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Abstract

Follow-the-Regularized-Leader (FTRL) is a powerful framework for various on-1

line learning problems. By designing its regularizer and learning rate to be adap-2

tive to past observations, FTRL is known to work adaptively to various properties3

of an underlying environment. However, most existing adaptive learning rates are4

for online learning problems with a minimax regret of Θ(
√
T ) for the number of5

rounds T , and there are only a few studies on adaptive learning rates for prob-6

lems with a minimax regret of Θ(T 2/3), which include several important prob-7

lems dealing with indirect feedback. To address this limitation, we establish a new8

adaptive learning rate framework for problems with a minimax regret of Θ(T 2/3).9

Our learning rate is designed by matching the stability, penalty, and bias terms10

that naturally appear in regret upper bounds for problems with a minimax regret11

of Θ(T 2/3). As applications of this framework, we consider two major problems12

dealing with indirect feedback: partial monitoring and graph bandits. We show that13

FTRL with our learning rate and the Tsallis entropy regularizer improves existing14

Best-of-Both-Worlds (BOBW) regret upper bounds, which achieve simultaneous15

optimality in the stochastic and adversarial regimes. The resulting learning rate is16

surprisingly simple compared to the existing learning rates for BOBW algorithms17

for problems with a minimax regret of Θ(T 2/3).18

1 Introduction19

Online learning is a problem setting in which a learner interacts with an environment for T rounds20

with the goal of minimizing their cumulative loss. This framework includes many important online21

decision-making problems, such as expert problems [21, 38, 57], multi-armed bandits [6, 8, 33],22

linear bandits [1, 14], graph bandits [4, 42], and partial monitoring [9, 11].23

For the sake of discussion in a general form, we consider the following general online learning24

framework. In this framework, a learner is initially given a finite action set A = [k] := {1, . . . , k}25

and an observation setO. At each round t ∈ [T ], the environment determines a loss function ℓt : A →26

[0, 1], and the learner selects an action At ∈ A based on past observations without knowing ℓt. The27

learner then suffers a loss ℓt(At) and observes a feedback ot ∈ O. The goal of the learner is to28

minimize the (pseudo-)regret RegT , which is defined as the expectation of the difference between29

the cumulative loss of the selected actions (At)
T
t=1 and that of an optimal action a∗ ∈ A fixed in30

hindsight. That is, RegT = E
[∑T

t=1 ℓt(At)−
∑T
t=1 ℓt(a

∗)
]

for a∗ ∈ argmina∈A E
[∑T

t=1 ℓt(a)
]
.31

For example in the multi-armed bandit problem, the observation is ot = ℓt(At).32
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Follow-the-Regularized-Leader (FTRL) is a highly powerful framework for such online learning33

problems. In FTRL, a probability vector qt over A, which is used for determining action selection34

probability pt so that At ∼ pt, is obtained by solving the following convex optimization problem:35

qt ∈ argmin
q∈Pk

{
t−1∑
s=1

ℓ̂s(q) + βtψ(q)

}
, (1)

where Pk is the set of probability distributions over A = [k], ℓ̂t : Pk → R is an estimator of loss36

function ℓt, βt > 0 is (a reciprocal of) learning rate at round t, and ψ is a convex regularizer. FTRL37

is known for its usefulness in various online learning problems [1, 4, 8, 27, 37]. Notably, FTRL can38

be viewed as a generalization of Online Gradient Descent [63] and the Hedge algorithm [21, 38, 57],39

and is closely related to Online Mirror Descent [36, 45].40

The benefit of FTRL due to its generality is that one can design its regularizer ψ and learning rate41

(βt)t so that it can perform adaptively to various properties of underlying loss functions. The adaptive42

learning rate, which exploits past observations, is often used to obtain such adaptivity. In order to43

see how it is designed, we consider the following stability–penalty decomposition, well-known in the44

literature [36, 45]:45

RegT ≲
T∑
t=1

zt
βt︸ ︷︷ ︸

stability term

+β1h1 +

T∑
t=2

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

. (2)

Intuitively, the stability term arises from the regret when the difference in FTRL outputs, xt and46

xt+1, is large, and the penalty term is due to the strength of the regularizer. For example, in the Exp347

algorithm for multi-armed bandits [8], ht is the Shannon entropy of xt or its upper bound, and zt is48

the expectation of (∇2ψ(xt))
−1-norm of the importance-weighted estimator ℓ̂t or its upper bound.49

Adaptive learning rates have been designed so that it depends on the stability or penalty. For ex-50

ample, the well-known AdaGrad [19, 44] and the first-order algorithm [2] depend on stability com-51

ponents (zs)
t−1
s=1 to determine βt. More recently, there are learning rates that depend on penalty52

components (hs)t−1
s=1 [25, 54] and that depend on both stability and penalty components [26, 28, 55].53

However, almost all adaptive learning rates developed so far have been limited to problems with a54

minimax regret ofΘ(
√
T ), and there has been limited investigation into problems with a minimax re-55

gret ofΘ(T 2/3) [25, 54]. Such online learning are primarily related to indirect feedback and includes56

many important problems, such as partial monitoring [9, 34], graph bandits [4], dueling bandits [51],57

online ranking [12], bandits with switching costs [18], and bandits with paid observations [53].58

Contributions To address this limitation, we establish a new learning rate framework for online59

learning with a minimax regret of Θ(T 2/3). Henceforth, we will refer to problems with a minimax60

regret of Θ(T 2/3) as hard problems to avoid repetition, abusing the terminology of partial monitor-61

ing. For hard problems, it is common to combine FTRL with forced exploration [4, 17, 34, 51]. In62

this study, we first observe that the regret of FTRL with forced exploration rate γt is roughly bounded63

as follows:64

RegT ≲
T∑
t=1

zt
βtγt︸ ︷︷ ︸

stability term

+β1h1 +

T∑
t=2

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

+

T∑
t=1

γt︸ ︷︷ ︸
bias term

. (3)

Here, the third term, called the bias term, represents the regret incurred by forced exploration. In65

the aim of minimizing the RHS of (3), we will determine the exploration rate γt and learning rate66

βt so that the above stability, penalty, and bias elements for each t ∈ [T ] are matched, where the67

resulting learning rate is called Stability–Penalty–Bias matching learning rate (SPB-matching). This68

was inspired by the learning rate designed by matching the stability and penalty terms for problems69

with a minimax regret of Θ(
√
T ) [26]. Our learning rate is simultaneously adaptive to the stability70

component zt and penalty component ht, which have attracted attention in very recent years [26, 28,71

55]. The SPB-matching learning rate allows us to bound the RHS of (3) from above as follows:72

Theorem 1 (informal version of Theorem 6). There exists learning rate (βt)t and exploration rate73

(γt)t for which the RHS of (3) is bounded byO
((∑T

t=1

√
ztht log(εT )

)2/3
+
(√
zmaxhmax/ε

)2/3)
74

for any ε ≥ 1/T , where zmax = maxt∈[T ] zt and hmax = maxt∈[T ] ht.75
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Table 1: Regret bounds for partial monitoring and graph bandits. The number of rounds is denoted
as T , the number of actions as k, and the minimum suboptimality gap as ∆min. The variables cG is
defined in Section 5, D is a constant dependent on the outcome distribution. The graph complexity
measures δ, δ∗, satisfing δ∗ ≤ δ for graphs with no self-loops, are defined in Section 6, and δ̃∗ ≤ δ
is the fractional weak domination number [13]. AwSB is the abbreviation of the adversarial regime
with a self-bounding constraint. MS-type means that the bound in AdvSB has a form similar to the
bound established by Masoudian and Seldin [43].

Setting Ref. Stochastic Adversarial AwSB

Partial
monitoring
(with global
observability)

[30] D log T – –
[37] – (cGT )

2/3(log k)1/3 –

[54]
c2G log T log(kT )

∆2
min

(cGT )
2/3(log T log(kT ))1/3 ✓

[56]
c2Gk log T

∆2
min

(cGT )
2/3(log T )1/3 ✓

Ours (Cor. 9) c2G log k log T

∆2
min

(cGT )
2/3(log k)1/3 ✓(MS-type)

Graph bandits
(with weak
observability)

[4] – (δ log k)1/3T 2/3 –
[13] – (δ̃∗ log k)1/3T 2/3 –

[25] δ log T log(kT )

∆2
min

(δ log T log(kT ))1/3T 2/3 ✓

[15]a δ log k log T

∆2
min

(δ log k)1/3T 2/3 ✓

Ours (Cor. 11) δ∗ log k log T

∆2
min

(δ∗ log k)1/3T 2/3 ✓(MS-type)

aThe bounds in [15] depend on δ, but their framework with the algorithm in [13] can achieve improved
bounds replacing δ with δ̃∗ ≤ δ. The framework in [15] is a hierarchical reduction-based approach, rather
than a direct FTRL method, discarding past observations as doubling-trick.

Within the general online learning framework, this theorem allows us to prove the following Best-76

of-Both-Worlds (BOBW) guarantee [10, 58, 61], which achieves anO(log T ) regret in the stochastic77

regime and an O(T 2/3) regret in the adversarial regime simultaneously:78

Theorem 2 (informal version of Theorem 7). Under some regularity conditions, an FTRL-based79

algorithm with SPB-matching achieves RegT ≲ (zmaxhmax)
1/3T 2/3 in the adversarial regime. In80

the stochastic regime, if
√
ztht ≤

√
ρ1(1 − qta∗) holds for FTRL output qt ∈ Pk and ρ1 > 0 for all81

t∈ [T ], the same algorithm achieves RegT ≲ρ1log T/∆2
min for the minimum suboptimality gap ∆min.82

To assess the usefulness of the above result that holds for the general online learning framework,83

this study focuses on two major hard problems: partial monitoring with global observability and84

graph bandits with weak observability. We demonstrate that the assumptions in Theorem 2 are in-85

deed satisfied for these problems by appropriately choosing the parameters in SPB-matching, thereby86

improving the existing BOBW regret upper bounds in several respects. To obtain better bounds in87

this analysis, we leverage the smallness of stability components zt, which results from the forced88

exploration. Additionally, SPB-matching is the first unified framework to achieve a BOBW guaran-89

tee for hard online learning problems. Our learning rate is based on a surprisingly simple principle,90

whereas existing learning rates for graph bandits and partial monitoring are extremely complicated91

(see [25, Eq. (15)] and [54, Eq. (16)]). Due to its simplicity, we believe that SPB-matching will serve92

as a foundation for building new BOBW algorithms for a variety of hard online learning problems.93

Although omitted in Theorem 2, our approach achieves a refined regret bound devised by Masoudian94

and Seldin [43] in the adversarial regime with a self-bounding constraint [61], which includes the95

stochastic regime, adversarial regime, and the stochastic regime with adversarial corruptions [41] as96

special cases. We call the refind bound MS-type bound, named after the author. The MS-type bound97

maintains an ideal form even when C = Θ(T ) or ∆min = Θ(1/
√
T ) (see [43] for details), and our98

bounds are the first MS-type bounds for hard problems. A comparison with existing regret bounds99

is summarized in Table 1.100
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2 Preliminaries101

Notation For a natural number n ∈ N, we let [n] = {1, . . . , n}. For vector x, let xi denote its i-th102

element and ‖x‖p the ℓp-norm for p ∈ [1,∞]. Let Pk = {p ∈ [0, 1]k : ‖p‖1 = 1} be the (k − 1)-103

dimensional probability simplex. The vector ei is the i-th standard basis and 1 is the all-ones vector.104

LetDψ(x, y) denote the Bregman divergence from y to x induced by a differentiable convex function105

ψ: Dψ(x, y) = ψ(x)−ψ(y)−〈∇ψ(y), x−y〉. To simplify the notation, we sometimes write (at)Tt=1106

as a1:T and f = O(g) as f ≲ g. We regard function f : A = [k] → R as a k-dimensional vector.107

General online learning framework To provide results that hold for a wide range of settings, we108

consider the following general online learning framework introduced in Section 1.109

At each round t ∈ [T ] = {1, . . . , T}:
1. The environment determines a loss vector ℓt : A → [0, 1];
2. The learner selects an action At ∈ A based on pt ∈ Pk without knowing ℓt;
3. The learner suffers a loss of ℓt(At) ∈ [0, 1] and observes a feedback ot ∈ O.

This framework includes many problems such as the expert problem, multi-armed bandits, graph110

bandits, partial monitoring as special cases.111

Stochastic, adversarial, and their intermediate regimes Within the above general online frame-112

work, we study three different regimes for a sequence of loss functions (ℓt)t. In the stochastic regime,113

the sequence of loss functions is sampled from an unknown distribution D in an i.i.d. manner. The114

suboptimality gap for action a ∈ A is given by ∆a = Eℓt∼D[ℓt(a)− ℓt(a
∗)] and the minimum sub-115

optimality gap by ∆min = mina ̸=a∗ ∆a. In the adversarial regime, the loss functions can be selected116

arbitrarily, possibly based on the past history up to round t− 1.117

We also investigate, the adversarial regime with a self-bounding constraint [61], which is an inter-118

mediate regime between the stochastic and adversarial regimes.119

Definition 3. Let ∆ ∈ [0, 1]k and C ≥ 0. The environment is in an adversarial regime with a120

(∆, C, T ) self-bounding constraint if it holds for any algorithm that RegT ≥ E
[∑T

t=1 ∆At
− C

]
.121

From the definition, the stochastic and adversarial regimes are special cases of this regime. Addition-122

ally, the well-known stochastic regime with adversarial corruptions [41] also falls within this regime.123

For the adversarial regime with a self-bounding constraint, we assume that there exists a unique opti-124

mal action a∗. This assumption is standard in the literature of BOBW algorithms (e.g., [22, 39, 58]).125

3 SBP-matching: Simple and adaptive learning rate for hard problems126

This section designs a new learning rate framework for hard online learning problems.127

3.1 Objective function that adaptive learning rate aims to minimize128

In hard problems, the regret of FTRL with somewhat large exploration rate γt is known to be bounded129

in the following form [4, 25, 54]:130

RegT ≲
T∑
t=1

zt
βtγt

+

T∑
t=1

(βt − βt−1)ht +

T∑
t=1

γt (4)

for some stability component zt and penalty component ht, where we set βT+1 = βT and β0 = 0131

for simplicity. Recall that the first term is the stability term, the second term is the penalty term, and132

the third term is the bias term, which arises from the forced exploration.133

The goal when designing the adaptive learning rate is to minimize (4), under the constraints that134

(βt)t is non-decreasing and βt depends on (z1:t, h1:t) or (z1:t−1, h1:t). A naive way to choose γt to135

minimize (4) is to set γt =
√
zt/βt so that the stability term and the bias term match. However, this136

choice does not work well in hard problems because to obtain a regret bound of (4), a lower bound137

of γt ≥ ut/βt for some ut > 0 is needed. This lower bound is used to control the magnitude of the138

4



loss estimator ℓ̂t.1 Therefore, we consider exploration rate of γt = γ′t + ut/βt for γ′t =
√
zt/βt and139

some ut > 0, where γ′t is chosen so that the stability and bias terms are matched. With these choices,140

Eq. (4) ≤
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht +

(
γ′t +

ut
βt

))

=

T∑
t=1

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ht

)
=: F (β1:T , z1:T , u1:T , h1:T ) . (5)

Note that the first two terms in F , 2
√
zt/βt + ut/βt, come from the stability and bias terms and the141

last term, (βt − βt−1)ht, is the penalty term. In the following, we investigate adaptive learning rate142

(βt)
T
t=1 that minimizes F in (5) instead of (4).143

3.2 Stability–penalty–bias matching learning rate144

We consider determining (βt)t by matching the stability–bias terms and the penalty term as145

2
√
zt/βt + ut/βt = (βt − βt−1)ht. Assume that when choosing βt, we have an access to ĥt such146

that ht ≤ ĥt. Then, inspired by the above matching, we consider the following two update rules:147

(Rule 1) βt = βt−1 +
1

ĥt

(
2

√
zt
βt

+
ut
βt

)
, (Rule 2) βt = βt−1 +

1

ĥt

(
2

√
zt−1

βt−1
+
ut−1

βt−1

)
. (6)

We call these update rules Stability–Penalty–Bias Matching (SPB-matching). These are designed by148

following the simple principle of matching the stability, penalty, and bias elements, and Rules 1 and149

2 differ only in the way indices are shifted. For the sake of convenience, we define G1 and G2 by150

G1(z1:T , h1:T ) =

T∑
t=1

√
zt(∑t

s=1

√
zs/hs

)1/3 , G2(u1:T , h1:T ) =

T∑
t=1

ut√∑t
s=1 us/hs

. (7)

Define zmax = maxt∈[T ] zt, umax = maxt∈[T ] ut, and hmax = maxt∈[T ] ht. Then, using SPB-151

matching rules in (6), we can upper-bound F in terms of G1 and G2 as follows:152

Lemma 4. Consider SPB-matching (6) and suppose that ht ≤ ĥt for all t ∈ [T ]. Then, Rule 1153

achieves F (β1:T , z1:T , u1:T , h1:T ) ≤ 3.2G1(z1:T , ĥ1:T ) + 2G2(u1:T , ĥ1:T ) and Rule 2 achieves154

F (β1:T , z1:T , u1:T , h1:T ) ≤ 4G1(z1:T , ĥ2:T+1)+3G2(u1:T , ĥ2:T+1)+10
√
zmax/β1+5umax/β1+155

β1h1.156

The proof of Lemma 4 can be found in Appendix B.1. One can see from the proof that the effect of157

using γt =
√
zt/βt + ut/βt instead of γt =

√
zt/βt only appears in G2, which has a less impact158

than G1 when bounding F . We can further upper-bound G1 as follows:159

Lemma 5. Let (zt)
T
t=1 ⊆ R≥0 and (ht)

T
t=1 ⊆ R>0 be any non-negative and positive se-160

quences, respectively. Let θ0 > θ1 > · · · > θJ > θJ+1 = 0 and θ0 ≥ hmax and de-161

fine Tj = {t ∈ [T ] : θj−1 ≥ ht > θj} for j ∈ [J ] and TJ+1 = {t ∈ [T ] : θJ ≥ ht}. Then,162

G1(z1:T , h1:T ) ≤ 3
2

∑J+1
j=1

(√
θj−1

∑
t∈Tj

√
zt
)2/3

. This implies that for all j ∈ N it holds that163

G1(z1:T , h1:T ) ≤
3

2
min

{(√
2J

T∑
t=1

√
ztht

) 2
3

+

(
2−J/2

√
zmaxhmax

) 2
3

T
2
3 ,

(
T∑
t=1

√
zthmax

) 2
3
}
.

Combining Lemmas 4 and 5 and the bound onG2 in [26, Lemma 3], we obtain the following theorem.164

1This is particularly the case when we use the Shannon entropy or Tsallis entropy regularizers, which is a
weaker regularization than the log-barrier regularizer.
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Algorithm 1: Best-of-both-worlds framework based on FTRL with SPB-matching learning rate
and Tsallis entropy for online learning with minimax regret of Θ(T 2/3)

1 input: action set A, observation set O, exponent of Tsallis entropy α, β1, β̄
2 for t = 1, 2, . . . do
3 Compute qt ∈ Pk by (10) with a loss estimator ŷt.
4 Set ht = Hα(qt) and zt, ut ≥ 0 defined for each problem.
5 Compute action selection probability pt from qt by (11).
6 Choose At ∈ A so that Pr[At = i | pt] = pti and observe feedback ot ∈ O.
7 Compute loss estimator ℓ̂t based on pt and ot.
8 Compute βt+1 by Rule 2 of SPB-matching in (6) with ĥt+1 = ht.

Theorem 6. Let (zt)Tt=1, (ut)
T
t=1 ⊆ R≥0 and (ht)

T
t=1 ⊆ R>0. Suppose that ĥt satisfies ht ≤ ĥt for165

all t ∈ [T ]. Then, if βt is given by Rule 1 in (6), then for all ε ≥ 1/T it holds that166

F (β1:T , z1:T , u1:T , h1:T ) ≲ min


(

T∑
t=1

√
ztĥt log(εT )

) 2
3

+

(√
zmaxĥmax

/
ε

) 2
3

,

(
T∑
t=1

√
ztĥmax

) 2
3


+min


√√√√ T∑

t=1

utĥt log(εT ) +

√
umaxĥmax/ε ,

√√√√ T∑
t=1

utĥmax

 . (8)

If βt is given by Rule 2 in (6), then for all ε ≥ 1/T it holds that167

F (β1:T , z1:T , u1:T , h1:T ) ≲ min


(

T∑
t=1

√
ztĥt+1 log(εT )

) 2
3

+

(√
zmaxĥmax

/
ε

) 2
3

,

(
T∑
t=1

√
ztĥmax

) 2
3


+min


√√√√ T∑

t=1

utĥt+1 log(εT )+

√
umaxĥmax/ε ,

√√√√ T∑
t=1

utĥmax

+

√
zmax

β1
+
umax

β1
+β1h1 . (9)

Note that these bounds are for problems with a minimax regret of Θ(T 2/3). Roughly speaking, our168

bounds have an order of
(∑T

t=1

√
ztĥt+1 log T

)1/3
and differ from the existing stability-penalty-169

adaptive-type bounds of
√
ztĥt+1 log T for problems with a minimax regret of Θ(

√
T ) [26, 55]. We170

will see in the subsequent sections that our bounds are reasonable as they give nearly optimal regret171

bounds in stochastic and adversarial regimes in partial monitoring and graph bandits.172

4 Best-of-both-worlds framework for hard online learning problems173

Using the SPB-matching learning rate established in Section 3, this section provides a BOBW algo-174

rithm framework for hard online learning problems. We consider the following FTRL update:175

qt = argmin
p∈Pk

{
t−1∑
s=1

〈ℓ̂t, p〉+ βt(−Hα(p)) + β̄(−Hᾱ(p))

}
, α ∈ (0, 1) , ᾱ = 1− α , (10)

whereHα is the α-Tsallis entropy defined asHα(p) =
1
α

∑k
i=1(p

α
i −pi),which satisfiesHα(p) ≥ 0176

and Hα(ei) = 0. Based on this FTRL output qt, we set ht = Hα(qt), which satisfies h1 = hmax.177

Additionally, for qt and some p0 ∈ Pk, we use the action selection probability pt ∈ Pk defined by178

pt = (1− γt)qt + γt p0 for γt = γ′t +
ut
βt

=

√
zt
βt

+
ut
βt
, (11)

where β1 is chosen so that γt ∈ [0, 1/2]. Let κ =
√
zmax/β1 +umax/β1 +β1h1 + β̄h̄ and let Et[ · ]179

be the expectation given all observations before round t. Then the above procedure with Rule 2 of180

SPB-matching in (6), summarized in Algorithm 1, achieves the following BOBW bound:181
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Theorem 7. Suppose that loss function ℓt satisfies ‖ℓt‖∞ ≤ 1 and the following three conditions182

(i)–(iii) are satisfied: (i) RegT ≤ E
[∑T

t=1〈ℓ̂t, qt − ea∗〉+ 2
∑T
t=1 γt

]
,183

(ii) Et
[
〈ℓ̂t, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

]
≲ zt
βtγ′t

, (iii) ht ≲ ht−1 . (12)

Then, in the adversarial regime, Algorithm 1 achieves184

RegT = O
(
(zmaxh1)

1/3T 2/3 +
√
umaxh1T + κ

)
. (13)

In the adversarial regime with a (∆, C, T )-self-bounding constraint, further suppose that185 √
ztht ≤

√
ρ1 · (1− qta∗) and utht ≤ ρ2 · (1− qta∗) (14)

are satisfied for some ρ1, ρ2 > 0 for all t ∈ [T ]. Then, the same algorithm achieves186

RegT = O

(
ρ

∆2
min

log
(
T∆2

min

)
+

(
C2ρ

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(15)

for ρ = max{ρ1, ρ2} and κ′ = κ+
(
(zmaxh1)

1/3 +
√
umaxh1

)(
1/∆2

min + C/∆min

)2/3 when T ≥187

1/∆2
min + C/∆min =: τ , and RegT = O

(
(zmaxh1)

1/3τ2/3 +
√
umaxh1τ

)
when T < τ .188

The proof of Theorem 7 relies on Theorem 6 established in the last section and can be found in189

Appendix C. Note that the bound (15) becomes the bound for the stochastic regime when C = 0.190

5 Case study (1): Partial monitoring with global observability191

This section provides a new BOBW algorithm for globally observable partial monitoring games.192

5.1 Problem setting and some concepts in partial monitoring193

Partial monitoring games A Partial Monitoring (PM) game G = (L,Φ) consists of a loss matrix194

L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where k and d are the number of actions and out-195

comes, respectively, and Σ is the set of feedback symbols. The game unfolds over T rounds between196

the learner and the environment. Before the game starts, the learner is given L and Φ. At each round197

t ∈ [T ], the environment picks an outcome xt ∈ [d], and then the learner chooses an action At ∈ [k]198

without knowing xt. Then the learner incurs an unobserved loss LAtxt
and only observes a feed-199

back symbol σt := ΦAtxt
. This framework can be indeed expressed as the general online learning200

framework in Section 2, by setting O = Σ, ℓt(a) = Laxt
= e⊤a Lext

and ot = σt = ΦAtxt
.201

We next introduce fundamental concepts for PM games. Based on the loss matrix L, we can202

decompose all distributions over outcomes. For each action a ∈ [k], the cell of action a, de-203

noted as Ca, is the set of probability distributions over [d] for which action a is optimal. That is,204

Ca = {u ∈ Pd : maxb∈[k](ℓa − ℓb)
⊤u ≤ 0}, where ℓa ∈ Rd is the a-th row of L.205

To avoid the heavy notions and concepts of PM, we assume that the PM game has no duplicate actions206

a 6= b such that ℓa = ℓb and its all actions are Pareto optimal; that is, dim(Ca) = d−1 for all a ∈ [k].207

The discussion of the effect of this assumption can be found e.g., in [34, 37].208

Observability and loss estimation Two Pareto optimal actions a and b are neighbors if dim(Ca ∩209

Cb) = d − 2. Then, this neighborhood relations defines globally observable games, for which the210

minimax regret of Θ(T 2/3) is known in the litarature [9, 34]. Two neighbouring actions a and b are211

globally observable if there exists a function we(a,b) : [k]× Σ → R satisfying212 ∑k
c=1 we(a,b)(c,Φcx) = Lax − Lbx for all x ∈ [d] , (16)

where e(a, b) = {a, b}. A PM game is said to be globally observable if all neighboring actions are213

globally observable. To the end, we assume that G is globally observable.2214

2Another representative class of PM is locally observable games, for which we can achieve a minimax regret
of Θ(

√
T ). See [9, 36, 37] for local observability and [54, 55] for BOBW algorithms for it.
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Based on the neighborhood relations, we can estimate the loss difference between actions, instead of215

estimating the loss itself. The in-tree is the edges of a directed tree with vertices [k] and let T ⊆216

[k]× [k] be an in-tree over the set of actions induced by the neighborhood relations with an arbitrarily217

chosen root r ∈ [k]. Then, we can estimate the loss differences between Pareto optimal actions as218

follows. LetG(a, σ)b =
∑
e∈pathT (b) we(a, σ) for a ∈ [k],where pathT (b) is the set of edges from219

b ∈ [k] to the root r on T . Then, it is known that thisG satisfies that for any Pareto optimal actions a220

and b,
∑k
c=1(G(c,Φcx)b−G(b,Φcx)c) = Lax−Lbx for all x ∈ [d] (e.g., [37, Lemma 4]). From this221

fact, one can see that we can use ŷt = G(At,ΦAtxt)/ptAt ∈ Rk as the loss (difference) estimator,222

following the standard construction of the importance-weighted estimator [8, 36]. In fact, ŷt satisfies223

EAt∼pt [ŷta − ŷtb] =
∑k
c=1(G(c, σt)a − G(c, σt)b) = Lax − Lbx. We let cG = max{1, k‖G‖∞}224

be a game-dependent constant, where ‖G‖∞ = maxa∈[k],σ∈Σ|G(a, σ)|.225

5.2 Algorithm and regret upper bounds226

Here, we present a new BOBW algorithm based on Algorithm 1. We use the following parameters227

for Algorithm 1. We use the loss (difference) estimator of ℓ̂t = ŷt. We set p0 in (11) to p0 = 1/k.228

For Ĩt ∈ argmaxi∈[k] qti and qt∗ = min{qtĨt , 1− qtĨt}, let229

β1 ≥
64c2G
1− α

, β̄ =
32cG

√
k

(1− α)2
√
β1
, zt =

4c2G
1− α

(∑
i ̸=Ĩt

q2−αti + q2−αt∗

)
, ut =

8cG
1− α

q1−αt∗ . (17)

Note that zmax =
4c2G
1−α , umax = 8cG

1−α , and hmax = h1 = 1
αk

1−α. Then, we can prove the following:230

Theorem 8. In globally observable partial monitoring, for any α ∈ (0, 1), Algorithm 1 with (17)231

satisfies the assumptions of Theorem 7 with ρ1 = Θ
(
c2Gk

1−α

α(1−α)

)
and ρ2 = Θ

(
cGk

1−α

α(1−α)

)
.232

The proof of Theorem 8 is given in Appendix E. Setting α = 1− 1/(log k) gives the following:233

Corollary 9. In globally observable partial monitoring with T ≥ τ , Algorithm 1 with (17) for234

α = 1− 1/(log k) achieves RegT = O
(
(cGT )

2/3
(log k)

1/3
+ κ
)

in the adversarial regime and235

RegT = O

(
c2G log k

∆2
min

log
(
T∆2

min

)
+

(
C2c2G log k

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(18)

in the adversarial regime with a (∆, C, T )-self-bounding constraint.236

This regret upper bound is better than the bound in [54, 56] in both stochastic and adversarial regimes,237

notably by a factor of log T or k in the stochastic regime. The bound for the adversarial regime with238

a (∆, C, T )-self-bounding constraint is the first MS-type bound in PM.239

6 Case study (2): Graph bandits with weak observability240

This section presents a new BOBW algorithm for weakly observable graph bandits.241

6.1 Problem setting and some concepts in graph bandits242

Problem setting In the graph bandit problem, the learner is given a directed feedback graph G =243

(V,E) with V = [k] and E ⊆ V × V . For each i ∈ V , let N in(i) = {j ∈ V : (j, i) ∈ E} and244

Nout(i) = {j ∈ V : (i, j) ∈ E} be the in-neighborhood and out-neighborhood of vertex i ∈ V ,245

respectively. The game proceeds as the general online learning framework provided in Section 2,246

with action set A = V , loss function ℓt : V → [0, 1], and observation ot = {ℓt(j) : j ∈ Nout(It)}.247

Observability and domination number Similar to partial monitoring, the minimax regret of248

graph bandits is characterized by the properties of the feedback graph G [4]. A graph G is ob-249

servable if it contains no self-loops, N in(i) 6= ∅ for all i ∈ V . A graph G is strongly observable if250

i ∈ N in(i) or V \{i} ⊆ N in(i) for all i ∈ V . Then, a graphG is weakly observable if it is observable251

but not strongly observable.3 The minimax regret of the weakly observable is known to be Θ(T 2/3).252

3Similar to the locally observable games of partial monitoring, we can achieve an O(
√
T ) regret for graph

bandits with strong observability. See e.g., [4] for details.
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The weak domination number characterizes precisely the minimax regret. The weakly dominating253

set D ⊆ V is a set of vertices such that {i ∈ V : i 6∈ Nout(i)} ⊆
⋃
i∈DN

out(i). Then, the weak254

domination number δ(G) of graph G is the size of the smallest weakly dominating set. For weakly255

observable G, the minimax regret of Θ̃(δ1/3T 2/3) is known [4]. Instead, our bound depends on the256

fractional domination number δ∗(G), defined by the optimal value of the following linear program:257

minimize
∑
i∈V xi subject to

∑
i∈N in(j) xi ≥ 1 ∀j ∈ V , 0 ≤ xi ≤ 1 ∀i ∈ V . (19)

We use (x∗i )i∈V to denote the optimal solution of (19) and define its normalized version u ∈ Pk258

by ui = x∗i /
∑
j∈V x

∗
j . The advantage of using the fractional domination number mainly lies in its259

computational complexity; further details are provided in Appendix F.1.260

6.2 Algorithm and regret analysis261

Here, we present a new BOBW algorithm based on Algorithm 1. We use the following parameters262

for Algorithm 1. We use the estimator ℓ̂t ∈ Rk defined by ℓ̂ti = ℓti
Pti

1[i ∈ Nout(It)] for Pti =263 ∑
j∈N in(i) ptj , which is unbiased and has been employed in the literature [4, 13]. We set p0 in (11)264

to p0 = u. For Ĩt ∈ argmaxi∈[k] qti and qt∗ = min{qtĨt , 1− qtĨt}, let265

β1 ≥ 64δ∗

1− α
, β̄ =

32
√
kδ∗

(1− α)2
√
β1
, zt=

4δ∗

1− α

( ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

)
, ut=

8δ∗

1− α
q1−αt∗ . (20)

Note that zmax = 4δ∗

1−α , umax = 8δ∗

1−α , and hmax = h1 = 1
αk

1−α. Then, we can prove the following:266

Theorem 10. In the weakly observable graph bandit problem, for any α ∈ (0, 1), Algorithm 1267

with (20) satisfies the assumptions of Theorem 7 with ρ1 = ρ2 = Θ
(
δ∗k1−α

α(1−α)

)
.268

The proof of Theorem 10 is given in Appendix F. Setting α = 1− 1/(log k) gives the following:269

Corollary 11. In weakly observable graph bandits with T ≥ max{δ∗(log k)2, τ}, Algorithm 1 with270

(20) for α = 1−1/(log k) achieves RegT = O
(
δ∗1/3T 2/3(log k)

1/3
+κ
)

in adversarial regime and271

RegT = O

(
δ∗ log k

∆2
min

log
(
T∆2

min

)
+

(
C2δ∗ log k

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(21)

in the adversarial regime with a (∆, C, T )-self-bounding constraint.272

Our bound is the first BOBW FTRL-based algorithm with the O(log T ) bound in the stochastic273

regime, improving the existing best FTRL-based algorithm in [25]. Compared to the reduction-based274

approach in [15], the dependences on T are the same. However, our bound unfortunately depends on275

the fractional domination number δ∗ instead of the weak domination number δ, which can be smaller276

than δ∗. Roughly speaking, this comes from the use of Tsallis entropy instead of Shannon entropy277

employed for the existing BOBW bound [25]. The technical challenges of making our bound depend278

on δ instead of δ∗ or the weak fractional domination number δ̃∗ are further discussed in Appendix F.3.279

Still, we believe that our algorithm can perform better since the reduction-based algorithm discards280

past observations as the doubling trick. Furthermore, the bound for the adversarial regime with a281

(∆, C, T )-self-bounding constraint is the first MS-type bound in weakly observable graph bandits.282

7 Conclusion and future work283

In this work, we investigated hard online learning problems, that is online learning with a minimax284

regret of Θ(T 2/3), and established a simple and adaptive learning rate framework called stability–285

penalty–bias matching (SPB-matching). We showed that FTRL with this framework and the Tsallis286

entropy regularization improves the existing BOBW regret bounds based on FTRL for two typical287

hard problems, partial monitoring with global observability and graph bandits with weak observabil-288

ity. Interestingly, the optimal exponent of Tsallis entropy in both settings is 1 − 1/(log k), suggest-289

ing the reasonableness of using Shannon entropy in existing algorithms for partial monitoring [37]290

and graph bandits [4]. Our learning rate is surprisingly simple compared to existing ones for hard291

problems [25, 54]. Hence, it is important future work to investigate whether this simplicity can be292

leveraged to apply SPB-matching to other hard problems, such as bandits with switching costs [18]293

or with paid observations [53] and dueling bandits with Borda winner [51].294
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A Additional related work458

Best-of-both-worlds algorithms The study of BOBW algorithms was initiated by Bubeck and459

Slivkins [10], who focused on multi-armed bandits. The motivation arises from the difficulty of460

determining in advance whether the underlying environment is stochastic or adversarial in real-world461

problems. Since then, BOBW algorithms have been extensively studied [7, 16, 22, 40, 46, 52], and462

recently, FTRL is the common approach for developing BOBW algorithms [24, 28, 60, 62]. One463

reason is by appropriately designing the learning rate and regularizer of FTRL, we can prove a BOBW464

guarantee for various problem settings. Another reason is that FTRL-based approaches not only465

perform well in both stochastic and adversarial regimes but also achieve favorable regret bounds in466

the adversarial regime with a self-bounding constraint, intermediate settings including stochastically467

constrained adversarial regime [58] and stochastic regime with adversarial corruptions [41]. This468

intermediate regime is particularly useful, considering that real-world problems often lie between469

purely stochastic and purely adversarial regimes.470

This study is closely related to FTRL with the Tsallis entropy regularization. Tsallis entropy in online471

learning was introduced in [3, 5], and its significance for BOBW algorithms was established in [61].472

In the multi-armed bandit problem, using the exponent of Tsallis entropy α = 1/2 provides optimal473

upper bounds, up to logarithmic factors, in both stochastic and adversarial regimes [61]. However,474

in the graph bandits, where the dependence on k is critical or in decoupled settings, optimal upper475

bounds can be achieved with α 6= 1/2 [26, 32, 48, 59]. In this work, we demonstrate that using the476

exponent tofo α = 1 − 1/(log k) for the number of actions k results in favorable regret bounds, as477

shown in Corollaries 9 and 11.478

Partial monitoring Partial monitoring [11, 47, 50] is a very general online decision-making frame-479

work and includes a wide range of problems such as multi-armed bandits, (utility-based) dueling480

bandits [23], online ranking [12], and dynamic pricing [29]. The characterization of the minimax481

regret in partial monitoring has been progressively understood through various studies. It is known482

that all partial monitoring games can be classified into trivial, easy, hard, and hopeless games, where483

their minimax regrets are 0, Θ(
√
T ), Θ(T 2/3) and Ω(T ). For comprehensive literature, refer to [9]484

and the improved results presented in [34, 35]. The games for which we can achieve a regret bound485

of O(T 2/3) correspond to globally observable games.486

There is limited research on BOBW algorithms for partial monitoring with global observability [54,487

56]. The existing bounds exhibit suboptimal dependencies on k and T , particularly in the stochastic488

regime, which comes from the use of the Shannon entropy or the log-barrier regularization. By489

employing Tsallis entropy, our algorithm is the first to achieve ideal dependencies on both k and T .490

It remains uncertain whether our upper bound in the stochastic regime is optimal with respect to491

variables other than T . While there is an asymptotic lower bound for the stochastic regime [30], its492

coefficient is expressed as a complex optimization problem. Investigating this lower bound further is493

important future work.494

Graph bandits The study on the graph bandit problem, which is also known as online learning495

with feedback graphs, was initiated by [42]. This problem includes several important problems such496

as the expert setting, multi-armed bandits, and label-efficient prediction. For example, considering497

a feedback graph with only self-loops, one can see that this corresponds to the multi-armed bandit498

problem. One of the most seminal studies on the graph bandit problem is by Alon et al. [4], who499

elucidated how the structure of the feedback graph influences its minimax regret. They demonstrated500

that the minimax regret is characterized by the observability of the feedback graph, introducing the501

notions of weakly observable graphs and strongly observable graphs. Of particular relevance to this502

study is the minimax regret of Õ(δT 2/3) for weakly observable graphs, where δ is the weak dom-503

ination number and Õ(·) ignores logarithmic factors. Recently, this upper bound was improved to504

Õ(δ∗T 2/3) by replacing the weak domination number with the fractional weak domination num-505

ber δ̃∗ [13].506

There are several BOBW algorithms for graph bandits [15, 20, 25, 31, 49]. However, only a few507

of these studies consider the weakly observable setting [15, 25, 31]. The existing results based on508

FTRL rely on the domination number rather than the weak domination number [31] or exhibit poor509

dependence on T [25, 31], and the best regret bound of them still exhibited a dependence on T of510
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(log T )2 [25]. Our algorithm is the first FTRL-based algorithm in the weakly observable setting that511

achieves an O(log T ) stochastic bound.512

B Proofs for SPB-matching learning rate (Section 3)513

B.1 Proof of Lemma 4514

Proof of Lemma 4. We first consider Rule 1 in (6). The learning rate βt is lower-bounded as515

β
3/2
t ≥ β

1/2
t

(
βt−1 +

2

ĥt

√
zt
βt

)
≥ β

3/2
t−1 +

2
√
zt

ĥt
≥ 2

t∑
s=1

√
zs

ĥs
, (22)

where the first inequality follows from the definition of βt in (6) and the second inequality from the516

fact that (βt)t is non-decreasing. We also have517

β2
t ≥ βt

(
βt−1 +

1

ĥt

ut
βt

)
≥ β

3/2
t−1 +

ut

ĥt
≥

t∑
s=1

us

ĥs
. (23)

Using the last two lower bounds on βt, we can bound F in (5) as518

F (β1:T , z1:T , u1:T , h1:T ) ≤
T∑
t=1

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ĥt

)

≤
T∑
t=1

(
4

√
zt
βt

+ 2
ut
βt

)

≤ 4

T∑
t=1

√√√√ zt(
2
∑t
s=1

√
zs/ĥs

)1/3 + 2

T∑
t=1

ut√∑t
s=1 ut/ĥt

= 3.2G1(z1:T , ĥ1:T ) + 2G2(u1:T , ĥ1:T ) , (24)

where the secoind inequality follows from the definition of βt in (6) and the third inequality from519

(22) and (23). This completes the proof of the first statement in Lemma 4.520

We next consider Rule 2 in (6). In this case, we can bound F as follows:521

F (β1:T , z1:T , u1:T , h1:T ) ≤ 2

√
z1
β1

+
u1
β1

+ β1h1 +

T∑
t=2

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ĥt

)

= 2

√
z1
β1

+
u1
β1

+ β1h1 +

T∑
t=2

(
2

√
zt
βt

+
ut
βt

+ 2

√
zt−1

βt−1
+
ut−1

βt−1

)

≤ β1h1 +

T∑
t=1

(
4

√
zt
βt

+ 2
ut
βt

)
, (25)

where the equality follows from (6).522

We then first consider bounding
∑T
t=1

√
zt/βt. We can lower-bound β3/2

t as523

β
3/2
t ≥ β

1/2
t

(
βt−1 +

2

ĥt

√
zt−1

βt−1

)
≥ β

3/2
t−1+

2
√
zt−1

ĥt
≥ β

3/2
1 +2

t∑
s=2

√
zs−1

ĥs
=:
(
β(1)

t

)3/2
, (26)

where we define524

β(1)

t =

(
β
3/2
1 + 2

t∑
s=2

√
zs−1

ĥs

)2/3

=

(
β
3/2
1 + 2

t−1∑
s=1

√
zs

ĥs+1

)2/3

≤ βt . (27)
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In the following, we will upper-bound
∑T
t=1

√
zt/βt ≤

∑T
t=1

√
zt/β

(1)

t . Let c = (1+δ)2 for δ > 0525

and and we then define S = {t ∈ [T ] : β(1)

t+1 ≤ c2β(1)

t } and Sc = [T ] \ S = {t ∈ [T ] : β(1)

t+1 >526

c2β(1)

t }. From these definitions, we have527 ∑
t∈Sc

√
zt

β(1)

t

≤
∑
t∈Sc

√
zmax

β(1)

t

≤
∞∑
s=0

(
1

c

)s√
zmax

β1
≤ 1

1− 1/c

√
zmax

β1
. (28)

Hence, using the last inequality, we obtain528

T∑
t=1

√
zt
βt

≤
∑
t∈S

√
zt

β(1)

t

+
∑
t∈Sc

√
zt

β(1)

t

≤ c
∑
t∈S

√
zt

β(1)

t+1

+
1

1− 1/c

√
zmax

β1

≤ c
∑
t∈S

√√√√ zt(
2
∑t
s=1

√
zs/ĥs+1

)2/3 +
1

1− 1/c

√
zmax

β1

=
c

21/3
G1(z1:T , ĥ2:T+1) +

c

c− 1

√
zmax

β1
, (29)

where the third inequality follows from the definition of β(1) in (26).529

We next bound
∑T
t=1 ut/βt. We can lower-bound β2

t as530

β2
t ≥ βt

(
βt−1 +

1

ĥt

ut−1

βt−1

)
≥ β2

t−1 +
ut−1

ĥt
≥ β2

1 +

t∑
s=2

us−1

ĥs
=:
(
β(2)

t

)2
, (30)

where we define531

β(2)

t =

√√√√β2
1 +

t∑
s=2

us−1

ĥs
=

√√√√β2
1 +

t−1∑
s=1

us

ĥs+1

≤ βt . (31)

In the following, we will upper-bound
∑T
t=1 ut/βt ≤

∑T
t=1 ut/β

(2)

t . Let us define T =532 {
t ∈ [T ] : β(2)

t+1 ≤ cβ(2)

t

}
and T c = [T ] \ T =

{
t ∈ [T ] : β(2)

t+1 > cβ(2)

t

}
. From these definitions,533

we have534 ∑
t∈T c

ut

β(2)

t

≤
∑
t∈T c

umax

β(2)

t

≤
∞∑
s=0

(
1

c

)s
umax

β1
≤ 1

1− 1/c

umax

β1
. (32)

Hence, using the last inequality, we obtain535

T∑
t=1

ut
βt

≤
∑
t∈T

ut

β(2)

t

+
∑
t∈T c

ut

β(2)

t

≤ c
∑
t∈T

ut

β(2)

t+1

+
1

1− 1/c

umax

β1

≤ c
∑
t∈T

ut√∑t
s=1 us/ĥs+1

+
1

1− 1/c

umax

β1

= cG2(u1:T , ĥ2:T+1) +
c

c− 1

zmax

β1
. (33)

Finally, combining (25) with (29) and (33), we obtain536

F (β1:T , z1:T , u1:T , h1:T ) ≤ 3.2cG1(z1:T , ĥ2:T+1) + 2cG2(u1:T , ĥ2:T+1)

+
c

c− 1

(
2

√
zmax

β1
+
umax

β1

)
+ β1h1 . (34)

Setting c = 1.25 completes the proof.537
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B.2 Proof of Lemma 5538

Before proving Lemma 5, we prepare the following lemma, a variant of [45, Lemma 4.13].539

Lemma 12. Let T ⊆ [T ] = {1, . . . , T} and (xt)t∈T be a non-negative sequence. Then,540

∑
t∈T

xt(∑
s∈[t]∩T xs

)1/3 ≤ 3

2

(∑
t∈T

xt

)2/3

. (35)

Proof. Let St =
∑
s∈[t]∪T xs. Then,541

xt(∑
s∈[t]∩T xs

)1/3 =
xt

S
1/3
t

=

∫ St

St−1

S
−1/3
t dz ≤

∫ St

St−1

z−1/3dz =
3

2

(
S
2/3
t − S

2/3
t−1

)
. (36)

Summing up the last inequality over T , we obtain542 ∑
t∈T

xt(∑
s∈[t]∩T xs

)1/3 =
3

2

∑
t∈T

(
S
2/3
t − S

2/3
t−1

)
≤ 3

2
S
2/3
T , (37)

where the last inequality follows from the telescoping argument with the assumption that xt ≥ 0.543

Proof of Lemma 5. We upper-bound G1 as follows:544

G1(z1:T , h1:T ) =

T∑
t=1

√
zt(∑t

s=1

√
zs/hs

)1/3 =

J+1∑
j=1

∑
t∈Tj

√
zt(∑t

s=1

√
zs/hs

)1/3
≤
J+1∑
j=1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs/hs

)1/3 ≤
J+1∑
j=1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs/θj−1

)1/3
=

J+1∑
j=1

θ
1/3
j−1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs

)1/3 ≤ 3

2

J+1∑
j=1

√θj−1

∑
t∈Tj

√
zt

2/3

, (38)

where the last inequality follows from Lemma 12. This completes the proof of the first statement in545

Lemma 5. Setting J = 0 and θ0 = hmax in (38) yields that546

G1(z1:T , h1:T ) ≤
3

2

(
T∑
t=1

√
zthmax

)2/3

. (39)

Setting θj = 2−jhmax for j ∈ {0} ∪ [J ] in (38) also gives547

G1(z1:T , h1:T ) ≤
3

2

J+1∑
j=1

√θj−1

∑
t∈Tj

√
zt

2/3

≤ 3

2

J∑
j=1

√θj−1

θj

∑
t∈Tj

√
ztht

2/3

+
3

2

(√
θJ
∑
t∈TJ

√
zt

)2/3

=
3

2

J∑
j=1

√
2
∑
t∈Tj

√
ztht

2/3

+
3

2

(
2−J/2

∑
t∈TJ

√
zthmax

)2/3

≤ 3

2

√
2J

J∑
j=1

∑
t∈Tj

√
ztht

2/3

+
3

2

(
2−J/2

∑
t∈TJ

√
zthmax

)2/3

(Hölder’s inequality)

17



≤ 3

2

(
√
2J

T∑
t=1

√
ztht

)2/3

+
3

2

(
2−J/2

√
zmaxhmax

)2/3
T 2/3 , (40)

where the second inequality follows from (x + y)2/3 ≤ x2/3 + y2/3 for x, y ≥ 0. Combining the548

last inequality and (39) completes the proof of the second statement in Lemma 5.549

C Proof for best-of-both-worlds analysis in general online learning550

framework (Theorem 7, Section 4)551

This section provides the proof of Theorem 7.552

Proof. From Assumption (i), the regret is bounded as553

RegT ≤ E

[
T∑
t=1

〈ℓ̂t, qt − ea∗〉+ 2

T∑
t=1

γt

]
. (41)

From the standard FTRL analysis in [36, Exercise 28.12], we obtain554

T∑
t=1

〈ℓ̂t, qt − ea∗〉 ≤
T∑
t=1

(〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt) + (βt − βt−1)ht

)
+ β̄h̄ . (42)

Combining the last two inequalities, we obtain555

RegT ≤ E

[
T∑
t=1

(〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt) + (βt − βt−1)ht + 2γt

)
+ β̄h̄

]

≲ E

[
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht + γt

)
+ β̄h̄

]
(Assumption (ii) in (12))

≲ E

[
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht + γ′t +
ut
βt

)
+ β̄h̄

]
(definition of γt in (11))

≲ E

[
T∑
t=1

(√
zt
βt

+
ut
βt

+ (βt − βt−1)ht−1

)
+ β̄h̄

]
(definition of γ′t and Assumption (iii))

≲ E[F (β1:T , z1:T , u1:T , h0:T−1)] + β̄h̄ , (43)

where the last inequality follows from (5). Now, since βt follows Rule 2 in (6) with ĥt = ht−1,556

Eq. (9) in Theorem 6 gives557

F (β1:T , z1:T , u1:T , h0:T−1) ≲
(

T∑
t=1

√
zth1

) 2
3

+

√√√√ T∑
t=1

uth1 +

√
zmax

β1
+
umax

β1
+ β1h1 , (44)

F (β1:T , z1:T , u1:T , h0:T−1) ≲ inf
ε≥1/T

{(
T∑
t=1

√
ztht log(εT )

) 2
3

+

(√
zmaxh1
ε

) 2
3

+

√√√√ T∑
t=1

utht log(εT ) +

√
umaxh1

ε

}
+

√
zmax

β1
+
umax

β1
+ β1h1 . (45)

Hence, in the adversarial regime, combining (43) and (44) gives558

RegT ≲ E

( T∑
t=1

√
zth1

)2/3

+

√√√√ T∑
t=1

uth1

+ κ ≤ (zmaxh1)
1/3T 2/3 +

√
umaxh1T + κ , (46)

where we recall that κ =
√
zmax/β1 + umax/β1 + β1h1 + β̄h̄. This completes the proof of (13).559
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We next consider the adversarial regime with a (∆, C, T )-self-bounding constraint. For any ε ≥ 1/T ,560

combining (43) and (45) gives561

RegT ≲ E

( T∑
t=1

√
ztht log(εT )

) 2
3

+

√√√√ T∑
t=1

utht log(εT )

+

(√
zmaxh1
ε

) 2
3

+

√
umaxh1

ε
+ κ

≤

(
E

[
T∑
t=1

√
ztht

]√
log(εT )

) 2
3

+

√√√√E

[
T∑
t=1

utht

]
log(εT ) +

(√
zmaxh1
ε

) 2
3

+

√
umaxh1

ε
+ κ ,

(47)

where the last inequality follows from Jensen’s inequality. Now, using the assumption (14) and defin-562

ing Q(a∗) = E
[∑T

t=1(1− qta∗)
]
∈ [0, T ], we have563

E

[
T∑
t=1

√
ztht

]
≤ √

ρ1 E

[
T∑
t=1

(1− qta∗)

]
=

√
ρ1Q(a∗) , (48)

E

[
T∑
t=1

utht

]
≤ ρ2 E

[
T∑
t=1

(1− qta∗)

]
= ρ2Q(a∗) . (49)

Since we consider the adversarial regime with a (∆, C, T )-self-bounding constraint, the regret is564

lower-bounded as565

RegT ≥ E

[
T∑
t=1

〈∆, p〉

]
− C ≥ 1

2
E

[
T∑
t=1

〈∆, q〉

]
− C

≥ 1

2
∆minE

[
T∑
t=1

(1− qta∗)

]
− C =

1

2
∆minQ(a∗)− C , (50)

where the second inequality follows from p = (1 − γt)qt + γtp0 ≥ qt/2. Hence, combining (47)566

with (48), (49) and (50), we can bound the regret for any λ ∈ (0, 1] as follows:567

RegT = (1 + λ)RegT − λRegT

≲ (1 + λ)
(√

ρ1Q(a∗)
√
log(εT )

)2/3
− λ

4
∆minQ(a∗) + (1 + λ)

√
ρ2Q(a∗)log(εT )− λ

4
∆minQ(a∗)

+ (1 + λ)

((√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ

)
+ λC

≲ (1 + λ)3

λ2
ρ1 log(εT )

∆2
min

+
(1 + λ)2

λ

ρ2 log(εT )

∆min
+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC

≲ ρ1 log(εT )

∆2
min

+
ρ2 log(εT )

∆min
+

1

λ2

(
ρ1 log(εT )

∆2
min

+
ρ2 log(εT )

∆min

)
+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC

≲ ρ log(εT )

∆2
min

+
1

λ2
ρ log(εT )

∆2
min

+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC , (51)

where in the first inequality we used (47) with (48), (49), (50), and Jensen’s inequality, in the second568

inequality we used ax2 − bx3 ≤ 4a3/(27b2) for a ≥ 0, b > 0 and x ≥ 0 and ax − bx2 ≤569

a2/(4b) for a ≥ 0, b > 0 and x ≥ 0 and in the third inequality we used λ ∈ (0, 1]. Setting570

λ = Θ
(
(ρ log(εT )/C)

1/3) in the last inequality, we obtain571

RegT ≲ ρ log(εT )

∆2
min

+

(
C2ρ log(εT )

∆2
min

)1/3

+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ .

Finally, when T ≥ τ = 1/∆2
min + C/∆min, setting572

ε =
1

ρ2/∆2
min + Cρ/∆min

≥ 1

T
(52)
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yields that573

RegT ≲ ρ

∆2
min

log+

(
T

1/∆2
min + C/∆min

)
+

(
C2ρ

∆2
min

log+

(
T

1/∆2
min + C/∆min

))1/3

+ (zmaxh1)
1/3

(
1

∆2
min

+
C

∆min

)2/3

+
√
umaxh1

√
1

∆2
min

+
C

∆min
+ κ

≲ ρ

∆2
min

log+
(
T∆2

min

)
+

(
C2ρ

∆2
min

log+

(
T∆min

C

))1/3

+
(
(zmaxh1)

1/3 +
√
umaxh1

)( 1

∆2
min

+
C

∆min

)2/3

+ κ , (53)

which completes the proof.574

D Auxiliary lemmas575

This section provides auxiliary lemmas useful for proving the BOBW gurantee.576

Lemma 13. Let α ∈ (0, 1) and i∗ ∈ [k]. Then, the α-Tsallis entropy Hα is bounded from above as577

Hα(q) =
1

α

k∑
i=1

(qαi − qi) ≤
1

α
(k − 1)α(1− qi∗)

α (54)

for any q ∈ Pk.578

Proof. From Jensen’s inequality and the fact that x 7→ xα is concave for α ∈ (0, 1),579

k∑
i=1

(qαi − qi) ≤
∑
i ̸=i∗

qαi = (k − 1)
∑
i ̸=i∗

1

k − 1
qαi ≤ (k − 1)

 1

k − 1

∑
i ̸=i∗

qi

α

= (k − 1)1−α

∑
i ̸=i∗

qi

α

= (k − 1)1−α(1− qi∗)
α
, (55)

which completes the proof.580

Lemma 14 ([26, Lemma 10]). Let q ∈ Pk and Ĩ ∈ argmaxi∈[k] qi. For ℓ ∈ Rk, if |ℓi| ≤581

1−α
4

1
min{qĨ ,1−qĨ}1−α for all i ∈ [k], it holds that582

max
p∈Pk

{
〈ℓ, q − p〉 −D(−Hα)(p, q)

}
≤ 4

1− α

(∑
i ̸=Ĩ

q2−αi ℓ2i +min{qĨ , 1− qĨ}
2−αℓ2

Ĩ

)
. (56)

Lemma 15 ([26, Lemmas 11 and 12]). Let L ∈ Rk and ℓ ∈ Rk and suppose that q, r ∈ Pk are583

given by584

q ∈ argmin
p∈Pk

{
〈L, p〉+ β(−Hα(p)) + β̄(−Hᾱ(p))

}
r ∈ argmin

p∈Pk

{
〈L+ ℓ, p〉+ β′(−Hα(p)) + β̄(−Hᾱ(p))

}
(57)

for the Tsallis entropy Hα and Hᾱ, 0 < β ≤ β′. Suppose also that585

‖ℓ‖∞ ≤ max

{
1− (

√
2)α−1

2
qα−1
∗ β,

1− (
√
2)ᾱ−1

2
qᾱ−1
∗ β̄

}
, (58)

0 ≤ β′ − β ≤ max

{(
1− (

√
2)α−1

)
β,

1− (
√
2)ᾱ−1

√
2

qᾱ−α∗ β̄

}
. (59)

Then, it holds that Hα(r) ≤ 2Hα(q).586
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E Proof for partial monitoring (Theorem 8, Section 5)587

This section provides the proof of Theorem 8.588

Proof of Theorem 8. It suffices to prove that assumptions in Theorem 7 are satified. We first vertify589

Assumptions (i)–(iii) in (12). Let us start from checking Assumption (i). From the definition of the590

loss difference estimator ŷt, the regret is bounded as591

RegT = E

[
T∑
t=1

(LAtxt − La∗xt)

]
= E

[
T∑
t=1

〈pt − ea∗ ,Lext〉

]

= E

[
T∑
t=1

〈qt − ea∗ ,Lext
〉+

T∑
t=1

γt

〈
1

k
1− qt,Lext

〉]

≤ E

[
T∑
t=1

〈qt − ea∗ ,Lext
〉+

T∑
t=1

γt

]
= E

[
T∑
t=1

k∑
a=1

qta(Laxt
− La∗xt

) +

T∑
t=1

γt

]

= E

[
T∑
t=1

k∑
a=1

qta(ŷta − ŷta∗) +

T∑
t=1

γt

]
= E

[
T∑
t=1

〈qt − ea∗ , ŷt〉+
T∑
t=1

γt

]
, (60)

where the inequality holds since L ∈ [0, 1]k×d, This implies that Assumption (i) is indeed satisfied.592

We next check Assumption (ii) in (12). For any b ∈ [k] we have593 ∣∣∣∣ ŷtbβt
∣∣∣∣ = ∣∣∣∣G(At, σt)bβtptAt

∣∣∣∣ ≤ |G(At, σt)b|k
βtγt

≤ cG
βtγt

≤ cG
ut

=
1− α

8

1(
min

{
qtĨt , 1− qtĨt

})1−α , (61)

where the third inequality follows from γt ≥ ut/βt and the last equality follows from the defintition594

of ut in (17). Hence, from Lemma 14 the LHS of Assumption (ii) is bounded as595

Et
[
〈ŷt, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

]
= βtEt

[〈
ŷt
βt
, qt − qt+1

〉
−D(−Hα)(qt+1, qt)

]

≤ Et

 4

βt(1− α)

∑
i ̸=Ĩt

q2−αti ŷ2ti +
(
min

{
qtĨt , 1− qtĨt

})2−α
ŷ2
tĨt


=

4

βt(1− α)

∑
i ̸=Ĩt

q2−αti Et
[
ŷ2ti
]
+ q2−αt∗ Et

[
ŷ2
tĨt

] . (62)

Since the variance of ŷt is bounded from above as596

Et
[
ŷ2ti
]
=

k∑
a=1

pta
G(a, σt)

2
i

p2ta
≤

k∑
a=1

k‖G‖2∞
γt

=
c2G
γt

(63)

for any i ∈ [k], the LHS of Assumption (ii) is further bounded as597

Et[〈ŷt, qt − qt+1〉 − βtDψt
(qt+1, qt)] ≤

4c2G
βtγt(1− α)

∑
i ̸=Ĩt

q2−αti + q2−αt∗

 =
zt
βtγt

≤ zt
βtγ′t

,

(64)
which implies that Assumption (ii) in (12) is satisfied.598

Next, we will prove ht+1 ≲ ht of Assumption (iii) in (12). To prove this, we will check the condition599

in Lemma 15. For any a ∈ [k],600

|ŷta| ≤
‖G‖∞
ptAt

≤ k‖G‖∞
γt

≤ cGβt
ut

≤ 1− α

8

βt

q1−αt∗
≤ 1− (

√
2)α−1

2

βt

q1−αt∗
, (65)

where the second inequality follows from pta ≥ γt/k, the third inequality from γt ≥ ut/βt, and the601

last inequality from the fact that (1− x)/4 ≤ 1− (
√
2)x−1 for x ∈ [0, 1]. Thus, the condition (58)602

is satisfied.603
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We next check the condition (59). Recalling qt∗ = min{qtĨt , 1 − qtĨt}, the parameters zt and ut604

satisfy605

√
zt =

2cG√
1− α

√∑
i ̸=Ĩt

q2−αti + q2−αt∗ ≤ 2
√
kcG√

1− α
q
1− 1

2α
t∗ , ut =

8cG
1− α

q1−αt∗ , (66)

where the inequality follows from qti ≤ qt∗ for i 6= Ĩt. The penalty component ht is lower-bounded606

as607

ht = Hα(qt) =
1

α

k∑
i=1

(qαti − qti) ≥
1− (1/2)1−α

α
qαt∗ ≥ 1− α

4α
qαt∗ , (67)

where the last inequality in (67) follows from 1 − (1/2)1−x ≥ (1 − x)/4 for x ≤ 0, and the first608

inequality can be proven as folows: when qtĨt ≤ 1/2, it holds that
∑k
i=1(q

α
ti − qti) ≥ qα

tĨt
− qtĨt =609

qα
tĨt

(1 − q1−α
tĨt

) ≥ qα
tĨt

(
1− (1/2)1−α

)
= qαt∗(1 − (1/2)1−α), and when qtĨt > 1/2, it holds that610 ∑k

i=1(q
α
ti − qti) ≥

∑k
i=1 q

α
ti − 1 ≥

∑
i ̸=Ĩt q

α
ti + (1/2)α − 1 ≥ (

∑
i ̸=Ĩt qti)

α + (1/2)α − 1 =611

(1 − qtĨt)
α + (1/2)α − 1 = qαt∗ + (1/2)α − 1 ≥ qαt∗(1 − (1/2)1−α). Using the bounds on zt, ut,612

and ht in (66) and (67), we have613

βt+1 − βt =
1

ĥt+1

(
2

√
zt
βt

+
ut
βt

)
=

2

ht

√
zt
βt

+
1

ht

ut
βt

≤ 16αcG
√
k√

β1(1− α)3/2
q
1− 3

2α
t∗ +

32αcG√
β1(1− α)2

q1−2α
t∗

≤ αβ̄q
1− 3

2α
t∗ + αβ̄q1−2α

t∗

≤ 2(1− ᾱ)β̄qᾱ−αt∗ ≤ 2
1− (

√
2)ᾱ−1

√
2

β̄qᾱ−αt∗ , (68)

where the first inequality follows from (66), (67), and the fact that βt ≥ β1 ≥ 1, the second inequality614

from the definition of β̄ in (17), the third inequality from min{1 − 3
2α, 1 − 2α} ≥ ᾱ − α since615

ᾱ = 1 − α, and the last inequality from 1 − x ≤ (1 − (
√
2)x−1)/

√
2 for x ≤ 1. Therefore, the616

condition (59) is satified. Hence, from Lemma 15, we have ht+1 = Hα(qt+1) ≤ 2Hα(qt) = 2ht,617

which implies that Assumption (iii) in (12) is satisfied.618

Finally, we check the assumption (14) in Theorem 7. We first consider the first inequality in (14).619

From the definition of zt and the fact that qti ≤ qtĨt for i 6= Ĩt, the stability component zt is bounded620

as621

zt =
4c2G
1− α

∑
i ̸=Ĩt

q2−αti +
(
min

{
qtĨt , 1− qtĨt

})2−α
≤

4c2G
1− α


∑
i ̸=Ĩt

q2−αti +

∑
i ̸=Ĩt

qti

2−α


≤
8c2G
1− α

∑
i ̸=Ĩt

qti

2−α

≤
8c2G
1− α

∑
i ̸=a∗

qti

2−α

=
8c2G
1− α

(1− qta∗)
2−α

, (69)

where the second inequality holds from the inequality xa+ya ≤ (x+y)a for x, y ≥ 0 and a ∈ [0, 1],622

and the third inequality from qti ≤ qtĨt for i 6= Ĩt. From Lemma 13, we also obtain that623

ht = Hα(qt) ≤
1

α
(k − 1)1−α(1− qta∗)

α
. (70)

Hence, combining this with (69), we obtain624

ztht ≤
8c2G
1− α

(1− qta∗)
2−α · 1

α
(k − 1)1−α(1− qta∗)

α
=

8c2G(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ1

(1− qta∗)
2
. (71)
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We next consider the second inequality in (14). We can bound ut from above as625

ut =
8cG
1− α

(
min

{
qtĨt , 1− qtĨt

})1−α ≤ 8cG
1− α

∑
i ̸=Ĩt

qti

1−α

≤ 8cG
1− α

∑
i ̸=a∗

qti

1−α

=
8cG
1− α

(1− qta∗)
1−α

, (72)

where the second inequality follows from qtĨt ≥ qti for all i ∈ [k]. Hence, combining the last two626

inequality and (70),627

utht ≤
4cG(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ2

(1− qta∗) . (73)

Hence, the assumption (14) is satified with above ρ1 and ρ2, and thus we have completed the proof.628

629

F Proof for graph bandits (Theorem 10, Section 6)630

This section provides the missing detail of Section 6.631

F.1 Fractional domination number632

Before introducing the fractional domination number, we define the domination number δ̃ ≤ δ. A633

dominating set D ⊆ V is a set of vertices such that V ⊆
⋃
i∈DN

out(i). The domination number634

δ̃(G) of graph G is the size of the smallest dominating set. From the definition, the domination635

number δ̃ can also be written as the optimal value of the following optimization problem:636

minimize
∑
i∈V

xi subject to
∑

i∈N in(j)

xi ≥ 1 ∀j ∈ V , xi ∈ {0, 1} ∀i ∈ V , (74)

where xi ∈ {0, 1} a binary variable indicating whether vertex i is in the dominating set (xi = 1) or637

not (xi = 0).638

Then, one can see that the fractional domination number δ∗ is defined as the optimal value of the639

following optimization problem, in which the variables (xi)i∈V are allowed to take values in [0, 1]640

instead of {0, 1}:641

minimize
∑
i∈V

xi subject to
∑

i∈N in(j)

xi ≥ 1 ∀j ∈ V , 0 ≤ xi ≤ 1 ∀i ∈ V , (75)

which is the linear program provided in (19). From the definitions, the fractional domination number642

is less than or equal to the domination number, δ∗ ≤ δ̃. Another advantage of using δ∗ instead of δ̃ is643

that the fractional domination number δ∗ can be computed in polynomial time, while the computation644

of the domination number δ̃ is NP-hard. See [13] for more benefits of using the fractional version of645

the (weak) domination number.646

F.2 Proof of Theorem 10647

Here, we provide the proof of Theorem 10.648

Proof. It suffices to prove that assumptions in Theorem 7 are satified. We first vertify Assumptions649

(i)–(iii) in (12). We start from checking Assumption (i). The regret is bounded as650

RegT = E

[
T∑
t=1

ℓt(At)−
T∑
t=1

ℓt(a
∗)

]
= E

[
T∑
t=1

〈ℓt, pt − ea∗〉

]
= E

[
T∑
t=1

〈ℓt, qt − ea∗〉+
T∑
t=1

〈ℓt, pt − qt〉

]

= E

[
T∑
t=1

〈ℓt, qt − ea∗〉+
T∑
t=1

γt〈ℓt, qt − u〉

]
≤ E

[
T∑
t=1

〈ℓ̂t, qt − ea∗〉+
T∑
t=1

γt

]
, (76)
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where the third equality follows from the defintion of γt. This implies that Assumption (i) is indeed651

satisfied.652

We next check Assumption (ii) in (12). Now, recalling the defintion of the fractional domination653

number and the optimal value x∗ of (19), and ui = x∗i /
∑
j∈V x

∗
j , we have654 ∑

j∈N in(i)

uj =

∑
j∈N in(i) x

∗
j∑

i∈V x
∗
i

≥ 1∑
i∈V x

∗
i

=
1

δ∗
, (77)

where the inequality follows from the first constraint in (19). Hence, combining this with the defini-655

tion of pt = (1− γt)qt + γtu, we can lower-bound Pti as656

Pti =
∑

j∈N in(i)

ptj ≥ γt
∑

j∈N in(i)

uj ≥
γt
δ∗

for all i ∈ V . (78)

This lower bound yields that for any i ∈ V657 ∣∣∣∣∣ ℓ̂tiβt
∣∣∣∣∣ = ℓti

βtPti
≤ δ∗

βtγt
=
δ∗

ut
=

1− α

8

1(
min

{
qtĨt , 1− qtĨt

})1−α . (79)

Hence, from Lemma 14 we obtain658

Et
[〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt)

]
= βtEt

[〈
ℓ̂t
βt
, qt − qt+1

〉
−D(−Hα)(qt+1, qt)

]

≤ Et

 4

βt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti ℓ̂2ti +
(
min

{
qtĨt , 1− qtĨt

})2−α
ℓ̂2
tĨt


=

4

βt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti Et
[
ℓ̂2ti

]
+ q2−αt∗ Et

[
ℓ̂2
tĨt

] . (80)

Then, by using the lower bound of Pt in (78), for any i ∈ V the variance of the loss estimator ℓ̂ti is659

bounded as660

Et
[
ℓ̂2ti

]
=

k∑
j=1

ptj
ℓ2ti
P 2
ti

1
[
i ∈ Nout(j)

]
=
ℓ2ti
P 2
ti

∑
j∈V : i∈Nout(j)

ptj =
ℓ2ti
Pti

≤ δ∗

γt
. (81)

Hence, combining (80) with (81), we obtain661

Et[〈ŷt, qt − qt+1〉 − βtDψt
(qt+1, qt)] ≤

4δ∗

βtγt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

 =
zt
βtγt

≤ zt
βtγ′t

,

(82)
which implies that Assumption (ii) in (12) is satisfied.662

Next, we will prove ht+1 ≲ ht of Assumption (iii) in (12). To prove this, we will check the condition663

in Lemma 15. For any i ∈ V ,664

|ℓ̂ti| ≤
1

Pti
≤ δ∗

γt
≤ δ∗βt

ut
=

1− α

8

βt

q1−αt∗
≤ 1− (

√
2)α−1

2

βt

q1−αt∗
, (83)

where the second inequality follows from (78), the third inequality from γt ≥ ut/βt, and the last665

inequality from the fact that (1 − x)/4 ≤ 1 − (
√
2)x−1 for x ∈ [0, 1]. Thus, the condition (58) is666

satisfied.667

We next check the condition (59). Recalling qt∗ = min{qtĨt , 1−qtĨt}, we observe that the parameters668

zt and ut satisfy669

√
zt =

√√√√√ 4δ∗

1− α

 ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

 ≤ 2
√
kδ∗√

1− α
q
1− 1

2α
t∗ , ut =

8δ∗

1− α
q1−αt∗ , (84)
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where the last inequality follows from qti ≤ qt∗ for i 6= Ĩt. We can also lower-bound ht as670

ht = Hα(qt) =
1

α

k∑
i=1

(qαti − qti) ≥
1− (1/2)1−α

α
qαt∗ ≥ 1− α

4α
qαt∗ , (85)

which can be proven by the same manner as in (67). Hence, using the upper bounds on zt, ut, and671

ht in (84) and (85), we have672

βt+1 − βt =
1

ĥt+1

(
2

√
zt
βt

+
ut
βt

)
=

2

ht

√
zt
βt

+
1

ht

ut
βt

≤ 16α
√
kδ∗√

β1(1− α)3/2
q
1− 3

2α
t∗ +

32αδ∗√
β1(1− α)2

q1−2α
t∗

≤ αβ̄q
1− 3

2α
t∗ + αβ̄q1−2α

t∗

≤ 2(1− ᾱ)β̄qᾱ−αt∗ ≤ 2
1− (

√
2)ᾱ−1

√
2

β̄qᾱ−αt∗ , (86)

where the first inequality follows from (84), (85), and βt ≥ β1 ≥ 1, the second inequality from673

the definition of β̄, the third inequality from min{1 − 3
2α, 1 − 2α} ≥ ᾱ − α since ᾱ = 1 − α,674

and the last inequality from 1 − x ≤ (1 − (
√
2)x−1)/

√
2 for x ≤ 1. Thus the condition (59) is675

satified. Therefore, from Lemma 15, we have ht+1 = Hα(qt+1) ≤ 2Hα(qt) = 2ht, which implies676

that Assumption (iii) in (12) is satisfied.677

Finally, we check the assumption (14) in Theorem 7. We first consider the first inequality in (14).678

From the definition of zt and the fact that qti ≤ qtĨt for i 6= Ĩt, we get679

zt =
4δ∗

1− α

 ∑
i∈V \{Ĩt}

q2−αti +
(
min

{
qtĨt , 1− qtĨt

})2−α
≤ 4δ∗

1− α


∑

i∈V \{Ĩt}

q2−αti +

∑
i ̸=Ĩt

qti

2−α


≤ 8δ∗

1− α

 ∑
i∈V \{Ĩt}

qti

2−α

≤ 8δ∗

1− α

∑
i ̸=a∗

qti

2−α

=
8δ∗

1− α
(1− qta∗)

2−α
, (87)

where the second inequality holds from the inequality xa+ya ≤ (x+y)a for x, y ≥ 0 and a ∈ [0, 1],680

and the third inequality from qti ≤ qtĨt . Hence, combining this with (87) with the upper bound on681

ht in (70), we obtain682

ztht ≤
8δ∗

1− α
(1− qta∗)

2−α · 1
α
(k − 1)1−α(1− qta∗)

α
=

8δ∗(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ1

(1− qta∗)
2
. (88)

We next consider the second inequality in (14). We can bound ut from above as683

ut =
8δ∗

1− α

(
min

{
qtĨt , 1− qtĨt

})1−α ≤ 8δ∗

1− α

∑
i ̸=Ĩt

qti

1−α

≤ 8δ∗

1− α

∑
i ̸=a∗

qti

1−α

=
8δ∗

1− α
(1− qta∗)

1−α
, (89)

where the second inequality follows from qtĨt ≥ qti for all i 6= Ĩt. Hence, combining the last684

inequality with (70),685

utht ≤
4δ∗(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ2

(1− qta∗) . (90)
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Hence, the assumption (14) is satified with above ρ1 and ρ2, and thus we have completed the proof.686

687

F.3 Technical challenges to derive best-of-both-worlds bounds depending on (fractional)688

weak domination number689

Here, we discuss the technical challenges of making our upper bound in Theorem 10 depend on the690

weak domination number δ instead of the fracional domination number δ∗ or the weak fractional691

domination number δ̃∗ ≤ δ.692

First, we need to use Tsallis entropy to derive a regret upper bound with a stochastic bound of log T .693

While we can prove a BOBW bound if we use the Shannon entropy regularizer [25], the bound in the694

stochastic regime is O((log T )2), which is not desirable. which is not desirable. Hence, a possible695

approach is to use the log-barrier regularizer or the Tsallis entropy. The log-barrier regularizer has696

a penalty term of Ω(k) due to the strength of its regularization, and the regret upper bound in the697

final adversarial regime is Ω(k1/3), which can be much larger than δ1/3. Therefore, the most hopeful698

solution would be to use Tsallis entropy with an appropriate exponent α ' 1, where we note that the699

Tsallis entropy with α→ 1 corresponds to the Shanon entropy.700

Recalling the definition of the weak domination number in Section 6, we can see that the weak dom-701

ination set dominates only vertices without self-loop U = {i ∈ V : i 6∈ Nout(i)}. Thus, to achieve702

a BOBW bound that depends on the weak domination number, vertices with self-loop and those703

without self-loop should be treated separately by decomposing the stability term as follows:704

〈ℓ̂t, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

=
∑
i∈U

(
ℓ̂ti(qti − qt+1,i)− βt d(qt+1,i, qt,i)

)
+
∑
i∈V \U

(
ℓ̂ti(qti − qt+1,i)− βt d(qt+1,i, qt,i)

)
,

where d(p, q) is the Bregman divergence induced by the real-valued convex function x 7→ − 1
α (x

α−705

x). However, if we use this approach, we cannot use Lemma 14, which is useful to prove an upper706

bound with (1 − qta∗) (see (14)). This is because this lemma exploits the fact that q and r are707

probability vectors. This prevents us from deriving an upper bound with an O(log T ) stochastic708

bound depending on the weak domination number.709
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