

000 001 002 003 004 005 WHISFUSION: PARALLEL ASR DECODING VIA A 006 DIFFUSION TRANSFORMER 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

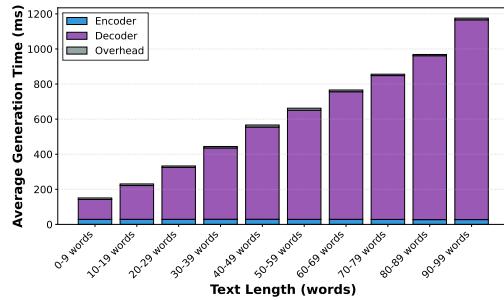
ABSTRACT

028 Fast automatic speech recognition (ASR) is crucial for applications such as captioning
029 and transcription. Although modern ASR encoders can process up to 30
030 seconds of audio in a single pass, Whisper-style autoregressive (AR) decoders
031 still generate tokens sequentially, making decoding latency grow linearly with ut-
032 terance length. We propose Whisfusion, a non-autoregressive (NAR) ASR frame-
033 work that fuses a frozen pre-trained Whisper encoder with a masked-diffusion
034 text decoder. At each diffusion step, the decoder conditions on the full acous-
035 tic context and updates all tokens in parallel, mitigating the AR latency bottle-
036 neck while preserving Whisper-compatible generative structure. A lightweight
037 cross-attention adapter trained via parameter-efficient fine-tuning bridges audio
038 and text, and we introduce Parallel Diffusion Decoding (PDD), an ASR-tailored
039 batch-parallel sampling scheme that improves the accuracy-latency trade-off in
040 low-to-mid batch regimes. With 6.5k hours of training data, Whisfusion reaches
041 4.9% WER on LibriSpeech test-clean, comparable to similarly sized Whisper
042 model (Whisper-small at 5.0%), while enabling much faster decoding. In par-
043 ticular, on 20–30s segments within Whisper’s 30s window, Whisfusion reduces
044 decoding time from 674.7 ms to 80.7 ms (8.4x faster) at similar accuracy, demon-
045 strating an efficient NAR operating point for Whisper-compatible ASR.
046
047

048 1 INTRODUCTION

050 1.1 THE CHALLENGE OF AUTOREGRESSIVE ASR MODELS

052 Transformer-based autoregressive models (AR) Vaswani et al. (2017) have achieved state-of-
053 the-art (SOTA) performance in automatic speech
054 recognition (ASR) Dong et al. (2018), with mod-
055 els such as Whisper demonstrating remarkable
056 accuracy across benchmarks. Whisper-small, for
057 example, reports Word Error Rates (WER) of
058 5.0% and 12.2% on LibriSpeech test-clean/other,
059 setting a strong baseline for open-domain ASR.
060 Extensions like the Two-Pass U2 framework Wu
061 et al. (2021) adapt Whisper for streaming, reduc-
062 ing latency through architectural modifications
063 Yao et al. (2021); Zhou et al. (2025). Yet, sequen-
064 tial token generation inevitably introduces infer-
065 ence latency, limiting effectiveness in real-time
066 ASR Zhou et al. (2025). Managing long-range
067 dependencies also adds engineering burden Battenberg et al. (2025), especially in transcription ser-
068 vices and on-device ASR. In these environments, sequential decoding causes delays, degrades user
069 experience, and strains computational budgets without a high-performance GPU. The decoder re-
070 mains the primary bottleneck, a trend illustrated for Whisper-small in Figure 1. Even distilled mod-
071 els designed to mitigate this, such as Whisper-Large-v3-turbo Gandhi et al. (2023), still show a rising
072 decoder time ratio with input length. These challenges highlight the need for alternative decoding
073 paradigms that maintain linguistic coherence while enabling faster, parallelizable inference.



075 Figure 1: Whisper’s processing time scales lin-
076 early with text length due to its autoregressive
077 decoder, while encoder time remains constant.

054 1.2 A NEW PARADIGM: NON-AUTOREGRESSIVE DIFFUSION TRANSFORMER MODELS
055

056 Recent work on masked diffusion models (MDMs) Austin et al. (2021); Lou et al. (2024); Shi et al.
057 has emerged as a promising non-autoregressive alternative for language generation. In con-
058 trast to token-by-token generation in AR models, MDMs perform iterative denoising over masked
059 sequences, enabling parallel prediction of multiple tokens at each step. This allows for significantly
060 faster inference while preserving high generation quality. A recent study on the scalability of MDMs
061 Nie et al. (2025) has shown that such models can scale effectively, following power-law scaling laws
062 comparable to AR models under equivalent computing budgets. Since MDM decoding latency is
063 largely independent on output length, it has the potential to overcome the length-scaled latency of
064 current ASR methods that rely on autoregressive transcription.

065 1.3 OUR CONTRIBUTION: WHISFUSION
066

067 SOTA ASR models suffer from a core architectural mismatch: while their AR decoders are pro-
068 vided with the full acoustic context from a 30-second audio segment, they are structurally limited
069 to processing it sequentially, token-by-token. This inefficient exploitation of the available context
070 creates a significant latency bottleneck. To resolve this trade-off, we propose Whisfusion, a novel
071 non-autoregressive (NAR) framework that fuses a pre-trained Whisper encoder with a text Diffusion
072 decoder. Our main contributions are threefold:

- 073 1. **A Novel NAR Framework.** We are the first to propose an architecture that fuses a pre-trained
074 Whisper encoder with a text diffusion decoder for ASR. This novel hybrid NAR framework, en-
075 abled by a lightweight PEFT-trained adapter, resolves the context-utilization paradox by allowing
076 the decoder to leverage the full acoustic context in a parallel, non-sequential manner.
- 077 2. **A Unique Parallel Decoding Strategy.** We introduce a novel batch-parallel, multi-step decoding
078 strategy that combines random token sampling with a confidence-based refinement mechanism.
079 A key advantage of this approach is the ability to improve accuracy by increasing the number of
080 parallel candidates with negligible impact on inference speed.
- 081 3. **Superior Speed-Accuracy Trade-off.** We empirically demonstrate that Whisfusion establishes
082 a new, highly efficient operating point on the speed-accuracy spectrum. Fine-tuned on only 960
083 hours of LibriSpeech, it is more accurate than Whisper-tiny (8.3% vs. 9.7% WER) while being
084 up to 2.6 times faster on long-form audio. This is driven by its parallel decoder, which achieves
085 a throughput of over 3100 tokens/s—more than 13 times faster than its AR counterpart.

087 2 BACKGROUND: TEXT GENERATION WITH DIFFUSION MODELS
088

089 Diffusion models have gained attention for their ability to model complex data distributions through
090 iterative denoising processes. Initially developed for image generation tasks (Ho et al., 2020), these
091 models have been extended to discrete data domains including natural language (Austin et al., 2021).
092 In discrete diffusion models, the forward process typically replaces tokens with a special mask token
093 following a predefined corruption schedule, with more noise gradually added to the data. The reverse
094 process learns to recover the original sequence through a series of denoising steps (Ho et al., 2020).

095 Compared to autoregressive generation, diffusion-based models offer several advantages, including
096 parallel decoding, bidirectional context modeling, and flexible control over generation dynamics.
097 Nie et al. (2025b) recently introduced LLaDA, an MDM that leverages these advantages to surpass
098 AR baselines in generation speed and to excel at in-context learning, instruction following, and bidi-
099 rectional reasoning. LLaDA operates by sampling a continuous masking ratio $t \in (0, 1)$, masking
100 each token independently with probability t , and training a *mask predictor* $p_\theta(\cdot | x_t)$ to infer the
101 original tokens. Its training objective is the expected cross-entropy on masked positions:

$$104 \mathcal{L}(\theta) \triangleq -\mathbb{E}_{t, x_0, x_t} \left[\frac{1}{t} \sum_{i=1}^L \mathbf{1}[x_t^i = M] \log p_\theta(x_0^i | x_t) \right], \quad (1)$$

105 where the scaling factor $1/t$ equalizes the contribution of examples with different masking levels.

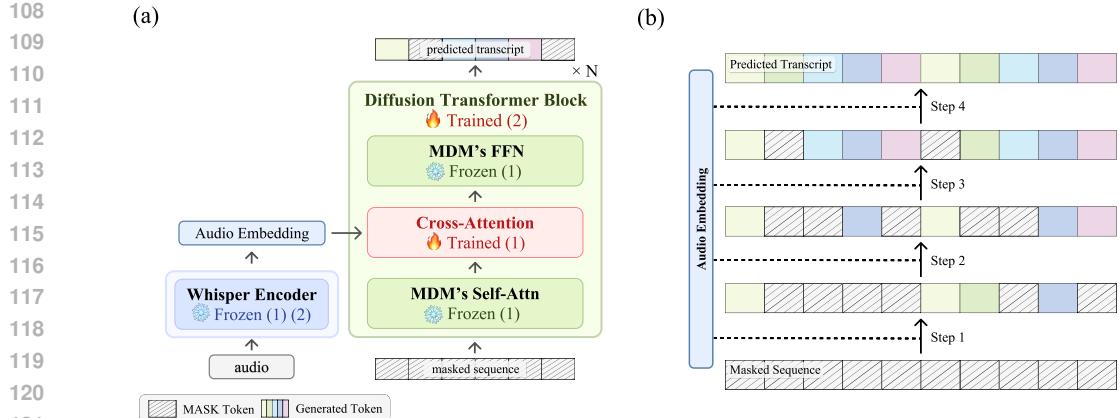


Figure 2: (a) Whisfusion architecture (2-stage training). (b) Decoding process of Whisfusion.

3 PROPOSED METHOD: WHISFUSION

In this section, we introduce **Whisfusion**, a novel framework for ASR built upon a Diffusion Transformer. By leveraging the parallel and iterative nature of diffusion models, Whisfusion operates as a NAR system designed for high-speed inference (Figure 2 b). We first present the overall model architecture, which efficiently fuses a pre-trained speech encoder with a text diffusion decoder. We then describe our multi-stage curriculum training strategy designed to achieve both robustness and precision. Finally, we detail our advanced decoding strategy, **Parallel Diffusion Decoding (PDD)**, which overcomes the limitations of conventional NAR decoding by leveraging the unique parallel nature of our model. The detailed architecture of Whisfusion is shown in Table 1.

3.1 MODEL ARCHITECTURE

The core of Whisfusion is the *fusion* of two pre-trained models from distinct modalities: a speech encoder and a text diffusion decoder. To bridge the gap between Whisper’s acoustic representations (audio-to-tensor) and MDM’s text-based domain (text-to-text), we insert a lightweight Cross-Attention fusion layer within each block of the MDM’s Transformer architecture. Trained via PEFT, this design leverages large pre-trained models while minimizing training costs.

Speech Encoder: We utilize the official pre-trained Whisper-small encoder. Trained on 680K hours of diverse audio, it converts raw waveforms into rich high-level acoustic representations (hidden states), providing a robust and generalizable foundation. In the initial training stage, this component remains frozen to preserve its generalized knowledge.

Diffusion Decoder: We employ a pre-trained SMDM-170M, a text diffusion transformer, as our decoder. Its inherent non-autoregressive nature allows it to process the entire text sequence in parallel, making it an ideal candidate for high-speed inference. It learns to restore a fully masked text sequence by iteratively denoising it over multiple steps.

Cross-Attention Fusion Layer: To enable the text-based MDM decoder to understand the acoustic conditions from the Whisper encoder, we insert a lightweight Cross-Attention layer within each block of the MDM’s Transformer architecture. This layer acts as an efficient bridge, enabling each text token to attend to all speech tokens across every decoding step, thereby integrating acoustic context throughout the generation process. This is the only component trained during the initial fine-tuning stage.

Table 1: Detailed architecture breakdown of Whisfusion compared to Whisper-Small.

	Whisper-Small	Whisfusion
<i>Encoder</i>	88.2M (shared, frozen)	
<i>Decoder</i>		
Type	Autoregressive	Diffusion
Layers	12	18
Hidden Size	768	768
Parameters	153.6M	212.5M
(self-attn + cross-attn)	(125.2M + 28.4M)	(170M + 42.5M)
Total Parameters	241.7M	300.7M
Adapter Parameters	–	42.5M (9.3%)

162 3.2 TRAINING STRATEGY: A 2-STAGE CURRICULUM
163

164 To effectively train our composite model without catastrophic forgetting, we devise a multi-stage
165 curriculum designed to first establish a robust foundation and then refine the model’s performance
166 for the specific challenges of our NAR task (Figure 2 a). We first train only a lightweight adapter
167 with the pre-trained components, then proceed to unfreeze all parameters of the decoder to specialize
168 in our ASR task. Such an adapter-first approach has been shown to mitigate catastrophic forgetting
169 and improve generalization in adapter-based NLP and ASR fine-tuning. Eeckt & hamme (2023);
170 Liu et al. (2024)

171 **Stage 1: Robust Adapter Training.** Our primary objective in this stage is to teach the Cross-
172 Attention layers to effectively interpret Whisper’s acoustic representations and guide the MDM de-
173 coder, while preserving the powerful prior knowledge of both base models. To achieve this, we
174 freeze all parameters of both the Whisper encoder and the MDM decoder. Only the newly inserted
175 Cross-Attention layers are trainable. We use the full LibriSpeech 960h dataset (comprising both
176 clean and noisy subsets, train-clean-100 / 360 and train-other-500) to expose the adapter to a wide
177 variety of acoustic conditions, thereby maximizing its robustness and generalization capabilities.

178 **Stage 2: Full Decoder Harmonization & Specialization.** This stage aims to simultaneously har-
179 monize the pre-trained MDM decoder with the speech-conditioned adapter and specialize the model
180 for the most challenging inference scenario: generating text from a fully masked state. Building
181 upon the Stage 1 model, we unfreeze all parameters of the MDM decoder and fine-tune it jointly
182 with the Cross-Attention adapter. To preserve the hierarchical knowledge within the pre-trained
183 decoder Kenneweg et al. (2022); Awasthi et al. (2022), we apply a layer-wise learning rate decay,
184 where shallower layers are trained with a higher learning rate while deeper, more foundational layers
185 are updated with a smaller learning rate. Critically, this entire stage is conducted exclusively
186 on data samples with a high masking ratio (e.g., 70-100%). This dual-purpose approach forces the
187 decoder’s self-attention and feed-forward networks to adapt to the acoustic context while simultane-
188 ously becoming experts at generating initial tokens from minimal textual information, thus directly
189 addressing the initial generation stability problem.

190 3.3 ADVANCED DECODING STRATEGY: PARALLEL DIFFUSION DECODING (PDD)
191

192 Standard iterative decoding for NAR models suf-
193 fers from error propagation, especially when a
194 token is predicted incorrectly with high confi-
195 dence. Furthermore, popular AR decoding tech-
196 niques like Beam Search are structurally inefficient
197 for diffusion-style models due to their parallel and
198 fixed-length nature. We therefore propose Paral-
199 lell Diffusion Decoding (PDD), a novel inference
200 strategy that leverages the unique characteristics of
201 our NAR architecture to efficiently explore multiple
202 candidate transcriptions and select the most proba-
203 ble one.

204 **Contrasting AR Beam Search and PDD**

205 In AR models, generating a sequence of length T
206 requires T serial steps, since the t -th token cannot
207 be produced independently but depends on the pre-
208 viously generated $t-1$ tokens. This strict sequen-
209 tiality makes decoding inherently slow and limits
210 throughput even when substantial parallel compu-
211 tation is used within each step. Moreover, beam
212 search produces hypotheses of varying length at
213 intermediate steps, which complicates batching and
214 introduces substantial padding overhead and wasted compute. By contrast, Whisfusion conditions
215 on the entire sequence at once, so k hypotheses can be grouped into a single batch and refined si-
multaneously in each forward pass, reducing redundancy in computation and yielding consistently
higher throughput.

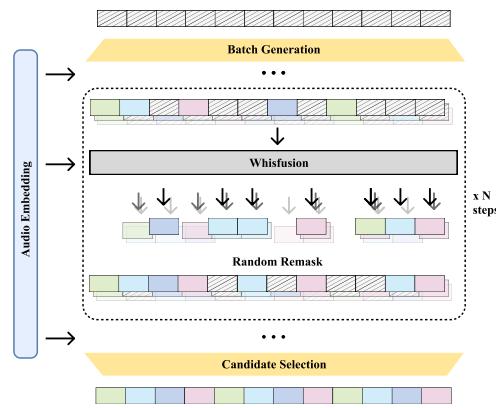


Figure 3: Parallel Diffusion Decoding (PDD) inference. At each of N steps, k candidates are refined in parallel from audio embeddings, iteratively remasked, then selected.

216 **The PDD Algorithm.** Our proposed PDD method (Figure 3), consists of the following steps:
 217

- 218 1. **Batch Generation:** At the first step ($t = 1$), instead of selecting a single argmax prediction, we
 219 run the decoder k times from the initial token distribution, yielding k diverse candidate sequences
 220 $\{y_1^{(1)}, \dots, y_1^{(k)}\}$ in one forward pass.
- 221 2. **Parallel Refinement:** For the subsequent $N - 1$ refinement steps ($t = 2, \dots, N$), we treat these k
 222 drafts as a batch. At each step t we *randomly mask* a fixed fraction ρ_t of tokens in every candidate
 223 (e.g., $\rho = \{1.0, 0.9, 0.85, 0.80\}$ for $N = 4$) and let the model re-predict the masked positions of
 224 each candidate sequences in parallel on a single GPU.
- 225 3. **Candidate Selection:** After the final step, we score each of the k complete sequences (e.g., using
 226 their average token confidence) and select the highest-scoring sequence as the final output.

228 This PDD approach minimizes the speed loss typically associated with exploring multiple hypotheses
 229 while significantly improving resilience to initial prediction errors, thereby enhancing the final
 230 transcription accuracy.

232 4 EXPERIMENTS

235 To evaluate the effectiveness of our proposed Whisfusion model (301M parameters), we conduct experiments
 236 on the widely-used LibriSpeech Panayotov et al. (2015)
 237 benchmark, assessing both transcription accuracy and in-
 238 ference speed. We compare Whisfusion against three
 239 Whisper variants: Whisper-tiny (39M), the fastest base-
 240 line; Whisper-small (244M), which is most comparable in
 241 size; and Whisper-large-v3-turbo (809M), a recent model
 242 optimized for AR decoding speed (hereafter Whisper-
 243 turbo). For latency evaluation, we run each audio file
 244 5 times and report the average to mitigate measurement
 245 noise. All evaluation scripts and hyperparameter settings
 246 are publicly available for full reproducibility (see Appendix C).

248 4.1 DATASETS

250 All experiments are conducted on LibriSpeech, using train-960h for training, dev-clean/other for
 251 validation, and test-clean/other for evaluation. Based on the token statistics in Table 2, we set
 252 `max_length=256` for both training and inference, ensuring full coverage of the training data.

254 4.2 IMPLEMENTATION DETAILS

256 **Base Models and Environment.** Our Whisfusion architecture is built upon two powerful pre-
 257 trained models: the official openai/whisper-small model as the speech encoder, and the mdm-170M
 258 checkpoint from the SMDM project Nie et al. (2025) as the text diffusion decoder. All models were
 259 trained and evaluated using 4 x NVIDIA A100 GPUs.

260 **Stage 1: Adapter Fine-tuning.** The primary goal of this stage was to train the Cross-Attention
 261 adapter on the full 960-hour LibriSpeech dataset. For each training sample, we applied a masking
 262 ratio chosen uniformly at random from 0% to 100%. This strategy ensures the model is robust across
 263 all levels of text corruption. The validation loss converged to a best of 0.0840 ($\text{PPL} \approx 1.09$), indicating
 264 the adapter had effectively learned to interpret the acoustic features from the speech encoder.

265 **Stage 2: Full Decoder Harmonization & Specialization.** Building on the best adapter from Stage
 266 1, this stage unfreezes the MDM decoder and specializes it for initial generation from a fully masked
 267 state. To preserve the hierarchical knowledge within the pre-trained decoder, we applied layer-wise
 268 learning rate decay. Critically, training was conducted exclusively with a high masking ratio (70-
 269 100%). Despite this challenging setting, the model achieved a best validation loss of 0.0958 ($\text{PPL} \approx 1.10$).

231 Table 2: Dataset statistics for LibriSpeech train-960h.

232 Duration distribution	233 File count
0–10 seconds	64,181 (22.8%)
10–20 seconds	217,005 (77.2%)
20–30 seconds	55 (<0.1%)
234 Token statistics	235 Length
99th percentile	124 tokens
Maximum	228 tokens

270

5 RESULTS AND ANALYSIS

271

5.1 MAIN RESULTS

272 We present the primary quantitative results of Whisfusion on the LibriSpeech benchmark in Table 4
 273 and Table 3. All experiments use $k = 15$ candidates and $N = 4$ refinement steps unless otherwise
 274 stated. The masking ratios for the four steps are 1.0, 0.9, 0.85 and 0.8, respectively.

275 On the test-clean set, Whisfusion achieves a WER of 8.3%, representing a 14% relative improvement
 276 over Whisper-tiny (9.7% WER). The RTF measurements show that Whisfusion (0.0165) outper-
 277 forms Whisper-tiny (0.0176), while being 2.4 \times faster than Whisper-small (0.0397) and 2.3 \times faster
 278 than Whisper-turbo (0.0374). On the more challenging test-other set, Whisfusion maintains com-
 279 petitive performance with 17.0% WER, positioning itself between Whisper-tiny and Whisper-small
 280 in terms of accuracy.

281 Table 3 reveals the distinct characteristics of our non-autoregressive architecture across different au-
 282 dio durations. While autoregressive models show varying inference times dependent on sequence
 283 length, Whisfusion maintains nearly constant total inference time: 122.3ms for 0-10s audio, 123.1ms
 284 for 10-20s, and 120.1ms for 20-30s segments. This consistency translates to dramatic RTF improve-
 285 ments as audio length increases—from 0.029 for short segments to 0.005 for longer ones, a 5.80 \times
 286 improvement. In contrast, Whisper models show more modest scaling: Whisper-tiny improves only
 287 1.57 \times (0.022 to 0.014), while Whisper-small and Whisper-turbo show similar limited gains.

288 Notably, while Whisfusion demonstrates strong performance on audio segments up to 20 seconds,
 289 we observe degraded accuracy on the 20-30s category (15.9% WER). This degradation can be at-
 290 tributed to the severe scarcity of long-form audio in the training data: among 281,241 training
 291 samples in LibriSpeech train-960h, only 55 files (0.02%) exceed 20 seconds (see Table 2), so the
 292 model struggles to generalize for such sentences.

293 The decoder performance metrics highlight the fundamental difference between autoregressive and
 294 non-autoregressive approaches. Whisfusion achieves a throughput of over 3,180 tokens per second
 295 with a consistent 0.31 ms per token across all duration categories. This represents a 16 \times improve-
 296 ment over Whisper-tiny (190-240 tokens/s) and 36 \times over Whisper-small (83-103 tokens/s). Fur-
 297 thermore, while the decoder component dominates inference time in Whisper models—accounting
 298 for 80-95% of total computation as sequences lengthen—it remains fixed at approximately 67% for
 299 Whisfusion regardless of audio duration.

300 The time breakdown analysis shows that Whisfusion allocates 23-24% of computation to the en-
 301 coder, compared to 3-8% for Whisper-tiny and 6-14% for Whisper-small. This reallocation is en-
 302 abled by the efficiency of parallel decoding, which completes in a fixed 82ms regardless of sequence
 303 length, while autoregressive decoders scale from 82ms to 292ms (Whisper-tiny) or 187ms to 675ms
 304 (Whisper-small) as audio duration increases from 0-10s to 20-30s.

305

Table 3: Performance across durations on LibriSpeech *test-clean*.

306 Duration	307 Model	308 Acc. (%)		309 Time (ms)			310 E2E speed			311 Decoder 312 tok/s \uparrow
		313 WER	314 CER	315 Enc	316 Dec	317 Ovhd	318 Total \downarrow	319 RTF \downarrow	320 Speed \uparrow	
313 0-10 s	314 Whisper-tiny	315 10.5	316 4.5	317 7.6	318 82.1	319 12.7	320 102.4	321 0.022	322 2.18 \times	323 190.3
	314 Whisper-small	315 5.4	316 2.3	317 32.2	318 187.3	319 8.8	320 228.1	321 0.048	322 1.00 \times	323 83.3
	314 Whisper-turbo	315 3.8	316 1.5	317 156.3	318 85.8	319 8.6	320 250.6	321 0.057	322 0.84 \times	323 177.7
	314 Whisfusion	315 7.9	316 2.7	317 29.1	318 82.1	319 11.1	320 122.3	321 0.029	322 1.66\times	323 3186.1
313 10-20 s	314 Whisper-tiny	315 7.0	316 2.6	317 7.2	318 187.1	319 11.6	320 205.9	321 0.015	322 2.33 \times	323 230.3
	314 Whisper-small	315 3.5	316 1.2	317 30.3	318 435.5	319 9.1	320 475.0	321 0.035	322 1.00 \times	323 99.6
	314 Whisper-turbo	315 2.5	316 0.7	317 155.7	318 184.5	319 9.1	320 349.1	321 0.026	322 1.35 \times	323 218.1
	314 Whisfusion	315 8.0	316 2.6	317 29.4	318 82.0	319 11.6	320 123.1	321 0.009	322 3.89\times	323 3183.7
313 20-30 s	314 Whisper-tiny	315 6.4	316 2.4	317 7.4	318 292.3	319 14.2	320 313.9	321 0.014	322 2.21 \times	323 238.8
	314 Whisper-small	315 3.7	316 1.2	317 29.0	318 674.7	319 9.9	320 713.5	321 0.031	322 1.00 \times	323 102.9
	314 Whisper-turbo	315 2.6	316 0.7	317 155.6	318 285.6	319 8.6	320 449.9	321 0.020	322 1.55 \times	323 230.0
	314 Whisfusion	315 15.9	316 7.7	317 29.0	318 80.7	319 10.3	320 120.1	321 0.005	322 6.20\times	323 3188.6

324
325 Table 4: WER and CER on LibriSpeech test sets (clean/other) for Whisper variants vs. Whisfusion.
326
327
328

Model	test-clean		test-other	
	WER (%) ↓	CER (%) ↓	WER (%) ↓	CER (%) ↓
Whisper-tiny	9.7	4.1	22.5	11.8
Whisper-small	5.0	2.1	12.2	6.2
Whisper-turbo	3.5	1.4	6.6	2.8
Whisfusion	8.3	2.9	17.0	6.9

333
334
335 5.2 ABLATION STUDIES
336
337
338
339

To validate the effectiveness of each component in Whisfusion, we conduct comprehensive ablation studies on the LibriSpeech test-clean dataset. The results demonstrate the importance of our key design choices in achieving the final performance.

340
341 5.2.1 IMPACT OF 2-STAGE TRAINING STRATEGY
342

343 Table 5 demonstrates the critical importance of our
344 design choices. The "w/o Acoustic Conditioning" 345 experiment, where we remove the cross-attention
346 adapter, confirms the model's heavy reliance on
347 acoustic information. Despite masking only 30%
348 of the tokens from the ground truth transcript, the
349 model produced near-random transcriptions with a
350 WER of 150.8%, indicating that it fails to generate
351 meaningful outputs without acoustic guidance.
352 Furthermore, the results validate our 2-stage curriculum.
353 The Stage 1 model provides a strong foundation
354 (10.3% WER), which is improved to 9.0% after
355 the initial Stage 2 fine-tuning. Crucially, the final
356 specialization on high-mask-ratio samples is what
357 enables the model to achieve its optimal performance of 8.3% WER.
358

359
360 5.2.2 IMPACT OF PARALLEL DIFFUSION DECODING (PDD)
361

362 Table 6 assesses the effectiveness of our PDD strategy. A unique characteristic of our approach is
363 that, due to its batch-parallel nature, increasing the number of candidates (k) has a minimal impact
364 on inference speed, with the primary cost being memory consumption. As shown in the table,
365 increasing k from 5 to 15 progressively lowers the WER from 9.1% to 8.3%, while the RTF remains
366 remarkably stable around 0.017-0.021.

367 This profile offers a significant advantage over single-sequence decoding. For instance, PDD with
368 $k=15$ achieves a much lower WER than the fast 4-step single-sequence baseline (8.3% vs. 12.8%)
369 at a comparable RTF. It is also significantly faster than the 15-step single-sequence baseline while
370 being considerably more accurate. Therefore, for our main experiments, we select $k = 15$ to achieve
371 the best accuracy within this highly efficient latency profile. The Oracle WER column further reveals
372 the potential of our generated candidates, suggesting that performance could be improved even more
373 with an advanced selection mechanism.

374 **PDD Selection Accuracy.** Our confidence-based selection mechanism demonstrates strong per-
375 formance. As detailed by our analysis, it correctly identifies the best candidate (i.e., the one with the
376 lowest WER) in 68.7% of cases. This results in an average selection gap of only 2.4% WER between
377 our model's actual WER (8.3%) and the oracle WER (5.9%). Furthermore, the selected candidate
378 is near-optimal in the majority of cases, falling within a 2% WER gap of the best possible outcome
379 69.3% of the time. This high selection accuracy validates the effectiveness of our confidence scoring
380 approach.

379 Table 5: Each component, from acoustic
380 conditioning to the 2-stage curriculum, con-
381 tributes to the final performance.

Model configuration	WER (%) ↓
Whisfusion (Full model)	8.3
<i>Acoustic conditioning</i>	
w/o acoustic conditioning	150.8
<i>Training strategy</i>	
Stage 1 only	10.3
w/o high-ratio fine-tuning	9.0

378

379

Table 6: Comparison of decoding strategies.

380

381

Decoding strategy	WER (%) ↓	RTF ↓	Oracle WER (%)
Single sequence (4 steps)	12.8	0.018	—
Single sequence (15 steps)	10.1	0.059	—
PDD ($k=5$, 4 steps)	9.1	0.019	7.4
PDD ($k=10$, 4 steps)	8.7	0.021	6.5
PDD ($k=15$, 4 steps)	8.3	0.017	5.9

386

387

5.2.3 STEP-WISE ANALYSIS

388

389

Table 7 reveals the iterative refinement process. The model makes aggressive predictions in early steps (96% token changes), then progressively refines its output. Most dramatic improvements occur in Step 2, where WER drops from 42.3% to 24.6% while only 12% of tokens change—indicating that the model quickly converges to near-final predictions. By Step 3, with only 9% of tokens changing, the model achieves most of its final accuracy (18.9% WER). The final step serves as fine-tuning, modifying just 7% of tokens for a modest improvement to 16.9% WER. The monotonic increase in average confidence (0.77→0.95) strongly correlates with WER reduction, validating our confidence-based selection strategy.

390

391

392

393

394

395

396

397

398

399

400

Table 7: Progressive improvement across diffusion steps.

Step	Mask ratio	WER (%) ↓	Avg conf. ↑	Tokens changed ↓
0	100%	—	—	—
1	90%	42.3	0.77	96%
2	85%	24.6	0.90	12%
3	80%	18.9	0.93	9%
4	0%	16.9	0.95	7%

401

402

403

404

405

406

407

408

409

410

5.3 QUALITATIVE ANALYSIS

411

412

413

414

415

416

417

Whisper

Whisfusion

Step 1 Step 2 Step 3 Step 4

423

424

425

426

427

428

429

430

Figure 4: Qualitative comparison of the decoding process. Darker colors indicate tokens finalized in later steps.

432

6 RELATED WORK: AR AND NAR ASR MODELS

433
434 Decoding in ASR centers on two paradigms: alignment-based NAR and sequential AR, reflecting
435 the trade-off between efficiency and accuracy.
436437 Early NAR approaches, especially those using Connectionist Temporal Classification (CTC), gained
438 traction for their efficient frame-level parallel inference Graves et al. (2006). CTC maps acoustic
439 frames to tokens by marginalizing over alignments, removing the need for frame-level supervision.
440 However, its assumption of conditional independence limits modeling of long-range dependencies,
441 often leading to incoherent or grammatically flawed transcriptions in noisy or open-domain settings.
442443 To overcome these issues, refinement-based methods like Mask-CTC were proposed Higuchi et al.
444 (2020). Mask-CTC improves initial predictions by masking low-confidence tokens and refining
445 them with a masked language model. While accuracy improves, it inherits CTC’s fixed-length con-
446 straint, preventing correction of insertion/deletion errors. It also lacks the flexibility for free token
447 generation or reordering.
448449 By contrast, autoregressive models such as Whisper employ a Transformer encoder-decoder that
450 generates tokens sequentially, conditioning each prediction on all prior tokens Radford et al. (2023).
451 This sequential decoding enables rich contextual modeling and has become the standard in high-
452 accuracy, open-domain ASR. Whisper achieves strong results on multilingual and multitask bench-
453 marks, but the sequential nature of AR decoding causes high latency. Even in distilled or optimized
454 variants, the decoder often dominates runtime in long-form transcription.
455456

7 CONCLUSION AND FUTURE WORK

457

7.1 CONCLUSION

458 In this work, we addressed the inherent latency bottleneck of autoregressive ASR models. We
459 introduced Whisfusion, a novel framework that efficiently fuses a pre-trained Whisper encoder with
460 a non-autoregressive text diffusion decoder using a lightweight, parameter-efficient adapter. Our
461 extensive experiments on the LibriSpeech benchmark demonstrate that Whisfusion establishes a
462 new, highly effective operating point on the speed-accuracy spectrum. It achieves a lower WER
463 than Whisper-tiny and showcases a superior scalability profile, becoming significantly faster on
464 long-form audio where traditional AR models falter. Furthermore, we proposed Parallel Diffusion
465 Decoding (PDD), a batch-parallel search strategy that uniquely allows for improving accuracy by
466 increasing the number of parallel candidates with negligible impact on inference speed. Our work
467 validates that diffusion-based decoders are a powerful and viable alternative to conventional AR
468 models, paving the way for high-throughput, low-latency ASR systems.
469

7.2 FUTURE WORK

470 Several promising avenues exist for future research. The most significant direction is large-scale
471 training. We expect that training the Whisfusion architecture on a large, multilingual dataset, similar
472 to the 680K hours used for the original Whisper, would allow the model to retain Whisper’s cele-
473 brated robustness and zero-shot capabilities. Such an approach could yield a model that combines
474 the high accuracy of large AR models with the exceptional speed of our NAR framework.
475476 Furthermore, the architectural blueprint of Whisfusion opens possibilities beyond ASR. Its ability to
477 generate diverse hypotheses in parallel with minimal speed trade-off makes it particularly suitable
478 for novel applications. For instance, it could be extended to simultaneous multi-language translation
479 and transcription, where target languages are treated as candidates within the same batch—a task
480 infeasible for AR models. This also makes it suitable for domains where exploring a solution space
481 is critical, such as robotics (e.g., generating multiple action plans) or multi-task learning.
482483 Other future work includes exploring architectural enhancements. For mobile and on-device sce-
484 narios, further model compression through techniques like layer dropping or progressive distillation
485 could be investigated. Finally, refining the PDD strategy, perhaps by training a lightweight rescoring
486 model to select candidates, could help close the gap to the Oracle WER and further boost perfor-
487 mance.
488

486 REFERENCES
487

488 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
489 Structured denoising diffusion models in discrete state-spaces. In Marc'Aurelio Ranzato,
490 Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
491 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neu-*
492 *ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
493 pp. 17981–17993, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html>.

494

495 Pranjali Awasthi, David Recio-Mitter, and Yosuke Kyle Sugi. Maximizing use-case specificity
496 through precision model tuning. *CoRR*, abs/2212.14206, 2022. doi: 10.48550/ARXIV.2212.
497 14206. URL <https://doi.org/10.48550/arXiv.2212.14206>.

498 Eric Battenberg, R. J. Skerry-Ryan, Daisy Stanton, Soroosh Mariooryad, Matt Shannon, Ju-
499 lian Salazar, and David Kao. Robust and unbounded length generalization in autoregressive
500 transformer-based text-to-speech. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Pro-*
501 *ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for*
502 *Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long*
503 *Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 11789–11806. Associa-
504 *tion for Computational Linguistics, 2025*. doi: 10.18653/V1/2025.NAACL-LONG.591. URL
505 <https://doi.org/10.18653/v1/2025.naacl-long.591>.

506 Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence
507 model for speech recognition. In *2018 IEEE International Conference on Acoustics, Speech and*
508 *Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018*, pp. 5884–5888. IEEE,
509 2018. doi: 10.1109/ICASSP.2018.8462506. URL [https://doi.org/10.1109/ICASSP.](https://doi.org/10.1109/ICASSP.2018.8462506)
510 2018.8462506.

511 Steven Vander Eeckt and Hugo Van hamme. Using adapters to overcome catastrophic forgetting in
512 end-to-end automatic speech recognition. *CoRR*, abs/2203.16082, 2023. doi: 10.48550/arXiv.
513 2203.16082. URL <https://arxiv.org/abs/2203.16082>. Accepted at ICASSP 2023.

514

515 Sanchit Gandhi, Patrick von Platen, and Alexander M. Rush. Distil-whisper: Robust knowledge
516 distillation via large-scale pseudo labelling. *CoRR*, abs/2311.00430, 2023. doi: 10.48550/arXiv.
517 2311.00430. URL <https://arxiv.org/abs/2311.00430>.

518 Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber. Connectionist
519 temporal classification: labelling unsegmented sequence data with recurrent neural networks. In
520 William W. Cohen and Andrew W. Moore (eds.), *Machine Learning, Proceedings of the Twenty-*
521 *Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006*,
522 volume 148 of *ACM International Conference Proceeding Series*, pp. 369–376. ACM, 2006. doi:
523 10.1145/1143844.1143891. URL <https://doi.org/10.1145/1143844.1143891>.

524

525 Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori Kobayashi. Mask
526 CTC: non-autoregressive end-to-end ASR with CTC and mask predict. In Helen Meng, Bo Xu,
527 and Thomas Fang Zheng (eds.), *21st Annual Conference of the International Speech Com-*
528 *munication Association, Interspeech 2020, Virtual Event, Shanghai, China, October 25-29,*
529 *2020*, pp. 3655–3659. ISCA, 2020. doi: 10.21437/INTERSPEECH.2020-2404. URL <https://doi.org/10.21437/Interspeech.2020-2404>.

530

531 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
532 Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
533 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-*
534 *ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,*
535 *2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

536

537 Philip Kenneweg, Alexander Schulz, Sarah Schröder, and Barbara Hammer. Intelligent learning rate
538 distribution to reduce catastrophic forgetting in transformers. In Hujun Yin, David Camacho, and
539 Peter Tiño (eds.), *Intelligent Data Engineering and Automated Learning - IDEAL 2022 - 23rd*
International Conference, IDEAL 2022, Manchester, UK, November 24-26, 2022, Proceedings,

540 volume 13756 of *Lecture Notes in Computer Science*, pp. 252–261. Springer, 2022. doi: 10.1007/978-3-031-21753-1_25. URL https://doi.org/10.1007/978-3-031-21753-1_25.

541

542

543 Chen Liu, Jonas Pfeiffer, Ivan Vulić, and Iryna Gurevych. FUN with fisher: Improving generalization of adapter-based cross-lingual transfer with scheduled unfreezing. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1998–2015, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.111. URL <https://aclanthology.org/2024.naacl-long.111/>.

544

545

546

547

548

549

550

551 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the data distribution. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=CN1cRIVIPA>.

552

553

554

555

556 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan Li. Scaling up masked diffusion models on text. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=WNvvwK0tut>.

557

558

559

560 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=sMyXP8Tamm>.

561

562

563

564

565 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR corpus based on public domain audio books. In *2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2015, South Brisbane, Queensland, Australia, April 19-24, 2015*, pp. 5206–5210. IEEE, 2015. doi: 10.1109/ICASSP.2015.7178964. URL <https://doi.org/10.1109/ICASSP.2015.7178964>.

566

567

568

569

570

571 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 28492–28518. PMLR, 2023. URL <https://proceedings.mlr.press/v202/radford23a.html>.

572

573

574

575

576

577 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and generalized masked diffusion for discrete data. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html.

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>.

594

595 Di Wu, Binbin Zhang, Chao Yang, Zhendong Peng, Wenjing Xia, Xiaoyu Chen, and Xin Lei. U2++: unified two-pass bidirectional end-to-end model for speech recognition. *CorR*, abs/2106.05642, 2021. URL <https://arxiv.org/abs/2106.05642>.

594 Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang, Fan Yu, Chao Yang, Zhendong Peng, Xi-
595 aoyu Chen, Lei Xie, and Xin Lei. Wenet: Production oriented streaming and non-streaming
596 end-to-end speech recognition toolkit. In Hynek Hermansky, Honza Cernocký, Lukás Burget,
597 Lori Lamel, Odette Scharenborg, and Petr Motlícek (eds.), *22nd Annual Conference of the In-*
598 *ternational Speech Communication Association, Interspeech 2021, Brno, Czechia, August 30 -*
599 *September 3, 2021*, pp. 4054–4058. ISCA, 2021. doi: 10.21437/INTERSPEECH.2021-1983.
600 URL <https://doi.org/10.21437/Interspeech.2021-1983>.

601 Haoran Zhou, Xingchen Song, Brendan Fahy, Qiaochu Song, Binbin Zhang, Zhendong Peng, An-
602 shul Wadhawan, Denglin Jiang, Apurv Verma, Vinay Ramesh, Srivas Prasad, and Michele M.
603 Franceschini. Adapting whisper for streaming speech recognition via two-pass decoding. *CoRR*,
604 abs/2506.12154, 2025. doi: 10.48550/ARXIV.2506.12154. URL <https://doi.org/10.48550/arXiv.2506.12154>.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A APPENDIX
649650 B ALGORITHMS AND THEORETICAL BASIS
651652 This section provides the technical details of Whisfusion’s core components. We present the pseudo-
653 code for our two main contributions: the 2-Stage Curriculum Training strategy and the Parallel
654 Diffusion Decoding (PDD) strategy. We also briefly discuss the theoretical foundations of the
655 Masked Diffusion Model that our decoder is based upon. The complete source code for all algo-
656 rithms and experiments is provided in the Supplementary code for full reproducibility.
657658 B.1 TRAINING ALGORITHM
659660 Algorithm 1 details the procedure for our 2-stage curriculum training, as described in the main paper.
661 As shown, the key difference between the stages lies in the scope of trainable parameters and the
662 distribution of the masking ratio t . For all training batches, the input text is tokenized and padded to
663 a fixed maximum length of 256, a value chosen based on the token distribution of the training data
664 (Table 2).
665666 **Algorithm 1** 2-Stage Curriculum Training for Whisfusion667 **Require:** Whisper Encoder \mathcal{E}_ϕ , MDM Decoder \mathcal{D}_θ , Adapter \mathcal{A}_ψ , Dataset \mathcal{D} 668 **Ensure:** Trained Whisfusion model $\{\phi, \theta, \psi\}$ 669 1: — **Stage 1: Robust Adapter Training** —670 2: Freeze encoder parameters ϕ and decoder parameters θ 671 3: **for** each epoch = 1 to N_1 **do**672 4: **for** each batch $(x_{\text{audio}}, y_{\text{text}}) \in \mathcal{D}$ **do**673 5: $C \leftarrow \mathcal{E}_\phi(x_{\text{audio}})$ {Extract acoustic features}674 6: $t \sim \mathcal{U}(0, 1)$ {Sample uniform masking ratio}675 7: $y_{\text{masked}} \leftarrow \text{MASK}(y_{\text{text}}, t)$ {Apply masking to text}676 8: $\hat{y} \leftarrow \mathcal{D}_\theta(y_{\text{masked}}, C, \mathcal{A}_\psi)$ {Decode with adapter}

677 9: Compute loss using Eq. 3

678 10: Update $\psi \leftarrow \psi - \alpha \nabla_\psi \mathcal{L}$ 679 11: **end for**680 12: **end for**681 13: — **Stage 2: Full Decoder Harmonization** —682 14: Freeze only encoder parameters ϕ 683 15: Initialize layer-wise learning rates: $\alpha_l = \alpha_{\text{base}} \cdot \gamma^{(L-l)}$ 684 16: **for** each epoch = 1 to N_2 **do**685 17: **for** each batch $(x_{\text{audio}}, y_{\text{text}}) \in \mathcal{D}$ **do**686 18: $C \leftarrow \mathcal{E}_\phi(x_{\text{audio}})$ 687 19: $t \sim \mathcal{U}(0.7, 1.0)$ {High masking ratio only}688 20: $y_{\text{masked}} \leftarrow \text{MASK}(y_{\text{text}}, t)$ 689 21: $\hat{y} \leftarrow \mathcal{D}_\theta(y_{\text{masked}}, C, \mathcal{A}_\psi)$

690 22: Compute loss using Eq. 3

691 23: Update $\{\theta, \psi\}$ with layer-wise learning rates $\{\alpha_l\}$ 692 24: **end for**693 25: **end for**694 26: **return** Trained model parameters $\{\phi, \theta, \psi\}$

695 Our training objective is adapted from the standard Masked Diffusion Model (MDM) loss function.

696
$$\mathcal{L}_{MDM} = -\mathbb{E}_{t, x_0, x_t} \left[\frac{1}{t} \sum_{i=1}^L \mathbf{1}[x_t^i = \mathbf{M}] \log p_\theta(x_0^i | x_t) \right] \quad (2)$$

697
698

699 As proven by Ou et al. (2025), this loss function serves as an upper bound on the negative log-
700 likelihood of the model distribution ($-\mathbb{E}_{y_0 \sim p_{\text{data}}(y_0)} [\log p_\theta(y_0)] \leq \mathcal{L}$), ensuring that minimizing our
701 objective corresponds to a principled maximum likelihood estimation framework.

For Whisfusion, we adapt this objective to be conditioned on the acoustic features $C = \mathcal{E}_\phi(x_{audio})$ provided by the Whisper encoder. The model must predict the original text tokens y_0 given both the masked text y_t and the acoustic condition C . The trainable parameters are the decoder weights θ and the adapter weights ψ . Our final loss function is therefore:

$$\mathcal{L}(\theta, \psi) \triangleq -\mathbb{E}_{x_{audio}, y_0, t, y_t} \left[\frac{1}{t} \sum_{i=1}^L \mathbf{1}[y_t^i = \mathbf{M}] \log p_{\theta, \psi}(y_0^i | y_t, C) \right] \quad (3)$$

The key insight of our approach is that by conditioning the diffusion process on rich acoustic features from a pre-trained encoder, we can leverage the parallel generation capabilities of diffusion models while maintaining the acoustic fidelity necessary for accurate speech recognition. This formulation allows the model to iteratively refine its predictions based on both the partially observed text sequence and the complete acoustic context, effectively combining the strengths of both autoregressive ASR models (acoustic modeling) and non-autoregressive text generation (parallel decoding).

B.2 PARALLEL DIFFUSION DECODING (PDD) ALGORITHM

Algorithm 2 formalizes this three-stage process of hypothesis generation, parallel refinement, and final selection. The key architectural advantage of this approach over traditional AR Beam Search is summarized in Table 8. While AR models require a number of sequential steps proportional to the output length (T), PDD completes in a small, fixed number of steps (N), making it fundamentally more scalable for long-form audio.

Algorithm 2 Parallel Diffusion Decoding (PDD)

Require: Acoustic condition C , Model (Whisfusion) M
Require: Number of candidates k , Number of steps N
Ensure: Best transcription y^*

1: **— 1. Batch Generation —**
2: $Y_0 \leftarrow$ Initialize a batch of k masked sequences
3: $\text{Logits} \leftarrow M(Y_0, C)$ {Single forward pass for all k}
4: $Y_1 \leftarrow \text{Sample}(k, \text{Logits})$ {Sample k initial hypotheses}
5: **— 2. Parallel Refinement —**
6: **for** $t = 1$ to $N - 1$ **do**
7: $Y_{\text{masked}} \leftarrow \text{ApplyMaskingStrategy}(Y_t)$
8: $\text{Logits} \leftarrow M(Y_{\text{masked}}, C)$
9: $Y_{t+1} \leftarrow \text{UpdateUnmaskedTokens}(\text{Logits}, Y_{\text{masked}})$
10: **end for**
11: **— 3. Candidate Selection —**
12: $Y_{\text{final}} \leftarrow Y_N$
13: $\text{Scores} \leftarrow \text{CalculateConfidence}(Y_{\text{final}})$
14: $y^* \leftarrow Y_{\text{final}}[\text{argmax}(\text{Scores})]$
15: **return** y^*

Table 8: Comparison of Autoregressive Beam Search and our Parallel Diffusion Decoding (PDD). The key advantage of PDD is its fixed, small number of sequential steps, independent of the output length.

Aspect	AR Beam Search	PDD (Ours)
Sequential Steps	T (Output Length)	N (Fixed, e.g., 4)
Work per Step	Batch of k beams	Batch of k full sequences
GPU Parallelism	High <i>within</i> each step	High <i>within</i> each step
Primary Bottleneck	Sequential dependency across T steps	Memory for k candidates
Typical Model Calls	$T \approx 100 - 200$	$N = 4$

756 **C HYPERPARAMETER SETTINGS**
757758 This section provides a comprehensive list of the key hyperparameters used for our 2-stage training
759 curriculum to ensure full reproducibility. All training was conducted on 4 x NVIDIA A100 40GB
760 GPUs. Table 9 details the specific settings for the final Whisfusion model.
761762 **Rationale for Stage 1.** The primary goal of Stage 1 is to robustly train the newly initialized
763 adapter. We use a relatively high learning rate (1e-4) and a large effective batch size (512) to ensure
764 stable and efficient learning on the diverse 960-hour dataset. Training with a uniform masking ratio
765 (0-100%) exposes the adapter to all levels of text corruption, forcing it to learn a generalizable
766 mapping from acoustic features to textual context.
767768 **Rationale for Stage 2.** The goal of Stage 2 is to fine-tune the entire pre-trained MDM decoder
769 while preserving its powerful learned representations. This requires a more delicate approach. We
770 use a much lower base learning rate (1e-5) to prevent catastrophic forgetting. Critically, we apply
771 layer-wise learning rate decay (LLRD). We empirically observed that fine-tuning the entire decoder
772 with a single learning rate led to training instability and performance collapse. LLRD was therefore
773 a necessary choice to gently update the foundational lower layers while allowing the upper layers to
774 adapt more quickly to the ASR task. Finally, training exclusively on high masking ratios (70-100%)
775 specializes the model for the most challenging part of inference: generating the initial transcript
776 from a fully masked state.777 For the ablation study model labeled “w/o high-ratio fine-tuning”, the training settings are identical
778 to Stage 2, with the sole exception that the masking ratio was kept at a uniform (0-100%) distribution.
779780
781 Table 9: Key training hyperparameters for the final Whisfusion model.

782 Hyperparameter	783 Stage 1 (Adapter Training)	783 Stage 2 (Specialization)
784 Trainable Components	784 Adapter Only	784 Adapter + Decoder
<i>Optimizer & Scheduler</i>		
786 Optimizer	786 AdamW	786 AdamW
787 Learning Rate (Base)	787 1e-4	787 1e-5
788 LR Scheduler	788 Cosine (Epoch)	788 Cosine (Step)
789 Warmup Ratio	789 0.02	789 0.1
790 Layer-wise LR Decay Rate	790 N/A	790 0.9
791 Weight Decay	791 0.01	791 0.005
<i>Training Configuration</i>		
792 Effective Batch Size	792 512	792 256
793 Max Epochs	793 80	793 30
794 Early Stopping Patience	794 8	794 5
795 Masking Ratio	795 Uniform (0-100%)	795 Uniform (70-100%)

797
798 **D TRAINING DYNAMICS**
800801 Figure 5 and Figure 6 summarize learning behavior across the two stages. In **Stage 1** (adapter
802 training), the loss drops rapidly then stabilizes; validation closely tracks training with no overfitting,
803 and error rates plateau after early epochs. The train-validation gap narrows as the adapter aligns
804 acoustic and textual representations under wide masking, indicating robust generalization.805 In **Stage 2** (decoder fine-tuning), losses start low and decrease smoothly. WER shows small oscil-
806 lations before settling, while CER stays consistently low, suggesting preserved pre-trained knowl-
807 edge. Layer-wise learning-rate decay (LLRD) damps deep-layer fluctuations while letting upper
808 layers adapt. Best validation-loss and best-WER epochs do not exactly coincide; early stopping
809 selects stable minima over transient dips. Overall, both stages show steady improvement and stable
convergence, supporting the effectiveness of the two-stage strategy.

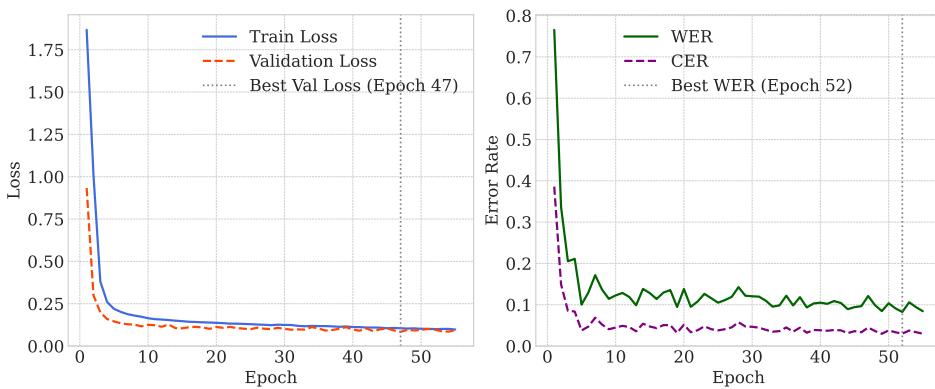


Figure 5: Stage 1 training dynamics (adapter).

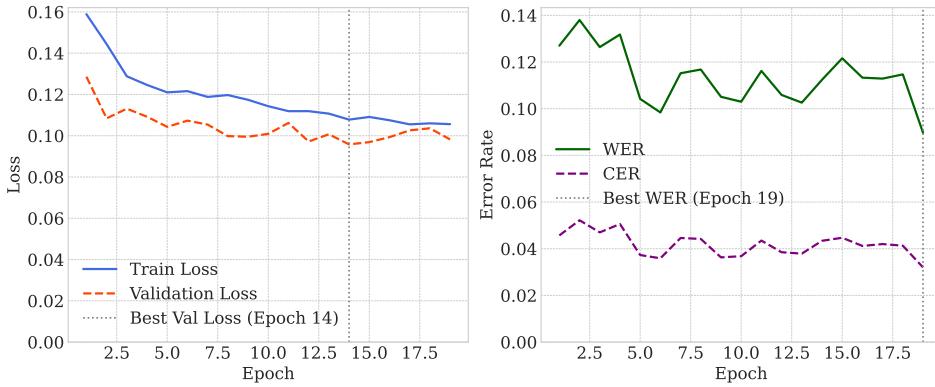


Figure 6: Stage 2 training dynamics (decoder).

E IN-DEPTH MODEL ANALYSIS

In this section, we present additional analyses to provide deeper insights into key characteristics of our Whisfusion model: its ability to predict sequence length, the reliability of its confidence scores, and its performance on long utterances.

E.1 LENGTH ESTIMATION ACCURACY

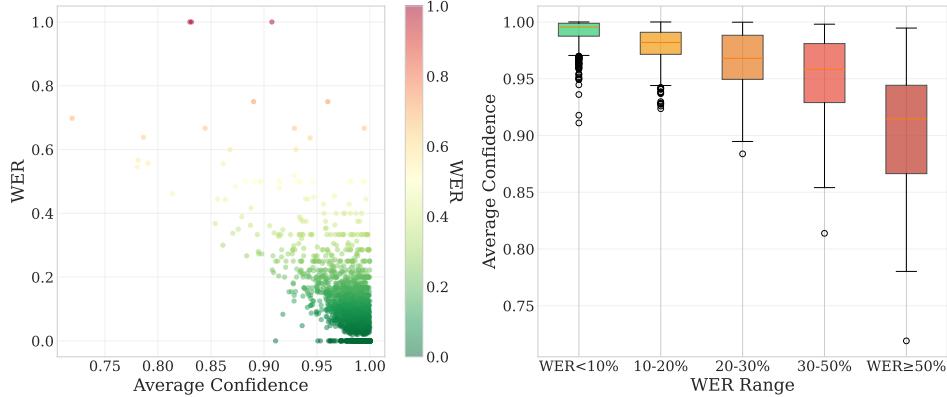
A key challenge for non-autoregressive models is predicting the correct output length without sequential cues. Figure 7 analyzes Whisfusion’s length estimation performance. The scatter plot on the left shows a strong linear correlation between the ground truth and predicted lengths, indicating that our model generally learns to estimate the target sequence length effectively from the acoustic features. However, the plot also reveals increased variance and larger errors for longer sequences. This is consistent with the observation made in the main paper: the model’s performance degrades on long-form audio due to the severe scarcity of such examples in the training data (less than 0.1% of the training set is longer than 20 seconds). The plot on the right further confirms that these larger length estimation errors directly correlate with higher WER, highlighting the importance of accurate length prediction for overall performance.

E.2 CONFIDENCE-ACCURACY CORRELATION

Our Parallel Diffusion Decoding (PDD) strategy relies on confidence scores to select the best candidate. Figure 8 validates this approach by analyzing the relationship between the model’s average output confidence and the actual WER for each sample. The scatter plot (left) and the box plot (right)

864 both demonstrate a clear negative correlation: higher confidence scores consistently correspond to
 865 lower error rates. This strong correlation indicates that our model’s confidence is well-calibrated
 866 and serves as a reliable proxy for transcription accuracy, justifying its use as the selection criterion
 867 in PDD.

883 Figure 7: Analysis of Whisfusion’s length estimation accuracy. (Left) Predicted length vs. ground
 884 truth length. (Right) Absolute length difference vs. WER.



901 Figure 8: Correlation between average token confidence and WER. (Left) Scatter plot showing a
 902 negative correlation. (Right) Box plot showing the distribution of confidence scores for different
 903 WER ranges.

F ABLATION STUDY ON PDD PARAMETERS

909 This section details the experiments conducted to determine the optimal values for the number of
 910 candidates (k), refinement steps (N), and the masking schedule in our PDD strategy.

F.1 IMPACT OF NUMBER OF CANDIDATES (k)

914 First, we examine how the number of parallel candidates affects accuracy while keeping other pa-
 915 rameters fixed ($N = 4$, standard masking schedule [1.0, 0.9, 0.85, 0.8]). As shown in Table 10,
 916 increasing k from 5 to 15 yields a consistent improvement in both the final selected WER and the
 917 potential Oracle WER. This demonstrates the effectiveness of exploring a wider hypothesis space,
 as a larger pool of candidates increases the probability of finding a more accurate transcription.

918
919
920
921
922
923
924
925
926
927Table 10: Effect of number of candidates (k) on WER

Candidates (k)	WER (%)	Oracle WER (%)
5	9.09	7.44
10	8.65	6.45
15	8.34	5.88

F.2 IMPACT OF NUMBER OF STEPS (N)

Next, we investigate the effect of varying the number of refinement steps (N) while keeping $k = 5$. Table 11 shows that performance improves steadily as N increases. However, we observe diminishing returns beyond 4-6 steps; for example, doubling the steps from 4 to 8 only yields a 0.9% absolute WER reduction. This suggests that a small number of refinement steps is sufficient for the model to converge to a high-quality solution.

F.3 IMPACT OF MASKING SCHEDULE

Finally, we explore different masking schedules with fixed $k = 5$ and $N = 4$. The masking schedule dictates the pace of the denoising process. As shown in Table 12, a standard, gradual decay schedule performs best. While a conservative schedule yields comparable results, aggressive schedules that unmask tokens too quickly (e.g., $[1.0, 0.7, 0.5, 0.3]$) significantly degrade performance, highlighting the importance of a gradual, iterative refinement process.

Table 12: Effect of different masking strategies on WER.

Masking Strategy	WER (%)	Oracle WER (%)
<i>Standard:</i>		
$[1.0, 0.9, 0.85, 0.8]$	9.09	7.44
<i>Conservative (slow decay):</i>		
$[1.0, 0.98, 0.95, 0.9]$	9.48	7.54
$[1.0, 0.95, 0.9, 0.85]$	9.07	7.34
<i>Aggressive (fast decay):</i>		
$[1.0, 0.85, 0.7, 0.6]$	9.51	7.72
$[1.0, 0.7, 0.5, 0.3]$	12.90	10.35

F.4 SUMMARY AND CONFIGURATION CHOICE

Based on these ablation studies, we identified several key trade-offs. Increasing the number of candidates (k) is a highly effective way to improve accuracy with minimal impact on latency. The number of steps (N) shows diminishing returns after a certain point, and the masking schedule is sensitive, with gradual decay being optimal. Table 13 summarizes several high-performance configurations targeting different points on the speed-accuracy curve. For our main experiments reported in the paper, we selected the Accurate configuration ($k = 15, N = 4$) as it provides the best possible WER within a highly efficient latency profile.

972

973

Table 13: Selected high-performance configurations for PDD.

974

975

976

977

978

979

980

G QUALITATIVE EXAMPLES OF ITERATIVE REFINEMENT

981

We visualize the step-by-step evolution of individual tokens during inference. The following figures illustrate two key aspects of this process for several examples from the LibriSpeech test-clean set:

982

983

984

- **Token Finalization Process:** A grid showing at which step each token’s prediction stabilizes and matches its final value for the remainder of the process.
- **Token Confidence Evolution:** A heatmap visualizing the model’s confidence for each token at every refinement step.

985

986

987

988

989

990

These visualizations offer insights into how Whisfusion builds a transcript, rapidly committing to high-confidence tokens while iteratively refining more ambiguous parts of the sequence.

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

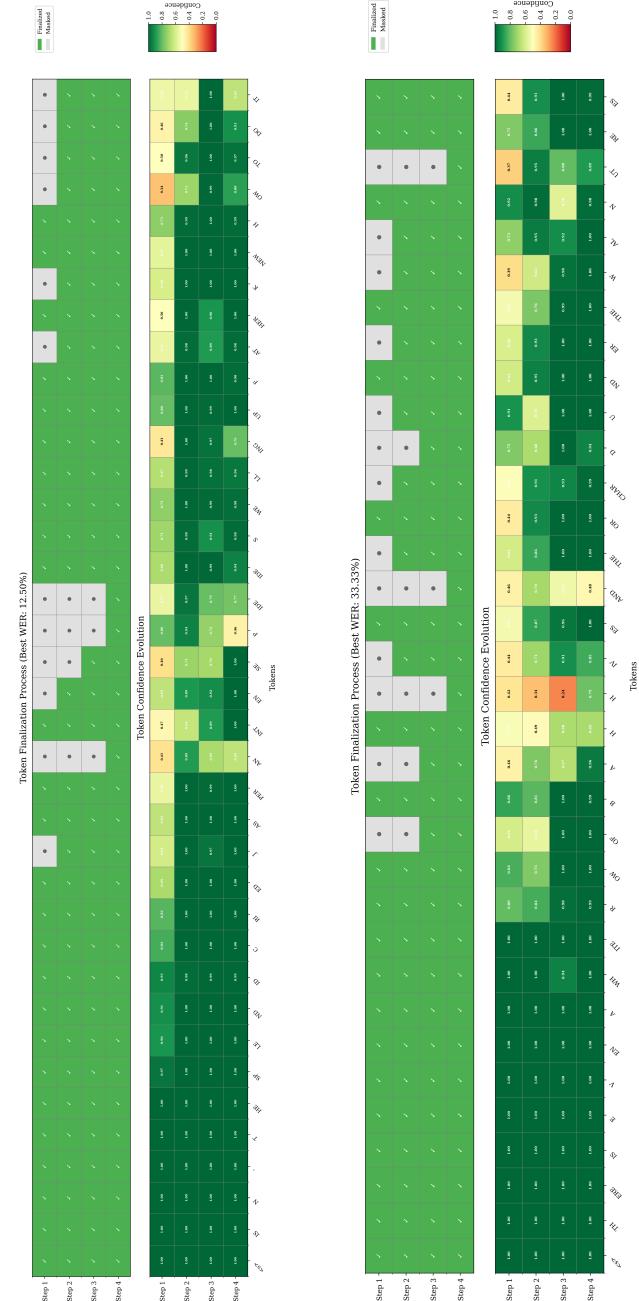
1022

1023

1024

1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073



1074 Figure 9: An additional example of the iterative refinement process. (rotated for readability)
 1075
 1076
 1077
 1078
 1079