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Abstract

Follow-the-Regularized-Leader (FTRL) is a powerful framework for various on-
line learning problems. By designing its regularizer and learning rate to be adap-
tive to past observations, FTRL is known to work adaptively to various properties
of an underlying environment. However, most existing adaptive learning rates are
for online learning problems with a minimax regret of Θ(

√
T ) for the number of

rounds T , and there are only a few studies on adaptive learning rates for prob-
lems with a minimax regret of Θ(T 2/3), which include several important prob-
lems dealing with indirect feedback. To address this limitation, we establish a new
adaptive learning rate framework for problems with a minimax regret of Θ(T 2/3).
Our learning rate is designed by matching the stability, penalty, and bias terms
that naturally appear in regret upper bounds for problems with a minimax regret
of Θ(T 2/3). As applications of this framework, we consider two major problems
dealing with indirect feedback: partial monitoring and graph bandits. We show that
FTRL with our learning rate and the Tsallis entropy regularizer improves existing
Best-of-Both-Worlds (BOBW) regret upper bounds, which achieve simultaneous
optimality in the stochastic and adversarial regimes. The resulting learning rate is
surprisingly simple compared to the existing learning rates for BOBW algorithms
for problems with a minimax regret of Θ(T 2/3).

1 Introduction

Online learning is a problem setting in which a learner interacts with an environment for T rounds
with the goal of minimizing their cumulative loss. This framework includes many important online
decision-making problems, such as expert problems [21, 38, 57], multi-armed bandits [6, 8, 33],
linear bandits [1, 14], graph bandits [4, 42], and partial monitoring [9, 11].
For the sake of discussion in a general form, we consider the following general online learning
framework. In this framework, a learner is initially given a finite action set A = [k] := {1, . . . , k}
and an observation setO. At each round t ∈ [T ], the environment determines a loss function ℓt : A →
[0, 1], and the learner selects an action At ∈ A based on past observations without knowing ℓt. The
learner then suffers a loss ℓt(At) and observes a feedback ot ∈ O. The goal of the learner is to
minimize the (pseudo-)regret RegT , which is defined as the expectation of the difference between
the cumulative loss of the selected actions (At)

T
t=1 and that of an optimal action a∗ ∈ A fixed in

hindsight. That is, RegT = E
[∑T

t=1 ℓt(At)−
∑T
t=1 ℓt(a

∗)
]

for a∗ ∈ argmina∈A E
[∑T

t=1 ℓt(a)
]
.

For example in the multi-armed bandit problem, the observation is ot = ℓt(At).
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Follow-the-Regularized-Leader (FTRL) is a highly powerful framework for such online learning
problems. In FTRL, a probability vector qt over A, which is used for determining action selection
probability pt so that At ∼ pt, is obtained by solving the following convex optimization problem:

qt ∈ argmin
q∈Pk

{
t−1∑
s=1

ℓ̂s(q) + βtψ(q)

}
, (1)

where Pk is the set of probability distributions over A = [k], ℓ̂t : Pk → R is an estimator of loss
function ℓt, βt > 0 is (a reciprocal of) learning rate at round t, and ψ is a convex regularizer. FTRL
is known for its usefulness in various online learning problems [1, 4, 8, 27, 37]. Notably, FTRL can
be viewed as a generalization of Online Gradient Descent [63] and the Hedge algorithm [21, 38, 57],
and is closely related to Online Mirror Descent [36, 45].
The benefit of FTRL due to its generality is that one can design its regularizer ψ and learning rate
(βt)t so that it can perform adaptively to various properties of underlying loss functions. The adaptive
learning rate, which exploits past observations, is often used to obtain such adaptivity. In order to
see how it is designed, we consider the following stability–penalty decomposition, well-known in the
literature [36, 45]:

RegT ≲
T∑
t=1

zt
βt︸ ︷︷ ︸

stability term

+β1h1 +

T∑
t=2

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

. (2)

Intuitively, the stability term arises from the regret when the difference in FTRL outputs, xt and
xt+1, is large, and the penalty term is due to the strength of the regularizer. For example, in the Exp3
algorithm for multi-armed bandits [8], ht is the Shannon entropy of xt or its upper bound, and zt is
the expectation of (∇2ψ(xt))

−1-norm of the importance-weighted estimator ℓ̂t or its upper bound.
Adaptive learning rates have been designed so that it depends on the stability or penalty. For ex-
ample, the well-known AdaGrad [19, 44] and the first-order algorithm [2] depend on stability com-
ponents (zs)

t−1
s=1 to determine βt. More recently, there are learning rates that depend on penalty

components (hs)t−1
s=1 [25, 54] and that depend on both stability and penalty components [26, 28, 55].

However, almost all adaptive learning rates developed so far have been limited to problems with a
minimax regret ofΘ(

√
T ), and there has been limited investigation into problems with a minimax re-

gret ofΘ(T 2/3) [25, 54]. Such online learning are primarily related to indirect feedback and includes
many important problems, such as partial monitoring [9, 34], graph bandits [4], dueling bandits [51],
online ranking [12], bandits with switching costs [18], and bandits with paid observations [53].

Contributions To address this limitation, we establish a new learning rate framework for online
learning with a minimax regret of Θ(T 2/3). Henceforth, we will refer to problems with a minimax
regret of Θ(T 2/3) as hard problems to avoid repetition, abusing the terminology of partial monitor-
ing. For hard problems, it is common to combine FTRL with forced exploration [4, 17, 34, 51]. In
this study, we first observe that the regret of FTRL with forced exploration rate γt is roughly bounded
as follows:

RegT ≲
T∑
t=1

zt
βtγt︸ ︷︷ ︸

stability term

+β1h1 +

T∑
t=2

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

+

T∑
t=1

γt︸ ︷︷ ︸
bias term

. (3)

Here, the third term, called the bias term, represents the regret incurred by forced exploration. In
the aim of minimizing the RHS of (3), we will determine the exploration rate γt and learning rate
βt so that the above stability, penalty, and bias elements for each t ∈ [T ] are matched, where the
resulting learning rate is called Stability–Penalty–Bias matching learning rate (SPB-matching). This
was inspired by the learning rate designed by matching the stability and penalty terms for problems
with a minimax regret of Θ(

√
T ) [26]. Our learning rate is simultaneously adaptive to the stability

component zt and penalty component ht, which have attracted attention in very recent years [26, 28,
55]. The SPB-matching learning rate allows us to bound the RHS of (3) from above as follows:
Theorem 1 (informal version of Theorem 6). There exists learning rate (βt)t and exploration rate
(γt)t for which the RHS of (3) is bounded byO

((∑T
t=1

√
ztht log(εT )

)2/3
+
(√
zmaxhmax/ε

)2/3)
for any ε ≥ 1/T , where zmax = maxt∈[T ] zt and hmax = maxt∈[T ] ht.
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Table 1: Regret bounds for partial monitoring and graph bandits. The number of rounds is denoted
as T , the number of actions as k, and the minimum suboptimality gap as ∆min. The variables cG is
defined in Section 5, D is a constant dependent on the outcome distribution. The graph complexity
measures δ, δ∗, satisfying δ∗ ≤ δ for graphs with no self-loops, are defined in Section 6, and δ̃∗ ≤ δ
is the fractional weak domination number [13]. AwSB is the abbreviation of the adversarial regime
with a self-bounding constraint. MS-type means that the bound in AdvSB has a form similar to the
bound established by Masoudian and Seldin [43].

Setting Ref. Stochastic Adversarial AwSB

Partial
monitoring
(with global
observability)

[30] D log T – –
[37] – (cGT )

2/3(log k)1/3 –

[54]
c2G log T log(kT )

∆2
min

(cGT )
2/3(log T log(kT ))1/3 ✓

[56]
c2Gk log T

∆2
min

(cGT )
2/3(log T )1/3 ✓

Ours (Cor. 9) c2G log k log T

∆2
min

(cGT )
2/3(log k)1/3 ✓(MS-type)

Graph bandits
(with weak
observability)

[4] – (δ log k)1/3T 2/3 –
[13] – (δ̃∗ log k)1/3T 2/3 –

[25] δ log T log(kT )

∆2
min

(δ log T log(kT ))1/3T 2/3 ✓

[15]a δ log k log T

∆2
min

(δ log k)1/3T 2/3 ✓

Ours (Cor. 11) δ∗ log k log T

∆2
min

(δ∗ log k)1/3T 2/3 ✓(MS-type)

aThe bounds in [15] depend on δ, but their framework with the algorithm in [13] can achieve improved
bounds replacing δ with δ̃∗ ≤ δ. The framework in [15] is a hierarchical reduction-based approach, rather
than a direct FTRL method, discarding past observations as doubling-trick.

Within the general online learning framework, this theorem allows us to prove the following Best-
of-Both-Worlds (BOBW) guarantee [10, 58, 61], which achieves anO(log T ) regret in the stochastic
regime and an O(T 2/3) regret in the adversarial regime simultaneously:
Theorem 2 (informal version of Theorem 7). Under some regularity conditions, an FTRL-based
algorithm with SPB-matching achieves RegT ≲ (zmaxhmax)

1/3T 2/3 in the adversarial regime. In
the stochastic regime, if

√
ztht ≤

√
ρ1(1 − qta∗) holds for FTRL output qt ∈ Pk and ρ1 > 0 for all

t∈ [T ], the same algorithm achieves RegT ≲ρ1log T/∆2
min for the minimum suboptimality gap ∆min.

To assess the usefulness of the above result that holds for the general online learning framework,
this study focuses on two major hard problems: partial monitoring with global observability and
graph bandits with weak observability. We demonstrate that the assumptions in Theorem 2 are in-
deed satisfied for these problems by appropriately choosing the parameters in SPB-matching, thereby
improving the existing BOBW regret upper bounds in several respects. To obtain better bounds in
this analysis, we leverage the smallness of stability components zt, which results from the forced
exploration. Additionally, SPB-matching is the first unified framework to achieve a BOBW guaran-
tee for hard online learning problems. Our learning rate is based on a surprisingly simple principle,
whereas existing learning rates for graph bandits and partial monitoring are extremely complicated
(see [25, Eq. (15)] and [54, Eq. (16)]). Due to its simplicity, we believe that SPB-matching will serve
as a foundation for building new BOBW algorithms for a variety of hard online learning problems.
Although omitted in Theorem 2, our approach achieves a refined regret bound devised by Masoudian
and Seldin [43] in the adversarial regime with a self-bounding constraint [61], which includes the
stochastic regime, adversarial regime, and the stochastic regime with adversarial corruptions [41] as
special cases. We call the refind bound MS-type bound, named after the author. The MS-type bound
maintains an ideal form even when C = Θ(T ) or ∆min = Θ(1/

√
T ) (see [43] for details), and our

bounds are the first MS-type bounds for hard problems. A comparison with existing regret bounds
is summarized in Table 1.
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2 Preliminaries

Notation For a natural number n ∈ N, we let [n] = {1, . . . , n}. For vector x, let xi denote its i-th
element and ‖x‖p the ℓp-norm for p ∈ [1,∞]. Let Pk = {p ∈ [0, 1]k : ‖p‖1 = 1} be the (k − 1)-
dimensional probability simplex. The vector ei is the i-th standard basis and 1 is the all-ones vector.
LetDψ(x, y) denote the Bregman divergence from y to x induced by a differentiable convex function
ψ: Dψ(x, y) = ψ(x)−ψ(y)−〈∇ψ(y), x−y〉. To simplify the notation, we sometimes write (at)Tt=1
as a1:T and f = O(g) as f ≲ g. We regard function f : A = [k] → R as a k-dimensional vector.

General online learning framework To provide results that hold for a wide range of settings, we
consider the following general online learning framework introduced in Section 1.

At each round t ∈ [T ] = {1, . . . , T}:
1. The environment determines a loss vector ℓt : A → [0, 1];
2. The learner selects an action At ∈ A based on pt ∈ Pk without knowing ℓt;
3. The learner suffers a loss of ℓt(At) ∈ [0, 1] and observes a feedback ot ∈ O.

This framework includes many problems such as the expert problem, multi-armed bandits, graph
bandits, partial monitoring as special cases.

Stochastic, adversarial, and their intermediate regimes Within the above general online frame-
work, we study three different regimes for a sequence of loss functions (ℓt)t. In the stochastic regime,
the sequence of loss functions is sampled from an unknown distribution D in an i.i.d. manner. The
suboptimality gap for action a ∈ A is given by ∆a = Eℓt∼D[ℓt(a)− ℓt(a

∗)] and the minimum sub-
optimality gap by ∆min = mina ̸=a∗ ∆a. In the adversarial regime, the loss functions can be selected
arbitrarily, possibly based on the past history up to round t− 1.
We also investigate, the adversarial regime with a self-bounding constraint [61], which is an inter-
mediate regime between the stochastic and adversarial regimes.
Definition 3. Let ∆ ∈ [0, 1]k and C ≥ 0. The environment is in an adversarial regime with a
(∆, C, T ) self-bounding constraint if it holds for any algorithm that RegT ≥ E

[∑T
t=1 ∆At

− C
]
.

From the definition, the stochastic and adversarial regimes are special cases of this regime. Addition-
ally, the well-known stochastic regime with adversarial corruptions [41] also falls within this regime.
For the adversarial regime with a self-bounding constraint, we assume that there exists a unique opti-
mal action a∗. This assumption is standard in the literature of BOBW algorithms (e.g., [22, 39, 58]).

3 SBP-matching: Simple and adaptive learning rate for hard problems

This section designs a new learning rate framework for hard online learning problems.

3.1 Objective function that adaptive learning rate aims to minimize

In hard problems, the regret of FTRL with somewhat large exploration rate γt is known to be bounded
in the following form [4, 25, 54]:

RegT ≲
T∑
t=1

zt
βtγt

+

T∑
t=1

(βt − βt−1)ht +

T∑
t=1

γt (4)

for some stability component zt and penalty component ht, where we set βT+1 = βT and β0 = 0
for simplicity. Recall that the first term is the stability term, the second term is the penalty term, and
the third term is the bias term, which arises from the forced exploration.
The goal when designing the adaptive learning rate is to minimize (4), under the constraints that
(βt)t is non-decreasing and βt depends on (z1:t, h1:t) or (z1:t−1, h1:t). A naive way to choose γt to
minimize (4) is to set γt =

√
zt/βt so that the stability term and the bias term match. However, this

choice does not work well in hard problems because to obtain a regret bound of (4), a lower bound
of γt ≥ ut/βt for some ut > 0 is needed. This lower bound is used to control the magnitude of the
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loss estimator ℓ̂t.1 Therefore, we consider exploration rate of γt = γ′t + ut/βt for γ′t =
√
zt/βt and

some ut > 0, where γ′t is chosen so that the stability and bias terms are matched. With these choices,

Eq. (4) ≤
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht +

(
γ′t +

ut
βt

))

=

T∑
t=1

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ht

)
=: F (β1:T , z1:T , u1:T , h1:T ) . (5)

Note that the first two terms in F , 2
√
zt/βt + ut/βt, come from the stability and bias terms and the

last term, (βt − βt−1)ht, is the penalty term. In the following, we investigate adaptive learning rate
(βt)

T
t=1 that minimizes F in (5) instead of (4).

3.2 Stability–penalty–bias matching learning rate

We consider determining (βt)t by matching the stability–bias terms and the penalty term as
2
√
zt/βt + ut/βt = (βt − βt−1)ht. Assume that when choosing βt, we have an access to ĥt such

that ht ≤ ĥt. Then, inspired by the above matching, we consider the following two update rules:

(Rule 1) βt = βt−1 +
1

ĥt

(
2

√
zt
βt

+
ut
βt

)
, (Rule 2) βt = βt−1 +

1

ĥt

(
2

√
zt−1

βt−1
+
ut−1

βt−1

)
. (6)

We call these update rules Stability–Penalty–Bias Matching (SPB-matching). These are designed by
following the simple principle of matching the stability, penalty, and bias elements, and Rules 1 and
2 differ only in the way indices are shifted. For the sake of convenience, we define G1 and G2 by

G1(z1:T , h1:T ) =

T∑
t=1

√
zt(∑t

s=1

√
zs/hs

)1/3 , G2(u1:T , h1:T ) =

T∑
t=1

ut√∑t
s=1 us/hs

. (7)

Define zmax = maxt∈[T ] zt, umax = maxt∈[T ] ut, and hmax = maxt∈[T ] ht. Then, using SPB-
matching rules in (6), we can upper-bound F in terms of G1 and G2 as follows:

Lemma 4. Consider SPB-matching (6) and suppose that ht ≤ ĥt for all t ∈ [T ]. Then, Rule 1
achieves F (β1:T , z1:T , u1:T , h1:T ) ≤ 3.2G1(z1:T , ĥ1:T ) + 2G2(u1:T , ĥ1:T ) and Rule 2 achieves
F (β1:T , z1:T , u1:T , h1:T ) ≤ 4G1(z1:T , ĥ2:T+1)+3G2(u1:T , ĥ2:T+1)+10

√
zmax/β1+5umax/β1+

β1h1.

The proof of Lemma 4 can be found in Appendix B.1. One can see from the proof that the effect of
using γt =

√
zt/βt + ut/βt instead of γt =

√
zt/βt only appears in G2, which has a less impact

than G1 when bounding F . We can further upper-bound G1 as follows:

Lemma 5. Let (zt)
T
t=1 ⊆ R≥0 and (ht)

T
t=1 ⊆ R>0 be any non-negative and positive se-

quences, respectively. Let θ0 > θ1 > · · · > θJ > θJ+1 = 0 and θ0 ≥ hmax and de-
fine Tj = {t ∈ [T ] : θj−1 ≥ ht > θj} for j ∈ [J ] and TJ+1 = {t ∈ [T ] : θJ ≥ ht}. Then,
G1(z1:T , h1:T ) ≤ 3

2

∑J+1
j=1

(√
θj−1

∑
t∈Tj

√
zt
)2/3

. This implies that for all j ∈ N it holds that

G1(z1:T , h1:T ) ≤
3

2
min

{(√
2J

T∑
t=1

√
ztht

) 2
3

+

(
2−J/2

√
zmaxhmax

) 2
3

T
2
3 ,

(
T∑
t=1

√
zthmax

) 2
3
}
.

Combining Lemmas 4 and 5 and the bound onG2 in [26, Lemma 3], we obtain the following theorem.

1This is particularly the case when we use the Shannon entropy or Tsallis entropy regularizers, which is a
weaker regularization than the log-barrier regularizer.

5



Algorithm 1: Best-of-both-worlds framework based on FTRL with SPB-matching learning rate
and Tsallis entropy for online learning with minimax regret of Θ(T 2/3)

1 input: action set A, observation set O, exponent of Tsallis entropy α, β1, β̄
2 for t = 1, 2, . . . do
3 Compute qt ∈ Pk by (10) with a loss estimator ŷt.
4 Set ht = Hα(qt) and zt, ut ≥ 0 defined for each problem.
5 Compute action selection probability pt from qt by (11).
6 Choose At ∈ A so that Pr[At = i | pt] = pti and observe feedback ot ∈ O.
7 Compute loss estimator ℓ̂t based on pt and ot.
8 Compute βt+1 by Rule 2 of SPB-matching in (6) with ĥt+1 = ht.

Theorem 6. Let (zt)Tt=1, (ut)
T
t=1 ⊆ R≥0 and (ht)

T
t=1 ⊆ R>0. Suppose that ĥt satisfies ht ≤ ĥt for

all t ∈ [T ]. Then, if βt is given by Rule 1 in (6), then for all ε ≥ 1/T it holds that

F (β1:T , z1:T , u1:T , h1:T ) ≲ min


(

T∑
t=1

√
ztĥt log(εT )

) 2
3

+

(√
zmaxĥmax

/
ε

) 2
3

,

(
T∑
t=1

√
ztĥmax

) 2
3


+min


√√√√ T∑

t=1

utĥt log(εT ) +

√
umaxĥmax/ε ,

√√√√ T∑
t=1

utĥmax

 . (8)

If βt is given by Rule 2 in (6), then for all ε ≥ 1/T it holds that

F (β1:T , z1:T , u1:T , h1:T ) ≲ min


(

T∑
t=1

√
ztĥt+1 log(εT )

) 2
3

+

(√
zmaxĥmax

/
ε

) 2
3

,

(
T∑
t=1

√
ztĥmax

) 2
3


+min


√√√√ T∑

t=1

utĥt+1 log(εT )+

√
umaxĥmax/ε ,

√√√√ T∑
t=1

utĥmax

+

√
zmax

β1
+
umax

β1
+β1h1 . (9)

Note that these bounds are for problems with a minimax regret of Θ(T 2/3). Roughly speaking, our

bounds have an order of
(∑T

t=1

√
ztĥt+1 log T

)1/3
and differ from the existing stability-penalty-

adaptive-type bounds of
√
ztĥt+1 log T for problems with a minimax regret of Θ(

√
T ) [26, 55]. We

will see in the subsequent sections that our bounds are reasonable as they give nearly optimal regret
bounds in stochastic and adversarial regimes in partial monitoring and graph bandits.

4 Best-of-both-worlds framework for hard online learning problems

Using the SPB-matching learning rate established in Section 3, this section provides a BOBW algo-
rithm framework for hard online learning problems. We consider the following FTRL update:

qt = argmin
p∈Pk

{
t−1∑
s=1

〈ℓ̂t, p〉+ βt(−Hα(p)) + β̄(−Hᾱ(p))

}
, α ∈ (0, 1) , ᾱ = 1− α , (10)

whereHα is the α-Tsallis entropy defined asHα(p) =
1
α

∑k
i=1(p

α
i −pi),which satisfiesHα(p) ≥ 0

and Hα(ei) = 0. Based on this FTRL output qt, we set ht = Hα(qt), which satisfies h1 = hmax.
Additionally, for qt and some p0 ∈ Pk, we use the action selection probability pt ∈ Pk defined by

pt = (1− γt)qt + γt p0 for γt = γ′t +
ut
βt

=

√
zt
βt

+
ut
βt
, (11)

where β1 is chosen so that γt ∈ [0, 1/2]. Let κ =
√
zmax/β1 + umax/β1 + β1h1 + β̄h̄ for h̄ =

Hᾱ(1/k) and let Et[ · ] be the expectation given all observations before round t. Then the above
procedure with Rule 2 of SPB-matching in (6), summarized in Algorithm 1, achieves the following
BOBW bound:
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Theorem 7. Suppose that loss function ℓt satisfies ‖ℓt‖∞ ≤ 1 and the following three conditions
(i)–(iii) are satisfied: (i) RegT ≤ E

[∑T
t=1〈ℓ̂t, qt − ea∗〉+ 2

∑T
t=1 γt

]
,

(ii) Et
[
〈ℓ̂t, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

]
≲ zt
βtγ′t

, (iii) ht ≲ ht−1 . (12)

Then, in the adversarial regime, Algorithm 1 achieves

RegT = O
(
(zmaxh1)

1/3T 2/3 +
√
umaxh1T + κ

)
. (13)

In the adversarial regime with a (∆, C, T )-self-bounding constraint, further suppose that√
ztht ≤

√
ρ1 · (1− qta∗) and utht ≤ ρ2 · (1− qta∗) (14)

are satisfied for some ρ1, ρ2 > 0 for all t ∈ [T ]. Then, the same algorithm achieves

RegT = O

(
ρ

∆2
min

log
(
T∆2

min

)
+

(
C2ρ

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(15)

for ρ = max{ρ1, ρ2} and κ′ = κ+
(
(zmaxh1)

1/3 +
√
umaxh1

)(
1/∆2

min + C/∆min

)2/3 when T ≥
1/∆2

min + C/∆min =: τ , and RegT = O
(
(zmaxh1)

1/3τ2/3 +
√
umaxh1τ

)
when T < τ .

The proof of Theorem 7 relies on Theorem 6 established in the last section and can be found in
Appendix C. Note that the bound (15) becomes the bound for the stochastic regime when C = 0.

5 Case study (1): Partial monitoring with global observability

This section provides a new BOBW algorithm for globally observable partial monitoring games.

5.1 Problem setting and some concepts in partial monitoring
Partial monitoring games A Partial Monitoring (PM) game G = (L,Φ) consists of a loss matrix
L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where k and d are the number of actions and out-
comes, respectively, and Σ is the set of feedback symbols. The game unfolds over T rounds between
the learner and the environment. Before the game starts, the learner is given L and Φ. At each round
t ∈ [T ], the environment picks an outcome xt ∈ [d], and then the learner chooses an action At ∈ [k]
without knowing xt. Then the learner incurs an unobserved loss LAtxt

and only observes a feed-
back symbol σt := ΦAtxt

. This framework can be indeed expressed as the general online learning
framework in Section 2, by setting O = Σ, ℓt(a) = Laxt

= e⊤a Lext
and ot = σt = ΦAtxt

.
We next introduce fundamental concepts for PM games. Based on the loss matrix L, we can
decompose all distributions over outcomes. For each action a ∈ [k], the cell of action a, de-
noted as Ca, is the set of probability distributions over [d] for which action a is optimal. That is,
Ca = {u ∈ Pd : maxb∈[k](ℓa − ℓb)

⊤u ≤ 0}, where ℓa ∈ Rd is the a-th row of L.
To avoid the heavy notions and concepts of PM, we assume that the PM game has no duplicate actions
a 6= b such that ℓa = ℓb and its all actions are Pareto optimal; that is, dim(Ca) = d−1 for all a ∈ [k].
The discussion of the effect of this assumption can be found e.g., in [34, 37].

Observability and loss estimation Two Pareto optimal actions a and b are neighbors if dim(Ca ∩
Cb) = d − 2. Then, this neighborhood relations defines globally observable games, for which the
minimax regret of Θ(T 2/3) is known in the litarature [9, 34]. Two neighbouring actions a and b are
globally observable if there exists a function we(a,b) : [k]× Σ → R satisfying∑k

c=1 we(a,b)(c,Φcx) = Lax − Lbx for all x ∈ [d] , (16)

where e(a, b) = {a, b}. A PM game is said to be globally observable if all neighboring actions are
globally observable. To the end, we assume that G is globally observable.2

2Another representative class of PM is locally observable games, for which we can achieve a minimax regret
of Θ(

√
T ). See [9, 36, 37] for local observability and [54, 55] for BOBW algorithms for it.
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Based on the neighborhood relations, we can estimate the loss difference between actions, instead of
estimating the loss itself. The in-tree is the edges of a directed tree with vertices [k] and let T ⊆
[k]× [k] be an in-tree over the set of actions induced by the neighborhood relations with an arbitrarily
chosen root r ∈ [k]. Then, we can estimate the loss differences between Pareto optimal actions as
follows. LetG(a, σ)b =

∑
e∈pathT (b) we(a, σ) for a ∈ [k],where pathT (b) is the set of edges from

b ∈ [k] to the root r on T . Then, it is known that thisG satisfies that for any Pareto optimal actions a
and b,

∑k
c=1(G(c,Φcx)b−G(b,Φcx)c) = Lax−Lbx for all x ∈ [d] (e.g., [37, Lemma 4]). From this

fact, one can see that we can use ŷt = G(At,ΦAtxt)/ptAt ∈ Rk as the loss (difference) estimator,
following the standard construction of the importance-weighted estimator [8, 36]. In fact, ŷt satisfies
EAt∼pt [ŷta − ŷtb] =

∑k
c=1(G(c, σt)a − G(c, σt)b) = Lax − Lbx. We let cG = max{1, k‖G‖∞}

be a game-dependent constant, where ‖G‖∞ = maxa∈[k],σ∈Σ|G(a, σ)|.

5.2 Algorithm and regret upper bounds
Here, we present a new BOBW algorithm based on Algorithm 1. We use the following parameters
for Algorithm 1. We use the loss (difference) estimator of ℓ̂t = ŷt. We set p0 in (11) to p0 = 1/k.
For Ĩt ∈ argmaxi∈[k] qti and qt∗ = min{qtĨt , 1− qtĨt}, let

β1 ≥
64c2G
1− α

, β̄ =
32cG

√
k

(1− α)2
√
β1
, zt =

4c2G
1− α

(∑
i ̸=Ĩt

q2−αti + q2−αt∗

)
, ut =

8cG
1− α

q1−αt∗ . (17)

Note that zmax =
4c2G
1−α , umax = 8cG

1−α , and hmax = h1 = 1
αk

1−α. Then, we can prove the following:
Theorem 8. In globally observable partial monitoring, for any α ∈ (0, 1), Algorithm 1 with (17)
satisfies the assumptions of Theorem 7 with ρ1 = Θ

(
c2Gk

1−α

α(1−α)

)
and ρ2 = Θ

(
cGk

1−α

α(1−α)

)
.

The proof of Theorem 8 is given in Appendix E. Setting α = 1− 1/(log k) gives the following:
Corollary 9. In globally observable partial monitoring with T ≥ τ , Algorithm 1 with (17) for
α = 1− 1/(log k) achieves RegT = O

(
(cGT )

2/3
(log k)

1/3
+ κ
)

in the adversarial regime and

RegT = O

(
c2G log k

∆2
min

log
(
T∆2

min

)
+

(
C2c2G log k

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(18)

in the adversarial regime with a (∆, C, T )-self-bounding constraint.

This regret upper bound is better than the bound in [54, 56] in both stochastic and adversarial regimes,
notably by a factor of log T or k in the stochastic regime. The bound for the adversarial regime with
a (∆, C, T )-self-bounding constraint is the first MS-type bound in PM.

6 Case study (2): Graph bandits with weak observability

This section presents a new BOBW algorithm for weakly observable graph bandits.

6.1 Problem setting and some concepts in graph bandits
Problem setting In the graph bandit problem, the learner is given a directed feedback graph G =
(V,E) with V = [k] and E ⊆ V × V . For each i ∈ V , let N in(i) = {j ∈ V : (j, i) ∈ E} and
Nout(i) = {j ∈ V : (i, j) ∈ E} be the in-neighborhood and out-neighborhood of vertex i ∈ V ,
respectively. The game proceeds as the general online learning framework provided in Section 2,
with action set A = V , loss function ℓt : V → [0, 1], and observation ot = {ℓt(j) : j ∈ Nout(It)}.

Observability and domination number Similar to partial monitoring, the minimax regret of
graph bandits is characterized by the properties of the feedback graph G [4]. A graph G is ob-
servable if it contains no self-loops, N in(i) 6= ∅ for all i ∈ V . A graph G is strongly observable if
i ∈ N in(i) or V \{i} ⊆ N in(i) for all i ∈ V . Then, a graphG is weakly observable if it is observable
but not strongly observable.3 The minimax regret of the weakly observable is known to be Θ(T 2/3).

3Similar to the locally observable games of partial monitoring, we can achieve an O(
√
T ) regret for graph

bandits with strong observability. See e.g., [4] for details.
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The weak domination number characterizes precisely the minimax regret. The weakly dominating
set D ⊆ V is a set of vertices such that {i ∈ V : i 6∈ Nout(i)} ⊆

⋃
i∈DN

out(i). Then, the weak
domination number δ(G) of graph G is the size of the smallest weakly dominating set. For weakly
observable G, the minimax regret of Θ̃(δ1/3T 2/3) is known [4]. Instead, our bound depends on the
fractional domination number δ∗(G), defined by the optimal value of the following linear program:

minimize
∑
i∈V xi subject to

∑
i∈N in(j) xi ≥ 1 ∀j ∈ V , 0 ≤ xi ≤ 1 ∀i ∈ V . (19)

We use (x∗i )i∈V to denote the optimal solution of (19) and define its normalized version u ∈ Pk
by ui = x∗i /

∑
j∈V x

∗
j . The advantage of using the fractional domination number mainly lies in its

computational complexity; further details are provided in Appendix F.1.

6.2 Algorithm and regret analysis

Here, we present a new BOBW algorithm based on Algorithm 1. We use the following parameters
for Algorithm 1. We use the estimator ℓ̂t ∈ Rk defined by ℓ̂ti = ℓti

Pti
1[i ∈ Nout(It)] for Pti =∑

j∈N in(i) ptj , which is unbiased and has been employed in the literature [4, 13]. We set p0 in (11)
to p0 = u. For Ĩt ∈ argmaxi∈[k] qti and qt∗ = min{qtĨt , 1− qtĨt}, let

β1 ≥ 64δ∗

1− α
, β̄ =

32
√
kδ∗

(1− α)2
√
β1
, zt=

4δ∗

1− α

( ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

)
, ut=

8δ∗

1− α
q1−αt∗ . (20)

Note that zmax = 4δ∗

1−α , umax = 8δ∗

1−α , and hmax = h1 = 1
αk

1−α. Then, we can prove the following:

Theorem 10. In the weakly observable graph bandit problem, for any α ∈ (0, 1), Algorithm 1
with (20) satisfies the assumptions of Theorem 7 with ρ1 = ρ2 = Θ

(
δ∗k1−α

α(1−α)

)
.

The proof of Theorem 10 is given in Appendix F. Setting α = 1− 1/(log k) gives the following:
Corollary 11. In weakly observable graph bandits with T ≥ max{δ∗(log k)2, τ}, Algorithm 1 with
(20) for α = 1−1/(log k) achieves RegT = O

(
δ∗1/3T 2/3(log k)

1/3
+κ
)

in adversarial regime and

RegT = O

(
δ∗ log k

∆2
min

log
(
T∆2

min

)
+

(
C2δ∗ log k

∆2
min

log

(
T∆min

C

))1/3

+ κ′

)
(21)

in the adversarial regime with a (∆, C, T )-self-bounding constraint.

Our bound is the first BOBW FTRL-based algorithm with the O(log T ) bound in the stochastic
regime, improving the existing best FTRL-based algorithm in [25]. Compared to the reduction-based
approach in [15], the dependences on T are the same. However, our bound unfortunately depends on
the fractional domination number δ∗ instead of the weak domination number δ, which can be smaller
than δ∗. Roughly speaking, this comes from the use of Tsallis entropy instead of Shannon entropy
employed for the existing BOBW bound [25]. The technical challenges of making our bound depend
on δ instead of δ∗ or the weak fractional domination number δ̃∗ are further discussed in Appendix F.3.
Still, we believe that our algorithm can perform better since the reduction-based algorithm discards
past observations as the doubling trick. Furthermore, the bound for the adversarial regime with
a (∆, C, T )-self-bounding constraint is the first MS-type bound in weakly observable graph bandits.

7 Conclusion and future work

In this work, we investigated hard online learning problems, that is online learning with a minimax
regret of Θ(T 2/3), and established a simple and adaptive learning rate framework called stability–
penalty–bias matching (SPB-matching). We showed that FTRL with this framework and the Tsallis
entropy regularizer improves the existing BOBW regret bounds based on FTRL for two typical hard
problems, partial monitoring with global observability and graph bandits with weak observability.
We can prove a BOBW bound for multi-armed bandits with paid observations [53] by using SPB-
matching, although we did not include the detailed results due to space constraints. We can show that
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the regret with paid costs, RegcT , is roughly bounded by RegcT = O
(
(ck log k)1/3T 2/3 +

√
T log k

)
in the adversarial regime and RegcT = O

(
max{c, 1}k log k log T/∆2

min

)
in the stochastic regime

for the cost of observation c, where the bound for adversarial regime is of the same order as [53,
Theorem 3].
Interestingly, the optimal exponent of Tsallis entropy in these settings is 1−1/(log k), suggesting the
reasonableness of using Shannon entropy in existing algorithms for partial monitoring [37] and graph
bandits [4]. Our learning rate is surprisingly simple compared to existing ones for hard problems [25,
54]. Hence, it is important future work to investigate whether this simplicity can be leveraged to apply
SPB-matching to other hard problems, such as bandits with switching costs [18] and dueling bandits
with Borda winner [51].
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A Additional related work

Best-of-both-worlds algorithms The study of BOBW algorithms was initiated by Bubeck and
Slivkins [10], who focused on multi-armed bandits. The motivation arises from the difficulty of
determining in advance whether the underlying environment is stochastic or adversarial in real-world
problems. Since then, BOBW algorithms have been extensively studied [7, 16, 22, 40, 46, 52], and
recently, FTRL is the common approach for developing BOBW algorithms [24, 28, 60, 62]. One
reason is by appropriately designing the learning rate and regularizer of FTRL, we can prove a BOBW
guarantee for various problem settings. Another reason is that FTRL-based approaches not only
perform well in both stochastic and adversarial regimes but also achieve favorable regret bounds in
the adversarial regime with a self-bounding constraint, intermediate settings including stochastically
constrained adversarial regime [58] and stochastic regime with adversarial corruptions [41]. This
intermediate regime is particularly useful, considering that real-world problems often lie between
purely stochastic and purely adversarial regimes.
This study is closely related to FTRL with the Tsallis entropy regularization. Tsallis entropy in online
learning was introduced in [3, 5], and its significance for BOBW algorithms was established in [61].
In the multi-armed bandit problem, using the exponent of Tsallis entropy α = 1/2 provides optimal
upper bounds, up to logarithmic factors, in both stochastic and adversarial regimes [61]. However,
in the graph bandits, where the dependence on k is critical or in decoupled settings, optimal upper
bounds can be achieved with α 6= 1/2 [26, 32, 48, 59]. In this work, we demonstrate that using the
exponent tofo α = 1 − 1/(log k) for the number of actions k results in favorable regret bounds, as
shown in Corollaries 9 and 11.

Partial monitoring Partial monitoring [11, 47, 50] is a very general online decision-making frame-
work and includes a wide range of problems such as multi-armed bandits, (utility-based) dueling
bandits [23], online ranking [12], and dynamic pricing [29]. The characterization of the minimax
regret in partial monitoring has been progressively understood through various studies. It is known
that all partial monitoring games can be classified into trivial, easy, hard, and hopeless games, where
their minimax regrets are 0, Θ(

√
T ), Θ(T 2/3) and Ω(T ). For comprehensive literature, refer to [9]

and the improved results presented in [34, 35]. The games for which we can achieve a regret bound
of O(T 2/3) correspond to globally observable games.
There is limited research on BOBW algorithms for partial monitoring with global observability [54,
56]. The existing bounds exhibit suboptimal dependencies on k and T , particularly in the stochastic
regime, which comes from the use of the Shannon entropy or the log-barrier regularization. By
employing Tsallis entropy, our algorithm is the first to achieve ideal dependencies on both k and T .
It remains uncertain whether our upper bound in the stochastic regime is optimal with respect to
variables other than T . While there is an asymptotic lower bound for the stochastic regime [30], its
coefficient is expressed as a complex optimization problem. Investigating this lower bound further is
important future work.

Graph bandits The study on the graph bandit problem, which is also known as online learning
with feedback graphs, was initiated by [42]. This problem includes several important problems such
as the expert setting, multi-armed bandits, and label-efficient prediction. For example, considering
a feedback graph with only self-loops, one can see that this corresponds to the multi-armed bandit
problem. One of the most seminal studies on the graph bandit problem is by Alon et al. [4], who
elucidated how the structure of the feedback graph influences its minimax regret. They demonstrated
that the minimax regret is characterized by the observability of the feedback graph, introducing the
notions of weakly observable graphs and strongly observable graphs. Of particular relevance to this
study is the minimax regret of Õ(δT 2/3) for weakly observable graphs, where δ is the weak dom-
ination number and Õ(·) ignores logarithmic factors. Recently, this upper bound was improved to
Õ(δ∗T 2/3) by replacing the weak domination number with the fractional weak domination num-
ber δ̃∗ [13].
There are several BOBW algorithms for graph bandits [15, 20, 25, 31, 49]. However, only a few
of these studies consider the weakly observable setting [15, 25, 31]. The existing results based on
FTRL rely on the domination number rather than the weak domination number [31] or exhibit poor
dependence on T [25, 31], and the best regret bound of them still exhibited a dependence on T of
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(log T )2 [25]. Our algorithm is the first FTRL-based algorithm in the weakly observable setting that
achieves an O(log T ) stochastic bound.

B Proofs for SPB-matching learning rate (Section 3)

B.1 Proof of Lemma 4

Proof of Lemma 4. We first consider Rule 1 in (6). The learning rate βt is lower-bounded as

β
3/2
t ≥ β

1/2
t

(
βt−1 +

2

ĥt

√
zt
βt

)
≥ β

3/2
t−1 +

2
√
zt

ĥt
≥ 2

t∑
s=1

√
zs

ĥs
, (22)

where the first inequality follows from the definition of βt in (6) and the second inequality from the
fact that (βt)t is non-decreasing. We also have

β2
t ≥ βt

(
βt−1 +

1

ĥt

ut
βt

)
≥ β

3/2
t−1 +

ut

ĥt
≥

t∑
s=1

us

ĥs
. (23)

Using the last two lower bounds on βt, we can bound F in (5) as

F (β1:T , z1:T , u1:T , h1:T ) ≤
T∑
t=1

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ĥt

)

≤
T∑
t=1

(
4

√
zt
βt

+ 2
ut
βt

)

≤ 4

T∑
t=1

√√√√ zt(
2
∑t
s=1

√
zs/ĥs

)1/3 + 2

T∑
t=1

ut√∑t
s=1 ut/ĥt

= 3.2G1(z1:T , ĥ1:T ) + 2G2(u1:T , ĥ1:T ) , (24)

where the secoind inequality follows from the definition of βt in (6) and the third inequality from
(22) and (23). This completes the proof of the first statement in Lemma 4.
We next consider Rule 2 in (6). In this case, we can bound F as follows:

F (β1:T , z1:T , u1:T , h1:T ) ≤ 2

√
z1
β1

+
u1
β1

+ β1h1 +

T∑
t=2

(
2

√
zt
βt

+
ut
βt

+ (βt − βt−1)ĥt

)

= 2

√
z1
β1

+
u1
β1

+ β1h1 +

T∑
t=2

(
2

√
zt
βt

+
ut
βt

+ 2

√
zt−1

βt−1
+
ut−1

βt−1

)

≤ β1h1 +

T∑
t=1

(
4

√
zt
βt

+ 2
ut
βt

)
, (25)

where the equality follows from (6).

We then first consider bounding
∑T
t=1

√
zt/βt. We can lower-bound β3/2

t as

β
3/2
t ≥ β

1/2
t

(
βt−1 +

2

ĥt

√
zt−1

βt−1

)
≥ β

3/2
t−1+

2
√
zt−1

ĥt
≥ β

3/2
1 +2

t∑
s=2

√
zs−1

ĥs
=:
(
β(1)

t

)3/2
, (26)

where we define

β(1)

t =

(
β
3/2
1 + 2

t∑
s=2

√
zs−1

ĥs

)2/3

=

(
β
3/2
1 + 2

t−1∑
s=1

√
zs

ĥs+1

)2/3

≤ βt . (27)
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In the following, we will upper-bound
∑T
t=1

√
zt/βt ≤

∑T
t=1

√
zt/β

(1)

t . Let c = (1+δ)2 for δ > 0
and and we then define S = {t ∈ [T ] : β(1)

t+1 ≤ c2β(1)

t } and Sc = [T ] \ S = {t ∈ [T ] : β(1)

t+1 >

c2β(1)

t }. From these definitions, we have∑
t∈Sc

√
zt

β(1)

t

≤
∑
t∈Sc

√
zmax

β(1)

t

≤
∞∑
s=0

(
1

c

)s√
zmax

β1
≤ 1

1− 1/c

√
zmax

β1
. (28)

Hence, using the last inequality, we obtain
T∑
t=1

√
zt
βt

≤
∑
t∈S

√
zt

β(1)

t

+
∑
t∈Sc

√
zt

β(1)

t

≤ c
∑
t∈S

√
zt

β(1)

t+1

+
1

1− 1/c

√
zmax

β1

≤ c
∑
t∈S

√√√√ zt(
2
∑t
s=1

√
zs/ĥs+1

)2/3 +
1

1− 1/c

√
zmax

β1

=
c

21/3
G1(z1:T , ĥ2:T+1) +

c

c− 1

√
zmax

β1
, (29)

where the third inequality follows from the definition of β(1) in (26).

We next bound
∑T
t=1 ut/βt. We can lower-bound β2

t as

β2
t ≥ βt

(
βt−1 +

1

ĥt

ut−1

βt−1

)
≥ β2

t−1 +
ut−1

ĥt
≥ β2

1 +

t∑
s=2

us−1

ĥs
=:
(
β(2)

t

)2
, (30)

where we define

β(2)

t =

√√√√β2
1 +

t∑
s=2

us−1

ĥs
=

√√√√β2
1 +

t−1∑
s=1

us

ĥs+1

≤ βt . (31)

In the following, we will upper-bound
∑T
t=1 ut/βt ≤

∑T
t=1 ut/β

(2)

t . Let us define T ={
t ∈ [T ] : β(2)

t+1 ≤ cβ(2)

t

}
and T c = [T ] \ T =

{
t ∈ [T ] : β(2)

t+1 > cβ(2)

t

}
. From these definitions,

we have ∑
t∈T c

ut

β(2)

t

≤
∑
t∈T c

umax

β(2)

t

≤
∞∑
s=0

(
1

c

)s
umax

β1
≤ 1

1− 1/c

umax

β1
. (32)

Hence, using the last inequality, we obtain
T∑
t=1

ut
βt

≤
∑
t∈T

ut

β(2)

t

+
∑
t∈T c

ut

β(2)

t

≤ c
∑
t∈T

ut

β(2)

t+1

+
1

1− 1/c

umax

β1

≤ c
∑
t∈T

ut√∑t
s=1 us/ĥs+1

+
1

1− 1/c

umax

β1

= cG2(u1:T , ĥ2:T+1) +
c

c− 1

zmax

β1
. (33)

Finally, combining (25) with (29) and (33), we obtain

F (β1:T , z1:T , u1:T , h1:T ) ≤ 3.2cG1(z1:T , ĥ2:T+1) + 2cG2(u1:T , ĥ2:T+1)

+
c

c− 1

(
2

√
zmax

β1
+
umax

β1

)
+ β1h1 . (34)

Setting c = 1.25 completes the proof.
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B.2 Proof of Lemma 5

Before proving Lemma 5, we prepare the following lemma, a variant of [45, Lemma 4.13].
Lemma 12. Let T ⊆ [T ] = {1, . . . , T} and (xt)t∈T be a non-negative sequence. Then,

∑
t∈T

xt(∑
s∈[t]∩T xs

)1/3 ≤ 3

2

(∑
t∈T

xt

)2/3

. (35)

Proof. Let St =
∑
s∈[t]∪T xs. Then,

xt(∑
s∈[t]∩T xs

)1/3 =
xt

S
1/3
t

=

∫ St

St−1

S
−1/3
t dz ≤

∫ St

St−1

z−1/3dz =
3

2

(
S
2/3
t − S

2/3
t−1

)
. (36)

Summing up the last inequality over T , we obtain∑
t∈T

xt(∑
s∈[t]∩T xs

)1/3 =
3

2

∑
t∈T

(
S
2/3
t − S

2/3
t−1

)
≤ 3

2
S
2/3
T , (37)

where the last inequality follows from the telescoping argument with the assumption that xt ≥ 0.

Proof of Lemma 5. We upper-bound G1 as follows:

G1(z1:T , h1:T ) =

T∑
t=1

√
zt(∑t

s=1

√
zs/hs

)1/3 =

J+1∑
j=1

∑
t∈Tj

√
zt(∑t

s=1

√
zs/hs

)1/3
≤
J+1∑
j=1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs/hs

)1/3 ≤
J+1∑
j=1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs/θj−1

)1/3
=

J+1∑
j=1

θ
1/3
j−1

∑
t∈Tj

√
zt(∑

s∈Tj∩[t]

√
zs

)1/3 ≤ 3

2

J+1∑
j=1

√θj−1

∑
t∈Tj

√
zt

2/3

, (38)

where the last inequality follows from Lemma 12. This completes the proof of the first statement in
Lemma 5. Setting J = 0 and θ0 = hmax in (38) yields that

G1(z1:T , h1:T ) ≤
3

2

(
T∑
t=1

√
zthmax

)2/3

. (39)

Setting θj = 2−jhmax for j ∈ {0} ∪ [J ] in (38) also gives

G1(z1:T , h1:T ) ≤
3

2

J+1∑
j=1

√θj−1

∑
t∈Tj

√
zt

2/3

≤ 3

2

J∑
j=1

√θj−1

θj

∑
t∈Tj

√
ztht

2/3

+
3

2

(√
θJ
∑
t∈TJ

√
zt

)2/3

=
3

2

J∑
j=1

√
2
∑
t∈Tj

√
ztht

2/3

+
3

2

(
2−J/2

∑
t∈TJ

√
zthmax

)2/3

≤ 3

2

√
2J

J∑
j=1

∑
t∈Tj

√
ztht

2/3

+
3

2

(
2−J/2

∑
t∈TJ

√
zthmax

)2/3

(Hölder’s inequality)
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≤ 3

2

(
√
2J

T∑
t=1

√
ztht

)2/3

+
3

2

(
2−J/2

√
zmaxhmax

)2/3
T 2/3 , (40)

where the second inequality follows from (x + y)2/3 ≤ x2/3 + y2/3 for x, y ≥ 0. Combining the
last inequality and (39) completes the proof of the second statement in Lemma 5.

C Proof for best-of-both-worlds analysis in general online learning
framework (Theorem 7, Section 4)

This section provides the proof of Theorem 7.

Proof. From Assumption (i), the regret is bounded as

RegT ≤ E

[
T∑
t=1

〈ℓ̂t, qt − ea∗〉+ 2

T∑
t=1

γt

]
. (41)

From the standard FTRL analysis in [36, Exercise 28.12], we obtain
T∑
t=1

〈ℓ̂t, qt − ea∗〉 ≤
T∑
t=1

(〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt) + (βt − βt−1)ht

)
+ β̄h̄ . (42)

Combining the last two inequalities, we obtain

RegT ≤ E

[
T∑
t=1

(〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt) + (βt − βt−1)ht + 2γt

)
+ β̄h̄

]

≲ E

[
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht + γt

)
+ β̄h̄

]
(Assumption (ii) in (12))

≲ E

[
T∑
t=1

(
zt
βtγ′t

+ (βt − βt−1)ht + γ′t +
ut
βt

)
+ β̄h̄

]
(definition of γt in (11))

≲ E

[
T∑
t=1

(√
zt
βt

+
ut
βt

+ (βt − βt−1)ht−1

)
+ β̄h̄

]
(definition of γ′t and Assumption (iii))

≲ E[F (β1:T , z1:T , u1:T , h0:T−1)] + β̄h̄ , (43)

where the last inequality follows from (5). Now, since βt follows Rule 2 in (6) with ĥt = ht−1,
Eq. (9) in Theorem 6 gives

F (β1:T , z1:T , u1:T , h0:T−1) ≲
(

T∑
t=1

√
zth1

) 2
3

+

√√√√ T∑
t=1

uth1 +

√
zmax

β1
+
umax

β1
+ β1h1 , (44)

F (β1:T , z1:T , u1:T , h0:T−1) ≲ inf
ε≥1/T

{(
T∑
t=1

√
ztht log(εT )

) 2
3

+

(√
zmaxh1
ε

) 2
3

+

√√√√ T∑
t=1

utht log(εT ) +

√
umaxh1

ε

}
+

√
zmax

β1
+
umax

β1
+ β1h1 . (45)

Hence, in the adversarial regime, combining (43) and (44) gives

RegT ≲ E

( T∑
t=1

√
zth1

)2/3

+

√√√√ T∑
t=1

uth1

+ κ ≤ (zmaxh1)
1/3T 2/3 +

√
umaxh1T + κ , (46)

where we recall that κ =
√
zmax/β1 + umax/β1 + β1h1 + β̄h̄. This completes the proof of (13).
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We next consider the adversarial regime with a (∆, C, T )-self-bounding constraint. For any ε ≥ 1/T ,
combining (43) and (45) gives

RegT ≲ E

( T∑
t=1

√
ztht log(εT )

) 2
3

+

√√√√ T∑
t=1

utht log(εT )

+

(√
zmaxh1
ε

) 2
3

+

√
umaxh1

ε
+ κ

≤

(
E

[
T∑
t=1

√
ztht

]√
log(εT )

) 2
3

+

√√√√E

[
T∑
t=1

utht

]
log(εT ) +

(√
zmaxh1
ε

) 2
3

+

√
umaxh1

ε
+ κ ,

(47)

where the last inequality follows from Jensen’s inequality. Now, using the assumption (14) and defin-
ing Q(a∗) = E

[∑T
t=1(1− qta∗)

]
∈ [0, T ], we have

E

[
T∑
t=1

√
ztht

]
≤ √

ρ1 E

[
T∑
t=1

(1− qta∗)

]
=

√
ρ1Q(a∗) , (48)

E

[
T∑
t=1

utht

]
≤ ρ2 E

[
T∑
t=1

(1− qta∗)

]
= ρ2Q(a∗) . (49)

Since we consider the adversarial regime with a (∆, C, T )-self-bounding constraint, the regret is
lower-bounded as

RegT ≥ E

[
T∑
t=1

〈∆, p〉

]
− C ≥ 1

2
E

[
T∑
t=1

〈∆, q〉

]
− C

≥ 1

2
∆minE

[
T∑
t=1

(1− qta∗)

]
− C =

1

2
∆minQ(a∗)− C , (50)

where the second inequality follows from p = (1 − γt)qt + γtp0 ≥ qt/2. Hence, combining (47)
with (48), (49) and (50), we can bound the regret for any λ ∈ (0, 1] as follows:

RegT = (1 + λ)RegT − λRegT

≲ (1 + λ)
(√

ρ1Q(a∗)
√
log(εT )

)2/3
− λ

4
∆minQ(a∗) + (1 + λ)

√
ρ2Q(a∗)log(εT )− λ

4
∆minQ(a∗)

+ (1 + λ)

((√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ

)
+ λC

≲ (1 + λ)3

λ2
ρ1 log(εT )

∆2
min

+
(1 + λ)2

λ

ρ2 log(εT )

∆min
+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC

≲ ρ1 log(εT )

∆2
min

+
ρ2 log(εT )

∆min
+

1

λ2

(
ρ1 log(εT )

∆2
min

+
ρ2 log(εT )

∆min

)
+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC

≲ ρ log(εT )

∆2
min

+
1

λ2
ρ log(εT )

∆2
min

+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ+ λC , (51)

where in the first inequality we used (47) with (48), (49), (50), and Jensen’s inequality, in the second
inequality we used ax2 − bx3 ≤ 4a3/(27b2) for a ≥ 0, b > 0 and x ≥ 0 and ax − bx2 ≤
a2/(4b) for a ≥ 0, b > 0 and x ≥ 0 and in the third inequality we used λ ∈ (0, 1]. Setting
λ = Θ

(
(ρ log(εT )/C)

1/3) in the last inequality, we obtain

RegT ≲ ρ log(εT )

∆2
min

+

(
C2ρ log(εT )

∆2
min

)1/3

+

(√
zmaxh1
ε

)2/3

+

√
umaxh1

ε
+ κ .

Finally, when T ≥ τ = 1/∆2
min + C/∆min, setting

ε =
1

ρ2/∆2
min + Cρ/∆min

≥ 1

T
(52)
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yields that

RegT ≲ ρ

∆2
min

log+

(
T

1/∆2
min + C/∆min

)
+

(
C2ρ

∆2
min

log+

(
T

1/∆2
min + C/∆min

))1/3

+ (zmaxh1)
1/3

(
1

∆2
min

+
C

∆min

)2/3

+
√
umaxh1

√
1

∆2
min

+
C

∆min
+ κ

≲ ρ

∆2
min

log+
(
T∆2

min

)
+

(
C2ρ

∆2
min

log+

(
T∆min

C

))1/3

+
(
(zmaxh1)

1/3 +
√
umaxh1

)( 1

∆2
min

+
C

∆min

)2/3

+ κ , (53)

which completes the proof.

D Auxiliary lemmas

This section provides auxiliary lemmas useful for proving the BOBW gurantee.
Lemma 13. Let α ∈ (0, 1) and i∗ ∈ [k]. Then, the α-Tsallis entropy Hα is bounded from above as

Hα(q) =
1

α

k∑
i=1

(qαi − qi) ≤
1

α
(k − 1)α(1− qi∗)

α (54)

for any q ∈ Pk.

Proof. From Jensen’s inequality and the fact that x 7→ xα is concave for α ∈ (0, 1),

k∑
i=1

(qαi − qi) ≤
∑
i ̸=i∗

qαi = (k − 1)
∑
i ̸=i∗

1

k − 1
qαi ≤ (k − 1)

 1

k − 1

∑
i ̸=i∗

qi

α

= (k − 1)1−α

∑
i ̸=i∗

qi

α

= (k − 1)1−α(1− qi∗)
α
, (55)

which completes the proof.

Lemma 14 ([26, Lemma 10]). Let q ∈ Pk and Ĩ ∈ argmaxi∈[k] qi. For ℓ ∈ Rk, if |ℓi| ≤
1−α
4

1
min{qĨ ,1−qĨ}1−α for all i ∈ [k], it holds that

max
p∈Pk

{
〈ℓ, q − p〉 −D(−Hα)(p, q)

}
≤ 4

1− α

(∑
i ̸=Ĩ

q2−αi ℓ2i +min{qĨ , 1− qĨ}
2−αℓ2

Ĩ

)
. (56)

Lemma 15 ([26, Lemmas 11 and 12]). Let L ∈ Rk and ℓ ∈ Rk and suppose that q, r ∈ Pk are
given by

q ∈ argmin
p∈Pk

{
〈L, p〉+ β(−Hα(p)) + β̄(−Hᾱ(p))

}
r ∈ argmin

p∈Pk

{
〈L+ ℓ, p〉+ β′(−Hα(p)) + β̄(−Hᾱ(p))

}
(57)

for the Tsallis entropy Hα and Hᾱ, 0 < β ≤ β′. Suppose also that

‖ℓ‖∞ ≤ max

{
1− (

√
2)α−1

2
qα−1
∗ β,

1− (
√
2)ᾱ−1

2
qᾱ−1
∗ β̄

}
, (58)

0 ≤ β′ − β ≤ max

{(
1− (

√
2)α−1

)
β,

1− (
√
2)ᾱ−1

√
2

qᾱ−α∗ β̄

}
. (59)

Then, it holds that Hα(r) ≤ 2Hα(q).
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E Proof for partial monitoring (Theorem 8, Section 5)

This section provides the proof of Theorem 8.

Proof of Theorem 8. It suffices to prove that assumptions in Theorem 7 are satified. We first vertify
Assumptions (i)–(iii) in (12). Let us start from checking Assumption (i). From the definition of the
loss difference estimator ŷt, the regret is bounded as

RegT = E

[
T∑
t=1

(LAtxt − La∗xt)

]
= E

[
T∑
t=1

〈pt − ea∗ ,Lext〉

]

= E

[
T∑
t=1

〈qt − ea∗ ,Lext
〉+

T∑
t=1

γt

〈
1

k
1− qt,Lext

〉]

≤ E

[
T∑
t=1

〈qt − ea∗ ,Lext
〉+

T∑
t=1

γt

]
= E

[
T∑
t=1

k∑
a=1

qta(Laxt
− La∗xt

) +

T∑
t=1

γt

]

= E

[
T∑
t=1

k∑
a=1

qta(ŷta − ŷta∗) +

T∑
t=1

γt

]
= E

[
T∑
t=1

〈qt − ea∗ , ŷt〉+
T∑
t=1

γt

]
, (60)

where the inequality holds since L ∈ [0, 1]k×d, This implies that Assumption (i) is indeed satisfied.
We next check Assumption (ii) in (12). For any b ∈ [k] we have∣∣∣∣ ŷtbβt

∣∣∣∣ = ∣∣∣∣G(At, σt)bβtptAt

∣∣∣∣ ≤ |G(At, σt)b|k
βtγt

≤ cG
βtγt

≤ cG
ut

=
1− α

8

1(
min

{
qtĨt , 1− qtĨt

})1−α , (61)

where the third inequality follows from γt ≥ ut/βt in (11) and the last equality follows from the
defintition of ut in (17). Hence, from Lemma 14 the LHS of Assumption (ii) is bounded as

Et
[
〈ŷt, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

]
= βtEt

[〈
ŷt
βt
, qt − qt+1

〉
−D(−Hα)(qt+1, qt)

]

≤ Et

 4

βt(1− α)

∑
i ̸=Ĩt

q2−αti ŷ2ti +
(
min

{
qtĨt , 1− qtĨt

})2−α
ŷ2
tĨt


=

4

βt(1− α)

∑
i ̸=Ĩt

q2−αti Et
[
ŷ2ti
]
+ q2−αt∗ Et

[
ŷ2
tĨt

] . (62)

Since the variance of ŷt is bounded from above as

Et
[
ŷ2ti
]
=

k∑
a=1

pta
G(a, σt)

2
i

p2ta
≤

k∑
a=1

k‖G‖2∞
γt

=
c2G
γt

(63)

for any i ∈ [k], the LHS of Assumption (ii) is further bounded as

Et[〈ŷt, qt − qt+1〉 − βtDψt
(qt+1, qt)] ≤

4c2G
βtγt(1− α)

∑
i ̸=Ĩt

q2−αti + q2−αt∗

 =
zt
βtγt

≤ zt
βtγ′t

,

(64)
which implies that Assumption (ii) in (12) is satisfied.
Next, we will prove ht+1 ≲ ht of Assumption (iii) in (12). To prove this, we will check the condition
in Lemma 15. For any a ∈ [k],

|ŷta| ≤
‖G‖∞
ptAt

≤ k‖G‖∞
γt

≤ cGβt
ut

≤ 1− α

8

βt

q1−αt∗
≤ 1− (

√
2)α−1

2

βt

q1−αt∗
, (65)

where the second inequality follows from pta ≥ γt/k, the third inequality from γt ≥ ut/βt, and the
last inequality from the fact that (1− x)/4 ≤ 1− (

√
2)x−1 for x ∈ [0, 1]. Thus, the condition (58)

is satisfied.
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We next check the condition (59). Recalling qt∗ = min{qtĨt , 1 − qtĨt}, the parameters zt and ut
satisfy

√
zt =

2cG√
1− α

√∑
i ̸=Ĩt

q2−αti + q2−αt∗ ≤ 2
√
kcG√

1− α
q
1− 1

2α
t∗ , ut =

8cG
1− α

q1−αt∗ , (66)

where the inequality follows from qti ≤ qt∗ for i 6= Ĩt. The penalty component ht is lower-bounded
as

ht = Hα(qt) =
1

α

k∑
i=1

(qαti − qti) ≥
1− (1/2)1−α

α
qαt∗ ≥ 1− α

4α
qαt∗ , (67)

where the last inequality in (67) follows from 1 − (1/2)1−x ≥ (1 − x)/4 for x ≤ 0, and the first
inequality can be proven as folows: when qtĨt ≤ 1/2, it holds that

∑k
i=1(q

α
ti − qti) ≥ qα

tĨt
− qtĨt =

qα
tĨt

(1 − q1−α
tĨt

) ≥ qα
tĨt

(
1− (1/2)1−α

)
= qαt∗(1 − (1/2)1−α), and when qtĨt > 1/2, it holds that∑k

i=1(q
α
ti − qti) ≥

∑k
i=1 q

α
ti − 1 ≥

∑
i ̸=Ĩt q

α
ti + (1/2)α − 1 ≥ (

∑
i ̸=Ĩt qti)

α + (1/2)α − 1 =

(1 − qtĨt)
α + (1/2)α − 1 = qαt∗ + (1/2)α − 1 ≥ qαt∗(1 − (1/2)1−α). Using the bounds on zt, ut,

and ht in (66) and (67), we have

βt+1 − βt =
1

ĥt+1

(
2

√
zt
βt

+
ut
βt

)
=

2

ht

√
zt
βt

+
1

ht

ut
βt

≤ 16αcG
√
k√

β1(1− α)3/2
q
1− 3

2α
t∗ +

32αcG√
β1(1− α)2

q1−2α
t∗

≤ αβ̄q
1− 3

2α
t∗ + αβ̄q1−2α

t∗

≤ 2(1− ᾱ)β̄qᾱ−αt∗ ≤ 2
1− (

√
2)ᾱ−1

√
2

β̄qᾱ−αt∗ , (68)

where the first inequality follows from (66), (67), and the fact that βt ≥ β1 ≥ 1, the second inequality
from the definition of β̄ in (17), the third inequality from min{1 − 3

2α, 1 − 2α} ≥ ᾱ − α since
ᾱ = 1 − α, and the last inequality from 1 − x ≤ (1 − (

√
2)x−1)/

√
2 for x ≤ 1. Therefore, the

condition (59) is satified. Hence, from Lemma 15, we have ht+1 = Hα(qt+1) ≤ 2Hα(qt) = 2ht,
which implies that Assumption (iii) in (12) is satisfied.
Finally, we check the assumption (14) in Theorem 7. We first consider the first inequality in (14).
From the definition of zt and the fact that qti ≤ qtĨt for i 6= Ĩt, the stability component zt is bounded
as

zt =
4c2G
1− α

∑
i ̸=Ĩt

q2−αti +
(
min

{
qtĨt , 1− qtĨt

})2−α
≤

4c2G
1− α


∑
i ̸=Ĩt

q2−αti +

∑
i ̸=Ĩt

qti

2−α


≤
8c2G
1− α

∑
i ̸=Ĩt

qti

2−α

≤
8c2G
1− α

∑
i ̸=a∗

qti

2−α

=
8c2G
1− α

(1− qta∗)
2−α

, (69)

where the second inequality holds from the inequality xa+ya ≤ (x+y)a for x, y ≥ 0 and a ∈ [0, 1],
and the third inequality from qti ≤ qtĨt for i 6= Ĩt. From Lemma 13, we also obtain that

ht = Hα(qt) ≤
1

α
(k − 1)1−α(1− qta∗)

α
. (70)

Hence, combining this with (69), we obtain

ztht ≤
8c2G
1− α

(1− qta∗)
2−α · 1

α
(k − 1)1−α(1− qta∗)

α
=

8c2G(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ1

(1− qta∗)
2
. (71)
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We next consider the second inequality in (14). We can bound ut from above as

ut =
8cG
1− α

(
min

{
qtĨt , 1− qtĨt

})1−α ≤ 8cG
1− α

∑
i ̸=Ĩt

qti

1−α

≤ 8cG
1− α

∑
i ̸=a∗

qti

1−α

=
8cG
1− α

(1− qta∗)
1−α

, (72)

where the second inequality follows from qtĨt ≥ qti for all i ∈ [k]. Hence, combining the last two
inequality and (70),

utht ≤
4cG(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ2

(1− qta∗) . (73)

Hence, the assumption (14) is satified with above ρ1 and ρ2, and thus we have completed the proof.

F Proof for graph bandits (Theorem 10, Section 6)

This section provides the missing detail of Section 6.

F.1 Fractional domination number

Before introducing the fractional domination number, we define the domination number δ̃ ≤ δ. A
dominating set D ⊆ V is a set of vertices such that V ⊆

⋃
i∈DN

out(i). The domination number
δ̃(G) of graph G is the size of the smallest dominating set. From the definition, the domination
number δ̃ can also be written as the optimal value of the following optimization problem:

minimize
∑
i∈V

xi subject to
∑

i∈N in(j)

xi ≥ 1 ∀j ∈ V , xi ∈ {0, 1} ∀i ∈ V , (74)

where xi ∈ {0, 1} a binary variable indicating whether vertex i is in the dominating set (xi = 1) or
not (xi = 0).
Then, one can see that the fractional domination number δ∗ is defined as the optimal value of the
following optimization problem, in which the variables (xi)i∈V are allowed to take values in [0, 1]
instead of {0, 1}:

minimize
∑
i∈V

xi subject to
∑

i∈N in(j)

xi ≥ 1 ∀j ∈ V , 0 ≤ xi ≤ 1 ∀i ∈ V , (75)

which is the linear program provided in (19). From the definitions, the fractional domination number
is less than or equal to the domination number, δ∗ ≤ δ̃. Another advantage of using δ∗ instead of δ̃ is
that the fractional domination number δ∗ can be computed in polynomial time, while the computation
of the domination number δ̃ is NP-hard. See [13] for more benefits of using the fractional version of
the (weak) domination number.

F.2 Proof of Theorem 10

Here, we provide the proof of Theorem 10.

Proof. It suffices to prove that assumptions in Theorem 7 are satified. We first vertify Assumptions
(i)–(iii) in (12). We start from checking Assumption (i). The regret is bounded as

RegT = E

[
T∑
t=1

ℓt(At)−
T∑
t=1

ℓt(a
∗)

]
= E

[
T∑
t=1

〈ℓt, pt − ea∗〉

]
= E

[
T∑
t=1

〈ℓt, qt − ea∗〉+
T∑
t=1

〈ℓt, pt − qt〉

]

= E

[
T∑
t=1

〈ℓt, qt − ea∗〉+
T∑
t=1

γt〈ℓt, qt − u〉

]
≤ E

[
T∑
t=1

〈ℓ̂t, qt − ea∗〉+
T∑
t=1

γt

]
, (76)
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where the third equality follows from the defintion of γt. This implies that Assumption (i) is indeed
satisfied.
We next check Assumption (ii) in (12). Now, recalling the defintion of the fractional domination
number and the optimal value x∗ of (19), and ui = x∗i /

∑
j∈V x

∗
j , we have∑

j∈N in(i)

uj =

∑
j∈N in(i) x

∗
j∑

i∈V x
∗
i

≥ 1∑
i∈V x

∗
i

=
1

δ∗
, (77)

where the inequality follows from the first constraint in (19). Hence, combining this with the defini-
tion of pt = (1− γt)qt + γtu, we can lower-bound Pti as

Pti =
∑

j∈N in(i)

ptj ≥ γt
∑

j∈N in(i)

uj ≥
γt
δ∗

for all i ∈ V . (78)

This lower bound yields that for any i ∈ V∣∣∣∣∣ ℓ̂tiβt
∣∣∣∣∣ ≤ ℓti

βtPti
≤ δ∗

βtγt
≤ δ∗

ut
=

1− α

8

1(
min

{
qtĨt , 1− qtĨt

})1−α , (79)

where the second inequality follows from (78) and the third inequality from γt ≥ ut/βt in (11).
Hence, from Lemma 14 we obtain

Et
[〈
ℓ̂t, qt − qt+1

〉
− βtD(−Hα)(qt+1, qt)

]
= βtEt

[〈
ℓ̂t
βt
, qt − qt+1

〉
−D(−Hα)(qt+1, qt)

]

≤ Et

 4

βt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti ℓ̂2ti +
(
min

{
qtĨt , 1− qtĨt

})2−α
ℓ̂2
tĨt


=

4

βt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti Et
[
ℓ̂2ti

]
+ q2−αt∗ Et

[
ℓ̂2
tĨt

] . (80)

Then, by using the lower bound of Pt in (78), for any i ∈ V the variance of the loss estimator ℓ̂ti is
bounded as

Et
[
ℓ̂2ti

]
=

k∑
j=1

ptj
ℓ2ti
P 2
ti

1
[
i ∈ Nout(j)

]
=
ℓ2ti
P 2
ti

∑
j∈V : i∈Nout(j)

ptj =
ℓ2ti
Pti

≤ δ∗

γt
. (81)

Hence, combining (80) with (81), we obtain

Et[〈ŷt, qt − qt+1〉 − βtDψt
(qt+1, qt)] ≤

4δ∗

βtγt(1− α)

 ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

 =
zt
βtγt

≤ zt
βtγ′t

,

(82)
which implies that Assumption (ii) in (12) is satisfied.
Next, we will prove ht+1 ≲ ht of Assumption (iii) in (12). To prove this, we will check the condition
in Lemma 15. For any i ∈ V ,

|ℓ̂ti| ≤
1

Pti
≤ δ∗

γt
≤ δ∗βt

ut
=

1− α

8

βt

q1−αt∗
≤ 1− (

√
2)α−1

2

βt

q1−αt∗
, (83)

where the second inequality follows from (78), the third inequality from γt ≥ ut/βt, and the last
inequality from the fact that (1 − x)/4 ≤ 1 − (

√
2)x−1 for x ∈ [0, 1]. Thus, the condition (58) is

satisfied.
We next check the condition (59). Recalling qt∗ = min{qtĨt , 1−qtĨt}, we observe that the parameters
zt and ut satisfy

√
zt =

√√√√√ 4δ∗

1− α

 ∑
i∈V \{Ĩt}

q2−αti + q2−αt∗

 ≤ 2
√
kδ∗√

1− α
q
1− 1

2α
t∗ , ut =

8δ∗

1− α
q1−αt∗ , (84)
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where the last inequality follows from qti ≤ qt∗ for i 6= Ĩt. We can also lower-bound ht as

ht = Hα(qt) =
1

α

k∑
i=1

(qαti − qti) ≥
1− (1/2)1−α

α
qαt∗ ≥ 1− α

4α
qαt∗ , (85)

which can be proven by the same manner as in (67). Hence, using the upper bounds on zt, ut, and
ht in (84) and (85), we have

βt+1 − βt =
1

ĥt+1

(
2

√
zt
βt

+
ut
βt

)
=

2

ht

√
zt
βt

+
1

ht

ut
βt

≤ 16α
√
kδ∗√

β1(1− α)3/2
q
1− 3

2α
t∗ +

32αδ∗√
β1(1− α)2

q1−2α
t∗

≤ αβ̄q
1− 3

2α
t∗ + αβ̄q1−2α

t∗

≤ 2(1− ᾱ)β̄qᾱ−αt∗ ≤ 2
1− (

√
2)ᾱ−1

√
2

β̄qᾱ−αt∗ , (86)

where the first inequality follows from (84), (85), and βt ≥ β1 ≥ 1, the second inequality from
the definition of β̄, the third inequality from min{1 − 3

2α, 1 − 2α} ≥ ᾱ − α since ᾱ = 1 − α,
and the last inequality from 1 − x ≤ (1 − (

√
2)x−1)/

√
2 for x ≤ 1. Thus the condition (59) is

satified. Therefore, from Lemma 15, we have ht+1 = Hα(qt+1) ≤ 2Hα(qt) = 2ht, which implies
that Assumption (iii) in (12) is satisfied.
Finally, we check the assumption (14) in Theorem 7. We first consider the first inequality in (14).
From the definition of zt and the fact that qti ≤ qtĨt for i 6= Ĩt, we get

zt =
4δ∗

1− α

 ∑
i∈V \{Ĩt}

q2−αti +
(
min

{
qtĨt , 1− qtĨt

})2−α
≤ 4δ∗

1− α


∑

i∈V \{Ĩt}

q2−αti +

∑
i ̸=Ĩt

qti

2−α


≤ 8δ∗

1− α

 ∑
i∈V \{Ĩt}

qti

2−α

≤ 8δ∗

1− α

∑
i ̸=a∗

qti

2−α

=
8δ∗

1− α
(1− qta∗)

2−α
, (87)

where the second inequality holds from the inequality xa+ya ≤ (x+y)a for x, y ≥ 0 and a ∈ [0, 1],
and the third inequality from qti ≤ qtĨt . Hence, combining this with (87) with the upper bound on
ht in (70), we obtain

ztht ≤
8δ∗

1− α
(1− qta∗)

2−α · 1
α
(k − 1)1−α(1− qta∗)

α
=

8δ∗(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ1

(1− qta∗)
2
. (88)

We next consider the second inequality in (14). We can bound ut from above as

ut =
8δ∗

1− α

(
min

{
qtĨt , 1− qtĨt

})1−α ≤ 8δ∗

1− α

∑
i ̸=Ĩt

qti

1−α

≤ 8δ∗

1− α

∑
i ̸=a∗

qti

1−α

=
8δ∗

1− α
(1− qta∗)

1−α
, (89)

where the second inequality follows from qtĨt ≥ qti for all i 6= Ĩt. Hence, combining the last
inequality with (70),

utht ≤
4δ∗(k − 1)1−α

α(1− α)︸ ︷︷ ︸
=ρ2

(1− qta∗) . (90)
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Hence, the assumption (14) is satified with above ρ1 and ρ2, and thus we have completed the proof.

F.3 Technical challenges to derive best-of-both-worlds bounds depending on (fractional)
weak domination number

Here, we discuss the technical challenges of making our upper bound in Theorem 10 depend on the
weak domination number δ instead of the fracional domination number δ∗ or the weak fractional
domination number δ̃∗ ≤ δ.
First, we need to use Tsallis entropy to derive a regret upper bound with a stochastic bound of log T .
While we can prove a BOBW bound if we use the Shannon entropy regularizer [25], the bound in the
stochastic regime is O((log T )2), which is not desirable. which is not desirable. Hence, a possible
approach is to use the log-barrier regularizer or the Tsallis entropy. The log-barrier regularizer has
a penalty term of Ω(k) due to the strength of its regularization, and the regret upper bound in the
final adversarial regime is Ω(k1/3), which can be much larger than δ1/3. Therefore, the most hopeful
solution would be to use Tsallis entropy with an appropriate exponent α ' 1, where we note that the
Tsallis entropy with α→ 1 corresponds to the Shanon entropy.
Recalling the definition of the weak domination number in Section 6, we can see that the weak dom-
ination set dominates only vertices without self-loop U = {i ∈ V : i 6∈ Nout(i)}. Thus, to achieve
a BOBW bound that depends on the weak domination number, vertices with self-loop and those
without self-loop should be treated separately by decomposing the stability term as follows:

〈ℓ̂t, qt − qt+1〉 − βtD(−Hα)(qt+1, qt)

=
∑
i∈U

(
ℓ̂ti(qti − qt+1,i)− βt d(qt+1,i, qt,i)

)
+
∑
i∈V \U

(
ℓ̂ti(qti − qt+1,i)− βt d(qt+1,i, qt,i)

)
,

where d(p, q) is the Bregman divergence induced by the real-valued convex function x 7→ − 1
α (x

α−
x). However, if we use this approach, we cannot use Lemma 14, which is useful to prove an upper
bound with (1 − qta∗) (see (14)). This is because this lemma exploits the fact that q and r are
probability vectors. This prevents us from deriving an upper bound with an O(log T ) stochastic
bound depending on the weak domination number.

26


	Introduction
	Preliminaries
	SBP-matching: Simple and adaptive learning rate for hard problems
	Objective function that adaptive learning rate aims to minimize
	Stability–penalty–bias matching learning rate

	Best-of-both-worlds framework for hard online learning problems
	Case study (1): Partial monitoring with global observability
	Problem setting and some concepts in partial monitoring
	Algorithm and regret upper bounds

	Case study (2): Graph bandits with weak observability
	Problem setting and some concepts in graph bandits
	Algorithm and regret analysis

	Conclusion and future work
	Additional related work
	Proofs for SPB-matching learning rate (sec:adaptivelr)
	Proof of lem:Fupper
	Proof of lem:G1upper

	Proof for best-of-both-worlds analysis in general online learning framework (thm:mainbobw, sec:bobw)
	Auxiliary lemmas
	Proof for partial monitoring (thm:pmglobal, sec:pm)
	Proof for graph bandits (thm:graphweak, sec:graph)
	Fractional domination number
	Proof of thm:graphweak
	Technical challenges to derive best-of-both-worlds bounds depending on (fractional) weak domination number


