© ® N O o A~ W N =

Embracing Evolution: A Call for Body-Control
Co-Design in Embodied Humanoid Robot

Anonymous Author(s)
Affiliation
Address

email

Abstract

Humanoid robots, as general-purpose physical agents, must integrate both intelli-
gent control and adaptive morphology to operate effectively in diverse real-world
environments. While recent research has focused primarily on optimizing control
policies for fixed robot structures, this position paper argues for “evolving both
control strategies and humanoid robots’ physical structure under a co-design mech-
anism”. Inspired by biological evolution, this approach enables robots to iteratively
adapt both their form and behavior to optimize performance within task-specific and
resource-constrained contexts. Despite its promise, co-design in humanoid robotics
remains a relatively underexplored domain, raising fundamental questions about its
feasibility and necessity in achieving true embodied intelligence. To address these
challenges, we propose practical co-design methodologies grounded in strategic
exploration, Sim2Real transfer, and meta-policy learning. We further argue for the
essential role of co-design by analyzing it from methodological, application-driven,
and community-oriented perspectives. Striving for guiding and inspiring future
studies, we present open research questions, spanning from short-term innovations
to long-term goals. This work positions co-design as a cornerstone for developing
the next generation of intelligent and adaptable humanoid agents.

1 Introduction

As an emerging research area, Embodied Al posits that intelligence stems from an agent’s ability to
actively explore, interact with, and learn from its environment in a continuous and dynamic manner.
Within this learning paradigm, recent studies have developed various robot control models based on
deep neural network backbones, enabling scalability across diverse tasks and environments [[1, 2} 13} 4].

In studies of embodied robot agents, their skills are closely tied to the physical form. For example,
robot arms, grippers, and dexterous hands are commonly employed for manipulation tasks such
as grasping, placing, and assembling objects [5,16]. Similarly, wheeled robots, bipedal robots, and
quadrupedal robots are designed for locomotion tasks, including walking, climbing, and navigation [7]].
To develop general-purpose robots, recent studies have focused on humanoid robots. Equipped with
dual arms, legged body, and advanced sensors, humanoid robots are well-suited for a wide range of
mobile locomotion tasks, enabling them to seamlessly handle everyday tasks [8} (9,10} [11].

In recent years, the development of humanoid robots has primarily centered on control policy design,
typically built upon predefined physical structures. These robotic designs are often the result of
manual engineering and domain-specific heuristics, which are rarely subject to optimization within
the embodied humanoid system. However, embodied intelligence is not solely determined by control
performance, but is also fundamentally grounded in agents’ physical structure [[12]]. For instance,
in natural systems, organisms evolve their body morphology to adapt to changing environmental
conditions. Similarly, embodied agents should incorporate evolutionary mechanisms to adapt to task
requirements and environmental dynamics.

An effective method of realizing such evolutionary mechanisms is the robotic co-design problem,
which seeks to jointly optimize both the control policy and the morphological design of robotic
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Figure 1: The co-design framework for humanoid robots, which can be formulated as a bi-level
optimization problem, consisting of two interconnected phases: 1) learning the control policy for the
humanoid robot, and 2) designing the robot’s physical structure (Section [3.I).

systems [13]. While prior studies have explored co-design in quadruped robots [14} [15], soft
robots [16]], bi-piedal robots and modular robots [19, 20] (see Table[I), its extension to more
advanced humanoid robots and connection to embodied intelligence remains largely unexplored. It
remains unclear how to efficiently discover the optimal design of a generalist humanoid robot capable
of performing a variety of tasks. More importantly, the necessity of addressing such co-design
problems in the development of embodied humanoid robots has yet to be fully established.

This article provides a principled formulation of the humanoid co-design problem, emphasizing that
evolving physical structure is both feasible and essential for realizing embodied intelligence
in humanoid robots. Specifically, we formulate the humanoid co-design problem as a bi-level
optimization. Such an optimizer can be integrated into the reasoning—acting architecture of an
advanced controlling model, enabling an embodied humanoid robot to exhibit dexterity, mobility,
perception, and intelligence.

Beyond the proposed formulation, we investigate an alternative perspective for realizing embod-
ied humanoid robots based on predefined and manually specified designs. We analyze why such
paradigms prevail in recent humanoid robotics research and examine the potential challenges of
adopting co-design, particularly regarding algorithmic complexity, physical evaluation, and design
scalability. To address these challenges, we introduce advancements in learning-based solvers, such
as strategic robot structure exploration, the Sim2Real learning paradigm, and meta control policy,
highlighting the feasibility of evolving humanoid robot architectures.

To understand the necessity of humanoid robot co-design, we investigate its unique advantages
in facilitating robot morphology optimization, real-world task adaptation, and cross-disciplinary
collaboration, examined from the perspectives of methodology, application, and community. To
realize these key advantages, we identify open questions within the humanoid robot co-design
problem, highlighting those that may be tractable with current methodologies in the short term, as
well as those that may depend on long-term advances in emerging research domains.

2 Embodied Humanoid Robots

2.1 Architecture Of Humanoid Robot Full-Size Humanoid Simplified Humanoid Wheeled Humanoid Chll(dk;:\i;if:\.-l;nma;\md

Figure 02 (no end-effector) (noleg)
Atlas Galbot G1 Unitree G1

Humanoid robots are a specialized type of phys-
ical robot designed to replicate human-like func-
tionality [21]]. An ideal humanoid robot often
has leggy designs in its lower body, featuring a
bi-pedal structure that enables finishing locomo-
tion tasks like walking, running, and maintain-
ing balance. The upper body includes dual arms
equipped with dexterous hands as end-effectors,
allowing the robot to perform complex tasks that
require precise manipulation and human-like
hand movements. Their sensor systems com-
monly provide both proprioception and extero-
ception. Proprioception ensures internal body

Figure 2: Examples of humanoid robots with vary-
ing physical structures are shown from left to right:
full-sized, simplified, wheeled, and child-sized hu-
manoid robots.
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awareness by monitoring joint positions, angular velocity, and pose estimation, while exteroception
enables perception of external states, such as LIDAR sweeps and RGB-D data.

While such designs are ideal, building and fine-tuning a humanoid robot’s architecture typically
demands substantial effort and resources. This often necessitates certain simplifications, such as
1) omitting end effectors in the dual arms, 2) constructing child-sized robots instead of full-sized
ones, 3) utilizing a wheeled base for the lower body, and 4) downplaying the amounts and quality of
sensors. Figure 2| provides illustrative examples of humanoid models.

Desideratas for Humanoid Robot. Given their human-like body structure, a fundamental require-
ment for humanoid robots is the ability to operate seamlessly within human environments. This
enables them to collaborate closely with humans or take on dangerous or physically demanding
tasks. During operation, the robot should exhibit natural behavior, adhering closely to human behav-
ioral norms, even when performing long-term tasks across varying environments. These desiderata
demand a control model with strong generalizability and adaptability, which traditional optimization-
based control methods often struggle to achieve. Essentially, fulfilling this requirement calls for the
development of embodied intelligence in humanoid robots.

2.2 Embodied Intelligence in Humanoid Robot

Unlike traditional approaches that rely on passively learning from fixed datasets, Embodied Artificial
Intelligence (E-Al) requires agents to actively explore, interact with, and learn from their environment
in a continuous and dynamic manner. Specifically, to enable the learning of an embodied humanoid
robot, it often requires the robot to have four key abilities, including: 1) Dexterity: the ability to
manipulate various objects with precision, delicacy, and intricacy. 2) Mobility: the capability to
move and navigate through environments with different terrains and conditions. 3) Perception: the
skill to gather, interpret, and understand environmental information from sensors. 4) Intelligence: the
ability to process information, reason about sub-goals related to a given task, and adapt effectively to
diverse tasks and environments.

These capabilities reflect not just the functionality of a humanoid robot in specific tasks like loco-
motion or manipulation but also emphasize generalization to a wide range of real-world scenarios,
thereby advancing toward zero-shot deployment of humanoid robots for realistic applications.

2.3 Implementation for Embodied Humanoid Robot.

To achieve the above abilities, recent studies have implemented embodied humanoid robots using a
two-layer architecture consisting of a high-level reasoning model and a low-level action model [22]
23| 124]. This hierarchical design is inspired by the functional organization of the human brain, where
the cerebrum is responsible for logical reasoning and decision-making, while the cerebellum governs
fine-grained motor control and coordination. These models are introduced as follows:

Humanoid Robot Reasoning Model. The reasoning model is typically implemented as a large-scale
robotics foundation model designed to perform logical reasoning over the necessary steps for a robot
to complete given tasks. The model takes as input natural language instructions describing the task,
along with perceptual data, primarily visual signals collected from the environment. Its outputs
consist of high-level plans to guide robotic execution. These may include sub-task descriptions and
intermediate goals, as well as more detailed robotic outputs such as motion trajectories, grasp poses,
and contact points (e.g., affordances). To learn this reasoning model, The training of the robotic
reasoning model is typically achieved by fine-tuning a pre-existing Vision-Language Model (VLM)
using refined robotic operation data, which is either collected through teleoperation or generated
using synthetic data engines.

Humanoid Robot Action Model. The action model takes the outputs from the reasoning model
(either as explicit data or implicit latent variables) as goals g € G and predicts the corresponding
control signals, such as joint angles or torques for the robot’s joints at each time step. To learn action
policies, previous methods commonly formulate the learning environment as a (partially observable)
Markov Decision Process (MDP). M = (S, A, O, Py, , po, "), where: 1) Within the state space S,
a state s € S records the complete environmental information and the robot’s internal states. 2) 4
denotes the action space, and action a € A denotes the angles or torques at joints of the humanoid
robot. 3) o € O denotes the observations obtained from the robot’s sensors, encompassing both
proprioceptive inputs that reflect the humanoid’s internal state and exteroceptive inputs that capture
information about the external environment. 4) r denotes the reward functions, which typically
consist of penalty, regularization, and task rewards. In particular, the magnitude of the task reward
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should closely reflect how well the robot accomplishes the given goal g. 5) Pr € Agx 4 denotes the

transition function as a mapping from state-action pairs to a distribution of future states. 6) g € A
denotes the initial state distribution. 7) v € (0, 1] denotes the discounting factor.

Under this MDP, the humanoid action model can be represented as a meta policy 7w € A“S“Xg that can
scale to diverse goals gG under different environmental states s € S. During training, the goal is to
maximize the expected cumulative discounted rewards:

mell

max j(ﬁaM) = Ig_lea’ﬁ(E/to,pT,ﬂ' l; ’YtT(Sta a’tvg)‘| (1)

3 Position Proposal and Alternative Views

In the following sections, we introduce a co-design framework that jointly considers control policies
and the evolution of humanoid morphology. Additionally, we present an alternative perspective:
embodied intelligence should be grounded in predefined humanoid structures without evolution.

3.1 A New Perspective: Co-Designing Control and Evolution Policies

In natural environments, animals exhibit remarkable embodied intelligence, leveraging their evolved
morphologies to learn and perform complex tasks [12]]. Inspired by this, we argue that evolutionary
principles should play an essential role in the development of embodied humanoid robots. While
prior research commonly focused on perception, reasoning, and control within fixed robot structures,
our position is that the robot’s physical form itself should also be subject to optimization as a core
component of its design. The simultaneous optimization of a humanoid robot’s action model El)
and physical components can be formulated as a co-design problem, integrating both control and
morphology in the design process.

As illustrated in Figure |2} the robot co-design problem requires the joint optimization of both control
policies and physical robot modules to maximize overall performance, while adhering to resource
constraints such as cost [13]. When extending this framework to a learning-based setting, the co-
design task typically involves a forward pass for training the control policy and a backward pass for
updating the robot’s physical parameters.

Specifically, during the forward process, we use the RL algorithm to optimize the goal-aware policy
function by maximizing 7 (m, M) in the objective , where the configuration of this learning
environment (i.e., MDP) depends on a specific physical physical robot structure, denoted by ¢ € V.
Based on the policy performance, we conduct an inverse update on the robot’s structure, which
necessitates formulating humanoid robot co-design as a bi-level optimization problem. Moreover, the
design often incorporates system-level constraints, which define strict requirements for the desired
system behavior (e.g., resembling human behavior) or impose limitations on the resources (e.g., costs
of robot modules) [[13]]. The optimization problem can be described as:

max mex J(m, My) st fe(¥) <€ 2

3.2 Alternative Views: Intelligence Arises from Fixed Humanoid Robots Structure

While the co-design approach provides a significantly broader design space for enhancing the
performance of humanoid robots, most recent studies, spanning manipulation [25} 26| 27/, locomo-
tion [28. 29, 30} 31]], and human motion imitation (i.e., teleoperation) [32} 8} [10} [1.1} 19} 33], continue
to focus on controlling fixed, pre-defined humanoid platforms, without considering structural modifi-
cations to the robot itself. Even with the recent surge in exploring embodied intelligence in humanoid
robots across a wide range of everyday tasks [34l], robotic co-design, as an effective technique in
robotics research, remains largely underexplored in this context [35]. This trend reflects a prevail-
ing assumption that "The predefined and fixed physical structures are sufficient for supporting the
development embodied humanoid robots".

This perspective essentially treats the robot’s structure as a fixed component of the environment’s
dynamics, which can be estimated and adapted to, but not actively optimized. Conceptually, this
assumption is prevalent in the RL literature [36], which serves as a foundational algorithm for

'Since compare to robot acting, task reasoning is typically less dependent on the robot’s detailed physical
structure and updating a VLM is often costly, the reasoning model is generally not updated alongside changes to
the robot’s morphology.
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learning-based control in humanoid robots and inherently shapes subsequent research directions.
More importantly, in practice, there are significant challenges associated with co-designing humanoid
robots, further reinforcing the reliance on manually designed, fixed-structure humanoid platforms.

1) Complexity of the Co-design Problem. In addition to learning control policy, the co-design
problem incorporates an second-level optimization loop for refining the robot’s physical design [[13}
12,137, 1154117, 138]]. For humanoid robots, this process becomes especially challenging due to their
complex upper and lower body structures, which often involve varying configurations of motors,
joints, sensors, and body components. Consequently, exploring the high-dimensional design space and
identifying optimal configurations demands substantial computational resources. In many cases, due
to the intricate interdependencies between the design and control parameters, the bi-level optimization
in the co-design problem may struggle to converge. Without additional restrictions, the optimal
solution may not be uniquely identifiable or even computationally tractable.

2) Difficulties in Physical Evaluation. To evaluate the optimality of a humanoid robot structure, it is
crucial to deploy the robot in task-specific scenarios and assess how effectively it can adapt its control
model to complete those tasks. This process often requires modifying certain components of the
robot based on the proposed design. However, unlike simpler robotic systems, humanoid robots have
highly complex and interdependent structures [39, 21} 40]. Modifying one part frequently leads to
changes in the robot’s overall physical configuration. For instance, adjusting the length of the thighs
affects the robot’s weight distribution and center of mass. These changes, in turn, influence both
kinematic properties (e.g., motions and velocities) and dynamic characteristics (such as inertia and
gravity models). The technical challenges in physical reconfiguration limit the feasibility of iterative
structural design and evaluation in real-world applications.

3) Limited Scalability Across Tasks. Robotic co-design typically aims to enhance performance
for specific tasks [[13]]. For instance, [[17] optimized the leg length of a bipedal robot to achieve
maximum walking velocity. Similarly, [15| 41] explored the joint optimization of mechanical
structures and control policies to improve the locomotion capabilities of quadruped robots. However,
embodied humanoid robots, with physical structures resembling those of humans, are designed
to generalize across a wide range of tasks and environments within human workspaces. This
requires multi-dimensional capabilities, including dexterity, mobility, perception, and intelligence
(Section 2.2). The task-specific optimization frameworks commonly used in traditional robotic
co-design cannot be directly applied to the inherently cross-task nature of humanoid robots. This
lack of task scalability limits the overall utility of co-designed systems, particularly when targeting
general-purpose humanoid platforms intended for reuse across diverse applications.

4 Feasibility of Co-Designing Humanoid Robot

To address the inherent challenges of humanoid robot co-design, this section investigates its feasibility
by proposing a set of potential solutions. In particular, we introduce three key strategies: strategic
exploration, the Sim2Real paradigm, and meta-policy learning. These approaches are aimed at
tackling critical issues in co-design, including the complexity of joint design and control, the
challenges of physical evaluation, and the limited scalability across diverse tasks. Moreover, by
leveraging recent advances in control algorithms, simulated environments, foundation models, and
decision-making policies, these strategies establish a robust foundation for the development of
next-generation co-design algorithms for embodied humanoid systems.

4.1 Strategic Exploration under Constrained Design Space

In the co-design literature, genetic algorithms take a critical role in modifying robot structures via
crossover, mutation, and replacement operations [12} [14} [15} [17, 38]]. During this process, their
underlying exploration mechanisms are inherently random. This randomness results in unstructured
exploration, lacking informative priors or guidance toward designs that are more likely to yield
higher-performing robots. This challenge becomes especially pronounced in unstructured and high-
dimensional design spaces, such as those encountered in the development of humanoid robots, which
induces computational burden (see alternative views in Section [3.2).

To address this limitation, strategic exploration has emerged as a promising approach for accelerating
the search process. In the RL literature, a variety of algorithms have been developed to promote
more efficient exploration [42]]. For instance, recent work has proposed provably efficient strategies
based on Bayesian updates [43} 44], the Upper Confidence Bound (UCB) [45]], and uncertainty-
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driven heuristics [46, |47]], achieving significantly lower regret bounds compared to purely random
exploration. Motivated by these advances, we propose formulating the physical physical robot
structure process as an MDP, which enables the application of strategic exploration techniques to
more effectively explore the design space of humanoid robots.

In addition to accelerating exploration, another important strategy for ensuring computational tractabil-
ity and design identifiability is to constrain the design space with the following methods: 1) Rather
than modifying the entire robot structure, the exploration can be limited to a few key modules or
components. For instance, [18| 41] focused on optimizing the thigh and shank lengths of humanoid
robots. Similarly, [37] investigated the configuration of various motors and the inertial parameters of
robot links. Other studies, such as [48|[15]], examined the parameters of parallel elastic knee joints. 2)
From a theoretical perspective, a key approach to ensuring the convergence of bi-level optimization is
to bound the range of the design parameters. By utilizing a compact design space and bounding the
objective function in Equation 2] the Extreme Value Theorem (EVT) [49] guarantees the existence
of a maximum. In this context, given a continuous objective function, the bi-level optimization can
converge to an optimal (but not necessarily unique) solution (7*, ¥*).

By strategically exploring a compact and bounded design space focused on key modules of the
humanoid robot, the computational burden of humanoid robot co-design can be significantly reduced.
This approach substantially alleviates the complexity of the bi-level optimization process (Section[3.2).

4.2 A Sim2Real Paradigm for Evaluation and Deployment

Guiding structural updates of humanoid robots typically requires evaluation signals from the current
design. Traditional robot co-design studies often involve building physical hardware and assessing its
performance in real-world tasks [20} (18|15, 48]]. However, as discussed in alternative perspectives
(Section [3.2), this real-world design and evaluation approach is not directly applicable to humanoid
robots due to the complexity of their physical structures.

Instead of relying on real-world evaluations, an alternative and effective approach is to conduct
both the design and evaluation of robots within simulated environments. For example, studies such
as [50L 51]] and [[15 411 [17] utilize simulators like MuJoCo and Isaac Gym to learn control policies
and evaluate the task performance of various physical robot structures. While simulation reduces
the cost and complexity of building physical hardware, the Simulation-to-Reality (Sim2Real) gap
remains a major challenge: a robot that performs well in simulation may not exhibit the same level of
performance in the real world. Additionally, for humanoid robots with soft components, accurately
simulating their morphology, especially for contact-rich interactions, remains difficult [52].

As a result, developing a feasible Sim2Real paradigm for humanoid co-design requires effective
strategies to bridge the gap between simulation and reality. Key approaches include: 1) Extending
domain randomization and domain adaptation techniques to humanoid control environments, which
remains a critical direction for future research [S3]]. 2) Developing simulation platforms with high
photorealism and physical fidelity to minimize the impact of the Sim2Real gap. For instance, recently
developed simulation environments and engines such as RoboCasa [34], Isaac Lab [54], MuJoCo-
Playground [35]], Genesis [56], and ManiSkill [S7] have demonstrated promising capabilities in
accurately modeling real-world scenes and physical interactions. 3) Beyond explicitly modeling
objects, scenarios, and physical laws, recent work has introduced the concept of the World Function
Model [58.,159]]. This paradigm treats simulation as a regression task, where the model predicts future
states of the environment in response to perturbations (i.e., actions). This offers a more flexible and
data-driven alternative to traditional simulators.

4.3 Controlling Humanoid Robot via Meta Policy

As discussed in Section traditional approaches to robotic design and control have primarily
focused on optimizing simple robots to complete specific tasks [13]. In contrast, embodied humanoid
robots, as complex, legged, dual-arm systems equipped with numerous sensors, are designed to
learn generalizable policies that can be applied across a wide range of tasks and environments. This
fundamental difference renders previously proposed robot co-design methods not directly transferable
to the problem of controlling embodied humanoid robots.

To enable the designed robot to perform effectively across multiple tasks, a critical approach is to
learn a meta-policy 7 that allows the humanoid robot to solve a wide range of everyday human
tasks involving both manipulation and locomotion [34]. In the context of humanoid control, the
meta-policy can be modeled as a goal-conditioned policy 7 : § x G — A, where a goal g € G
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may represent various forms of task specification, such as commands [31} [11, 29]], target poses [32,
8l], affordances [60, [61], or more generally, natural language descriptions of tasks [22| [24] 23]].
Recent advances in generalizable decision models, such as decision transformers [[62]] and diffusion
policies [[1]], provide effective backbone architectures for implementing such meta-policies, enabling
flexible and scalable control across a wide range of goal specifications.

To integrate robotic co-design into policy learning, goals can be randomly sampled from a predefined
goal pool during training. The robot’s policy is then conditioned on each goal and adapted according
to a proposed design configuration . Similarly, during evaluation, the effectiveness of a given
physical robot structure can be assessed by measuring how well it facilitates the learning of a policy
that successfully achieves a diverse set of goals across varying environments.

5 Necessity of Co-Designing Humanoid Robot

In the previous section, we explored the feasibility of jointly modeling the robot’s physical structure
and its control policy, outlining key strategies that make such co-design tractable. In this section, we
go a step further and argue for the necessity of co-design in the development of embodied humanoid
robots from the perspective of metrology, application, and community.

5.1 Methodology: Principled Optimization of Robot Morphology

While significant progress has been achieved using pre-designed humanoid robots in both locomotion
and manipulation tasks, there remains a lack of principled methods for evaluating the optimality
of these designs. In practice, to determine robot morphology in Figure 2} it commonly relies on
engineers’ intuition and experience, rather than through systematic optimization. Such practice
is often inefficient, since the robot’s physical design is independent of the training of its planning
models and control policies. The full capabilities and limitations of a given design often only become
apparent when other research groups attempt to tackle more complex locomotion or manipulation
tasks, revealing shortcomings that were not initially evident. These insights are used retrospectively
to inform the development of robots, which typically progresses slowly due to the lack of systematic
design methodologies. For example, in the initial design of the Unitree H1 robot, the limited degrees
of freedom (DoFs) in its arms significantly constrained its ability to perform manipulation tasks that
require rich interactions with objects. Recognizing this limitation, the developers addressed it in the
subsequent version, Unitree H1-2 [63]], by increasing the number of DoFs in each arm from 4 to 7.
However, this design revision took over a year to implement.

In addition to improving the efficiency of robot development, co-design can significantly enhance its
efficacy. From an algorithmic standpoint, allowing the robot’s design 1) to vary enables the learning
algorithm to explore a larger joint search space over both morphology and control. This expanded
space allows for the discovery of design-policy pairs that maximize overall performance:
!

max max T (7, My) > rpgg{c](m/\/lw), vy e W (3)
Here, J denotes the expected return of policy 7 in the environment defined by the morphology
M., This inequality highlights the potential performance gains from jointly optimizing both the
robot’s design and its control policy. Without principled optimization, manually identifying the
optimal design 1)* € W is highly challenging, particularly for humanoid robots expected to perform
diverse tasks and adapt to complex, real-world environments encountered in everyday scenarios. 7o
optimize both the efficacy and efficiency of discovering effective humanoid body designs, we argue
that humanoid robot co-design is essential.

5.2 Application: Adaptive Body Shaping for Real-World Tasks

In practice, the specific requirements for a humanoid robot’s capabilities vary depending on the
deployment environment of each real-world application. For example, in industrial settings, humanoid
robots are often tasked with manipulating a variety of objects for relocation, rearrangement, or
assembly. In such scenarios, dexterity becomes a critical factor, as robots must precisely and
efficiently handle components of different shapes, sizes, and material properties [64} 30, 31} 65 28].
In contrast, when deployed as patrol robots in environments such as university campuses or public
facilities, humanoid robots must robustly navigate to different locations under diverse terrains (e.g.,
slopes, stairs) and environmental disturbances (e.g., dynamic obstacles or weather conditions). In
these applications, robustness and mobility become the key performance criteria [66 |67, 26} [25]].
Most importantly, there exists a fundamental trade-off between dexterity and mobility in the design
of a humanoid robot’s body structure. Achieving dexterous manipulation typically requires highly
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flexible arms (with many DoFs) and delicate actuators. However, these design choices often result in
increased weight and a higher center of mass, which can influence the robot’s balance and reduce the
efficacy of locomotion tasks.

A similar trade-off observed in humanoid robots can also be found in human physiology. For example,
the body composition of boxers and runners differs significantly in terms of muscle distribution and
weight allocation. These athletes often dedicate substantial time to optimizing their bodies to enhance
the specific skills required in their respective sports. Just as athletes undergo intensive training camps
to simultaneously develop both their physical form and technical skills, the co-design process of a
humanoid robot’s body and control policy can be viewed as a training camp for humanoid robots. By
continuously adapting both morphology and behavior across diverse applications, we can dynamically
tailor robot structures that are best suited for the target tasks and desired applications. We argue that
the co-design is essential for the humanoid robot to adapt specifically to its target applications.

5.3 Community: Fostering Cross-Disciplinary Collaboration

Co-designing the control model and body structure of an embodied humanoid robot is fundamentally
a multidisciplinary research topic. It encompasses: 1) Machine learning expertise for processing
multi-modal sensory inputs, learning control policies, and performing high-level planning; 2) Robotics
design principles for modeling and optimizing the robot’s dynamics and kinematics; and 3) Mechani-
cal engineering knowledge for the manufacturing of structural components and the integration of
hardware systems. Each of these topics represents a significant research field with its own dedicated
communities and research groups.

Traditionally, these research communities have evolved and been explored independently. For
instance, machine learning is closely aligned with data-driven Al approaches, often emphasizing
theoretical and methodological advancements in software systems. In contrast, robotics design and
mechanical engineering emphasize the physical realization of hardware systems. However, when
it comes to humanoid robot co-design, it fundamentally relies on the joint optimization of these
domains, due to their deep and intricate interdependencies. Its advancement demands interdisciplinary
collaboration, and the development of unified frameworks capable of optimizing control algorithms,
morphological design, and hardware implementation in a coherent and efficient manner.

In recent years, cross-disciplinary collaboration, particularly under the AI+"X" paradigm, has played
a vital role in advancing scientific and technological breakthroughs. For example, AlphaFold [[68]]
exemplifies the synergy between deep neural networks and structural biology, revolutionizing protein
structure prediction. OpenAl Five [69] and AlphaStar [70] integrate deep RL with the gaming
and entertainment industry, pushing the boundaries of Al in complex, multi-agent environments.
Similarly, Med-PaLM [71]] bridges LLMs with medical knowledge, enabling Al-assisted healthcare
solutions. These successes highlight the transformative potential of combining Al with domain-
specific expertise. In this context, we argue that humanoid robot co-design is essential for its unique
capacity to foster cross-disciplinary collaboration across Al, robotics, and engineering.

6 Open Questions in Humanoid Robot Co-Design

To encourage further exploration of humanoid robot co-design, we propose a set of open questions
that may be addressed in both the short and long term.

Open Questions in Short-Term. We present open research questions that could be effectively
tackled by leveraging emerging techniques and models.

1) Efficient Representation for Robot Design. Deriving concise and informative representations of
data has been a key factor in the success of modern machine learning. In robotic learning tasks,
recent studies have explored efficient representations for various types of multi-modal data, including
language [[72], 2D images [[73]], 3D shapes such as point clouds [[74] and scenes [[75}[76]], and tactile
information [[77]. However, in most of these studies, the robot structure is fixed, and there has been
limited exploration of efficient representations for robot morphology. This lack of focus significantly
limits the efficiency of learning and adaptation in tasks involving adaptive robot design, particularly
those that rely on updating deep neural networks.

2) Benchmarking Robot Co-Design. In robot co-design, Sim2Real training plays a crucial role by
allowing the performance of co-design algorithms to be evaluated in simulated environments before
deployment on physical hardware (Section[4.2). However, unlike other robotic manipulations and
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location tasks with rich benchmarks [[78, 79, |5} |80l [7]], humanoid robot co-design, as a relatively
new research area, lacks commonly applied benchmarks. Instead, prior studies often customize
their tasks and environments according to specific goals, making it difficult to assess how well these
algorithms generalize to other settings. While these case-specific studies provide valuable insights for
physical robot structure, their applicability to other embodied humanoid robots, especially in diverse
tasks and environments, remains uncertain. As a result, establishing a standardized benchmark for
humanoid robot co-design emerges as an important and timely objective for the field, especially with
the availability of simulation platforms such as Isaac Gym [81]], MuJoCo [82], and Genesis [56].

3) Design-Aware Policy Optimization. In addition to learning meta-policies that can adapt to different
tasks and environments, an important open question is how to develop design-aware policies 7, :
S x G x ¥ — A[38]. Such policies are designed to generalize effectively across a range of different
robot morphologies, enabling adaptive action control even when the physical structure 1) changes.
When a modification in the robot’s body occurs, the policy can still perform reasonably well and,
with minimal fine-tuning, adapt to the new structure. In this way, the policy can effectively serve as
a morphology-aware controller, reducing the need for retraining from scratch whenever structural
changes are introduced. This capability is crucial for co-design frameworks, where iterative updates
to both control and morphology are expected. Ultimately, robust generalization across morphologies
not only accelerates the Sim2Real transfer process but also enhances the practicality and scalability
of humanoid robot deployment in dynamic, real-world environments.

Open Questions in Long-Run. We introduce promising robotic co-design research topics that
depend on the advancement of other emerging areas, which are actively being studied but have yet to
yield effective solutions.

1) Co-Designs with World Models. While learning-based co-design heavily relies on simulated
environments, the simulators typically use manually specified semantics, rules, and physical laws,
resulting in a non-negligible gap between simulation and the real world. To address this issue, recent
studies [59} 58] have proposed building World Function Models (WFMs) that learn dynamics directly
from real-world data. Inspired by the success of foundation models, WFMs are data-driven systems
that automatically learn real-world physics and dynamics based on actions, without relying on human-
designed assumptions. By jointly optimizing both the control policy and the robot morphology
structure using WFMs, the gap between simulation and real-world application can be significantly
reduced. However, developing reliable WFMs remains a challenging and long-term objective. As
such, co-design based on WEMs is expected to be a major goal for future research.

2) Co-Design Planning and Reasoning. Current co-design studies primarily focus on the joint
optimization of the action model and the robot structure. Although planning and reasoning models
are integral components of embodied humanoid control systems, they are typically not subject to
optimization during co-design and are instead used as pre-trained models. A major reason for this
is the heavy computational burden associated with inferring and updating these large-scale Vision-
Language Models (VLMs). In contrast, action models (i.e., policies) are relatively smaller, making
their optimization more computationally manageable. As a result, a promising future direction is
exploring the joint optimization of both reasoning and action models, so as the cover the entire
process of. Achieving this will require the development of highly efficient inference and learning
techniques (e.g., the use of Mixture-of-Experts (MoE) architectures), which remains an important
and active area of ongoing research.

7 Conclusion

This paper advocates for a body-control co-design paradigm in humanoid robotics, emphasizing
the joint optimization of both control strategies and physical morphology. Inspired by principles of
biological evolution, we argue that co-design is essential for achieving embodied intelligence, enabling
humanoid robots to adapt more effectively to diverse, dynamic real-world tasks. We demonstrate
the feasibility of this approach through strategic exploration, Sim2Real transfer, and meta-policy
learning, and highlight its necessity across methodological, application-driven, and interdisciplinary
perspectives. By integrating co-design into the development pipeline, we can embrace the potential
for more robust, generalizable, and intelligent humanoid systems. To guide future research, we
outline key open questions, ranging from representation learning, benchmarking, and design-aware
controlling to long-term integration with world models and reasoning systems. We position co-design
as a foundational approach for developing intelligent, adaptable, and general-purpose humanoid
robots capable of thriving in complex real-world environments.
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Table 1: The summary of recent studies and progress in robotic co-design.

Designing Method

Robot Type

Designing Parameters

Meta RL [14]

Quadrupedal Robot

Thigh and shank lengths; gear ratios of the actuators.

Bayesian Optimization [15]

Quadrupedal Robot

Parameters of parallel elastic knee joint.

ADMM [48]

Quadrupedal Robot

Parameters of parallel elastic actuation (PEA).

Bayesian Optimization [41]

Quadrupedal Robot

Thigh and shank lengths.

Implicit Function Theorem [83]

Quadrupedal Robot

Link length; actuator poses.

Adjoint Method [84]

Quadruped and Hexapod Robot

Link lengths; actuator poses; robot’s width and length

Evolution RL [17]

Lightweight Bipedal Robot

Thigh and shin lengths.

HZD Optimization [18]

Bipedal Robot

Thigh and shin lengths.

PPO [85] Modular Soft Robot 3D voxel-wise material assignments and spatial placement.
LLM-aided Evolution Search [86] Modular Soft Robot 3D voxel-wise material assignments and spatial placement.
Model Order Reduction [52] Modular Soft Robot The combination of actuator placement and pressure regulators.

DQN [20]

Modular Manipulating Robot

The combination of different modules.

RoboGAN [87]

Modular Locomoting Robot

Module type assignment on fixed-topology graph.

Graph Neural Network [88]

Modular Locomoting Robot

Size and position of limbs, type and range of joints

Particle Swarm Optimization [S1]

Modular Locomoting Robot

Leg segment lengths.

PPO [89]

Modular Locomoting Robot

The combination of limbs.

Neural Graph Evolution [90]

Modular Locomoting Robot

The combination of different modules.

PPO [91]

Modular Locomoting Robot

Limb length and size; joint rotation range and torque limit.

Quadratic Programming [92]

Ariticulated Robot

Geometry and inertia of links; torque limits of joints.

PPO [50]

Legged Locomoting Robot

Link length and mass.

Genetic Algorithm [37]

ErgoCub2 Humanoid Robot

Motor types and link inertial parameters.

CMA-ES [93]

Freedom Endoskeletal Robot

Limb length; soft and rigid radii.

DGDM [94]

Sensor-less Jaw Manipulator

Manipulator finger geometry (represented as Bézier curves).

Binary Programming [13]

Autonomous Racing Drone

The combination of different modules.

Table [T] summarizes recent studies in robotic co-design. We observe that most of these works focus
on relatively simple robot types, such as modular and quadrupedal robots, with a limited number of
design parameters considered. More importantly, the majority of these studies are tailored to specific
tasks and environments. Extending these co-design methods to more complex humanoid robots
operating across a diverse range of tasks and settings remains an important but largely unexplored
challenge.
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