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ABSTRACT

Time series forecasting facilitates various real-world applications and has attracted great
research interests. In real-world scenarios, time series forecasting models confront a
fundamental issue of temporal distribution shifts, i.e., the statistical properties of time
series are evolving over time. In this paper, we utilize Koopman theory to address temporal
distribution shifts (TDS). Koopman theory states any time series can be mapped into a
Koopman space by proper measurement functions and represented by infinite dimensional
linear Koopman operator. Therefore, time series under different distributions can be
modeled by different Koopman operators. Considering the linearity of Koopman operators,
the Koopman operators for representing time series under different distributions can be
decomposed as linear combination of a set of Koopman operators, which we termed as
meta Koopman operators. We further theoretically show the infinite dimensional Koopman
operators can be approximated by finite matrix multiplications and the meta Koopman
operators are equivalent to a set of matrices. Based on the analysis, we propose an auto-
encoder framework for implementing the meta Koopman decomposition of time series,
which is theoretically able to handle TDS. Extensive experiments conducted on four real-
world time series datasets demonstrate the superiority of the proposed model on tackling
temporal distribution shifts.

1 INTRODUCTION

Time series data are generated in numerous domains including traffic flow Snyder & Do (2019), energy
consumption Yu et al. (2016), financial analysis Guen & Thome (2020) and weather condition Zhang et al.
(2017). Time series forecasting is one of the most crucial tasks on time series analyzing and accurate
forecasting models facilitate various applications in many domains. Great interests have been attracted for
building accurate forecasting models, deep learning based models stand out and achieve state-of-the-art
forecasting accuracy Zhou et al. (2021); Lee et al. (2022); Li et al. (2019). As the world keeps evolving, the
statistical properties of time series can change over time, such phenomena is termed as temporal distribution
shifts (TDS). Recently, increasing efforts have been made for building more robust and accurate deep learning
models for time series data under distribution shifts Arik et al. (2022); Liu et al. (2022); Masserano et al.;
Kim et al., which can be divided into two categories, data-orient methods and feature-orient methods.

Data-orient methods Passalis et al. (2019); Kim et al.; Liu et al. (2022) try to alleviate the distribution variation
by normalizing statistical properties of input data. For instance, RevIN Kim et al. proposes a reversible
instance normalization which normalizes the input into distributions with means of 0 and variances of 1
for processing and denormalizes the forecasts back to original scale. Although the normalized data are
constrained with same statistical properties, e.g., mean and variance, the distributions of normalized data are
still diverse since we can not determine a distribution only according to mean and variance.
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Feature-orient methods Du et al. (2021); Woo et al. (2022); Arik et al. (2022) propose model architectures or
learning strategies for mining generalizable features which are expected to represent time series under various
distributions. AdaRNN Du et al. (2021) characterizes different distributions among time series data and
extracts invariant features among different distributions. However, mining invariant features under-utilizes the
diversity of distribution in the time series, which induces low representative capacity of AdaRNN. Woo et al.
(2022) further proposes to extract disentangled seasonal-trend features for better representing time series
segments from different distributions. While seasonal and trend features are commonly utilized in series
analysis, seasonal-trend features could be insufficient for modeling complex distribution shifts.

The key assumption of recent feature-orient methods is that the time series of interest, both the training and
testing parts, consists of a set of meta distributions, which can be fully extracted from training data and are
able to compose shifted distribution among testing data. Nevertheless, how to effectively capture the meta
distributions and model the distribution shifts remains challenging and an open problem.

In this paper, following the assumption of existing works, we apply Koopman theory Koopman (1931) to
address the issue of temporal distribution shifts. Koopman theory states that any dynamics, including time
series in our case, can be mapped into a Koopman space by proper measurement functions and represented by
linear Koopman operators on the space. Therefore, time series under different distributions can be modeled
by different Koopman operators. Considering the linearity of Koopman operators, the Koopman operators for
representing time series under different distributions can be decomposed as linear combination of a set of
Koopman operators, which we termed as meta Koopman operators. We further theoretically show the infinite
dimensional Koopman operators can be approximated by finite matrix multiplications and the meta Koopman
operators are equivalent to a set of matrices. By introducing Koopman theory, representing time series under
distribution shifts is equivalent to constructing distribution-specific Koopman operators based on the meta
Koopman operators. Based on the above analysis, we propose an auto-encoder framework for implementing
the meta Koopman decomposition of time series. Specifically, a temporal trend aware encoder is proposed to
generate measurements of time series states, which can be modeled by a linear Koopman operator. Based on
the measurements of historical states, a novel meta Koopman operators matching mechanism is proposed to
construct the Koopman operator by combining a set of learnable matrices termed as meta Koopman operators.
The combination of meta operators is dynamic and data-driven, which endows the proposed framework with
the ability of modeling dynamic temporal distributions, i.e., temporal distribution shifts. Then the decoder of
our model makes predictions based on the constructed Koopman operator and measurements of historical
states.

Our contributions are summarized as,

• We analyze the feasibility of utilizing Koopman theory to address temporal distribution shifts and
propose a meta Koopman operators matching module to construct proper Koopman operators by
linearly combining meta Koopman operators for modeling time series under different distribution.

• To implement the meta Koopman decomposition, we propose an auto-encoder framework which
generates dynamic data-driven measurements of time series and recover time series based on the
measurements.

• Extensive experiments conducted on four real-world time series datasets demonstrate the superiority
of the proposed model on tackling temporal distribution shifts.

2 PRELIMINARY

2.1 TIME SERIES FORECASTING

We first formally define the problem of time series forecasting. Time series data can be denoted as a set
of observations {xt ∈ Rd} of a dynamical system states, where d is the dimension of states and t denotes
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discrete time steps. The goal of time series forecasting is to find a function f to forecasting future q-step
states based on historical p-step states as,

[xt+1, xt+2, · · · , xt+q] = f([xt, xt−1, · · · , xt−p+1]) (1)

2.2 KOOPMAN THEORY FOR TIME SERIES FORECASTING

As in Azencot et al. (2020), the time series of interest can be described by a discrete-time evolution function
as,

xt+1 = F (xt) (2)
where F (xt) updates the states of time series from time t to t + 1 on a finite dimensional manifold X ⊂
Rd.Koopman theory Koopman (1931) suggests that any such kind of nonlinear dynamics can be transformed
into a Koopman space where the evolution of states are linear. Formally, for time series in Eq.2, there exists a
linear infinite dimensional Koopman operator K : G(X )→ G(X ) so that

Kg(xt) = g(F (xt)) = g(xt+1) (3)

where G(X ) is a set of measurement functions g : X → R. Therefore, making one-step prediction with
Koopman operator K and measurement function g(xt) can be achieved by,

xt+1 = Ψ(g(xt+1)) = Ψ(Kg(xt)) (4)

where Ψ is a function to reconstruct time series states according the measurements in Koopman space.
Considering g(x) reduces the dimension of states xt, we may have multiple measurement functions g =
[g1, g2, · · · , gM ]T to maintain sufficient information for such reconstruction.

Finding proper Koopman operator can be intractable, we next show one can avoid finding such operator and
achieve Eq.3 by infinite dimensional matrix multiplications.

Since K is a linear operator on function space G, K has a infinite set of eigenfunctions Φ = {ϕk : X → R}.
An eigenfunction ϕk of K satisfies,

Kϕk(xt) = λkϕk(xt) = ϕk(xt+1) (5)

where λk is the corresponding eigenvalue of eigenfunction ϕk. And each of the individual measurements gi
in g may be expanded in terms of a basis of eigenfunctions,

gi(x) =

∞∑
j=1

vijϕj(x) (6)

where vi = [vi1, vi2, · · · ] is the mode of gi in Koopman space. Further, for g = [g1, g2, · · · , gM ]T , we have,

xt+1 = Ψ(Kg(xt)) = Ψ(KΦ(xt)) (7)

where g(xt) ∈ RM denotes the M -dimension measurements generated by M measurement functions
K ∈ RM×∞ is defined as Kij = λjvij . So far, the Koopman operator is converted to a matrix multiplication
in the Koopman space spanned by eigenfunctions Φ. While ensuring clarity of expression, K will also be
denoted as Koopman operator in the following.

3 METHODOLOGY

According to Eq.7, we propose an auto-encoder framework to implement Koopman theory for tackling time
series forecasting under distribution shifts, as shown in Fig.1. Noting that both the Koopman operator K and
the set of eigenfunctions Φ in Eq.7 are infinite dimensional, we propose a finite dimensional approximation
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Figure 1: Architecture of the proposed framework.

of both in our framework. Specifically, the encoder works as finite subset of eigenfunctions and transform
time series into Koopman space. Then a meta Koopman operators matching module is proposed to construct
proper Koopman operator for samples from diverse distributions. With the constructed Koopman operator,
the measurements at future time steps can be estimated by applying Eq.7. Finally, the decoder generates
predictions based on the estimated measurements at future time steps.

3.1 DYNAMIC DATA-DRIVEN ENCODER FOR MEASUREMENTS

As mentioned, the set of eigenfunctions Φ in Eq.7 are infinite dimensional, a finite dimensional approximation
of Φ is required. In fact, not all of the infinite eigenfunctions have to be involved in spanning Koopman
space, which favors our finite approximation of eigenfunctions. For instance, considering an originally
linear time series, only an identical mapping need to be involved for generating measurements without
any loss of representative capacity. Therefore, with proper approximating strategy of the combination of
infinite eigenfunctions, the loss of representative capacity of such approximation is acceptable. Taking
both representative capacity and temporal distribution shifts into consideration, we argue that a proper
approximation should 1) generate diverse measurements of time series states for ensuring representative
capacity; 2) be dynamic and adaptive to local distributions for addressing distribution shifts. To this end, we
propose a dynamic data-driven encoder to transform input time series into Koopman space.

Given historical time series states X = [x1, x2, · · · , xp] ∈ Rp×d, we first employ a transformer encoder layer
and the positional encoding module in Vaswani et al. (2017) to capture the temporal trend T of X .

attn = TranEncoder(PosEncoding(X)) ∈ Rp×dt

T =

p∑
i=1

wiattni,:
(8)

where {wi ∈ R|i ∈ [1, p]} are learnable weights and dt is a hyperparameter controlling the dimension of T .
The trend T ∈ Rdt is weighted sum of the output of transformer encoder across temporal dimension. The
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trend T encodes local distribution information of X , and is further used for generating measurements of X
and reconstructing time series states based on the measurements.

T is then concatenated with X and the concatenation is denoted as Z = [z1, z2, · · · , zp], where zi =
xi||T, zi ∈ Rd+dt . An L-layer MLP is applied on the feature dimension of Z for generating measurements
M of X .

M = MLP(Z) = [MLP(z1),MLP(z2), · · · ,MLP(zp)] ∈ Rp×dm (9)
dm is the dimension of measurements M . Since the dimension of measurements is reduced from infinite
in Eq.7 to dm here, we further suggest to maximize the diversity of different measurements for ensuring
representative capacity as,

Lossdiv = − 2

dm(dm − 1)

∑
1≤i<j≤dm

< M:,i,M:,j >

||M:,i||||M:,j ||
(10)

where < M:,i,M:,j > means inner product of M:,i and M:,j . Eq.10 makes the measurements uniformly
distributed in the measurement space.

3.2 META KOOPMAN OPERATORS MATCHING

According to Eq.7, benefiting from the linearity of Koopman operator, a Koopman operator can be decomposed
as linear combination of operators. Therefore, we can actually combine various Koopman operators to model
different distributions of time series and thus address the issue of temporal distribution shifts. To this end, we
propose a meta Koopman operators matching module to implement meta Koopman decomposition.

Specifically, we maintain a set of learnable meta Koopman operators M = [K1,K2, · · · ,Kk], where
Ki ∈ Rdm×dm denotes a learnable Koopman operator and k is the number of meta Koopman operators.
Given measurements M = [m1,m2, · · · ,mp] of p historical time steps, the goal of meta Koopman operators
matching module is to find a linear combination of meta Koopman operators to best model the dynamics of
M as,

min
λ

mean(|
k∑

i=1

λiKiM1 −M2|) (11)

where M1 = [m1,m2, · · · ,mp−1] and M2 = [m2,m3, · · · ,mp]. This optimization goal indicates that the
constructed Koopman operator K =

∑k
i=1 λiKi have to match the dynamics on historical data. Solving

this optimization problem is intractable and time-consuming, so we propose a similarity based matching
mechanism as,

λi =
exp(KiM1 −M2)∑k
j=1 exp(KjM1 −M2)

(12)

where the meta Koopman operators are combined according to the similarity between the dynamics they
determine and the dynamics of M .

3.3 FORECASTING AND LOSS FUNCTION

Given measurements M = [m1,m2, · · · ,mp] of p historical time steps and constructed Koopman operator
K, making prediction to measurements M̂ ′ = [m̂p+1, m̂p+2, · · · , m̂p+q] of future q time steps is rather
simple by matrix multiplication of measurements and Koopman operator as,

m̂p+i = Kimp (13)

and the final prediction X̂ ′ = [x̂p+1, x̂p+1, · · · , x̂p+q] can be made by applying decoder Ψ on M̂ as,

x̂p+i = Ψ(m̂p+i) (14)
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where the decoder Ψ has similar architecture to the encoder, i.e., Ψ is also a L-layer MLP. Then, a supervised
forecasting loss can be obtained,

Losspre = MAE(X ′, X̂ ′) =
1

qd

p+q∑
i=p+1

d∑
j=1

|xi,j − x̂i,j | (15)

as shown, we apply mean absolute error (MAE) as supervised loss. Also, since the proposed model has an
auto-encoder architecture, a reconstruction loss is introduced for training the encoder and decoder,

Lossrec = MAE(X,Ψ(Φ(X))) (16)

The final loss of our framework is weighted sum of the three losses, Lossdiv , Losspre and Lossrec,

Loss = α1Lossdiv + α2Lossrec + Losspre (17)

where both α1 and α2 are hyperparameters for tuning the weights.

4 EXPERIMENTS

4.1 DATASETS

Table 1: Datasets statistics.

Datasets Frequency Length Features

Crypto 1 Minute 1.9 million 112
Weather 10 Minutes 52695 21

Electricity 1 Hour 26304 321
Traffic 1 Hour 17544 862

The proposed method is evaluated on four time series
datasets: Crypto 1, Weather 2, Electricity 3 and Traffic 4.
Table.1 summarizes useful statistics of the four datasets.
Crypto dataset contains 8 kinds of trade features for 14
cryptocurrencies. The data are collected minutely and
there are 1.9 million time steps in this dataset. Electric-
ity dataset contains the electricity consumption of 321
clients, which is collected hourly. There are 26 thousand
time steps in Electricity dataset. Weather dataset contains
21 meteorological indicators for a range of 1 year in Ger-
many, which are recorded every 10 minutes. There are 52
thousand time steps in this dataset. Traffic dataset contains the occupation rate of freeway system measured
hourly by 862 sensors across California. There are 17 thousand time steps in Traffic dataset. As shown
in Fig.2, Crypto and Weather have more complex temporal patterns. These two datasets are suitable for
evaluating the performance of proposed model on handling temporal distribution shifts. The other two datasets
are selected to evaluate the proposed model on canonical settings.

4.2 EXPERIMENTAL SETTINGS AND BASELINES

Experimental settings. For fair comparison, we follow the data processing in Zhou et al. (2021) on
Electricity, Traffic and Weather. All the three datasets are split into training set, validation set and test set
with ratio of 7 : 1 : 2. The input length p is fixed to 96 and the prediction lengths are set to 96, 192, 336 and
720, respectively. The original task of Crypto is to predict 3-step future states using 15-step historical states.
We keep the size of historical window and set the prediction steps to 3, 6, 12 and 15, respectively. Similarly,
Crypto is also split into training set, validation set and test set with ratio of 7 : 1 : 2. All datasets are zero-mean

1https://www.kaggle.com/c/g-research-crypto-forecasting/
2https://www.bgc-jena.mpg.de/wetter/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
4http://pems.dot.ca.gov
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Figure 2: Visualization of samples from different datasets. Crypto and Weather suffer severer temporal
distribution shifts.

Table 2: Forecasting performance on datasets without temporal distribution shifts.

Model Metrics
Electricity Traffic

96 192 336 720 96 192 336 720

LSTNet
MSE 0.680 0.725 0.828 0.957 1.107 1.157 1.216 1.481
MAE 0.645 0.676 0.727 0.811 0.685 0.706 0.730 0.805

Reformer
MSE 0.312 0.348 0.350 0.340 0.732 0.733 0.742 0.755
MAE 0.402 0.433 0.433 0.420 0.423 0.420 0.420 0.423

LogTrans
MSE 0.258 0.266 0.280 0.283 0.684 0.685 0.733 0.717
MAE 0.357 0.368 0.380 0.376 0.384 0.390 0.408 0.396

Informer
MSE 0.274 0.296 0.300 0.373 0.719 0.696 0.777 0.864
MAE 0.368 0.386 0.394 0.439 0.391 0.379 0.420 0.472

Pyraformer
MSE 0.498 0.828 1.476 4.090 0.684 0.692 0.699 0.712
MAE 0.299 0.312 0.326 0.372 0.393 0.394 0.396 0.404

Autoformer
MSE 0.201 0.222 0.231 0.254 0.613 0.616 0.622 0.660
MAE 0.317 0.334 0.338 0.361 0.388 0.382 0.337 0.408

Fedformer
MSE 0.183 0.195 0.212 0.231 0.562 0.562 0.570 0.596
MAE 0.297 0.308 0.313 0.343 0.349 0.346 0.323 0.368

Ours
MSE 0.168 0.181 0.199 0.220 0.561 0.581 0.620 0.663
MAE 0.271 0.287 0.301 0.318 0.339 0.345 0.331 0.369

normalized. Two metrics, MAE and MSE, are employed for evaluation. The proposed model is implemented
in Python with PyTorch 1.9, trained and tested with one Nvidia Tesla V100 16GB. We utilize Adam for tuning
the parameters with the maximum epochs of 100 with initial learning rate as 0.001 on Electricity, 0.003 on
Traffic, 0.005 on Weather and 0.005 on Crypto. The learning rate decays to 1% of its initial value when the
loss on validation set does not improve for 15 epochs. To achieve better performance, we apply different
settings on different datasets which are chosen through a carefully parameter-tuning process on the validation
set.

Baselines. We compare our model with different baselines on different datasets. Electricity and Traffic
suffer few temporal distribution shifts, and we employ several canonical time series forecasting methods,
which achieve state-of-the-art performance on Electricity and Traffic, including, 1) LSTNet Lai et al. (2018)
proposed a deep learning framework to discover long-term patterns for time series trends. 2) Reformer Kitaev
et al. (2020) introduces a local-sensitive hashing for reducing the complexity. 3) LogTrans Li et al. (2019)
also focuses on reducing the time complexity of vanilla attention and proposes a log-sparse attention. 4)
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Table 3: Forecasting performance on datasets with temporal distribution shifts.

Model Metrics
Weather Crypto

96 192 336 720 3 6 12 15

LogTrans
MSE 0.458 0.658 0.797 0.869 0.0070 0.0076 0.0082 0.0074
MAE 0.490 0.589 0.652 0.675 0.0038 0.0038 0.0041 0.0038

Reformer
MSE 0.689 0.752 0.639 1.130 0.0105 0.0087 0.0065 0.0096
MAE 0.596 0.638 0.596 0.792 0.0046 0.0041 0.0037 0.0044

Informer
MSE 0.300 0.598 0.578 1.059 0.0046 0.0069 0.0059 0.0090
MAE 0.384 0.544 0.523 0.741 0.0030 0.0035 0.0033 0.0041

Pyraformer
MSE 0.354 0.673 0.634 0.942 0.0054 0.0078 0.0065 0.0080
MAE 0.392 0.597 0.592 0.723 0.0030 0.0038 0.0037 0.0040

Autoformer
MSE 0.266 0.307 0.359 0.419 0.0040 0.0035 0.0037 0.0036
MAE 0.336 0.367 0.395 0.428 0.0026 0.0024 0.0025 0.0024

AdaRNN
MSE 0.283 0.328 0.393 0.458 0.0043 0.0043 0.0044 0.0042
MAE 0.366 0.394 0.434 0.481 0.0028 0.0030 0.0031 0.0031

HyperGRU
MSE 0.202 0.278 0.352 0.441 0.0031 0.0032 0.0036 0.0037
MAE 0.315 0.337 0.385 0.473 0.0024 0.0022 0.0024 0.0026

Ours
MSE 0.171 0.243 0.322 0.412 0.0026 0.0028 0.0033 0.0035
MAE 0.220 0.281 0.334 0.411 0.0017 0.0018 0.0021 0.0023

Informer Zhou et al. (2021) selects top-k in attention matrix with a KL-divergence based method. 5)
Pyraformer Liu et al. (2021) explores the multi-resolution representation of the time series and utilizes the
multi-resolution features to generate more accurate forecasting. 6) Autoformer Wu et al. (2021) proposes a
novel auto-correlation module to replace the vanilla self attention block. 7) Fedformer Zhou et al. (2022) is a
state-of-art transformer-based time series forecasting model, which utilizes frequency information to enhance
transformer.

Considering the severe temporal distribution shifts in Weather and Crypto, we additionally include several
time series forecasting models designed for addressing distribution shifts, including, 1) AdaRNN Du et al.
(2021) characterizes temporal distribution and learn distribution invariant representations for robustness and
generalization. 2) HyperGRU Duan et al. (2023) proposes to dynamically generate parameters for its main
layers to make accurate predictions. The results of all baselines are either reproduces with public available
code or cited from existing papers.

4.3 RESULTS ON ELECTRICITY AND TRAFFIC

Table.2 shows the comparison of our model with baselines on Electricity and Traffic. As demonstrated, our
model achieves the best performance accuracy on Electricity and outperforms the best baseline Fedformer
with average increments of 6.56% and 6.67% on MSE and MAE respectively. However, we find that our
model fails to outperform Fedformer on Traffic on long-term forecasting. Considering our model generates
predictions in an auto-regressive manner, a performance drop on long-term forecasting is foreseeable. We
further argue that such failure also results from the unsatisfying ability of our model to handle higher-
dimensional features in Traffic, which will be further explored in later section. Although our model fails to
achieve the best performance on all settings on Traffic, the forecasting accuracy of our model is acceptable
and satisfying. The performance of our model on Electricity and Traffic validates the effectiveness of our
model on canonical time series forecasting.
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4.4 RESULTS ON CRYPTO AND WEATHER

In Table.3, we show the forecasting accuracy of baselines and our model on Crypto and Weather with respect
to MSE and MAE. Since Crypto and Weather suffer severe temporal distribution shifts, the performance
on Crypto and Weather demonstrate the ability of models to handle temporal distribution shifts. As shown,
the proposed model achieves the best performance and outperform HyperGRU with average margins of
[10.7%, 18.3%] and [11.8%, 18.9%] with respect to MSE and MAE on Weather and Crypto respectively. The
performance improvement of our model on datasets with temporal distribution shifts are rather huge, which
validates the superiority of our model on tackling distribution shifts in time series.

4.5 ABLATION STUDY

Table 4: Forecasting performance of differ-
ent variants on Crypto.

Variants Metrics 12 15

w/o trend
MSE 0.0051 0.0054
MAE 0.0046 0.0050

w/o div
MSE 0.0042 0.0044
MAE 0.0037 0.0039

w/o match
MSE 0.0053 0.0058
MAE 0.0048 0.0051

origin
MSE 0.0033 0.0035
MAE 0.0021 0.0023

In this part, we evaluate the contribution of key components
of our model to the forecasting performance on Crypto, since
Crypto suffers severe temporal distribution shifts. Concretely,
the key components of our model are: 1) trend-aware measure-
ments in encoder, as measurement functions are essential for
Koopman theory; 2) measurement diversity ensuring loss in
Eq.10, which is expected to ensure the representative capacity
of measurements; 3) the meta Koopman operators matching
module, which models the dynamics of measurements of time
series states. Therefore, we design a series of variants of our
model, 1) w/o trend removes the temporal trend in Eq.8 from
origin model. 2) w/o div removes Lossdiv from the final loss
in Eq.17. 3) w/o match removes meta Koopman operators
matching mechanism and defines a learnable matrix. Table.4
shows the performance comparison between the variants and
origin model. As can be found, each component contributes to
the superiority of our model on tackling temporal distribution shifts.

5 CONCLUSION

In this paper, a time series forecasting model combining with Koopman theory is proposed to address the
issue of temporal distribution shifts. The proposed model has an auto-encoder architecture. The encoder
works as measurement functions to map time series into measurements so that the complex dynamics of time
series can be modeled by applying linear infinite dimensional Koopman operators on the measurements. The
decoder generates predictions of future states according to estimated measurements of future states. A meta
Koopman operators matching mechanism is designed to generate proper matrices to approximate Koopman
operator to model the dynamics of time series under different temporal distributions. Extensive experiments
on four real-world datasets validate the superiority of the proposed model. Meanwhile, some limitations are
found during experiments. The model follows an auto-regressive manner to generate predictions and is thus
risky to suffer error accumulation. Also, mapping time series under diverse distributions into a linear space
requires high dimensional measurements, leading to the compromise between efficiency and performance.
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A MORE IMPLEMENTATION DETAILS

In this section, we further detail the implementation of our model. As mentioned, MAE and MSE are used for
evaluating our model and baselines. Given ground truth X and X̂, the definitions of the two metrics are as
below,

MAE(X, X̂) = mean(sum(|X− X̂|))
MSE(X, X̂) = mean(sum((X− X̂)2))

(18)

The initial learning rate of all datasets are selected from 1e− 2 to 1e− 4. The initial values of α1 and α2

range from 0.01 to 1, and the best α1 and α2 are 0.3 and 0.1 respectively. The dimension of measurements is
set to 10 times of dimension of features of input time series. The number of layers L of measurement MLP
ranges from 1 to 10, and the best L is 4.

B MULTI-STEP PREDICTION ON CRYPTO

We present detailed prediction accuracy on each time step in Fig.3. As shown, compared with baselines, the
proposed model achieves lower MSE and MAE on all steps. Such result indicates the proposed model has
stable forecasting performance on multi-step forecasting setting.

(a) (b)

Figure 3: Multi-step prediction comparison on Crypto.

B.0.1 IMPACT OF DIMENSION OF STATES

As mentioned, the proposed model fails to outperform the best baseline on Traffic on long-term forecasting.
We argue such failure results from the unsatisfying ability of our model to handle higher-dimensional features.
To expore the impact of dimension of time series states, we randomly select 100 to 800 states from Traffic,
and compare the performance of our model on the subsets. 96 historical states are used to predict next 96-step
states. As illustrated in Fig.4, when the dimension of states increases, the performance of our model drops
more than Fedformer, which indicates the limitation of our model on handling huge states dimension. The
reason of such limitation is that, according to Eq.9, we approximate infinite dimensional measurements in
Koopman space with finite dimensional measurements. When the dimension of time series states increases,
the dimension required for building reliable linear measurements increases. However, in consideration of time
and space complexity, the dimension of measurements can not be very large. Therefore, when the dimension
of time series states increases, there must be a compromise between model complexity and performance.
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Figure 4: Performance on Traffic with diverse states dimension.

C VISUALIZATIONS ON CRYPTO

To more intuitively validate the effectiveness of our model, we further visualize some prediction samples of
our model on Crypto.
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Figure 5: Visualizations of predictions on Crypto.
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