
Embracing Evolution: A Call for Body-Control
Co-Design in Embodied Humanoid Robot

Anonymous Author(s)
Affiliation
Address
email

Abstract
Humanoid robots, as general-purpose physical agents, must integrate both intelli-1

gent control and adaptive morphology to operate effectively in diverse real-world2

environments. While recent research has focused primarily on optimizing control3

policies for fixed robot structures, this position paper argues for “evolving both4

control strategies and humanoid robots’ physical structure under a co-design mech-5

anism”. Inspired by biological evolution, this approach enables robots to iteratively6

adapt both their form and behavior to optimize performance within task-specific and7

resource-constrained contexts. Despite its promise, co-design in humanoid robotics8

remains a relatively underexplored domain, raising fundamental questions about its9

feasibility and necessity in achieving true embodied intelligence. To address these10

challenges, we propose practical co-design methodologies grounded in strategic11

exploration, Sim2Real transfer, and meta-policy learning. We further argue for the12

essential role of co-design by analyzing it from methodological, application-driven,13

and community-oriented perspectives. Striving for guiding and inspiring future14

studies, we present open research questions, spanning from short-term innovations15

to long-term goals. This work positions co-design as a cornerstone for developing16

the next generation of intelligent and adaptable humanoid agents.17

1 Introduction18

As an emerging research area, Embodied AI posits that intelligence stems from an agent’s ability to19

actively explore, interact with, and learn from its environment in a continuous and dynamic manner.20

Within this learning paradigm, recent studies have developed various robot control models based on21

deep neural network backbones, enabling scalability across diverse tasks and environments [1, 2, 3, 4].22

In studies of embodied robot agents, their skills are closely tied to the physical form. For example,23

robot arms, grippers, and dexterous hands are commonly employed for manipulation tasks such24

as grasping, placing, and assembling objects [5, 6]. Similarly, wheeled robots, bipedal robots, and25

quadrupedal robots are designed for locomotion tasks, including walking, climbing, and navigation [7].26

To develop general-purpose robots, recent studies have focused on humanoid robots. Equipped with27

dual arms, legged body, and advanced sensors, humanoid robots are well-suited for a wide range of28

mobile locomotion tasks, enabling them to seamlessly handle everyday tasks [8, 9, 10, 11].29

In recent years, the development of humanoid robots has primarily centered on control policy design,30

typically built upon predefined physical structures. These robotic designs are often the result of31

manual engineering and domain-specific heuristics, which are rarely subject to optimization within32

the embodied humanoid system. However, embodied intelligence is not solely determined by control33

performance, but is also fundamentally grounded in agents’ physical structure [12]. For instance,34

in natural systems, organisms evolve their body morphology to adapt to changing environmental35

conditions. Similarly, embodied agents should incorporate evolutionary mechanisms to adapt to task36

requirements and environmental dynamics.37

An effective method of realizing such evolutionary mechanisms is the robotic co-design problem,38

which seeks to jointly optimize both the control policy and the morphological design of robotic39
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Figure 1: The co-design framework for humanoid robots, which can be formulated as a bi-level
optimization problem, consisting of two interconnected phases: 1) learning the control policy for the
humanoid robot, and 2) designing the robot’s physical structure (Section 3.1).

systems [13]. While prior studies have explored co-design in quadruped robots [14, 15], soft40

robots [16], bi-piedal robots [17, 18] and modular robots [19, 20] (see Table 1), its extension to more41

advanced humanoid robots and connection to embodied intelligence remains largely unexplored. It42

remains unclear how to efficiently discover the optimal design of a generalist humanoid robot capable43

of performing a variety of tasks. More importantly, the necessity of addressing such co-design44

problems in the development of embodied humanoid robots has yet to be fully established.45

This article provides a principled formulation of the humanoid co-design problem, emphasizing that46

evolving physical structure is both feasible and essential for realizing embodied intelligence47

in humanoid robots. Specifically, we formulate the humanoid co-design problem as a bi-level48

optimization. Such an optimizer can be integrated into the reasoning–acting architecture of an49

advanced controlling model, enabling an embodied humanoid robot to exhibit dexterity, mobility,50

perception, and intelligence.51

Beyond the proposed formulation, we investigate an alternative perspective for realizing embod-52

ied humanoid robots based on predefined and manually specified designs. We analyze why such53

paradigms prevail in recent humanoid robotics research and examine the potential challenges of54

adopting co-design, particularly regarding algorithmic complexity, physical evaluation, and design55

scalability. To address these challenges, we introduce advancements in learning-based solvers, such56

as strategic robot structure exploration, the Sim2Real learning paradigm, and meta control policy,57

highlighting the feasibility of evolving humanoid robot architectures.58

To understand the necessity of humanoid robot co-design, we investigate its unique advantages59

in facilitating robot morphology optimization, real-world task adaptation, and cross-disciplinary60

collaboration, examined from the perspectives of methodology, application, and community. To61

realize these key advantages, we identify open questions within the humanoid robot co-design62

problem, highlighting those that may be tractable with current methodologies in the short term, as63

well as those that may depend on long-term advances in emerging research domains.64

2 Embodied Humanoid Robots65

2.1 Architecture of Humanoid Robot66

Figure 2: Examples of humanoid robots with vary-
ing physical structures are shown from left to right:
full-sized, simplified, wheeled, and child-sized hu-
manoid robots.

Humanoid robots are a specialized type of phys-67

ical robot designed to replicate human-like func-68

tionality [21]. An ideal humanoid robot often69

has leggy designs in its lower body, featuring a70

bi-pedal structure that enables finishing locomo-71

tion tasks like walking, running, and maintain-72

ing balance. The upper body includes dual arms73

equipped with dexterous hands as end-effectors,74

allowing the robot to perform complex tasks that75

require precise manipulation and human-like76

hand movements. Their sensor systems com-77

monly provide both proprioception and extero-78

ception. Proprioception ensures internal body79
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awareness by monitoring joint positions, angular velocity, and pose estimation, while exteroception80

enables perception of external states, such as LiDAR sweeps and RGB-D data.81

While such designs are ideal, building and fine-tuning a humanoid robot’s architecture typically82

demands substantial effort and resources. This often necessitates certain simplifications, such as83

1) omitting end effectors in the dual arms, 2) constructing child-sized robots instead of full-sized84

ones, 3) utilizing a wheeled base for the lower body, and 4) downplaying the amounts and quality of85

sensors. Figure 2 provides illustrative examples of humanoid models.86

Desideratas for Humanoid Robot. Given their human-like body structure, a fundamental require-87

ment for humanoid robots is the ability to operate seamlessly within human environments. This88

enables them to collaborate closely with humans or take on dangerous or physically demanding89

tasks. During operation, the robot should exhibit natural behavior, adhering closely to human behav-90

ioral norms, even when performing long-term tasks across varying environments. These desiderata91

demand a control model with strong generalizability and adaptability, which traditional optimization-92

based control methods often struggle to achieve. Essentially, fulfilling this requirement calls for the93

development of embodied intelligence in humanoid robots.94

2.2 Embodied Intelligence in Humanoid Robot95

Unlike traditional approaches that rely on passively learning from fixed datasets, Embodied Artificial96

Intelligence (E-AI) requires agents to actively explore, interact with, and learn from their environment97

in a continuous and dynamic manner. Specifically, to enable the learning of an embodied humanoid98

robot, it often requires the robot to have four key abilities, including: 1) Dexterity: the ability to99

manipulate various objects with precision, delicacy, and intricacy. 2) Mobility: the capability to100

move and navigate through environments with different terrains and conditions. 3) Perception: the101

skill to gather, interpret, and understand environmental information from sensors. 4) Intelligence: the102

ability to process information, reason about sub-goals related to a given task, and adapt effectively to103

diverse tasks and environments.104

These capabilities reflect not just the functionality of a humanoid robot in specific tasks like loco-105

motion or manipulation but also emphasize generalization to a wide range of real-world scenarios,106

thereby advancing toward zero-shot deployment of humanoid robots for realistic applications.107

2.3 Implementation for Embodied Humanoid Robot.108

To achieve the above abilities, recent studies have implemented embodied humanoid robots using a109

two-layer architecture consisting of a high-level reasoning model and a low-level action model [22,110

23, 24]. This hierarchical design is inspired by the functional organization of the human brain, where111

the cerebrum is responsible for logical reasoning and decision-making, while the cerebellum governs112

fine-grained motor control and coordination. These models are introduced as follows:113

Humanoid Robot Reasoning Model. The reasoning model is typically implemented as a large-scale114

robotics foundation model designed to perform logical reasoning over the necessary steps for a robot115

to complete given tasks. The model takes as input natural language instructions describing the task,116

along with perceptual data, primarily visual signals collected from the environment. Its outputs117

consist of high-level plans to guide robotic execution. These may include sub-task descriptions and118

intermediate goals, as well as more detailed robotic outputs such as motion trajectories, grasp poses,119

and contact points (e.g., affordances). To learn this reasoning model, The training of the robotic120

reasoning model is typically achieved by fine-tuning a pre-existing Vision-Language Model (VLM)121

using refined robotic operation data, which is either collected through teleoperation or generated122

using synthetic data engines.123

Humanoid Robot Action Model. The action model takes the outputs from the reasoning model124

(either as explicit data or implicit latent variables) as goals g ∈ G and predicts the corresponding125

control signals, such as joint angles or torques for the robot’s joints at each time step. To learn action126

policies, previous methods commonly formulate the learning environment as a (partially observable)127

Markov Decision Process (MDP). M = (S,A,O, PT , r, µ0, γ), where: 1) Within the state space S ,128

a state s ∈ S records the complete environmental information and the robot’s internal states. 2) A129

denotes the action space, and action a ∈ A denotes the angles or torques at joints of the humanoid130

robot. 3) o ∈ O denotes the observations obtained from the robot’s sensors, encompassing both131

proprioceptive inputs that reflect the humanoid’s internal state and exteroceptive inputs that capture132

information about the external environment. 4) r denotes the reward functions, which typically133

consist of penalty, regularization, and task rewards. In particular, the magnitude of the task reward134
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should closely reflect how well the robot accomplishes the given goal g. 5) PT ∈ ∆S
S×A denotes the135

transition function as a mapping from state-action pairs to a distribution of future states. 6) µ0 ∈ ∆S136

denotes the initial state distribution. 7) γ ∈ (0, 1] denotes the discounting factor.137

Under this MDP, the humanoid action model can be represented as a meta policy π ∈ ∆A
S×G that can138

scale to diverse goals gG under different environmental states s ∈ S. During training, the goal is to139

maximize the expected cumulative discounted rewards:140

max
π∈Π

J (π,M) = max
π∈Π

Eµ0,pT ,π

[ ∞∑
t=0

γtr(st, at, g)

]
(1)

3 Position Proposal and Alternative Views141

In the following sections, we introduce a co-design framework that jointly considers control policies142

and the evolution of humanoid morphology. Additionally, we present an alternative perspective:143

embodied intelligence should be grounded in predefined humanoid structures without evolution.144

3.1 A New Perspective: Co-Designing Control and Evolution Policies145

In natural environments, animals exhibit remarkable embodied intelligence, leveraging their evolved146

morphologies to learn and perform complex tasks [12]. Inspired by this, we argue that evolutionary147

principles should play an essential role in the development of embodied humanoid robots. While148

prior research commonly focused on perception, reasoning, and control within fixed robot structures,149

our position is that the robot’s physical form itself should also be subject to optimization as a core150

component of its design. The simultaneous optimization of a humanoid robot’s action model 1)151

and physical components can be formulated as a co-design problem, integrating both control and152

morphology in the design process.153

As illustrated in Figure 2, the robot co-design problem requires the joint optimization of both control154

policies and physical robot modules to maximize overall performance, while adhering to resource155

constraints such as cost [13]. When extending this framework to a learning-based setting, the co-156

design task typically involves a forward pass for training the control policy and a backward pass for157

updating the robot’s physical parameters.158

Specifically, during the forward process, we use the RL algorithm to optimize the goal-aware policy159

function by maximizing J (π,Mψ) in the objective (1), where the configuration of this learning160

environment (i.e., MDP) depends on a specific physical physical robot structure, denoted by ψ ∈ Ψ.161

Based on the policy performance, we conduct an inverse update on the robot’s structure, which162

necessitates formulating humanoid robot co-design as a bi-level optimization problem. Moreover, the163

design often incorporates system-level constraints, which define strict requirements for the desired164

system behavior (e.g., resembling human behavior) or impose limitations on the resources (e.g., costs165

of robot modules) [13]. The optimization problem can be described as:166

max
ψ∈Ψ

max
π∈Π

J (π,Mψ) s.t. fc(ψ) ≤ ϵ (2)

3.2 Alternative Views: Intelligence Arises from Fixed Humanoid Robots Structure167

While the co-design approach provides a significantly broader design space for enhancing the168

performance of humanoid robots, most recent studies, spanning manipulation [25, 26, 27], locomo-169

tion [28, 29, 30, 31], and human motion imitation (i.e., teleoperation) [32, 8, 10, 11, 9, 33], continue170

to focus on controlling fixed, pre-defined humanoid platforms, without considering structural modifi-171

cations to the robot itself. Even with the recent surge in exploring embodied intelligence in humanoid172

robots across a wide range of everyday tasks [34], robotic co-design, as an effective technique in173

robotics research, remains largely underexplored in this context [35]. This trend reflects a prevail-174

ing assumption that "The predefined and fixed physical structures are sufficient for supporting the175

development embodied humanoid robots".176

This perspective essentially treats the robot’s structure as a fixed component of the environment’s177

dynamics, which can be estimated and adapted to, but not actively optimized. Conceptually, this178

assumption is prevalent in the RL literature [36], which serves as a foundational algorithm for179

1Since compare to robot acting, task reasoning is typically less dependent on the robot’s detailed physical
structure and updating a VLM is often costly, the reasoning model is generally not updated alongside changes to
the robot’s morphology.
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learning-based control in humanoid robots and inherently shapes subsequent research directions.180

More importantly, in practice, there are significant challenges associated with co-designing humanoid181

robots, further reinforcing the reliance on manually designed, fixed-structure humanoid platforms.182

1) Complexity of the Co-design Problem. In addition to learning control policy, the co-design183

problem incorporates an second-level optimization loop for refining the robot’s physical design [13,184

12, 37, 15, 17, 38]. For humanoid robots, this process becomes especially challenging due to their185

complex upper and lower body structures, which often involve varying configurations of motors,186

joints, sensors, and body components. Consequently, exploring the high-dimensional design space and187

identifying optimal configurations demands substantial computational resources. In many cases, due188

to the intricate interdependencies between the design and control parameters, the bi-level optimization189

in the co-design problem may struggle to converge. Without additional restrictions, the optimal190

solution may not be uniquely identifiable or even computationally tractable.191

2) Difficulties in Physical Evaluation. To evaluate the optimality of a humanoid robot structure, it is192

crucial to deploy the robot in task-specific scenarios and assess how effectively it can adapt its control193

model to complete those tasks. This process often requires modifying certain components of the194

robot based on the proposed design. However, unlike simpler robotic systems, humanoid robots have195

highly complex and interdependent structures [39, 21, 40]. Modifying one part frequently leads to196

changes in the robot’s overall physical configuration. For instance, adjusting the length of the thighs197

affects the robot’s weight distribution and center of mass. These changes, in turn, influence both198

kinematic properties (e.g., motions and velocities) and dynamic characteristics (such as inertia and199

gravity models). The technical challenges in physical reconfiguration limit the feasibility of iterative200

structural design and evaluation in real-world applications.201

3) Limited Scalability Across Tasks. Robotic co-design typically aims to enhance performance202

for specific tasks [13]. For instance, [17] optimized the leg length of a bipedal robot to achieve203

maximum walking velocity. Similarly, [15, 41] explored the joint optimization of mechanical204

structures and control policies to improve the locomotion capabilities of quadruped robots. However,205

embodied humanoid robots, with physical structures resembling those of humans, are designed206

to generalize across a wide range of tasks and environments within human workspaces. This207

requires multi-dimensional capabilities, including dexterity, mobility, perception, and intelligence208

(Section 2.2). The task-specific optimization frameworks commonly used in traditional robotic209

co-design cannot be directly applied to the inherently cross-task nature of humanoid robots. This210

lack of task scalability limits the overall utility of co-designed systems, particularly when targeting211

general-purpose humanoid platforms intended for reuse across diverse applications.212

4 Feasibility of Co-Designing Humanoid Robot213

To address the inherent challenges of humanoid robot co-design, this section investigates its feasibility214

by proposing a set of potential solutions. In particular, we introduce three key strategies: strategic215

exploration, the Sim2Real paradigm, and meta-policy learning. These approaches are aimed at216

tackling critical issues in co-design, including the complexity of joint design and control, the217

challenges of physical evaluation, and the limited scalability across diverse tasks. Moreover, by218

leveraging recent advances in control algorithms, simulated environments, foundation models, and219

decision-making policies, these strategies establish a robust foundation for the development of220

next-generation co-design algorithms for embodied humanoid systems.221

4.1 Strategic Exploration under Constrained Design Space222

In the co-design literature, genetic algorithms take a critical role in modifying robot structures via223

crossover, mutation, and replacement operations [12, 14, 15, 17, 38]. During this process, their224

underlying exploration mechanisms are inherently random. This randomness results in unstructured225

exploration, lacking informative priors or guidance toward designs that are more likely to yield226

higher-performing robots. This challenge becomes especially pronounced in unstructured and high-227

dimensional design spaces, such as those encountered in the development of humanoid robots, which228

induces computational burden (see alternative views in Section 3.2).229

To address this limitation, strategic exploration has emerged as a promising approach for accelerating230

the search process. In the RL literature, a variety of algorithms have been developed to promote231

more efficient exploration [42]. For instance, recent work has proposed provably efficient strategies232

based on Bayesian updates [43, 44], the Upper Confidence Bound (UCB) [45], and uncertainty-233
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driven heuristics [46, 47], achieving significantly lower regret bounds compared to purely random234

exploration. Motivated by these advances, we propose formulating the physical physical robot235

structure process as an MDP, which enables the application of strategic exploration techniques to236

more effectively explore the design space of humanoid robots.237

In addition to accelerating exploration, another important strategy for ensuring computational tractabil-238

ity and design identifiability is to constrain the design space with the following methods: 1) Rather239

than modifying the entire robot structure, the exploration can be limited to a few key modules or240

components. For instance, [18, 41] focused on optimizing the thigh and shank lengths of humanoid241

robots. Similarly, [37] investigated the configuration of various motors and the inertial parameters of242

robot links. Other studies, such as [48, 15], examined the parameters of parallel elastic knee joints. 2)243

From a theoretical perspective, a key approach to ensuring the convergence of bi-level optimization is244

to bound the range of the design parameters. By utilizing a compact design space and bounding the245

objective function in Equation 2, the Extreme Value Theorem (EVT) [49] guarantees the existence246

of a maximum. In this context, given a continuous objective function, the bi-level optimization can247

converge to an optimal (but not necessarily unique) solution (π∗, ψ∗).248

By strategically exploring a compact and bounded design space focused on key modules of the249

humanoid robot, the computational burden of humanoid robot co-design can be significantly reduced.250

This approach substantially alleviates the complexity of the bi-level optimization process (Section 3.2).251

4.2 A Sim2Real Paradigm for Evaluation and Deployment252

Guiding structural updates of humanoid robots typically requires evaluation signals from the current253

design. Traditional robot co-design studies often involve building physical hardware and assessing its254

performance in real-world tasks [20, 18, 15, 48]. However, as discussed in alternative perspectives255

(Section 3.2), this real-world design and evaluation approach is not directly applicable to humanoid256

robots due to the complexity of their physical structures.257

Instead of relying on real-world evaluations, an alternative and effective approach is to conduct258

both the design and evaluation of robots within simulated environments. For example, studies such259

as [50, 51] and [15, 41, 17] utilize simulators like MuJoCo and Isaac Gym to learn control policies260

and evaluate the task performance of various physical robot structures. While simulation reduces261

the cost and complexity of building physical hardware, the Simulation-to-Reality (Sim2Real) gap262

remains a major challenge: a robot that performs well in simulation may not exhibit the same level of263

performance in the real world. Additionally, for humanoid robots with soft components, accurately264

simulating their morphology, especially for contact-rich interactions, remains difficult [52].265

As a result, developing a feasible Sim2Real paradigm for humanoid co-design requires effective266

strategies to bridge the gap between simulation and reality. Key approaches include: 1) Extending267

domain randomization and domain adaptation techniques to humanoid control environments, which268

remains a critical direction for future research [53]. 2) Developing simulation platforms with high269

photorealism and physical fidelity to minimize the impact of the Sim2Real gap. For instance, recently270

developed simulation environments and engines such as RoboCasa [34], Isaac Lab [54], MuJoCo-271

Playground [55], Genesis [56], and ManiSkill [57] have demonstrated promising capabilities in272

accurately modeling real-world scenes and physical interactions. 3) Beyond explicitly modeling273

objects, scenarios, and physical laws, recent work has introduced the concept of the World Function274

Model [58, 59]. This paradigm treats simulation as a regression task, where the model predicts future275

states of the environment in response to perturbations (i.e., actions). This offers a more flexible and276

data-driven alternative to traditional simulators.277

4.3 Controlling Humanoid Robot via Meta Policy278

As discussed in Section 3.2, traditional approaches to robotic design and control have primarily279

focused on optimizing simple robots to complete specific tasks [13]. In contrast, embodied humanoid280

robots, as complex, legged, dual-arm systems equipped with numerous sensors, are designed to281

learn generalizable policies that can be applied across a wide range of tasks and environments. This282

fundamental difference renders previously proposed robot co-design methods not directly transferable283

to the problem of controlling embodied humanoid robots.284

To enable the designed robot to perform effectively across multiple tasks, a critical approach is to285

learn a meta-policy π that allows the humanoid robot to solve a wide range of everyday human286

tasks involving both manipulation and locomotion [34]. In the context of humanoid control, the287

meta-policy can be modeled as a goal-conditioned policy π : S × G → A, where a goal g ∈ G288
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may represent various forms of task specification, such as commands [31, 11, 29], target poses [32,289

8], affordances [60, 61], or more generally, natural language descriptions of tasks [22, 24, 23].290

Recent advances in generalizable decision models, such as decision transformers [62] and diffusion291

policies [1], provide effective backbone architectures for implementing such meta-policies, enabling292

flexible and scalable control across a wide range of goal specifications.293

To integrate robotic co-design into policy learning, goals can be randomly sampled from a predefined294

goal pool during training. The robot’s policy is then conditioned on each goal and adapted according295

to a proposed design configuration ψ. Similarly, during evaluation, the effectiveness of a given296

physical robot structure can be assessed by measuring how well it facilitates the learning of a policy297

that successfully achieves a diverse set of goals across varying environments.298

5 Necessity of Co-Designing Humanoid Robot299

In the previous section, we explored the feasibility of jointly modeling the robot’s physical structure300

and its control policy, outlining key strategies that make such co-design tractable. In this section, we301

go a step further and argue for the necessity of co-design in the development of embodied humanoid302

robots from the perspective of metrology, application, and community.303

5.1 Methodology: Principled Optimization of Robot Morphology304

While significant progress has been achieved using pre-designed humanoid robots in both locomotion305

and manipulation tasks, there remains a lack of principled methods for evaluating the optimality306

of these designs. In practice, to determine robot morphology in Figure 2, it commonly relies on307

engineers’ intuition and experience, rather than through systematic optimization. Such practice308

is often inefficient, since the robot’s physical design is independent of the training of its planning309

models and control policies. The full capabilities and limitations of a given design often only become310

apparent when other research groups attempt to tackle more complex locomotion or manipulation311

tasks, revealing shortcomings that were not initially evident. These insights are used retrospectively312

to inform the development of robots, which typically progresses slowly due to the lack of systematic313

design methodologies. For example, in the initial design of the Unitree H1 robot, the limited degrees314

of freedom (DoFs) in its arms significantly constrained its ability to perform manipulation tasks that315

require rich interactions with objects. Recognizing this limitation, the developers addressed it in the316

subsequent version, Unitree H1-2 [63], by increasing the number of DoFs in each arm from 4 to 7.317

However, this design revision took over a year to implement.318

In addition to improving the efficiency of robot development, co-design can significantly enhance its319

efficacy. From an algorithmic standpoint, allowing the robot’s design ψ to vary enables the learning320

algorithm to explore a larger joint search space over both morphology and control. This expanded321

space allows for the discovery of design-policy pairs that maximize overall performance:322

max
ψ∈Ψ

max
π∈Π

J (π,Mψ) ≥ max
π∈Π

J (π,Mψ′), ∀ψ′ ∈ Ψ (3)

Here, J denotes the expected return of policy π in the environment defined by the morphology323

Mψ. This inequality highlights the potential performance gains from jointly optimizing both the324

robot’s design and its control policy. Without principled optimization, manually identifying the325

optimal design ψ∗ ∈ Ψ is highly challenging, particularly for humanoid robots expected to perform326

diverse tasks and adapt to complex, real-world environments encountered in everyday scenarios. To327

optimize both the efficacy and efficiency of discovering effective humanoid body designs, we argue328

that humanoid robot co-design is essential.329

5.2 Application: Adaptive Body Shaping for Real-World Tasks330

In practice, the specific requirements for a humanoid robot’s capabilities vary depending on the331

deployment environment of each real-world application. For example, in industrial settings, humanoid332

robots are often tasked with manipulating a variety of objects for relocation, rearrangement, or333

assembly. In such scenarios, dexterity becomes a critical factor, as robots must precisely and334

efficiently handle components of different shapes, sizes, and material properties [64, 30, 31, 65, 28].335

In contrast, when deployed as patrol robots in environments such as university campuses or public336

facilities, humanoid robots must robustly navigate to different locations under diverse terrains (e.g.,337

slopes, stairs) and environmental disturbances (e.g., dynamic obstacles or weather conditions). In338

these applications, robustness and mobility become the key performance criteria [66, 67, 26, 25].339

Most importantly, there exists a fundamental trade-off between dexterity and mobility in the design340

of a humanoid robot’s body structure. Achieving dexterous manipulation typically requires highly341
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flexible arms (with many DoFs) and delicate actuators. However, these design choices often result in342

increased weight and a higher center of mass, which can influence the robot’s balance and reduce the343

efficacy of locomotion tasks.344

A similar trade-off observed in humanoid robots can also be found in human physiology. For example,345

the body composition of boxers and runners differs significantly in terms of muscle distribution and346

weight allocation. These athletes often dedicate substantial time to optimizing their bodies to enhance347

the specific skills required in their respective sports. Just as athletes undergo intensive training camps348

to simultaneously develop both their physical form and technical skills, the co-design process of a349

humanoid robot’s body and control policy can be viewed as a training camp for humanoid robots. By350

continuously adapting both morphology and behavior across diverse applications, we can dynamically351

tailor robot structures that are best suited for the target tasks and desired applications. We argue that352

the co-design is essential for the humanoid robot to adapt specifically to its target applications.353

5.3 Community: Fostering Cross-Disciplinary Collaboration354

Co-designing the control model and body structure of an embodied humanoid robot is fundamentally355

a multidisciplinary research topic. It encompasses: 1) Machine learning expertise for processing356

multi-modal sensory inputs, learning control policies, and performing high-level planning; 2) Robotics357

design principles for modeling and optimizing the robot’s dynamics and kinematics; and 3) Mechani-358

cal engineering knowledge for the manufacturing of structural components and the integration of359

hardware systems. Each of these topics represents a significant research field with its own dedicated360

communities and research groups.361

Traditionally, these research communities have evolved and been explored independently. For362

instance, machine learning is closely aligned with data-driven AI approaches, often emphasizing363

theoretical and methodological advancements in software systems. In contrast, robotics design and364

mechanical engineering emphasize the physical realization of hardware systems. However, when365

it comes to humanoid robot co-design, it fundamentally relies on the joint optimization of these366

domains, due to their deep and intricate interdependencies. Its advancement demands interdisciplinary367

collaboration, and the development of unified frameworks capable of optimizing control algorithms,368

morphological design, and hardware implementation in a coherent and efficient manner.369

In recent years, cross-disciplinary collaboration, particularly under the AI+"X" paradigm, has played370

a vital role in advancing scientific and technological breakthroughs. For example, AlphaFold [68]371

exemplifies the synergy between deep neural networks and structural biology, revolutionizing protein372

structure prediction. OpenAI Five [69] and AlphaStar [70] integrate deep RL with the gaming373

and entertainment industry, pushing the boundaries of AI in complex, multi-agent environments.374

Similarly, Med-PaLM [71] bridges LLMs with medical knowledge, enabling AI-assisted healthcare375

solutions. These successes highlight the transformative potential of combining AI with domain-376

specific expertise. In this context, we argue that humanoid robot co-design is essential for its unique377

capacity to foster cross-disciplinary collaboration across AI, robotics, and engineering.378

6 Open Questions in Humanoid Robot Co-Design379

To encourage further exploration of humanoid robot co-design, we propose a set of open questions380

that may be addressed in both the short and long term.381

Open Questions in Short-Term. We present open research questions that could be effectively382

tackled by leveraging emerging techniques and models.383

1) Efficient Representation for Robot Design. Deriving concise and informative representations of384

data has been a key factor in the success of modern machine learning. In robotic learning tasks,385

recent studies have explored efficient representations for various types of multi-modal data, including386

language [72], 2D images [73], 3D shapes such as point clouds [74] and scenes [75, 76], and tactile387

information [77]. However, in most of these studies, the robot structure is fixed, and there has been388

limited exploration of efficient representations for robot morphology. This lack of focus significantly389

limits the efficiency of learning and adaptation in tasks involving adaptive robot design, particularly390

those that rely on updating deep neural networks.391

2) Benchmarking Robot Co-Design. In robot co-design, Sim2Real training plays a crucial role by392

allowing the performance of co-design algorithms to be evaluated in simulated environments before393

deployment on physical hardware (Section 4.2). However, unlike other robotic manipulations and394
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location tasks with rich benchmarks [78, 79, 5, 80, 7], humanoid robot co-design, as a relatively395

new research area, lacks commonly applied benchmarks. Instead, prior studies often customize396

their tasks and environments according to specific goals, making it difficult to assess how well these397

algorithms generalize to other settings. While these case-specific studies provide valuable insights for398

physical robot structure, their applicability to other embodied humanoid robots, especially in diverse399

tasks and environments, remains uncertain. As a result, establishing a standardized benchmark for400

humanoid robot co-design emerges as an important and timely objective for the field, especially with401

the availability of simulation platforms such as Isaac Gym [81], MuJoCo [82], and Genesis [56].402

3) Design-Aware Policy Optimization. In addition to learning meta-policies that can adapt to different403

tasks and environments, an important open question is how to develop design-aware policies πψ :404

S × G ×Ψ → A [38]. Such policies are designed to generalize effectively across a range of different405

robot morphologies, enabling adaptive action control even when the physical structure ψ changes.406

When a modification in the robot’s body occurs, the policy can still perform reasonably well and,407

with minimal fine-tuning, adapt to the new structure. In this way, the policy can effectively serve as408

a morphology-aware controller, reducing the need for retraining from scratch whenever structural409

changes are introduced. This capability is crucial for co-design frameworks, where iterative updates410

to both control and morphology are expected. Ultimately, robust generalization across morphologies411

not only accelerates the Sim2Real transfer process but also enhances the practicality and scalability412

of humanoid robot deployment in dynamic, real-world environments.413

Open Questions in Long-Run. We introduce promising robotic co-design research topics that414

depend on the advancement of other emerging areas, which are actively being studied but have yet to415

yield effective solutions.416

1) Co-Designs with World Models. While learning-based co-design heavily relies on simulated417

environments, the simulators typically use manually specified semantics, rules, and physical laws,418

resulting in a non-negligible gap between simulation and the real world. To address this issue, recent419

studies [59, 58] have proposed building World Function Models (WFMs) that learn dynamics directly420

from real-world data. Inspired by the success of foundation models, WFMs are data-driven systems421

that automatically learn real-world physics and dynamics based on actions, without relying on human-422

designed assumptions. By jointly optimizing both the control policy and the robot morphology423

structure using WFMs, the gap between simulation and real-world application can be significantly424

reduced. However, developing reliable WFMs remains a challenging and long-term objective. As425

such, co-design based on WFMs is expected to be a major goal for future research.426

2) Co-Design Planning and Reasoning. Current co-design studies primarily focus on the joint427

optimization of the action model and the robot structure. Although planning and reasoning models428

are integral components of embodied humanoid control systems, they are typically not subject to429

optimization during co-design and are instead used as pre-trained models. A major reason for this430

is the heavy computational burden associated with inferring and updating these large-scale Vision-431

Language Models (VLMs). In contrast, action models (i.e., policies) are relatively smaller, making432

their optimization more computationally manageable. As a result, a promising future direction is433

exploring the joint optimization of both reasoning and action models, so as the cover the entire434

process of. Achieving this will require the development of highly efficient inference and learning435

techniques (e.g., the use of Mixture-of-Experts (MoE) architectures), which remains an important436

and active area of ongoing research.437

7 Conclusion438

This paper advocates for a body-control co-design paradigm in humanoid robotics, emphasizing439

the joint optimization of both control strategies and physical morphology. Inspired by principles of440

biological evolution, we argue that co-design is essential for achieving embodied intelligence, enabling441

humanoid robots to adapt more effectively to diverse, dynamic real-world tasks. We demonstrate442

the feasibility of this approach through strategic exploration, Sim2Real transfer, and meta-policy443

learning, and highlight its necessity across methodological, application-driven, and interdisciplinary444

perspectives. By integrating co-design into the development pipeline, we can embrace the potential445

for more robust, generalizable, and intelligent humanoid systems. To guide future research, we446

outline key open questions, ranging from representation learning, benchmarking, and design-aware447

controlling to long-term integration with world models and reasoning systems. We position co-design448

as a foundational approach for developing intelligent, adaptable, and general-purpose humanoid449

robots capable of thriving in complex real-world environments.450
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A A Summary of Recent Studies in Robotic Co-Design724

Table 1: The summary of recent studies and progress in robotic co-design.

Designing Method Robot Type Designing Parameters

Meta RL [14] Quadrupedal Robot Thigh and shank lengths; gear ratios of the actuators.

Bayesian Optimization [15] Quadrupedal Robot Parameters of parallel elastic knee joint.

ADMM [48] Quadrupedal Robot Parameters of parallel elastic actuation (PEA).

Bayesian Optimization [41] Quadrupedal Robot Thigh and shank lengths.

Implicit Function Theorem [83] Quadrupedal Robot Link length; actuator poses.

Adjoint Method [84] Quadruped and Hexapod Robot Link lengths; actuator poses; robot’s width and length

Evolution RL [17] Lightweight Bipedal Robot Thigh and shin lengths.

HZD Optimization [18] Bipedal Robot Thigh and shin lengths.

PPO [85] Modular Soft Robot 3D voxel-wise material assignments and spatial placement.

LLM-aided Evolution Search [86] Modular Soft Robot 3D voxel-wise material assignments and spatial placement.

Model Order Reduction [52] Modular Soft Robot The combination of actuator placement and pressure regulators.

DQN [20] Modular Manipulating Robot The combination of different modules.

RoboGAN [87] Modular Locomoting Robot Module type assignment on fixed-topology graph.

Graph Neural Network [88] Modular Locomoting Robot Size and position of limbs, type and range of joints

Particle Swarm Optimization [51] Modular Locomoting Robot Leg segment lengths.

PPO [89] Modular Locomoting Robot The combination of limbs.

Neural Graph Evolution [90] Modular Locomoting Robot The combination of different modules.

PPO [91] Modular Locomoting Robot Limb length and size; joint rotation range and torque limit.

Quadratic Programming [92] Ariticulated Robot Geometry and inertia of links; torque limits of joints.

PPO [50] Legged Locomoting Robot Link length and mass.

Genetic Algorithm [37] ErgoCub2 Humanoid Robot Motor types and link inertial parameters.

CMA-ES [93] Freedom Endoskeletal Robot Limb length; soft and rigid radii.

DGDM [94] Sensor-less Jaw Manipulator Manipulator finger geometry (represented as Bézier curves).

Binary Programming [13] Autonomous Racing Drone The combination of different modules.

Table 1 summarizes recent studies in robotic co-design. We observe that most of these works focus725

on relatively simple robot types, such as modular and quadrupedal robots, with a limited number of726

design parameters considered. More importantly, the majority of these studies are tailored to specific727

tasks and environments. Extending these co-design methods to more complex humanoid robots728

operating across a diverse range of tasks and settings remains an important but largely unexplored729

challenge.730

No checklist is needed for position paper track (See Position Paper Track FAQ).731

16


	Introduction
	Embodied Humanoid Robots
	Architecture of Humanoid Robot
	Embodied Intelligence in Humanoid Robot
	Implementation for Embodied Humanoid Robot.

	Position Proposal and Alternative Views
	A New Perspective: Co-Designing Control and Evolution Policies
	Alternative Views: Intelligence Arises from Fixed Humanoid Robots Structure

	Feasibility of Co-Designing Humanoid Robot
	Strategic Exploration under Constrained Design Space
	A Sim2Real Paradigm for Evaluation and Deployment
	Controlling Humanoid Robot via Meta Policy

	Necessity of Co-Designing Humanoid Robot
	Methodology: Principled Optimization of Robot Morphology
	Application: Adaptive Body Shaping for Real-World Tasks
	Community: Fostering Cross-Disciplinary Collaboration

	Open Questions in Humanoid Robot Co-Design
	Conclusion
	A Summary of Recent Studies in Robotic Co-Design

