual
actions like SENTENCE_CUT, DROP, and PARTIAL_SUMMARIZATION each brings mod-
erate improvements in fluency or latency, but combining them leads to more significant gains. For
en-zh, the combination DROP + SENTENCE_CUT achieved the lowest latency (0.817s), while
using all actions together yielded the highest BLEU and COMET scores. For en-de, similar patterns
were observed: SENTENCE_CUT + DROP minimized latency (0.252s), whereas combining multi-
ple actions improved semantic fidelity (highest COMET-KIWI). These results confirm that different
actions complement each other in balancing quality and latency.
Inference We provided the quality (BLEU) and latency (AL) scores of each action obtained on the
dev sets for Qwen3-8B and instructed it to choose an appropriate action at each step during interpre-
tation. The comparisons of inference results and outputs obtained by applying the salami technique
versus action-based inference on the eval sets of both English–Chinese (en-zh) and English–German
(en-de) are reported in Table 3.
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Table 2: Performance of different action combinations on the dev set. Note that we mark the best
results of each metric using bold letters and the best results except for the reference translations using
pink highlight .

EN-ZH Translation Performance
Action Combination BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
Salami only 57.26 38.83 104.73 0.8567 0.7727 0.825
SENTENCE_CUT 60.28 53.99 101.58 0.8765 0.7927 0.824
DROP 58.94 52.69 101.18 0.8733 0.7909 0.851
PARTIAL_SUMMARIZATION 60.33 53.67 98.22 0.8764 0.7923 0.847
PRONOMINALIZATION 60.85 41.39 101.78 0.8738 0.7910 0.858
SENTENCE_CUT + DROP 60.67 41.88 102.37 0.8745 0.7911 0.817
DROP + PAR-
TIAL_SUMMARIZATION +
PRONOMINALIZATION

59.91 53.43 98.22 0.8764 0.7924 0.888

All actions 62.67 46.28 99.80 0.8944 0.7952 0.922

ACL60/60 ref 100.00 100.00 0.00 0.9549 0.7983 0.972

EN-DE Translation Performance
Action Combination BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
Salami only 47.48 69.86 38.94 0.8534 0.8102 0.284
SENTENCE_CUT 44.05 69.87 42.66 0.8525 0.8076 0.317
DROP 44.90 68.61 42.63 0.8442 0.7988 0.358
PARTIAL_SUMMARIZATION 45.05 69.31 41.73 0.8581 0.8086 0.361
PRONOMINALIZATION 44.96 69.40 41.89 0.8505 0.8074 0.352
SENTENCE_CUT + DROP 44.74 69.18 41.93 0.8501 0.8068 0.252
DROP + PAR-
TIAL_SUMMARIZATION +
PRONOMINALIZATION

44.95 69.19 42.08 0.8542 0.8198 0.261

All actions 44.88 69.11 42.05 0.8526 0.8082 0.253
ACL60/60 ref 100.00 100.00 0.00 0.9549 0.7983 0.921

Across both language pairs, inference guided by action choices consistently outperforms salami seg-
mentation in most quality metrics, and even yields COMET-KIWI scores comparable to the reference
translations. Notably, the action combination “DROP + SENTENCE_CUT”, which achieved the
lowest latency on the dev sets, also leads to the best trade-off on the eval sets. For en-zh, it delivers
the highest BLEU and COMET-KIWI while substantially reducing AL. For en-de, it improves all
quality scores simultaneously while maintaining competitive latency.

These results suggest a shared trend across both language pairs: action-aware inference is better at
balancing semantic fidelity and latency than salami-based segmentation. The consistent advantage of
“DROP + SENTENCE_CUT” can be explained by their complementary effects—DROP removes
redundant or filler material, reducing delay, while SENTENCE_CUT alleviates long-distance re-
ordering by segmenting complex clauses. Together, they enable translations that are both more fluent
and faster, aligning with human interpreter strategies.

For example, given the source sentence “In other words, it cannot be used for many projects on
GitHub”, the translation obtained with salami segmentation was “换句话说, 它不能被使用在许
多项目中在 GitHub 上” (BLEU 49.25), where “GitHub 上” was placed at the end, resulting in
an expression that does not conform to natural Chinese usage and providing little benefit in latency
reduction. In contrast, inference with CUT+DROP generated “换句话说,它不能用于 GitHub上
的许多项目” (BLEU 100.00), which is both fluent and faithful. As another case, for the sentence
“For those samples without unused quantities, so the overall performance is actually higher than the,
the performance is actually higher than the overall performance”, the salami-based output preserved
the redundant phrase (BLEU 52.61), while the DROP action effectively removed it, yielding “对于
那些没有未使用数量的样本,所以整体性能实际上高于整体性能” (BLEU 66.89). This not only
improved translation quality but also reduced latency since the output was shorter.
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Table 3: Performance of different inference strategies on the eval set.
(a) English-Chinese (en-zh)

Method BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
Salami 57.21 40.57 110.04 0.8705 0.7846 0.802
Inference by choosing actions 62.44 46.80 126.20 0.9002 0.8020 0.814
Inference by choosing from DROP /
SENTENCE_CUT

62.84 44.06 104.80 0.8891 0.8040 0.772

ACL60/60 ref 100.00 100.00 0.00 0.9582 0.8029 0.972

(b) English-German (en-de)

Method BLEU chrF TER↓ COMET-da COMET-KIWI AL (s)↓
Salami 47.48 69.87 38.94 0.8534 0.8102 0.385
Inference by choosing actions 47.80 70.08 38.72 0.8541 0.8108 0.293
Inference by choosing from DROP /
SENTENCE_CUT

49.97 70.96 37.38 0.8594 0.8111 0.357

ACL60/60 ref 100.00 100.00 0.00 0.9511 0.8048 0.921

4.5 ADAPTIVE BEHAVIOR STUDY

To further test whether the LLM adapts its decisions according to provided statistics, we modi-
fied the BLEU and AL scores of one action in the inference prompt. By artificially increasing its
BLEU and lowering its AL, the model was encouraged to prefer this action (in our case, PAR-
TIAL_SUMMARIZATION and SENTENCE_CUT). As expected, the LLM adjusted its behav-
ior and invoked these actions more frequently during inference. The resulting translations exhibited
a clear reduction in AL, while quality metrics only decreased marginally. This finding highlights
that the model does not simply follow static templates, but is able to make data-driven decisions to
balance quality and latency. The experiment details can be found in A.7.

5 CONCLUSIONS

In this work, we presented a decoder-only SiMT framework that extends the conven-
tional READ/WRITE paradigm with four adaptive actions: SENTENCE_CUT, PAR-
TIAL_SUMMARIZATION, DROP and PRONOMINALIZATION. These actions simulate
strategies used by professional human interpreters, and allow the LLMs to dynamically bal-
ance the quality-latency trade-off. We further developed a latency-aware TTS pipeline, which
provides realistic delay measurements and enables synchronous evaluation of both quality and
latency. Our experiments on the ACL60/60 benchmark show that the proposed approach yields
consistent improvements over the salami-based segmentation. In particular, dynamic in-context
learning (DICL) demonstrates strong performance, while action-specific strategies such as DROP
+ SENTENCE_CUT achieve the best overall trade-off between semantic fidelity and latency.
Conceptually, our results chart a path for redefining machine simultaneous interpretation: from
viewing SiMT as incremental token emission to treating it as real-time application of human-like
strategies—while remaining firmly within the SiMT setting.

6 LIMITATIONS AND FUTURE WORK

While our TTS pipeline enables quantitative latency analysis, we have not yet leveraged its syn-
thesized speech for human listening studies, which remain essential for perceptual evaluation. In
addition, the current TTS timing policy differs from human interpreters: we trigger speech after each
aligned word rather than after a complete semantic unit, which tends to yield lower AL than human
practice. However, because all methods share the same protocol, any bias is constant across sys-
tems and does not affect conclusions about relative quality–latency trade-offs. Finally, to better align
with end-to-end speech-to-speech SiMT, future work should move beyond word-sequence inputs and
build frameworks that consume raw speech as input.
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A APPENDIX

A.1 PROMPT OF ACTIONS

The following is an example of inference prompt letting the LLM choose from all the actions.

You are a simultaneous translation(en-zh) agent. Your task is to read
a source sentence word by word, and decide what action to take at each
step to optimize the balance between translation quality and latency.
Keep to the original meaning and word order of the sentence when doing
translation You can choose from the following actions: - READ: Wait for
the next source word (default). - WRITE: Output a target word or phrase.
- DROP: Remove previously read word(s) if they are meaningless fillers
(e.g., ``uh", ``um"), repetitions, false starts, or self-corrections. Use
only when clearly justified. - PARTIAL_SUMMARIZATION: Merge or simplify
redundant or equivalent expressions, while preserving the meaning and tone
(e.g., politeness, speculation). - CUT: Intentionally split the sentence
into two shorter, independently translatable units. Use only when the
sentence is long or syntactically complex. - PRONOUN: Replace a repeated
noun phrase with a pronoun ONLY IF the referent is unambiguous. Keep to
the original word order and meaning, and do the new actions only if it
considerably improve the latency or quality of interpretation. Based on dev
set evaluation: - DROP → AL ≈ 0.851s, BLEU ≈ 58.94 - PARTIAL_SUMMARIZATION
→ AL ≈ 0.847s, BLEU ≈ 60.33 - CUT → AL ≈ 0.824s, BLEU ≈ 60.28 - PRONOUN
→ AL ≈ 0.858s, BLEU ≈ 60.85 Only use DROP, PARTIAL_SUMMARIZATION, or
CUT if they reduce latency without hurting translation quality. --- You
will receive the full source sentence. Your job is: 1. Simulate the
step-by-step translation process internally; 2. Carefully choose the action
to take at each step **strictly based on the statistics provided above**; 3.
Output: action sequence of every step, explanation of choosing each action,
and the full translation of the sentence. 3. You are given only the prefix
of the source. DO NOT use any information beyond the current prefix. If you
find yourself relying on unseen future words, output the token <VIOLATION>
and stop. Source sentence:<input sentence>
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To verify that our setting does not exploit unseen future tokens, we conducted a prefix-feeding sanity
check. For a source sentence 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛), we iterate 𝑡 = 1 to 𝑛. At step 𝑡, the model receives
only the prefix 𝑥1∶𝑡under the same instruction template as our main prompt; it outputs one action
from READ, WRITE, DROP, CUT, PARTIAL_SUMMARIZATION, PRONOMINALIZATION. If
an outputting action is chosen (e.g., WRITE or PARTIAL_SUMMARIZATION), the model must emit an
incremental target fragment. Crucially, previously emitted target tokens are immutable: later steps
may append but never revise earlier output, i.e., the target stream is prefix-monotonic.

Instruction. We append the following constraint to the end of the main prompt:

You are a simultaneous translation(en-zh) agent. Your task is to read
a source sentence word by word, and decide what action to take at each
step to optimize the balance between translation quality and latency.
Keep to the original meaning and word order of the sentence when doing
translation You can choose from the following actions: - READ: Wait for
the next source word (default). - WRITE: Output a target word or phrase.
- DROP: Remove previously read word(s) if they are meaningless fillers
(e.g., ``uh", ``um"), repetitions, false starts, or self-corrections. Use
only when clearly justified. - PARTIAL_SUMMARIZATION: Merge or simplify
redundant or equivalent expressions, while preserving the meaning and tone
(e.g., politeness, speculation). - CUT: Intentionally split the sentence
into two shorter, independently translatable units. Use only when the
sentence is long or syntactically complex. - PRONOUN: Replace a repeated
noun phrase with a pronoun ONLY IF the referent is unambiguous. Keep to
the original word order and meaning, and do the new actions only if it
considerably improve the latency or quality of interpretation. Based on dev
set evaluation: - DROP → AL ≈ 0.851s, BLEU ≈ 58.94 - PARTIAL_SUMMARIZATION
→ AL ≈ 0.847s, BLEU ≈ 60.33 - CUT → AL ≈ 0.824s, BLEU ≈ 60.28 - PRONOUN
→ AL ≈ 0.858s, BLEU ≈ 60.85 Only use DROP, PARTIAL_SUMMARIZATION, or CUT
if they reduce latency without hurting translation quality. --- You will
receive **a word at one time** Your job is: 1. Simulate the step-by-step
translation process internally; 2. Carefully choose the action to take at
each step **strictly based on the statistics provided above**; 3. Output:
At each step, output the action you chose and the incremental translation.
If you choose READ or other actions that don't yield a translation, do
not output the translation. Just give me the action. When given the
complete sentence, output the whole sentence based on previous incremental
translations. You are not allowed to modify or overwrite your previous
output, only incremental translations are allowed.

One-sentence demonstration. Source:“The method works well for the cases where long inputs are
considered.”t=4 (prefix“The method works well”): action=WRITE →“该方法运行良好”；t=6
(“The method works well for the cases”): action=READ (no output); t=8 (“⋯for the cases where
long”): action=CUT → append“，尤其适用于”；t=11 (“⋯where long inputs are considered”
): action=WRITE → append“长输入的情形。”Final concatenation (end of sentence): “该方法
运行良好，尤其适用于长输入的情形。”

Finding. Running this prefix-feeding procedure with the same template and decoding settings pro-
duces translations that are nearly identical to those obtained with the single-shot prompt used in our
main experiments (differences are limited to minor punctuation or phrasing). We did not observe
evidence of future-token leakage: the incremental fragments at step 𝑡 remain stable when we ran-
domize the unseen suffix 𝑥1∶𝑛, and the final full-sentence outputs match the single-shot results up to
negligible surface variation.

A.2 BATCH GENERATION FROM GPT-4O

We generate action-controlled SiMT outputs under a unified, reproducible pipeline. Inputs are line-
delimited English sentences that are trimmed, deduplicated, and split into .jsonl shards; each sam-
ple is assigned a non-reversible hash as custom_id for idempotency and result alignment. Each
.jsonl line specifies a /v1/chat/completions call with an identical prompt template that en-
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forces online-style translation (final translation only, with only specified actions allowed, minimal
long-distance reordering), fixed decoding and randomness controls (seed, temperature/top-𝑝, max
tokens), and response_format=json_object for structured parsing. Shards are submitted as inde-
pendent batch jobs. Determinism is maintained by fixing seeds, model and dependency versions, the
prompt template, and a stable write order after deduplication; outputs are merged and de-duplicated
by custom_id before scoring. All methods share the exact same inputs, prompt, decoding parame-
ters, and post-processing, ensuring that any systematic bias from the measurement pipeline is constant
across systems and suitable for reliable relative latency and quality comparison.

A.3 LATENCY-AWARE TTS PIPELINE

1. Apply Whisper large-v2 (Radford et al., 2022) to get timestamps of each English word in the
source sentence.

2. Find best word level alignment between source and target sentences with SimAlign (Sabet et al.,
2020).

3. Insert <WAIT> tokens before the target words if it appears before corresponding source words. In
this way, we form causal alignment where the target words are never spoken before the source
words.

4. Get segment timetables for target sentences. Specifically, <WAIT> tokens divide the sentences
into segments, and the starting time to say each segment is decided by the starting time of the
source word corresponding to the first word in this segment (represented by W). Two situations
may happen: the source word is spoken before or after the previous word in target sentence was
spoken. In the former case, the succeeding segment can be merged to the previous segment, while
in the latter case, the succeeding segment should be spoken when W is spoken.

5. Synthesize speech using the segment timetables and merge them into a whole sentence with
Cozyvoice2 (Du et al., 2024).

A.4 DYNAMIC IN-CONTEXT LEARNING

As stated in the main body, we applied retrieval-based DICL with two methods:

• Keyword extraction + sentence classification: We build a category-based few-shot library by clas-
sifying English–Chinese sentence pairs with keyword matching. This enables the model to retrieve
examples that are more directly relevant to the current input.

• Embedding clustering: We embed English–Chinese sentence pairs with the all-MiniLM-L6-v2
SentenceTransformer model (Reimers & Gurevych, 2020; Wang et al., 2020), then apply K-means
clustering to group semantically similar pairs. At inference, the model retrieves examples from the
cluster most similar to the current input.

A.5 LATENCY EVALUATION

To evaluate latency at the speech level, we adapt the standard Average Lagging (AL) metric into
a time-based version measured in seconds. The inputs are the source English speech segmented
into words with end times 𝑡1, 𝑡2, … , 𝑡|𝑋| (from Whisper word-level alignment) and the target Chi-
nese speech synthesized with TTS and re-aligned using Whisper, which provides timestamps
𝜏1, 𝜏2, … , 𝜏|𝑌 | for each generated unit (word or character).

We define 𝑔(𝑡) as the number of source words whose end times are earlier than or equal to the start
time of the 𝑡-th target unit:

𝑔(𝑡) = |{𝑗 ∶ 𝑡𝑗 ≤ 𝜏𝑡|.

The ratio of target to source length is 𝛾 = |𝑌 |
|𝑋| . We further denote 𝜏∗ = min 𝑡 ∶ 𝑔(𝑡) = |𝑋| as the first

step at which all source words have been covered.

For each target step 𝑡 ≤ 𝜏∗, both the policy index 𝑔(𝑡) and the diagonal index 𝑡−1
𝛾 are projected back

to the time axis using linear interpolation over 𝑡𝑗, denoted as time(𝑔(𝑡)) and time((𝑡 − 1)/𝛾). The
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Algorithm 1: Time-based Average Lagging (ALsec)
Input: Source word end times {𝑡1, … , 𝑡|𝑋|} (monotonic); target unit onset times {𝜏1, … , 𝜏|𝑌 |}
Output: ALsec

𝛾 ← |𝑌 |/|𝑋|;
for 𝑡 ← 1 to |𝑌 | do

𝑔(𝑡) ← ∣{ 𝑗 ∣ 𝑡𝑗 ≤ 𝜏𝑡 }∣ ; // # source words finished by 𝜏𝑡
𝜏∗ ← min{ 𝑡 ∣ 𝑔(𝑡) = |𝑋| };
if no such 𝑡 then

𝜏∗ ← |𝑌 |
Define TIMEATINDEX(𝑥; 𝑡1, … , 𝑡|𝑋|) as:

if 𝑥 ≤ 1 then return 𝑡1; if 𝑥 ≥ |𝑋| then return 𝑡|𝑋|;
𝑖 ← ⌊𝑥⌋; 𝑤 ← 𝑥 − 𝑖;
return (1 − 𝑤) 𝑡𝑖 + 𝑤 𝑡𝑖+1;

𝑠 ← 0;
for 𝑡 ← 1 to 𝜏∗ do

𝑥pol ← max(1, min(|𝑋|, 𝑔(𝑡)));
𝑥diag ← max(1, min(|𝑋|, (𝑡 − 1)/𝛾));
policyTime ← TIMEATINDEX(𝑥pol; 𝑡1, … , 𝑡|𝑋|);
diagTime ← TIMEATINDEX(𝑥diag; 𝑡1, … , 𝑡|𝑋|);
𝑠 ← 𝑠 + (policyTime − diagTime);

return ALsec ← 𝑠/𝜏∗;

time-based AL is then defined as

ALsec = 1
𝜏∗

𝜏∗

∑
𝑡=1

[time(𝑔(𝑡)) − time( 𝑡−1
𝛾 )] .

This metric measures, in seconds, how much later the system commits target units compared with
an ideal policy that follows the diagonal perfectly. In practice, we take the English word timestamps
from Whisper as the reference timeline, the target emission times from TTS followed by Whisper
alignment, and apply linear interpolation to map fractional token indices to real-valued source times.
This ensures that AL reflects the true temporal delay rather than token-level alignment alone, making
it a more faithful measure for speech-based simultaneous translation.

A.6 STEP-BY-STEP GENERATION OF ACTION SEQUENCE

We display examples of outputs of LLM that generate step-by-step action choices and explanation.

Example 1 See action sequence in Table 4.

Source: We design our experiment as leave one out ah evaluation where we train FeSTe over sixteen
datasets and apply it to the seventeenth dataset.

Translations: (Ours)我们将实验设计为留一法评估,其中我们在十六个数据集上训练 FeSTe,
并将其应用于第十七个数据集。[BLEU: 61.31]

(Salami)我们设计了我们的实验,作为留一法评估,在这里我们训练 FeSTe在十六个数据集上,
并将其应用于第十七个数据集。[BLEU: 38.58]

Example 2 See action sequence in Table 5.

Source: Or in other words, we trained the language model to classify an abstract and class ah to
abstract and class ah, if the abstract belongs to the class or not.

Translations: (Ours)换句话说,我们训练了语言模型,将摘要和类别分类,无论摘要属不属于
类。[BLEU: 53.67]
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Step Source word Action Output (if have) Explanation
1 We READ — Wait for the predicate; subject alone is incomplete.
2 design READ — Likely a“design⋯as”frame; need object and comple-

ments.
3 our READ — Part of the object NP.
4 experiment WRITE 我们将实验设计 Core clause“we design our experiment”is complete;

emit core without preempting“as”.
5 as WRITE 为 “design⋯as”is now confirmed; add“为”.
6 leave READ — Part of a fixed term.
7 one READ — Part of a fixed term.
8 out WRITE 留一法 “leave-one-out”fully recognized; safe to emit early.
9 ah DROP — Clear filler; drop to reduce latency.
10 evaluation WRITE 评估 Completes the term“leave-one-out evaluation”.
11 where WRITE ,其中 Clause linker; output for fluency.
12 we READ — Wait for predicate and object.
13 train READ — Wait for object and prepositional phrase.
14 FeSTe READ — Needs the following PP before emitting.
15 over READ — Preposition observed; needs its object.
16 sixteen READ — Wait for the head noun.
17 datasets WRITE 我们在十六个数据集上训

练 FeSTe
VP complete with PP; output in Chinese word order.

18 and READ — Could coordinate a verb or NP; hold to avoid guessing.
19 apply WRITE ,并 Seeing“apply”confirms coordinated verb; output“,

并”.
20 it PRONOUN 将其应用 Pronoun refers to FeSTe; emit core predicate “应用”

only; defer the“于”.
21 to WRITE 于 “to”arrives; add“于”to complete“应用于”.
22 the READ — Determiner; no emission needed.
23 seventeenth READ — Wait for the noun to complete the phrase.
24 dataset WRITE 第十七个数据集。 Target NP complete; finalize the sentence.

Table 4: Simultaneous translation actions with Chinese outputs and English explanations. Textual
output of LLM: Here’s my simultaneous translation decision trace (word-by-word), choosing special
actions only when they improve latency/quality per the given stats (PRONOUN best BLEU ≈60.85;
PARTIAL_SUM ≈60.33 with low AL; DROP helps latency with minimal loss)

(Salami)换句话说,我们训练了语言模型来分类一个摘要,并将类别 ah分类为摘要和类别 ah,
判断该摘要是否属于该类别。[BLEU: 32.16]

A.7 ADAPTIVE BEHAVIOR

In order to examine whether the model adapts its action choices according to the statistics provided in
the inference prompt, we designed an additional experiment focusing on sentences with the longest
AL.

We first selected the 100 sentences from the eval set that yielded the longest AL under step-by-step
inference with the original prompt. For each of these sentences, we then modified the inference
prompt by artificially changing the statistics of one action:

In two separated experiments, we raised the BLEU score and lowered the AL of PAR-
TIAL_SUMMARIZATION and SENTENCE_CUT respectively.

This manipulation effectively encouraged the model to prefer the corresponding action, while keeping
all other settings unchanged.

Table 6 reports the results. In both cases, the model indeed invoked the promoted action more fre-
quently. Consequently, the translations achieved a significant reduction in AL compared with the
baseline, while semantic-based quality metrics decreased only marginally. These results clearly show
that the LLM does not merely follow a fixed template, but actively adjusts its behavior in response
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Step Source
word

Action Output (if have) Explanation

1 Or READ — Connector starts a phrase; nothing emit-worthy
yet.

2 in READ — Functions as a preposition within a set phrase;
unit still incomplete.

3 other READ — Phrase remains incomplete; no stable unit.
4 words, PARTIAL_SUM-

MARIZATION
换句话说, Idiomatic connective is complete with the current

token; concise Chinese connective is appropriate.
5 we READ — Subject present; predicate absent.
6 trained READ — Verb present; object absent.
7 the READ — Determiner begins an NP; incomplete.
8 language READ — Inside the NP; still incomplete.
9 model WRITE 我们训练了语言模型 Head noun closes the NP; the SVO clause is com-

plete and safe to emit.
10 to READ — Infinitive marker introducing purpose; verb pend-

ing.
11 classify READ — Infinitive verb identified; requires object(s).
12 an READ — Article; NP not yet formed.
13 abstract READ — First object candidate; object remains open.
14 and READ — Coordinator indicates multiple conjuncts; still

open.
15 class WRITE 将摘要和类别分类 Object closes with the current head; combine with

“classify”to emit.
16 ah DROP — Filler; drop.
17 to READ — Preposition starting a new phrase; attachment un-

resolved.
18 abstract READ — Repetition of earlier content; potential redun-

dancy.
19 and READ — Coordinator within the repeated span; still unre-

solved.
20 class DROP — Local repetition (“abstract and class”) estab-

lished; drop as redundant.
21 ah, DROP — Filler; drop.
22 if READ — Introduces a condition; polarity and scope not yet

determined, so no emission.
23 the READ — Article; NP not yet formed.
24 abstract READ — Head noun appears; complement still missing.
25 belongs READ — Predicate present; complement pending.
26 to READ — Preposition present; object missing.
27 the READ — Article for the object NP; head not yet present.
28 class READ — Object head present; condition’s polarity still un-

specified; hold.
29 or READ — Coordinator signals an alternative; construction

not closed.
30 not. WRITE ,无论摘要属不属于类 Polarity is explicit; realize the condition with the

compact“无论⋯”construction.

Table 5: Step-by-step simultaneous translation actions for the sentence. Textual output: Here’s my
step-by-step sim of the simultaneous translation, with actions chosen to balance latency and quality
(using DROP for fillers, PARTIAL_SUMMARIZATION to merge redundancy.

Setting BLEU chrF TER COMET-da COMET-KIWI AL (s)
Baseline (default prompt) 63.87 45.94 139.66 0.8886 0.7903 2.120
PARTIAL_SUMMARIZATION (↑) 53.60 37.38 152.59 0.8745 0.7896 1.269
SENTENCE_CUT (↑) 49.29 34.52 137.93 0.8598 0.7707 1.322

Table 6: Effect of boosting one action’s BLEU and lowering its AL in the inference prompt on the
top-100 high-AL sentences.

to the provided per-action statistics. By preferring actions that appear more favorable in terms of the
quality–latency trade-off, the model autonomously rebalances its strategy, demonstrating its capabil-
ity to internalize external signals and to optimize interpretation decisions dynamically.
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An example is provided below to show different decisions the LLM made when being informed by
different statistics.

Source sentence: There has been a growing interest in the influence of English on other languages ah
particularly ah related to English lexical borrowings, borrowings which sometimes have been called
Anglicisms.

Baseline: 人们对英语对其他语言的影响的关注日益增加，尤其是与英语词汇借用有关——
这种借用有时被称为“英语化”（Anglicisms）。

PARTIAL_SUMMARIZATION↑: 人们日益关注英语对其他语言的影响，尤其是与英语词汇借
用相关的方面，这些借用有时被称为“英语化”。

In the translation process of this sentence, the second version utilized PARI-
TAIL_SUMMARIZATION more often than the first version. As a result, the segment “There has
been a growing interest in the influence of English on other languages” is translated more concisely
with less word reordering. This helps improve the latency of this sentence remarkably.

A.8 LLM USAGE

This section describes the precise roles of large language models (LLMs) in our work, in accor-
dance with the conference policy. LLMs were used both as components of our SiMT system and as
general-purpose assist tools; they are not authors, and the human authors take full responsibility for
all content.

Models and versions. GPT-4o (gpt-4o-2024-05-13); Qwen3-8B; ChatGPT-5 (for editing).

Roles in experiments.

• GPT-4o: Generated salami-based and action-adapted translations on the ACL60/60 En-
glish→Chinese and English→German dev sets.

• Qwen3-8B: Served as the base model for TransLLaMA supervised fine-tuning, few-shot learning,
and DICL; also used for inference with both salami-based and action-adapted prompts.

Roles in writing.

• ChatGPT-5: Used strictly for copy-editing (grammar, wording, and minor style/formatting). It did
not draft sections, introduce claims, or restructure arguments. All technical content, experiments,
analyses, and conclusions were written and verified by the authors.

All model outputs (translations and edited text) were reviewed for accuracy; any errors were corrected
by the authors. The authors accept full responsibility for the submission, including any content
assisted by LLMs. LLMs are not eligible for authorship.
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