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ABSTRACT

Fast automatic speech recognition (ASR) is crucial for applications such as cap-
tioning and transcription. Although modern ASR encoders can process up to 30
seconds of audio in a single pass, Whisper-style autoregressive (AR) decoders
still generate tokens sequentially, making decoding latency grow linearly with ut-
terance length. We propose Whisfusion, a non-autoregressive (NAR) ASR frame-
work that fuses a frozen pre-trained Whisper encoder with a masked-diffusion
text decoder. At each diffusion step, the decoder conditions on the full acous-
tic context and updates all tokens in parallel, mitigating the AR latency bottle-
neck while preserving Whisper-compatible generative structure. A lightweight
cross-attention adapter trained via parameter-efficient fine-tuning bridges audio
and text, and we introduce Parallel Diffusion Decoding (PDD), an ASR-tailored
batch-parallel sampling scheme that improves the accuracy–latency trade-off in
low-to-mid batch regimes. With 6.5k hours of training data, Whisfusion reaches
4.9% WER on LibriSpeech test-clean, comparable to similarly sized Whisper
model (Whisper-small at 5.0%), while enabling much faster decoding. In par-
ticular, on 20–30s segments within Whisper’s 30s window, Whisfusion reduces
decoding time from 674.7 ms to 80.7 ms (8.4× faster) at similar accuracy, demon-
strating an efficient NAR operating point for Whisper-compatible ASR.

1 INTRODUCTION

1.1 THE CHALLENGE OF AUTOREGRESSIVE ASR MODELS
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Figure 1: Whisper’s processing time scales lin-
early with text length due to its autoregressive
decoder, while encoder time remains constant.

Transformer-based autoregressive models (AR)
Vaswani et al. (2017) have achieved state-of-
the-art (SOTA) performance in automatic speech
recognition (ASR) Dong et al. (2018), with mod-
els such as Whisper demonstrating remarkable
accuracy across benchmarks. Whisper-small, for
example, reports Word Error Rates (WER) of
5.0% and 12.2% on LibriSpeech test-clean/other,
setting a strong baseline for open-domain ASR.
Extensions like the Two-Pass U2 framework Wu
et al. (2021) adapt Whisper for streaming, reduc-
ing latency through architectural modifications
Yao et al. (2021); Zhou et al. (2025). Yet, sequen-
tial token generation inevitably introduces infer-
ence latency, limiting effectiveness in real-time
ASR Zhou et al. (2025). Managing long-range
dependencies also adds engineering burden Battenberg et al. (2025), especially in transcription ser-
vices and on-device ASR. In these environments, sequential decoding causes delays, degrades user
experience, and strains computational budgets without a high-performance GPU. The decoder re-
mains the primary bottleneck, a trend illustrated for Whisper-small in Figure 1. Even distilled mod-
els designed to mitigate this, such as Whisper-Large-v3-turbo Gandhi et al. (2023), still show a rising
decoder time ratio with input length. These challenges highlight the need for alternative decoding
paradigms that maintain linguistic coherence while enabling faster, parallelizable inference.
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1.2 A NEW PARADIGM: NON-AUTOREGRESSIVE DIFFUSION TRANSFORMER MODELS

Recent work on masked diffusion models (MDMs) Austin et al. (2021); Lou et al. (2024); Shi et al.
(2024) has emerged as a promising non-autoregressive alternative for language generation. In con-
trast to token-by-token generation in AR models, MDMs perform iterative denoising over masked
sequences, enabling parallel prediction of multiple tokens at each step. This allows for significantly
faster inference while preserving high generation quality. A recent study on the scalability of MDMs
Nie et al. (2025) has shown that such models can scale effectively, following power-law scaling laws
comparable to AR models under equivalent computing budgets. Since MDM decoding latency is
largely independent on output length, it has the potential to overcome the length-scaled latency of
current ASR methods that rely on autoregressive transcription.

1.3 OUR CONTRIBUTION: WHISFUSION

SOTA ASR models suffer from a core architectural mismatch: while their AR decoders are pro-
vided with the full acoustic context from a 30-second audio segment, they are structurally limited
to processing it sequentially, token-by-token. This inefficient exploitation of the available context
creates a significant latency bottleneck. To resolve this trade-off, we propose Whisfusion, a novel
non-autoregressive (NAR) framework that fuses a pre-trained Whisper encoder with a text Diffusion
decoder. Our main contributions are threefold:

1. A Novel NAR Framework. We are the first to propose an architecture that fuses a pre-trained
Whisper encoder with a text diffusion decoder for ASR. This novel hybrid NAR framework, en-
abled by a lightweight PEFT-trained adapter, resolves the context-utilization paradox by allowing
the decoder to leverage the full acoustic context in a parallel, non-sequential manner.

2. A Unique Parallel Decoding Strategy. We introduce a novel batch-parallel, multi-step decoding
strategy that combines random token sampling with a confidence-based refinement mechanism.
A key advantage of this approach is the ability to improve accuracy by increasing the number of
parallel candidates with negligible impact on inference speed.

3. Superior Speed-Accuracy Trade-off. We empirically demonstrate that Whisfusion establishes
a new, highly efficient operating point on the speed-accuracy spectrum. Fine-tuned on only 960
hours of LibriSpeech, it is more accurate than Whisper-tiny (8.3% vs. 9.7% WER) while being
up to 2.6 times faster on long-form audio. This is driven by its parallel decoder, which achieves
a throughput of over 3100 tokens/s—more than 13 times faster than its AR counterpart.

2 BACKGROUND: TEXT GENERATION WITH DIFFUSION MODELS

Diffusion models have gained attention for their ability to model complex data distributions through
iterative denoising processes. Initially developed for image generation tasks (Ho et al., 2020), these
models have been extended to discrete data domains including natural language (Austin et al., 2021).
In discrete diffusion models, the forward process typically replaces tokens with a special mask token
following a predefined corruption schedule, with more noise gradually added to the data. The reverse
process learns to recover the original sequence through a series of denoising steps (Ho et al., 2020).

Compared to autoregressive generation, diffusion-based models offer several advantages, including
parallel decoding, bidirectional context modeling, and flexible control over generation dynamics.
Nie et al. (2025b) recently introduced LLaDA, an MDM that leverages these advantages to surpass
AR baselines in generation speed and to excel at in-context learning, instruction following, and bidi-
rectional reasoning. LLaDA operates by sampling a continuous masking ratio t ∈ (0, 1), masking
each token independently with probability t, and training a mask predictor pθ(· | xt) to infer the
original tokens. Its training objective is the expected cross-entropy on masked positions:

L(θ) ≜ −Et,x0,xt

[1
t

L∑
i=1

1
[
x it = M

]
log pθ

(
x i0 | xt

)]
, (1)

where the scaling factor 1/t equalizes the contribution of examples with different masking levels.
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Figure 2: (a) Whisfusion architecture (2-stage training). (b) Decoding process of Whisfusion.

3 PROPOSED METHOD: WHISFUSION

Table 1: Detailed architecture breakdown of
Whisfusion compared to Whisper-Small.

Whisper-Small Whisfusion
Encoder 88.2M (shared, frozen)

Decoder
Type Autoregressive Diffusion
Layers 12 18
Hidden Size 768 768
Parameters 153.6M 212.5M
(self-attn + cross-attn) (125.2M + 28.4M) (170M + 42.5M)

Total Parameters 241.7M 300.7M
Adapter Parameters – 42.5M (9.3%)

In this section, we introduce Whisfusion, a novel
framework for ASR built upon a Diffusion Trans-
former. By leveraging the parallel and iterative na-
ture of diffusion models, Whisfusion operates as
a NAR system designed for high-speed inference
(Figure 2 b). We first present the overall model
architecture, which efficiently fuses a pre-trained
speech encoder with a text diffusion decoder. We
then describe our multi-stage curriculum training
strategy designed to achieve both robustness and
precision. Finally, we detail our advanced decod-
ing strategy, Parallel Diffusion Decoding (PDD),
which overcomes the limitations of conventional NAR decoding by leveraging the unique parallel
nature of our model. The detailed architecture of Whisfusion is shown in Table 1.

3.1 MODEL ARCHITECTURE

The core of Whisfusion is the fusion of two pre-trained models from distinct modalities: a speech
encoder and a text diffusion decoder. To bridge the gap between Whisper’s acoustic representa-
tions (audio-to-tensor) and MDM’s text-based domain (text-to-text), we insert a lightweight Cross-
Attention fusion layer within each block of the MDM’s Transformer architecture. Trained via PEFT,
this design leverages large pre-trained models while minimizing training costs.

Speech Encoder: We utilize the official pre-trained Whisper-small encoder. Trained on 680K hours
of diverse audio, it converts raw waveforms into rich high-level acoustic representations (hidden
states), providing a robust and generalizable foundation. In the initial training stage, this component
remains frozen to preserve its generalized knowledge.

Diffusion Decoder: We employ a pre-trained SMDM-170M, a text diffusion transformer, as our
decoder. Its inherent non-autoregressive nature allows it to process the entire text sequence in par-
allel, making it an ideal candidate for high-speed inference. It learns to restore a fully masked text
sequence by iteratively denoising it over multiple steps.

Cross-Attention Fusion Layer: To enable the text-based MDM decoder to understand the acoustic
conditions from the Whisper encoder, we insert a lightweight Cross-Attention layer within each
block of the MDM’s Transformer architecture. This layer acts as an efficient bridge, enabling each
text token to attend to all speech tokens across every decoding step, thereby integrating acoustic
context throughout the generation process. This is the only component trained during the initial
fine-tuning stage.

3
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3.2 TRAINING STRATEGY: A 2-STAGE CURRICULUM

To effectively train our composite model without catastrophic forgetting, we devise a multi-stage
curriculum designed to first establish a robust foundation and then refine the model’s performance
for the specific challenges of our NAR task (Figure 2 a). We first train only a lightweight adapter
with the pre-trained components, then proceed to unfreeze all parameters of the decoder to specialize
in our ASR task. Such an adapter-first approach has been shown to mitigate catastrophic forgetting
and improve generalization in adapter-based NLP and ASR fine-tuning. Eeckt & hamme (2023);
Liu et al. (2024)

Stage 1: Robust Adapter Training. Our primary objective in this stage is to teach the Cross-
Attention layers to effectively interpret Whisper’s acoustic representations and guide the MDM de-
coder, while preserving the powerful prior knowledge of both base models. To achieve this, we
freeze all parameters of both the Whisper encoder and the MDM decoder. Only the newly inserted
Cross-Attention layers are trainable. We use the full LibriSpeech 960h dataset (comprising both
clean and noisy subsets, train-clean-100 / 360 and train-other-500) to expose the adapter to a wide
variety of acoustic conditions, thereby maximizing its robustness and generalization capabilities.

Stage 2: Full Decoder Harmonization & Specialization. This stage aims to simultaneously har-
monize the pre-trained MDM decoder with the speech-conditioned adapter and specialize the model
for the most challenging inference scenario: generating text from a fully masked state. Building
upon the Stage 1 model, we unfreeze all parameters of the MDM decoder and fine-tune it jointly
with the Cross-Attention adapter. To preserve the hierarchical knowledge within the pre-trained
decoder Kenneweg et al. (2022); Awasthi et al. (2022), we apply a layer-wise learning rate decay,
where shallower layers are trained with a higher learning rate while deeper, more foundational lay-
ers are updated with a smaller learning rate. Critically, this entire stage is conducted exclusively
on data samples with a high masking ratio (e.g., 70-100%). This dual-purpose approach forces the
decoder’s self-attention and feed-forward networks to adapt to the acoustic context while simultane-
ously becoming experts at generating initial tokens from minimal textual information, thus directly
addressing the initial generation stability problem.

3.3 ADVANCED DECODING STRATEGY: PARALLEL DIFFUSION DECODING (PDD)

Batch Generation

Whisfusion

Random Remask
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x N 
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Candidate Selection 

Figure 3: Parallel Diffusion Decoding (PDD)
inference. At each of N steps, k candidates
are refined in parallel from audio embeddings,
iteratively remasked, then selected.

Standard iterative decoding for NAR models suf-
fers from error propagation, especially when a
token is predicted incorrectly with high confi-
dence. Furthermore, popular AR decoding tech-
niques like Beam Search are structurally inefficient
for diffusion-style models due to their parallel and
fixed-length nature. We therefore propose Paral-
lel Diffusion Decoding (PDD), a novel inference
strategy that leverages the unique characteristics of
our NAR architecture to efficiently explore multiple
candidate transcriptions and select the most proba-
ble one.

Contrasting AR Beam Search and PDD

In AR models, generating a sequence of length T
requires T serial steps, since the t-th token cannot
be produced independently but depends on the pre-
viously generated t−1 tokens. This strict sequen-
tiality makes decoding inherently slow and limits
throughput even when substantial parallel compu-
tation is used within each step. Moreover, beam
search produces hypotheses of varying length at in-
termediate steps, which complicates batching and
introduces substantial padding overhead and wasted compute. By contrast, Whisfusion conditions
on the entire sequence at once, so k hypotheses can be grouped into a single batch and refined si-
multaneously in each forward pass, reducing redundancy in computation and yielding consistently
higher throughput.
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The PDD Algorithm. Our proposed PDD method (Figure 3), consists of the following steps:

1. Batch Generation: At the first step (t = 1), instead of selecting a single argmax prediction, we
run the decoder k times from the initial token distribution, yielding k diverse candidate sequences
{y(1)1 , . . . , y

(k)
1 } in one forward pass.

2. Parallel Refinement: For the subsequentN −1 refinement steps (t = 2,. . . ,N ), we treat these k
drafts as a batch. At each step twe randomly mask a fixed fraction ρt of tokens in every candidate
(e.g., ρ = {1.0, 0.9, 0.85, 0.80} for N = 4) and let the model re-predict the masked positions of
each candidate sequences in parallel on a single GPU.

3. Candidate Selection: After the final step, we score each of the k complete sequences (e.g., using
their average token confidence) and select the highest-scoring sequence as the final output.

This PDD approach minimizes the speed loss typically associated with exploring multiple hypothe-
ses while significantly improving resilience to initial prediction errors, thereby enhancing the final
transcription accuracy.

4 EXPERIMENTS

Table 2: Dataset statistics for Lib-
riSpeech train-960h.
Duration distribution File count
0–10 seconds 64,181 (22.8%)
10–20 seconds 217,005 (77.2%)
20–30 seconds 55 (<0.1%)

Token statistics Length
99th percentile 124 tokens
Maximum 228 tokens

To evaluate the effectiveness of our proposed Whisfu-
sion model (301M parameters), we conduct experiments
on the widely-used LibriSpeech Panayotov et al. (2015)
benchmark, assessing both transcription accuracy and in-
ference speed. We compare Whisfusion against three
Whisper variants: Whisper-tiny (39M), the fastest base-
line; Whisper-small (244M), which is most comparable in
size; and Whisper-large-v3-turbo (809M), a recent model
optimized for AR decoding speed (hereafter Whisper-
turbo). For latency evaluation, we run each audio file
5 times and report the average to mitigate measurement
noise. All evaluation scripts and hyperparameter settings
are publicly available for full reproducibility (see Appendix C).

4.1 DATASETS

All experiments are conducted on LibriSpeech, using train-960h for training, dev-clean/other for
validation, and test-clean/other for evaluation. Based on the token statistics in Table 2, we set
max length=256 for both training and inference, ensuring full coverage of the training data.

4.2 IMPLEMENTATION DETAILS

Base Models and Environment. Our Whisfusion architecture is built upon two powerful pre-
trained models: the official openai/whisper-small model as the speech encoder, and the mdm-170M
checkpoint from the SMDM project Nie et al. (2025) as the text diffusion decoder. All models were
trained and evaluated using 4 x NVIDIA A100 GPUs.

Stage 1: Adapter Fine-tuning. The primary goal of this stage was to train the Cross-Attention
adapter on the full 960-hour LibriSpeech dataset. For each training sample, we applied a masking
ratio chosen uniformly at random from 0% to 100%. This strategy ensures the model is robust across
all levels of text corruption. The validation loss converged to a best of 0.0840 (PPL ≈ 1.09), indi-
cating the adapter had effectively learned to interpret the acoustic features from the speech encoder.

Stage 2: Full Decoder Harmonization & Specialization. Building on the best adapter from Stage
1, this stage unfreezes the MDM decoder and specializes it for initial generation from a fully masked
state. To preserve the hierarchical knowledge within the pre-trained decoder, we applied layer-wise
learning rate decay. Critically, training was conducted exclusively with a high masking ratio (70-
100%). Despite this challenging setting, the model achieved a best validation loss of 0.0958 (PPL
≈ 1.10).
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5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

We present the primary quantitative results of Whisfusion on the LibriSpeech benchmark in Table 4
and Table 3. All experiments use k = 15 candidates and N = 4 refinement steps unless otherwise
stated. The masking ratios for the four steps are 1.0, 0.9, 0.85 and 0.8, respectively.

On the test-clean set, Whisfusion achieves a WER of 8.3%, representing a 14% relative improvement
over Whisper-tiny (9.7% WER). The RTF measurements show that Whisfusion (0.0165) outper-
forms Whisper-tiny (0.0176), while being 2.4× faster than Whisper-small (0.0397) and 2.3× faster
than Whisper-turbo (0.0374). On the more challenging test-other set, Whisfusion maintains com-
petitive performance with 17.0% WER, positioning itself between Whisper-tiny and Whisper-small
in terms of accuracy.

Table 3 reveals the distinct characteristics of our non-autoregressive architecture across different au-
dio durations. While autoregressive models show varying inference times dependent on sequence
length, Whisfusion maintains nearly constant total inference time: 122.3ms for 0-10s audio, 123.1ms
for 10-20s, and 120.1ms for 20-30s segments. This consistency translates to dramatic RTF improve-
ments as audio length increases—from 0.029 for short segments to 0.005 for longer ones, a 5.80×
improvement. In contrast, Whisper models show more modest scaling: Whisper-tiny improves only
1.57× (0.022 to 0.014), while Whisper-small and Whisper-turbo show similar limited gains.

Notably, while Whisfusion demonstrates strong performance on audio segments up to 20 seconds,
we observe degraded accuracy on the 20-30s category (15.9% WER). This degradation can be at-
tributed to the severe scarcity of long-form audio in the training data: among 281,241 training
samples in LibriSpeech train-960h, only 55 files (0.02%) exceed 20 seconds (see Table 2), so the
model struggles to generalize for such sentences.

The decoder performance metrics highlight the fundamental difference between autoregressive and
non-autoregressive approaches. Whisfusion achieves a throughput of over 3,180 tokens per second
with a consistent 0.31 ms per token across all duration categories. This represents a 16× improve-
ment over Whisper-tiny (190-240 tokens/s) and 36× over Whisper-small (83-103 tokens/s). Fur-
thermore, while the decoder component dominates inference time in Whisper models—accounting
for 80-95% of total computation as sequences lengthen—it remains fixed at approximately 67% for
Whisfusion regardless of audio duration.

The time breakdown analysis shows that Whisfusion allocates 23-24% of computation to the en-
coder, compared to 3-8% for Whisper-tiny and 6-14% for Whisper-small. This reallocation is en-
abled by the efficiency of parallel decoding, which completes in a fixed 82ms regardless of sequence
length, while autoregressive decoders scale from 82ms to 292ms (Whisper-tiny) or 187ms to 675ms
(Whisper-small) as audio duration increases from 0-10s to 20-30s.

Table 3: Performance across durations on LibriSpeech test-clean.

Duration Model Acc. (%) Time (ms) E2E speed Decoder

WER CER Enc Dec Ovhd Total ↓ RTF ↓ Speed ↑ tok/s ↑

0–10 s

Whisper-tiny 10.5 4.5 7.6 82.1 12.7 102.4 0.022 2.18× 190.3
Whisper-small 5.4 2.3 32.2 187.3 8.8 228.1 0.048 1.00× 83.3
Whisper-turbo 3.8 1.5 156.3 85.8 8.6 250.6 0.057 0.84× 177.7
Whisfusion 7.9 2.7 29.1 82.1 11.1 122.3 0.029 1.66× 3186.1

10–20 s

Whisper-tiny 7.0 2.6 7.2 187.1 11.6 205.9 0.015 2.33× 230.3
Whisper-small 3.5 1.2 30.3 435.5 9.1 475.0 0.035 1.00× 99.6
Whisper-turbo 2.5 0.7 155.7 184.5 9.1 349.1 0.026 1.35× 218.1
Whisfusion 8.0 2.6 29.4 82.0 11.6 123.1 0.009 3.89× 3183.7

20–30 s

Whisper-tiny 6.4 2.4 7.4 292.3 14.2 313.9 0.014 2.21× 238.8
Whisper-small 3.7 1.2 29.0 674.7 9.9 713.5 0.031 1.00× 102.9
Whisper-turbo 2.6 0.7 155.6 285.6 8.6 449.9 0.020 1.55× 230.0
Whisfusion 15.9 7.7 29.0 80.7 10.3 120.1 0.005 6.20× 3188.6

6
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Table 4: WER and CER on LibriSpeech test sets (clean/other) for Whisper variants vs. Whisfusion.
Model test-clean test-other

WER (%) ↓ CER (%) ↓ WER (%) ↓ CER (%) ↓
Whisper-tiny 9.7 4.1 22.5 11.8
Whisper-small 5.0 2.1 12.2 6.2
Whisper-turbo 3.5 1.4 6.6 2.8
Whisfusion 8.3 2.9 17.0 6.9

5.2 ABLATION STUDIES

To validate the effectiveness of each component in Whisfusion, we conduct comprehensive ablation
studies on the LibriSpeech test-clean dataset. The results demonstrate the importance of our key
design choices in achieving the final performance.

5.2.1 IMPACT OF 2-STAGE TRAINING STRATEGY

Table 5: Each component, from acoustic
conditioning to the 2-stage curriculum, con-
tributes to the final performance.
Model configuration WER (%) ↓
Whisfusion (Full model) 8.3

Acoustic conditioning
w/o acoustic conditioning 150.8

Training strategy
Stage 1 only 10.3
w/o high-ratio fine-tuning 9.0

Table 5 demonstrates the critical importance of our
design choices. The ”w/o Acoustic Conditioning“
experiment, where we remove the cross-attention
adapter, confirms the model’s heavy reliance on
acoustic information. Despite masking only 30%
of the tokens from the ground truth transcript, the
model produced near-random transcriptions with a
WER of 150.8%, indicating that it fails to gener-
ate meaningful outputs without acoustic guidance.
Furthermore, the results validate our 2-stage curricu-
lum. The Stage 1 model provides a strong founda-
tion (10.3% WER), which is improved to 9.0% after
the initial Stage 2 fine-tuning. Crucially, the final
specialization on high-mask-ratio samples is what
enables the model to achieve its optimal performance of 8.3% WER.

5.2.2 IMPACT OF PARALLEL DIFFUSION DECODING (PDD)

Table 6 assesses the effectiveness of our PDD strategy. A unique characteristic of our approach is
that, due to its batch-parallel nature, increasing the number of candidates (k) has a minimal impact
on inference speed, with the primary cost being memory consumption. As shown in the table,
increasing k from 5 to 15 progressively lowers the WER from 9.1% to 8.3%, while the RTF remains
remarkably stable around 0.017-0.021.

This profile offers a significant advantage over single-sequence decoding. For instance, PDD with
k=15 achieves a much lower WER than the fast 4-step single-sequence baseline (8.3% vs. 12.8%)
at a comparable RTF. It is also significantly faster than the 15-step single-sequence baseline while
being considerably more accurate. Therefore, for our main experiments, we select k = 15 to achieve
the best accuracy within this highly efficient latency profile. The Oracle WER column further reveals
the potential of our generated candidates, suggesting that performance could be improved even more
with an advanced selection mechanism.

PDD Selection Accuracy. Our confidence-based selection mechanism demonstrates strong per-
formance. As detailed by our analysis, it correctly identifies the best candidate (i.e., the one with the
lowest WER) in 68.7% of cases. This results in an average selection gap of only 2.4% WER between
our model’s actual WER (8.3%) and the oracle WER (5.9%). Furthermore, the selected candidate
is near-optimal in the majority of cases, falling within a 2% WER gap of the best possible outcome
69.3% of the time. This high selection accuracy validates the effectiveness of our confidence scoring
approach.

7
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Table 6: Comparison of decoding strategies.
Decoding strategy WER (%) ↓ RTF ↓ Oracle WER (%)
Single sequence (4 steps) 12.8 0.018 –
Single sequence (15 steps) 10.1 0.059 –
PDD (k=5, 4 steps) 9.1 0.019 7.4
PDD (k=10, 4 steps) 8.7 0.021 6.5
PDD (k=15, 4 steps) 8.3 0.017 5.9

5.2.3 STEP-WISE ANALYSIS

Table 7 reveals the iterative refinement process. The model makes aggressive predictions in early
steps (96% token changes), then progressively refines its output. Most dramatic improvements occur
in Step 2, where WER drops from 42.3% to 24.6% while only 12% of tokens change—indicating
that the model quickly converges to near-final predictions. By Step 3, with only 9% of tokens
changing, the model achieves most of its final accuracy (18.9% WER). The final step serves as
fine-tuning, modifying just 7% of tokens for a modest improvement to 16.9% WER. The monotonic
increase in average confidence (0.77→0.95) strongly correlates with WER reduction, validating our
confidence-based selection strategy.

Table 7: Progressive improvement across diffusion steps.
Step Mask ratio WER (%) ↓ Avg conf. ↑ Tokens changed ↓

0 100% – – –
1 90% 42.3 0.77 96%
2 85% 24.6 0.90 12%
3 80% 18.9 0.93 9%
4 0% 16.9 0.95 7%

5.3 QUALITATIVE ANALYSIS

Visualization of Iterative Refinement. To illustrate the working mechanism of our diffusion de-
coder, Figure 4 visualizes how a transcription is gradually refined over multiple decoding steps. The
process starts from a fully masked sequence and iteratively corrects and specifies tokens to form a
coherent sentence.

Whisfusion

Whisper

FROM THE N OR WE G IN G RA VEY ARD ON E LO

OK OUT O VER A V AST CH EC KER BO ARD MAR K

ED O FF IN S QU A RES OF W HE AT AND C OR N

L IGHT AND D AR K D AR K AND L IGHT

FROM THE N OR WE G IN G RA VEY ARD ON E LO

OK OUT O VER A V AST CH EC KER BO ARD MAR K

ED O FF IN S QU A RES OF W HE AT AND C OR N

L IGHT AND D AR K D AR K AND L IGHT

Step 1 Step 2 Step 3 Step 4

Figure 4: Qualitative comparison of the decoding process. Darker colors indicate tokens finalized in
later steps.
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6 RELATED WORK: AR AND NAR ASR MODELS

Decoding in ASR centers on two paradigms: alignment-based NAR and sequential AR, reflecting
the trade-off between efficiency and accuracy.

Early NAR approaches, especially those using Connectionist Temporal Classification (CTC), gained
traction for their efficient frame-level parallel inference Graves et al. (2006). CTC maps acoustic
frames to tokens by marginalizing over alignments, removing the need for frame-level supervision.
However, its assumption of conditional independence limits modeling of long-range dependencies,
often leading to incoherent or grammatically flawed transcriptions in noisy or open-domain settings.

To overcome these issues, refinement-based methods like Mask-CTC were proposed Higuchi et al.
(2020). Mask-CTC improves initial predictions by masking low-confidence tokens and refining
them with a masked language model. While accuracy improves, it inherits CTC’s fixed-length con-
straint, preventing correction of insertion/deletion errors. It also lacks the flexibility for free token
generation or reordering.

By contrast, autoregressive models such as Whisper employ a Transformer encoder-decoder that
generates tokens sequentially, conditioning each prediction on all prior tokens Radford et al. (2023).
This sequential decoding enables rich contextual modeling and has become the standard in high-
accuracy, open-domain ASR. Whisper achieves strong results on multilingual and multitask bench-
marks, but the sequential nature of AR decoding causes high latency. Even in distilled or optimized
variants, the decoder often dominates runtime in long-form transcription.

7 CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

In this work, we addressed the inherent latency bottleneck of autoregressive ASR models. We
introduced Whisfusion, a novel framework that efficiently fuses a pre-trained Whisper encoder with
a non-autoregressive text diffusion decoder using a lightweight, parameter-efficient adapter. Our
extensive experiments on the LibriSpeech benchmark demonstrate that Whisfusion establishes a
new, highly effective operating point on the speed-accuracy spectrum. It achieves a lower WER
than Whisper-tiny and showcases a superior scalability profile, becoming significantly faster on
long-form audio where traditional AR models falter. Furthermore, we proposed Parallel Diffusion
Decoding (PDD), a batch-parallel search strategy that uniquely allows for improving accuracy by
increasing the number of parallel candidates with negligible impact on inference speed. Our work
validates that diffusion-based decoders are a powerful and viable alternative to conventional AR
models, paving the way for high-throughput, low-latency ASR systems.

7.2 FUTURE WORK

Several promising avenues exist for future research. The most significant direction is large-scale
training. We expect that training the Whisfusion architecture on a large, multilingual dataset, similar
to the 680K hours used for the original Whisper, would allow the model to retain Whisper’s cele-
brated robustness and zero-shot capabilities. Such an approach could yield a model that combines
the high accuracy of large AR models with the exceptional speed of our NAR framework.

Furthermore, the architectural blueprint of Whisfusion opens possibilities beyond ASR. Its ability to
generate diverse hypotheses in parallel with minimal speed trade-off makes it particularly suitable
for novel applications. For instance, it could be extended to simultaneous multi-language translation
and transcription, where target languages are treated as candidates within the same batch—a task
infeasible for AR models. This also makes it suitable for domains where exploring a solution space
is critical, such as robotics (e.g., generating multiple action plans) or multi-task learning.

Other future work includes exploring architectural enhancements. For mobile and on-device sce-
narios, further model compression through techniques like layer dropping or progressive distillation
could be investigated. Finally, refining the PDD strategy, perhaps by training a lightweight rescoring
model to select candidates, could help close the gap to the Oracle WER and further boost perfor-
mance.

9
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A APPENDIX

B ALGORITHMS AND THEORETICAL BASIS

This section provides the technical details of Whisfusion’s core components. We present the pseu-
docode for our two main contributions: the 2-Stage Curriculum Training strategy and the Paral-
lel Diffusion Decoding (PDD) strategy. We also briefly discuss the theoretical foundations of the
Masked Diffusion Model that our decoder is based upon. The complete source code for all algo-
rithms and experiments is provided in the Supplementary code for full reproducibility.

B.1 TRAINING ALGORITHM

Algorithm 1 details the procedure for our 2-stage curriculum training, as described in the main paper.
As shown, the key difference between the stages lies in the scope of trainable parameters and the
distribution of the masking ratio t. For all training batches, the input text is tokenized and padded to
a fixed maximum length of 256, a value chosen based on the token distribution of the training data
(Table 2).

Algorithm 1 2-Stage Curriculum Training for Whisfusion
Require: Whisper Encoder Eϕ, MDM Decoder Dθ, Adapter Aψ , Dataset D
Ensure: Trained Whisfusion model {ϕ, θ, ψ}

1: — Stage 1: Robust Adapter Training —
2: Freeze encoder parameters ϕ and decoder parameters θ
3: for each epoch = 1 to N1 do
4: for each batch (xaudio, ytext) ∈ D do
5: C ← Eϕ(xaudio) {Extract acoustic features}
6: t ∼ U(0, 1) {Sample uniform masking ratio}
7: ymasked ← MASK(ytext, t) {Apply masking to text}
8: ŷ ← Dθ(ymasked, C,Aψ) {Decode with adapter}
9: Compute loss using Eq. 3

10: Update ψ ← ψ − α∇ψL
11: end for
12: end for
13: — Stage 2: Full Decoder Harmonization —
14: Freeze only encoder parameters ϕ
15: Initialize layer-wise learning rates: αl = αbase · γ(L−l)
16: for each epoch = 1 to N2 do
17: for each batch (xaudio, ytext) ∈ D do
18: C ← Eϕ(xaudio)
19: t ∼ U(0.7, 1.0) {High masking ratio only}
20: ymasked ← MASK(ytext, t)
21: ŷ ← Dθ(ymasked, C,Aψ)
22: Compute loss using Eq. 3
23: Update {θ, ψ} with layer-wise learning rates {αl}
24: end for
25: end for
26: return Trained model parameters {ϕ, θ, ψ}

Our training objective is adapted from the standard Masked Diffusion Model (MDM) loss function.

LMDM = −Et,x0,xt

[1
t

L∑
i=1

1
[
x it = M

]
log pθ

(
x i0 | xt

)]
(2)

As proven by Ou et al. (2025), this loss function serves as an upper bound on the negative log-
likelihood of the model distribution (−Ey0∼pdata(y0)[log pθ(y0)] ≤ L), ensuring that minimizing our
objective corresponds to a principled maximum likelihood estimation framework.
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For Whisfusion, we adapt this objective to be conditioned on the acoustic features C = Eϕ(xaudio)
provided by the Whisper encoder. The model must predict the original text tokens y0 given both the
masked text yt and the acoustic condition C. The trainable parameters are the decoder weights θ
and the adapter weights ψ. Our final loss function is therefore:

L(θ, ψ) ≜ −Exaudio,y0,t,yt

[1
t

L∑
i=1

1
[
y it = M

]
log pθ,ψ

(
y i0 | yt, C

)]
(3)

The key insight of our approach is that by conditioning the diffusion process on rich acoustic features
from a pre-trained encoder, we can leverage the parallel generation capabilities of diffusion models
while maintaining the acoustic fidelity necessary for accurate speech recognition. This formula-
tion allows the model to iteratively refine its predictions based on both the partially observed text
sequence and the complete acoustic context, effectively combining the strengths of both autoregres-
sive ASR models (acoustic modeling) and non-autoregressive text generation (parallel decoding).

B.2 PARALLEL DIFFUSION DECODING (PDD) ALGORITHM

Algorithm 2 formalizes this three-stage process of hypothesis generation, parallel refinement, and
final selection. The key architectural advantage of this approach over traditional AR Beam Search is
summarized in Table 8. While AR models require a number of sequential steps proportional to the
output length (T), PDD completes in a small, fixed number of steps (N), making it fundamentally
more scalable for long-form audio.

Algorithm 2 Parallel Diffusion Decoding (PDD)
Require: Acoustic condition C, Model (Whisfusion) M
Require: Number of candidates k, Number of steps N
Ensure: Best transcription y∗

1: — 1. Batch Generation —
2: Y0 ← Initialize a batch of k masked sequences
3: Logits←M(Y0, C) {Single forward pass for all k}
4: Y1 ← Sample(k,Logits) {Sample k initial hypotheses}
5: — 2. Parallel Refinement —
6: for t = 1 to N − 1 do
7: Ymasked ← ApplyMaskingStrategy(Yt)
8: Logits←M(Ymasked, C)
9: Yt+1 ← UpdateUnmaskedTokens(Logits, Ymasked)

10: end for
11: — 3. Candidate Selection —
12: Yfinal ← YN
13: Scores← CalculateConfidence(Yfinal)
14: y∗ ← Yfinal[argmax(Scores)]
15: return y∗

Table 8: Comparison of Autoregressive Beam Search and our Parallel Diffusion Decoding (PDD).
The key advantage of PDD is its fixed, small number of sequential steps, independent of the output
length.

Aspect AR Beam Search PDD (Ours)
Sequential Steps T (Output Length) N (Fixed, e.g., 4)
Work per Step Batch of k beams Batch of k full sequences
GPU Parallelism High within each step High within each step
Primary Bottleneck Sequential dependency across T steps Memory for k candidates
Typical Model Calls T ≈ 100− 200 N = 4
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C HYPERPARAMETER SETTINGS

This section provides a comprehensive list of the key hyperparameters used for our 2-stage training
curriculum to ensure full reproducibility. All training was conducted on 4 x NVIDIA A100 40GB
GPUs. Table 9 details the specific settings for the final Whisfusion model.

Rationale for Stage 1. The primary goal of Stage 1 is to robustly train the newly initialized
adapter. We use a relatively high learning rate (1e-4) and a large effective batch size (512) to ensure
stable and efficient learning on the diverse 960-hour dataset. Training with a uniform masking ra-
tio (0-100%) exposes the adapter to all levels of text corruption, forcing it to learn a generalizable
mapping from acoustic features to textual context.

Rationale for Stage 2. The goal of Stage 2 is to fine-tune the entire pre-trained MDM decoder
while preserving its powerful learned representations. This requires a more delicate approach. We
use a much lower base learning rate (1e-5) to prevent catastrophic forgetting. Critically, we apply
layer-wise learning rate decay (LLRD). We empirically observed that fine-tuning the entire decoder
with a single learning rate led to training instability and performance collapse. LLRD was therefore
a necessary choice to gently update the foundational lower layers while allowing the upper layers to
adapt more quickly to the ASR task. Finally, training exclusively on high masking ratios (70-100%)
specializes the model for the most challenging part of inference: generating the initial transcript
from a fully masked state.

For the ablation study model labeled “w/o high-ratio fine-tuning”, the training settings are identical
to Stage 2, with the sole exception that the masking ratio was kept at a uniform (0-100%) distribution.

Table 9: Key training hyperparameters for the final Whisfusion model.
Hyperparameter Stage 1 Stage 2

(Adapter Training) (Specialization)

Trainable Components Adapter Only Adapter + Decoder

Optimizer & Scheduler
Optimizer AdamW AdamW
Learning Rate (Base) 1e-4 1e-5
LR Scheduler Cosine (Epoch) Cosine (Step)
Warmup Ratio 0.02 0.1
Layer-wise LR Decay Rate N/A 0.9
Weight Decay 0.01 0.005

Training Configuration
Effective Batch Size 512 256
Max Epochs 80 30
Early Stopping Patience 8 5
Masking Ratio Uniform (0-100%) Uniform (70-100%)

D TRAINING DYNAMICS

Figure 5 and Figure 6 summarize learning behavior across the two stages. In Stage 1 (adapter
training), the loss drops rapidly then stabilizes; validation closely tracks training with no overfitting,
and error rates plateau after early epochs. The train–validation gap narrows as the adapter aligns
acoustic and textual representations under wide masking, indicating robust generalization.

In Stage 2 (decoder fine-tuning), losses start low and decrease smoothly. WER shows small oscil-
lations before settling, while CER stays consistently low, suggesting preserved pre-trained knowl-
edge. Layer-wise learning-rate decay (LLRD) damps deep-layer fluctuations while letting upper
layers adapt. Best validation-loss and best-WER epochs do not exactly coincide; early stopping
selects stable minima over transient dips. Overall, both stages show steady improvement and stable
convergence, supporting the effectiveness of the two-stage strategy.
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Figure 5: Stage 1 training dynamics (adapter).
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Figure 6: Stage 2 training dynamics (decoder).

E IN-DEPTH MODEL ANALYSIS

In this section, we present additional analyses to provide deeper insights into key characteristics of
our Whisfusion model: its ability to predict sequence length, the reliability of its confidence scores,
and its performance on long utterances.

E.1 LENGTH ESTIMATION ACCURACY

A key challenge for non-autoregressive models is predicting the correct output length without se-
quential cues. Figure 7 analyzes Whisfusion’s length estimation performance. The scatter plot on
the left shows a strong linear correlation between the ground truth and predicted lengths, indicating
that our model generally learns to estimate the target sequence length effectively from the acoustic
features. However, the plot also reveals increased variance and larger errors for longer sequences.
This is consistent with the observation made in the main paper: the model’s performance degrades
on long-form audio due to the severe scarcity of such examples in the training data (less than 0.1%
of the training set is longer than 20 seconds). The plot on the right further confirms that these larger
length estimation errors directly correlate with higher WER, highlighting the importance of accurate
length prediction for overall performance.

E.2 CONFIDENCE-ACCURACY CORRELATION

Our Parallel Diffusion Decoding (PDD) strategy relies on confidence scores to select the best can-
didate. Figure 8 validates this approach by analyzing the relationship between the model’s average
output confidence and the actual WER for each sample. The scatter plot (left) and the box plot (right)
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both demonstrate a clear negative correlation: higher confidence scores consistently correspond to
lower error rates. This strong correlation indicates that our model’s confidence is well-calibrated
and serves as a reliable proxy for transcription accuracy, justifying its use as the selection criterion
in PDD.
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Figure 7: Analysis of Whisfusion’s length estimation accuracy. (Left) Predicted length vs. ground
truth length. (Right) Absolute length difference vs. WER.
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Figure 8: Correlation between average token confidence and WER. (Left) Scatter plot showing a
negative correlation. (Right) Box plot showing the distribution of confidence scores for different
WER ranges.

F ABLATION STUDY ON PDD PARAMETERS

This section details the experiments conducted to determine the optimal values for the number of
candidates (k), refinement steps (N ), and the masking schedule in our PDD strategy.

F.1 IMPACT OF NUMBER OF CANDIDATES (k)

First, we examine how the number of parallel candidates affects accuracy while keeping other pa-
rameters fixed (N = 4, standard masking schedule [1.0, 0.9, 0.85, 0.8]). As shown in Table 10,
increasing k from 5 to 15 yields a consistent improvement in both the final selected WER and the
potential Oracle WER. This demonstrates the effectiveness of exploring a wider hypothesis space,
as a larger pool of candidates increases the probability of finding a more accurate transcription.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Effect of number of candidates (k) on WER
Candidates (k) WER (%) Oracle WER (%)

5 9.09 7.44
10 8.65 6.45
15 8.34 5.88

F.2 IMPACT OF NUMBER OF STEPS (N )

Next, we investigate the effect of varying the number of refinement steps (N ) while keeping k = 5.
Table 11 shows that performance improves steadily as N increases. However, we observe diminish-
ing returns beyond 4-6 steps; for example, doubling the steps from 4 to 8 only yields a 0.9% absolute
WER reduction. This suggests that a small number of refinement steps is sufficient for the model to
converge to a high-quality solution.

Table 11: Effect of number of refinement steps (N ) on WER.
Steps (N ) WER (%) Oracle WER (%)
2 ([1.0, 0.85]) 14.27 12.24
3 ([1.0, 0.9, 0.8]) 9.70 7.89
4 ([1.0, 0.9, 0.85, 0.8]) 9.09 7.44
5 ([1.0, 0.95, 0.9, 0.85, 0.8]) 8.69 6.85
6 ([1.0, 0.96, 0.92, 0.88, 0.84, 0.8]) 8.46 6.72
8 ([1.0, ..., 0.65]) 8.19 6.46

F.3 IMPACT OF MASKING SCHEDULE

Finally, we explore different masking schedules with fixed k = 5 andN = 4. The masking schedule
dictates the pace of the denoising process. As shown in Table 12, a standard, gradual decay schedule
performs best. While a conservative schedule yields comparable results, aggressive schedules that
unmask tokens too quickly (e.g., [1.0, 0.7, 0.5, 0.3]) significantly degrade performance, highlighting
the importance of a gradual, iterative refinement process.

Table 12: Effect of different masking strategies on WER.
Masking Strategy WER (%) Oracle WER (%)
Standard:

[1.0, 0.9, 0.85, 0.8] 9.09 7.44
Conservative (slow decay):

[1.0, 0.98, 0.95, 0.9] 9.48 7.54
[1.0, 0.95, 0.9, 0.85] 9.07 7.34

Aggressive (fast decay):
[1.0, 0.85, 0.7, 0.6] 9.51 7.72
[1.0, 0.7, 0.5, 0.3] 12.90 10.35

F.4 SUMMARY AND CONFIGURATION CHOICE

Based on these ablation studies, we identified several key trade-offs. Increasing the number of candi-
dates (k) is a highly effective way to improve accuracy with minimal impact on latency. The number
of steps (N ) shows diminishing returns after a certain point, and the masking schedule is sensitive,
with gradual decay being optimal. Table 13 summarizes several high-performance configurations
targeting different points on the speed-accuracy curve. For our main experiments reported in the
paper, we selected the Accurate configuration (k = 15, N = 4) as it provides the best possible
WER within a highly efficient latency profile.
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Table 13: Selected high-performance configurations for PDD.
Config k N Schedule WER (%)

Fast 5 3 [1.0, 0.9, 0.8] 9.70
Balanced 10 4 [1.0, 0.9, 0.85, 0.8] 8.65
Accurate 15 4 [1.0, 0.9, 0.85, 0.8] 8.34

G QUALITATIVE EXAMPLES OF ITERATIVE REFINEMENT

We visualize the step-by-step evolution of individual tokens during inference. The following figures
illustrate two key aspects of this process for several examples from the LibriSpeech test-clean set:

• Token Finalization Process: A grid showing at which step each token’s prediction stabi-
lizes and matches its final value for the remainder of the process.

• Token Confidence Evolution: A heatmap visualizing the model’s confidence for each
token at every refinement step.

These visualizations offer insights into how Whisfusion builds a transcript, rapidly committing to
high-confidence tokens while iteratively refining more ambiguous parts of the sequence.
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Figure 9: An additional example of the iterative refinement process. (rotated for readability)
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