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Abstract

While Large Reasoning Models (LRMs) exhibit remarkable capabilities in complex
tasks, they often suffer from excessive redundancy in their chain-of-thought rea-
soning. This significantly reduces inference efficiency and increases computational
costs. We identify that LRM redundancy is not uniformly homogeneous but can be
taxonomized according to whether it is destructive to the final answer: destructive
redundancy (e.g., logical drift, hallucination amplification) versus non-destructive
redundancy (e.g., repetition, over-elaboration). Moreover, LRM’s redundant and
concise responses exhibit a significant distinction in their hidden layer representa-
tion spaces. Based on these insights, we propose CATS (Category-Aware Token-
Level Steering), a training-free and lightweight method to reduce the redundancy
phenomenon. CATS decomposes redundancy into six semantically interpretable
characteristic dimensions. By flexibly weighting and combining the differential
vectors corresponding to these dimensions, CATS synthesizes a composite interven-
tion vector, enabling zero-parameter intervention in the hidden layers. Experiments
across three LRM models and five mathematical reasoning datasets demonstrate
that CATS reduces reasoning length by an average of 25% while maintaining or
even slightly improving task accuracy. CATS offers a pluggable, training-free, and
lightweight solution, making it particularly beneficial for users in low-resource
environments.Our code can be found at https://anonymous.4open.science/r/cats-
63B6

1 Introduction

Large Reasoning Models (LRMs) have demonstrated powerful capabilities in complex reasoning
tasks through Chain-of-Thought (CoT) prompting []1, 2] . However, pervasive reasoning redundancy
in CoT paths poses a significant challenge. Such redundancy not only increases inference latency
and computational costs but may also introduce logical errors or hallucinations. Existing redundancy
elimination methods, such as Supervised Fine-Tuning (SFT) [3H5]], Reinforcement Learning (RL) [6l
7], or Prompt Engineering [|8-H10|], often demand substantial computational resources and struggle
with fine-grained control over redundancy types, thereby limiting their deployment flexibility.

We observe that redundancy in LRMs is not a uniformly homogeneous phenomenon. Instead, it can be
taxonomized into six semantically interpretable characteristic dimensions. These dimensions can be
further categorized into destructive redundancy (e.g., logical drift, hallucination amplification, internal
contradiction) and non-destructive redundancy (e.g., repetition, over-elaboration, over-caution). More
crucially, by analyzing the hidden layer representation space, we discover significant divergences
between concise paths and various redundant paths in the representation space (see Appendix A),
providing a theoretical basis for precise intervention.
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Inspired by these insights, we proposes CATS (Category-Aware Token-level Steering), a training-free
and lightweight framework designed to systematically reduce reasoning redundancy through zero-
parameter intervention in LRM hidden layers. The core idea of CATS is to extract differential vectors
corresponding to each redundancy type and dynamically combine and apply these vectors to the
model’s hidden layers during inference, thereby precisely suppressing specific types of redundancy.
Our main contributions include:

* We are the first to categorize LRM redundancy into six semantically interpretable types and
demonstrate their distinguishable representations in hidden layers.

* We propose CATS, a novel training-free intervention framework that enables fine-grained
control over LRM redundancy through flexibly weighted and combined differential vectors.

» Extensive experiments across three LRM models and five mathematical reasoning datasets
demonstrate that CATS reduces reasoning length by an average of 25% while maintaining or
even slightly improving task accuracy, and significantly reducing the incidence of destructive
redundancy by 21%.

2 Method

This section introduces the CATS framework, which focuses on reducing LRM reasoning redundancy
through interventions in the model’s hidden layers.
Given an input query x, a LRM generates a multi-step reasoning output y = {t1,t2,...,t, . Our
objective is to minimize the length of the reasoning chain |y| without compromising the accuracy of
the final answer:

min|y| s.t. ace(y) > ace(yo) (1

where acc(yo) is the accuracy of the original model output.

The CATS framework comprises three key stages (as illustrated in Figure [I)):
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Figure 1: Overview of the CATS (Category-Aware Token-level Steering) Framework

2.1 Redundancy Classification

We classify LRM reasoning redundancy into six semantic categories by combining large language
model annotation with human verification. These categories are primarily divided into two types:
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* Destructive Redundancy: Includes logical drift, hallucination amplification, and internal
contradiction. These redundancies can directly lead to reasoning failures or incorrect results.

* Non-Destructive Redundancy: Includes repetition, over-elaboration, and over-caution.
These redundancies primarily increase reasoning length without directly causing logical
erTors.

This fine-grained categorization allows for a more precise understanding and suppression of different
types of redundancy. Detailed classification rules and classifier evaluation are provided in the
Appendix B.

2.2 Difference Vector Extraction

We extract difference vectors by analyzing the hidden status differences in LRM between concise
reasoning paths and redundant reasoning paths. We selected 1,000 mathematical problems from
the GSMS8K dataset and generated 10 reasoning paths for each problem. Through annotation by
Qwen3-235B-A22B, we constructed a concise sample set S, and a redundant sample set S, for
each redundancy type k.

For layer [ of the LRM, we compute the average hidden state of the concise samples ,Ulsc and the
average hidden state for each redundancy type k, Mlsr .- The difference vector vfe for each redundancy

type k is defined as the difference between the average hidden states of the concise samples and the

samples of that redundancy type:

v, = ps, — s, , )

These vectors capture the semantic information for the model in the direction of suppressing specific
redundancy types.

2.3 Composite Intervention

During the inference phase, CATS linearly combines the extracted differential vectors and adds
them to the hidden state of a specific model layer, thereby achieving redundancy suppression. The
intervention formula is as follows:

6

;*771 =hp 1+ Zwk '7)5: 3)
k=1

where h;« _1 is the hidden state of the original LRM at the last token of the input to layer [*; vf; is
the differential vector for the k-th redundancy type; and wy, are user-configurable weights used to
adjust the suppression strength for each redundancy type. This process involves only a single forward
pass, requiring no additional training, making it a zero-parameter intervention with extremely high
deployment efficiency and flexibility.

3 Experiments

This section details the experimental configuration used to validate the effectiveness of the CATS
method, including selected models, datasets, evaluation metrics, and baselines.

3.1 Setup

We evaluated CATS on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and
DeepSeek-R1-Distill-Llama-8B models [[1]. Experiments were conducted on five mathematical
reasoning datasets: MATH-500[11], AMC, AMC23, AIME 2024, and AIME 2025[12]. We primarily
assessed the method’s effectiveness using task accuracy, average token length, and incidence rate of
each redundancy type. All experimental details are available in the Appendix C.

3.2 Baselines

We compared CATS against the following baselines:
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* Original LRM: The raw model without any intervention.

* Generic Intervention: This baseline uses only a single "longest-concise" differential vector
for intervention, not distinguishing between redundancy types. This aims to simulate
approaches that treat all redundancy as homogeneous, highlighting the advantages of fine-
grained classification.

3.3 Main Results

As shown in tabel [I] CATS consistently demonstrated significant redundancy reduction capabilities
across all models and datasets. On average, CATS reduced the reasoning path length by 25.0% while
maintaining or even slightly improving task accuracy in most cases.

Moreover, CATS outperforms the generic intervention baseline in both length compression and
accuracy. This highlights the critical role of fine-grained redundancy classification, enabling CATS to
precisely target different redundancy types for a more intelligent and safe efficiency optimization.

Table 1: Overview of Main Results of CATS across Different Models and Datasets
MATH-500 AMC AMC23 AIME 2024 AIME 2025
len(]) acc(f) len(]) acc(f) len(]) acc() TIen({) acc(f) len(]) acc(])
DeepSeek-R1-Distill-Qwen-1.5B 4528.31 83.21 8982.86 58.52 8697.42 55.42 11758.16 27.54 11709.96 25.43

+ Generic Intervention 3935.10 79.55 6902.43 57.12 7338.45 54.25 10637.61 26.54 10503.83 24.80
+ CATS 3577.36 82.01 6108.34 60.13 6523.07 56.22 9759.27 27.94 9133.77 25.83
DeepSeek-R1-Distill-Qwen-7B  3817.48 92.96 6572.61 79.07 6204.70 81.03 10220.63 51.64 10051.13 36.85
+ Generic Intervention 3169.55 91.34 4814.84 76.20 5425.86 78.15 939091 48.66 8661.53 34.55
+ CATS 2855.45 93.20 4115.25 79.37 4559.55 82.26 7825.76 52.32 7278.60 37.15
DeepSeek-R1-Distill-Llama-8B  3863.48 89.73 6878.65 77.80 6639.62 79.21 11404.50 44.80 11579.90 30.84
+ Generic Intervention 3256.30 87.81 5175.50 76.65 5969.68 78.81 10318.79 43.83 9944.82 32.17
+ CATS 2936.24 90.06 4539.91 78.21 5378.09 80.01 8895.51 46.14 8800.72 34.22

avg. Alen = —25%, avg. Aacc=1.2%

Table 2: Occurrence Rates of Redundancy Categories in Model Responses

Destructive Redundancy Non-Destructive Redundancy

Log. Drift Hall. Amp. Int. Contr. Rep. Over-Elab. Over-Caut.
DeepSeek-R1-Distill-Qwen-1.5B  39.09 3.20 490 1581 13.65 13.70
+ CATS 31.27 2.62 343 1138 10.51 10.41
DeepSeek-R1-Distill-Qwen-7B 31.50 3.60 440 1594 17.82 16.57
+ CATS 26.15 2.81 3.34  11.64 1247 12.10
DeepSeek-R1-Distill-Llama-8B 32.20 2.70 540 1672 1457 17.37
+ CATS 25.44 1.89 324 1170 11.22 12.16

avg. AOccurrence Rate of Destructive Redundancy = —21%
avg. AOccurrence Rate of Non-Destructive Redundancy = —27%

From Table[2] CATS intervention effectively reduced the occurrence rate of all redundancy categories.
Specifically, the average occurrence rate of destructive redundancy decreased by 21%, while that of
non-destructive redundancy decreased by 27%, further enhancing the conciseness and reliability of
model outputs.Further analysis on ablation study is show in Appendix D.

4 Conclusion

This paper presents CATS, a novel training-free framework for category-aware, token-level redun-
dancy reduction in large reasoning models. By decomposing redundancy into six semantically
interpretable types and leveraging differential vectors in hidden layers for precise intervention, CATS
successfully reduced reasoning length by an average of 25% while maintaining or slightly improving
task accuracy, and effectively suppressing destructive redundancy. CATS’s lightweight, training-free,
and highly interpretable nature makes it a powerful tool for optimizing LRM inference efficiency.
Future work will explore adaptive weight optimization and extend its application to larger-scale
models and broader multimodal reasoning scenarios.
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A Hidden State Visualization

Consize Answer
Destructive Redundancy Logical Drift [ Hallucination Amplification Internal Contradiction

Non-Destructive Redundancy Repetition Over-Elaboratio Over-Cautiousness

Figure 2: Hidden State Differences between Redundancy Categories and Concise Paths (t-SNE
Visualization). This figure presents the t-SNE dimensionality reduction visualization of the hidden
states from the 15th layer of the DeepSeek-R1-Distill-Qwen-7B model. It clearly shows a distinct
separation of the six redundancy categories from concise paths in the representation space, validating
the discriminability of our category-specific difference vectors. Similar patterns were observed in
other models and layers.
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B Redundancy Classification Details

B.1 Redundancy Definition

We categorize redundant content into two main types, encompassing six specific kinds of redundancy

(as shown in Figure[3):
Destructive Redundancy

This type of redundancy interferes with the original reasoning path and reduces the correctness of the

final answer.

* Logical Drift: Deviation from the task objective during reasoning, producing reasoning

steps in an unrelated direction.

* Hallucination Amplification: Continuously expanding reasoning based on false or unestab-
lished premises, constructing seemingly plausible but actually incorrect paths.

* Internal Contradiction: The reasoning path contains logically inconsistent statements,
where the subsequent reasoning attempts to reconcile or proceeds despite these inconsisten-

cies.

Non-Destructive Redundancy

This type of redundancy does not affect the correctness of the final answer but significantly increases

output length and reduces reasoning efficiency.

* Repetition: Repeatedly expressing existing information or rephrasing the same content with

different wordings.

* Over-Elaboration: Introducing definitions, background, or redundant explanations unre-
lated to problem-solving, thereby extending the reasoning chain.

CLINNY3

* Over-Cautiousness: Using vague expressions such as “might”, “probably”, or “seems like”

to describe definitive information.

Classification Process: We utilize the Qwen3-235B-A22B model as a classifier to automatically
label redundancy types in model outputs. For each category, 50 samples were randomly selected and
manually reviewed (two independent annotators, majority voting for decisions, Kappa coefficient of
0.86) to ensure classification quality. The distribution of each redundancy category in DeepSeek-R1-

Distill-Qwen-7B model outputs is shown in Figure

Problem: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. .<some
background>... Find the number of minutes the walk takes her, including the ¢ minutes spent in the coffee
shop.

Destructive Redundancy Non-Destructive Redundancy
Logical Drift: ’ Repetition: ‘ =
Before calculating, let's consider coffee shop Equation: 9/5 + t = 4 hours. In other words, walking
culture's evolution. fime plus cof fee shop time is 4 hours.

Hallucination Amplification: < ) Over-Elaboratio:

We know that the basic relationship between
speed, distance and time is: distance equals speed
multiplied by time...

Assumed 't' (coffee shop duration) must be an even
number. Based on this, we conclude...

Internal Contradiction: g Over-Cautiousness: Q
Calculated s=2.5 km/h, but another method yielded =25 km/h seems reasonable, which may reflect
$=3.0 km/h. These values are contradictory.... the average speed of Aya's daily walking...

Figure 3: Examples of Redundancy Categorization. This
figure illustrates our proposed six semantically interpretable
redundancy categories using a mathematical reasoning prob-
lem.

B.2 C(lassification Prompt

Redundancy Distribution

1n.a%

301%

17.6%

Destructive Redundancy Non-Destructive Redundancy
Logical Drift Repetition

@  Hollcination

Amplification Over-Elaboratio

Internal

Figure 4: Distribution of Redun-
dancy Categories in DeepSeek-R1-
Distill-Qwen-7B Model Outputs
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You are a professional text analysis assistant, skilled at
< identifying redundancy phenomena in large language model (
<~ LLM) responses.

Your task is to analyze the LLM response I provide and
— categorize it into the redundancy categories I define.

Redundancy Category Definitions:

Detrimental Redundancy: This type of redundancy directly causes
—» or exacerbates errors, inconsistencies, or unreliability
~ 1in model outputs.

1. Logical Deviation: During reasoning, the model forgets what
<~ 1t was supposed to do and starts talking randomly about
<~ various things, causing redundancy and errors.

2. Hallucination Amplification: The model generates a non-

— existent false premise during reasoning, then continuously
<~ reasons based on this premise to reach a final "answer",
> causing redundancy of false premises and incorrect

<~ reasoning.

3. Internal Inconsistency: The model reaches two completely
<~ contradictory conclusions during reasoning, then continues
— to debate between these two conclusions, causing
<~ redundant argumentation.

Non-Detrimental Redundancy: This type of redundancy mainly
<~ causes inefficiency and information overload, but usually
<~ does not directly lead to core answer errors.
4. Repetition/Restatement: Repeatedly saying the same thing
<~ without providing new information or substantial progress.
5. Unnecessary Elaboration: Providing too many, overly specific,
<~ or unnecessary examples, analogies, background
<~ information, or detailed descriptions for a point or step.
— For example, when asked "what is 1+17", starting from the
— definition of addition.
6. Over-Cautiousness/Defensiveness: Adding too many unnecessary
— qualifiers, possibility descriptions (like "maybe", "
< perhaps", "in some cases"), disclaimers, or listing all
> possible edge cases when they’re not actually necessary.

Classification Instructions:

1. I will provide a "user question" with a "correct answer", and
<~ the LLM’s "response" to that question.

2. Please carefully read and analyze the LLM’s response.

3. Determine whether the response contains the redundancy types
> defined above.

4. If redundancy exists, please select at least one category
> that best represents the redundancy phenomenon. If
~— multiple types of redundancy exist, please list all
> applicable categories and indicate the most prominent one.

5. If the response is very concise and contains no redundancy,
— please mark it as "none".

6. Your output format must be the following JSON format:

"redundancy_type": ["main redundancy type, return redundancy
< type number (1-6)"],

"secondary_redundancy_type": ["other applicable redundancy
> types, empty list if none"],

"analysis_explanation": "Brief explanation of why it’s
> categorized as this type, and point out specific
<~ redundant parts in the response."

}

Example:
User Question: "Is the Earth square?"




248 LLM Response: "The Earth is not square. From what we know about
249 > physics and astronomy, the Earth is an approximately

250 — spherical body, more accurately described as an oblate

251 > spheroid, because the equator is slightly bulged and the
252 <~ poles are slightly flattened. This shape is the result of
253 < the combined action of centrifugal force generated by

254 <~ Earth’s rotation and its own gravity. Therefore,

255 < describing it as ’round’ in everyday context is completely
256 ~ understandable and acceptable, but in the precise

257 <~ definition of science and astronomy, it is not a perfect
258 — geometric sphere. For example, Earth’s ocean tidal

259 <~ movements, atmosphere, and internal geological structure
260 — all affect its precise shape, and these are all reasons
261 ~ why it’s not completely a perfect sphere."

262 Your output:

263 {

264 "redundancy_type": ["6"],

265 "secondary_redundancy_type": ["5"],

266 "analysis_explanation": "When answering a simple yes/mno

267 ~— question, the LLM added too many unnecessary qualifiers
268 <~ and scientific details, such as ’strictly speaking it’s
269 <~ an oblate spheroid’, ’understandable in everyday context
270 ~ ? disclaimers, and excessive explanations for why its
271 > shape is imperfect, showing excessive caution and

272 «— defensiveness. At the same time, these excessive

273 — scientific details also constitute unnecessary

274 — elaboration for a simple affirmative/negative answer."
275 }

276

277 User Question: "{input_textl}"

278 Correct Answer: "{final_answer}"

323 LLM Response: "{generated_text}"

231 C Experimental Detail

282 Models
283 To evaluate the performance of CATS, we selected the following three representative reasoning-
284 optimized models from the DeepSeek-R1-Distill series as experimental subjects:

285 * DeepSeek-R1-Distill-Qwen-1.5B
286 * DeepSeek-R1-Distill-Qwen-7B
287 * DeepSeek-R1-Distill-Llama-8B

288 These models are representative in their reasoning capabilities and encompass different underlying
289  architectures, which helps to investigate CATS’s effectiveness under various conditions.

200 Datasets

291 Experiments were primarily validated on the following five classic mathematical reasoning
292 datasets:MATH-500 [11]], AMC, AMC23, AIME 2024, AIME 2025 [[12]. These datasets all require
293 complex chain-of-thought reasoning, and the generated thought processes often contain a rich
294 variety of redundancy types, making them ideal scenarios for observing, classifying, and quantifying
295 redundancy phenomena.

296 For generation, we set the maximum generation length (including both reasoning trace and final
297 answer) for all models to 16384 tokens. For each test question, we sample 4 to 16 outputs with a
298 temperature of 0.7.

299



so D Ablation Study

so1  Per-Category Intervention Ablation

302 Within the CATS framework, we further individually removed the intervention vector for specific
303 redundancy categories (i.e., setting their wy, to 0), observing the impact on the average change in accu-
s0+ racy and length, to reveal the unique contribution of each category’s intervention, as shown in Figure[5]
305

A accuracy A length

3

2 4
1

0 3
-1

2
=2
-4

-5 0

Destructive Redundancy

Logical Drift . Hallucination Amplification Internal Contradiction

Non-Destructive Redundancy

Repetition Over-Elaboratio Over-Cautiousness

Figure 5: Impact of Removing Specific Redundancy Category Interventions on Core Metrics (Accu-
racy and Length)

sos Example Analysis:

307 * Removing “Logical Drift” category intervention: As seen in Figure[5] when intervention
308 for the “Logical Drift” category is removed, the model’s average accuracy decreases by
309 4.2%, and the average length only increases by 2.0%. This strongly proves the critical role
310 of the “Logical Drift” category and its corresponding intervention vector in ensuring model
311 output quality and suppressing destructive redundancy. It alerts us that not all redundancy is
312 harmless, and identifying and intervening in specific destructive redundancies is crucial.
313 * Removing “Repetition” category intervention: Conversely, when we remove interven-
314 tion for the “Repetition” category, the average length increases by 4.3%, but accuracy
315 remains almost unchanged (change less than 1.0%). This indicates that intervention for
316 non-destructive redundancies like “Repetition” primarily focuses on text conciseness and
317 contributes significantly to length compression without affecting core performance.

318 These ablation results collectively demonstrate the rationality and effectiveness of our six-category
319 redundancy classification system, as well as each category’s unique contribution to achieving the
320 overall optimization goals.

21 E Related work

s22 E.1 Large Reasoning Models (LRMs) Background

323 Large Reasoning Models (LRMs), such as OpenAl’s ol [2]] and DeepSeek-R1 [1]], extend Large
324 Language Models’ reasoning ability by incorporating explicit Chain-of-Thought (CoT) mechanisms.
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This simulates the human process of step-by-step problem decomposition, iterative verification, and
idea refinement, significantly boosting model performance in mathematical, scientific, and common-
sense reasoning tasks. Their typical inference process involves generating multi-step intermediate
reasoning before outputting the final answer.

Despite the significant success of this strategy in improving accuracy, it also introduces substantial
reasoning redundancy. To ensure answer reliability, LRMs tend to “over-explain for stability”, leading
to reasoning paths that can span hundreds to thousands of tokens for a single problem. Consequently,
this results in issues such as increased inference latency and higher computational costs.

Existing redundancy mitigation strategies primarily fall into two categories: (1) training-based
compression via Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL), and (2) training-
free compression through Prompt Engineering.

E.2 Supervised Fine-Tuning Strategies: Constructing ‘“Verbose-Concise” Pairs for
Compression

The core idea of these methods is to construct paired “verbose-concise” reasoning path data to train
the model to generate more concise answers while maintaining reasoning validity. The specific
process includes: collecting multiple reasoning paths for the same problem; selecting the shortest
correct path as the gold standard; designing appropriate loss functions to guide the model to learn
concise expressions during training.

For example, Self-training [3] constructs a dataset with multiple solutions for the same problem
and selects the shortest correct path for training to enhance the model’s compression capability.
The TokenSkip [4] method identifies and skips tokens that contribute minimally to the final answer,
thereby compressing reasoning length while preserving semantic integrity. C3oT [35]] designs a
GPT-4-based compressor that generates shorter chain-of-thought paths by retaining critical reasoning
steps.

E.3 Reinforcement Learning Strategies: Designing Dual-Objective Rewards for
Length-Accuracy Trade-off

Reinforcement learning approaches focus on designing reward functions that guide the model to
compress reasoning path length while ensuring output accuracy. This typically involves setting
dual-objective rewards: a conciseness reward (penalizing redundant tokens) and an accuracy reward
(ensuring the final answer’s correctness).

For instance, O1-Pruner [6] uses length and accuracy as baselines for its reward function, encouraging
the model to generate shorter reasoning paths without sacrificing precision. ThinkPrune [7]] introduces
a length-aware reward, requiring the model to complete correct reasoning within a given token budget,
only receiving positive feedback when both objectives are met.

E.4 Prompt Engineering Strategies: Zero-Training Compression of Reasoning Paths

These methods do not rely on additional training. Instead, they guide the model to control reasoning
length through prompt design, achieving immediate compression.

For example, CCoT [_8] explicitly prompts the model to “Be concise”. Token-Budget [9]] sets a token
usage limit in the prompt, guiding the model to complete reasoning tasks within the budget. Chain of
Draft [10]] requires the model to retain only core information in each reasoning step, even limiting the
word count per step to reduce redundant descriptions.

In summary, while existing solutions can compress LRMs’ lengthy reasoning to varying degrees, they
each suffer from distinct shortcomings: SFT and RL require retraining, incurring high computational
and human costs due to annotation or reward design; prompt engineering relies on manual prompt
granularity, with effects drifting across tasks and lacking precise control; other hidden intervention
methods [[13]] use only a single directional vector, overlooking the semantic diversity of redundancy.
In contrast, our proposed CATS requires no training, achieving 25% reasoning compression on
different reasoning models by weighting and fusing six categories of differential vectors. It balances
accuracy with interpretability, providing a plug-and-play, fine-grained, and cost-effective redundancy
mitigation solution for resource-constrained scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of the paper accurately present its core contribu-
tion, which is proposing the CATS method to reduce redundancy in large inference models.
Experimental results demonstrate that this method can shorten the inference length while
maintaining or slightly improving accuracy. The paper clearly distinguishes between the
classifications of "destructive redundancy" and "non-destructive redundancy," and it is noted
that CATS is a lightweight method that does not require training, all of which are consistent
with the experimental findings of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: It has been stated in the conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is primarily an empirical study, without presenting rigorous theoret-
ical results or providing formal mathematical proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper elaborates on the CATS framework, the extraction process of
differential vectors, the experimental settings (models and datasets used), and the evaluation
metrics in the methodology and experimental sections. Such information is sufficient for
replicating the core results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code has been anonymously provided in the abstract section.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper elaborates on the experimental setup in Section 4 "Experiments”,
including three models used , five mathematical reasoning datasets , as well as evalua-
tion metrics and baseline methods. Such information is sufficient for understanding the
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: It has been stated in the Experiments section.

Guidelines:

13


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

533

534
535
536

537
538
539

540
541

542

543
544

545
546
547

548
549
550

551
552
553

554
555
556

557

558

559

560

561
562

563
564

565
566
567

568

569
570

571

572
573
574

575

577
578

579
580

581

582
583

584

8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It has been explained in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This study primarily focuses on model efficiency and redundancy, and does
not involve sensitive data or applications harmful to humans. Therefore, it fully complies
with the NeurIPS ethical guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

14


https://neurips.cc/public/EthicsGuidelines

585
586
587
588
589

590

591

592
593

594
595
596
597

598
599
600
601
602
603
604

605
606
607
608
609
610
611
612

613

614
615
616

617

618
619

620

621

622
623
624
625

627
628
629
630

632
633
634

635

636
637

11.

12.

Justification: The introduction of the paper implies its positive social impact, i.e., improving
the efficiency of LRMs by reducing computational redundancy, thereby lowering inference
costs and energy consumption, which is particularly important for resource-constrained
environments. The paper does not discuss potential negative impacts, and this part can be
supplemented in the final version.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any new datasets or models with a high risk of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the original papers of the models used and datasets, and
correctly attributes them to their creators.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: This paper provides relevant code, and all data are publicly available.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This study does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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690 Justification: This study does not involve human subjects.

691 Guidelines:

692 * The answer NA means that the paper does not involve crowdsourcing nor research with
693 human subjects.

694 * Depending on the country in which research is conducted, IRB approval (or equivalent)
695 may be required for any human subjects research. If you obtained IRB approval, you
696 should clearly state this in the paper.

697 * We recognize that the procedures for this may vary significantly between institutions
698 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
699 guidelines for their institution.

700 * For initial submissions, do not include any information that would break anonymity (if
701 applicable), such as the institution conducting the review.

702 16. Declaration of LLM usage

703 Question: Does the paper describe the usage of LLMs if it is an important, original, or
704 non-standard component of the core methods in this research? Note that if the LLM is used
705 only for writing, editing, or formatting purposes and does not impact the core methodology,
706 scientific rigorousness, or originality of the research, declaration is not required.

707 Answer: [Yes]

708 Justification: The core research object of this paper is large reasoning models (LRMs), and
709 an intervention method is proposed to improve their performance. Therefore, the use of
710 LRMs is described in detail in both the methodology and experiments.

71 Guidelines:

712 * The answer NA means that the core method development in this research does not
713 involve LLMs as any important, original, or non-standard components.

714 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
715 for what should or should not be described.
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